MipsAsmPrinter.cpp 43.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
//===- MipsAsmPrinter.cpp - Mips LLVM Assembly Printer --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format MIPS assembly language.
//
//===----------------------------------------------------------------------===//

#include "MipsAsmPrinter.h"
#include "MCTargetDesc/MipsABIInfo.h"
#include "MCTargetDesc/MipsBaseInfo.h"
#include "MCTargetDesc/MipsInstPrinter.h"
#include "MCTargetDesc/MipsMCNaCl.h"
#include "MCTargetDesc/MipsMCTargetDesc.h"
#include "Mips.h"
#include "MipsMCInstLower.h"
#include "MipsMachineFunction.h"
#include "MipsSubtarget.h"
#include "MipsTargetMachine.h"
#include "MipsTargetStreamer.h"
#include "TargetInfo/MipsTargetInfo.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <memory>
#include <string>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "mips-asm-printer"

extern cl::opt<bool> EmitJalrReloc;

MipsTargetStreamer &MipsAsmPrinter::getTargetStreamer() const {
  return static_cast<MipsTargetStreamer &>(*OutStreamer->getTargetStreamer());
}

bool MipsAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
  Subtarget = &MF.getSubtarget<MipsSubtarget>();

  MipsFI = MF.getInfo<MipsFunctionInfo>();
  if (Subtarget->inMips16Mode())
    for (std::map<
             const char *,
             const Mips16HardFloatInfo::FuncSignature *>::const_iterator
             it = MipsFI->StubsNeeded.begin();
         it != MipsFI->StubsNeeded.end(); ++it) {
      const char *Symbol = it->first;
      const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
      if (StubsNeeded.find(Symbol) == StubsNeeded.end())
        StubsNeeded[Symbol] = Signature;
    }
  MCP = MF.getConstantPool();

  // In NaCl, all indirect jump targets must be aligned to bundle size.
  if (Subtarget->isTargetNaCl())
    NaClAlignIndirectJumpTargets(MF);

  AsmPrinter::runOnMachineFunction(MF);

  emitXRayTable();

  return true;
}

bool MipsAsmPrinter::lowerOperand(const MachineOperand &MO, MCOperand &MCOp) {
  MCOp = MCInstLowering.LowerOperand(MO);
  return MCOp.isValid();
}

#include "MipsGenMCPseudoLowering.inc"

// Lower PseudoReturn/PseudoIndirectBranch/PseudoIndirectBranch64 to JR, JR_MM,
// JALR, or JALR64 as appropriate for the target.
void MipsAsmPrinter::emitPseudoIndirectBranch(MCStreamer &OutStreamer,
                                              const MachineInstr *MI) {
  bool HasLinkReg = false;
  bool InMicroMipsMode = Subtarget->inMicroMipsMode();
  MCInst TmpInst0;

  if (Subtarget->hasMips64r6()) {
    // MIPS64r6 should use (JALR64 ZERO_64, $rs)
    TmpInst0.setOpcode(Mips::JALR64);
    HasLinkReg = true;
  } else if (Subtarget->hasMips32r6()) {
    // MIPS32r6 should use (JALR ZERO, $rs)
    if (InMicroMipsMode)
      TmpInst0.setOpcode(Mips::JRC16_MMR6);
    else {
      TmpInst0.setOpcode(Mips::JALR);
      HasLinkReg = true;
    }
  } else if (Subtarget->inMicroMipsMode())
    // microMIPS should use (JR_MM $rs)
    TmpInst0.setOpcode(Mips::JR_MM);
  else {
    // Everything else should use (JR $rs)
    TmpInst0.setOpcode(Mips::JR);
  }

  MCOperand MCOp;

  if (HasLinkReg) {
    unsigned ZeroReg = Subtarget->isGP64bit() ? Mips::ZERO_64 : Mips::ZERO;
    TmpInst0.addOperand(MCOperand::createReg(ZeroReg));
  }

  lowerOperand(MI->getOperand(0), MCOp);
  TmpInst0.addOperand(MCOp);

  EmitToStreamer(OutStreamer, TmpInst0);
}

// If there is an MO_JALR operand, insert:
//
// .reloc tmplabel, R_{MICRO}MIPS_JALR, symbol
// tmplabel:
//
// This is an optimization hint for the linker which may then replace
// an indirect call with a direct branch.
static void emitDirectiveRelocJalr(const MachineInstr &MI,
                                   MCContext &OutContext,
                                   TargetMachine &TM,
                                   MCStreamer &OutStreamer,
                                   const MipsSubtarget &Subtarget) {
  for (unsigned int I = MI.getDesc().getNumOperands(), E = MI.getNumOperands();
       I < E; ++I) {
    MachineOperand MO = MI.getOperand(I);
    if (MO.isMCSymbol() && (MO.getTargetFlags() & MipsII::MO_JALR)) {
      MCSymbol *Callee = MO.getMCSymbol();
      if (Callee && !Callee->getName().empty()) {
        MCSymbol *OffsetLabel = OutContext.createTempSymbol();
        const MCExpr *OffsetExpr =
            MCSymbolRefExpr::create(OffsetLabel, OutContext);
        const MCExpr *CaleeExpr =
            MCSymbolRefExpr::create(Callee, OutContext);
        OutStreamer.emitRelocDirective(
            *OffsetExpr,
            Subtarget.inMicroMipsMode() ? "R_MICROMIPS_JALR" : "R_MIPS_JALR",
            CaleeExpr, SMLoc(), *TM.getMCSubtargetInfo());
        OutStreamer.emitLabel(OffsetLabel);
        return;
      }
    }
  }
}

void MipsAsmPrinter::emitInstruction(const MachineInstr *MI) {
  MipsTargetStreamer &TS = getTargetStreamer();
  unsigned Opc = MI->getOpcode();
  TS.forbidModuleDirective();

  if (MI->isDebugValue()) {
    SmallString<128> Str;
    raw_svector_ostream OS(Str);

    PrintDebugValueComment(MI, OS);
    return;
  }
  if (MI->isDebugLabel())
    return;

  // If we just ended a constant pool, mark it as such.
  if (InConstantPool && Opc != Mips::CONSTPOOL_ENTRY) {
    OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
    InConstantPool = false;
  }
  if (Opc == Mips::CONSTPOOL_ENTRY) {
    // CONSTPOOL_ENTRY - This instruction represents a floating
    // constant pool in the function.  The first operand is the ID#
    // for this instruction, the second is the index into the
    // MachineConstantPool that this is, the third is the size in
    // bytes of this constant pool entry.
    // The required alignment is specified on the basic block holding this MI.
    //
    unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
    unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex();

    // If this is the first entry of the pool, mark it.
    if (!InConstantPool) {
      OutStreamer->emitDataRegion(MCDR_DataRegion);
      InConstantPool = true;
    }

    OutStreamer->emitLabel(GetCPISymbol(LabelId));

    const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
    if (MCPE.isMachineConstantPoolEntry())
      emitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
    else
      emitGlobalConstant(MF->getDataLayout(), MCPE.Val.ConstVal);
    return;
  }

  switch (Opc) {
  case Mips::PATCHABLE_FUNCTION_ENTER:
    LowerPATCHABLE_FUNCTION_ENTER(*MI);
    return;
  case Mips::PATCHABLE_FUNCTION_EXIT:
    LowerPATCHABLE_FUNCTION_EXIT(*MI);
    return;
  case Mips::PATCHABLE_TAIL_CALL:
    LowerPATCHABLE_TAIL_CALL(*MI);
    return;
  }

  if (EmitJalrReloc &&
      (MI->isReturn() || MI->isCall() || MI->isIndirectBranch())) {
    emitDirectiveRelocJalr(*MI, OutContext, TM, *OutStreamer, *Subtarget);
  }

  MachineBasicBlock::const_instr_iterator I = MI->getIterator();
  MachineBasicBlock::const_instr_iterator E = MI->getParent()->instr_end();

  do {
    // Do any auto-generated pseudo lowerings.
    if (emitPseudoExpansionLowering(*OutStreamer, &*I))
      continue;

    // Skip the BUNDLE pseudo instruction and lower the contents
    if (I->isBundle())
      continue;

    if (I->getOpcode() == Mips::PseudoReturn ||
        I->getOpcode() == Mips::PseudoReturn64 ||
        I->getOpcode() == Mips::PseudoIndirectBranch ||
        I->getOpcode() == Mips::PseudoIndirectBranch64 ||
        I->getOpcode() == Mips::TAILCALLREG ||
        I->getOpcode() == Mips::TAILCALLREG64) {
      emitPseudoIndirectBranch(*OutStreamer, &*I);
      continue;
    }

    // The inMips16Mode() test is not permanent.
    // Some instructions are marked as pseudo right now which
    // would make the test fail for the wrong reason but
    // that will be fixed soon. We need this here because we are
    // removing another test for this situation downstream in the
    // callchain.
    //
    if (I->isPseudo() && !Subtarget->inMips16Mode()
        && !isLongBranchPseudo(I->getOpcode()))
      llvm_unreachable("Pseudo opcode found in emitInstruction()");

    MCInst TmpInst0;
    MCInstLowering.Lower(&*I, TmpInst0);
    EmitToStreamer(*OutStreamer, TmpInst0);
  } while ((++I != E) && I->isInsideBundle()); // Delay slot check
}

//===----------------------------------------------------------------------===//
//
//  Mips Asm Directives
//
//  -- Frame directive "frame Stackpointer, Stacksize, RARegister"
//  Describe the stack frame.
//
//  -- Mask directives "(f)mask  bitmask, offset"
//  Tells the assembler which registers are saved and where.
//  bitmask - contain a little endian bitset indicating which registers are
//            saved on function prologue (e.g. with a 0x80000000 mask, the
//            assembler knows the register 31 (RA) is saved at prologue.
//  offset  - the position before stack pointer subtraction indicating where
//            the first saved register on prologue is located. (e.g. with a
//
//  Consider the following function prologue:
//
//    .frame  $fp,48,$ra
//    .mask   0xc0000000,-8
//       addiu $sp, $sp, -48
//       sw $ra, 40($sp)
//       sw $fp, 36($sp)
//
//    With a 0xc0000000 mask, the assembler knows the register 31 (RA) and
//    30 (FP) are saved at prologue. As the save order on prologue is from
//    left to right, RA is saved first. A -8 offset means that after the
//    stack pointer subtration, the first register in the mask (RA) will be
//    saved at address 48-8=40.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Mask directives
//===----------------------------------------------------------------------===//

// Create a bitmask with all callee saved registers for CPU or Floating Point
// registers. For CPU registers consider RA, GP and FP for saving if necessary.
void MipsAsmPrinter::printSavedRegsBitmask() {
  // CPU and FPU Saved Registers Bitmasks
  unsigned CPUBitmask = 0, FPUBitmask = 0;
  int CPUTopSavedRegOff, FPUTopSavedRegOff;

  // Set the CPU and FPU Bitmasks
  const MachineFrameInfo &MFI = MF->getFrameInfo();
  const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
  const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
  // size of stack area to which FP callee-saved regs are saved.
  unsigned CPURegSize = TRI->getRegSizeInBits(Mips::GPR32RegClass) / 8;
  unsigned FGR32RegSize = TRI->getRegSizeInBits(Mips::FGR32RegClass) / 8;
  unsigned AFGR64RegSize = TRI->getRegSizeInBits(Mips::AFGR64RegClass) / 8;
  bool HasAFGR64Reg = false;
  unsigned CSFPRegsSize = 0;

  for (const auto &I : CSI) {
    unsigned Reg = I.getReg();
    unsigned RegNum = TRI->getEncodingValue(Reg);

    // If it's a floating point register, set the FPU Bitmask.
    // If it's a general purpose register, set the CPU Bitmask.
    if (Mips::FGR32RegClass.contains(Reg)) {
      FPUBitmask |= (1 << RegNum);
      CSFPRegsSize += FGR32RegSize;
    } else if (Mips::AFGR64RegClass.contains(Reg)) {
      FPUBitmask |= (3 << RegNum);
      CSFPRegsSize += AFGR64RegSize;
      HasAFGR64Reg = true;
    } else if (Mips::GPR32RegClass.contains(Reg))
      CPUBitmask |= (1 << RegNum);
  }

  // FP Regs are saved right below where the virtual frame pointer points to.
  FPUTopSavedRegOff = FPUBitmask ?
    (HasAFGR64Reg ? -AFGR64RegSize : -FGR32RegSize) : 0;

  // CPU Regs are saved below FP Regs.
  CPUTopSavedRegOff = CPUBitmask ? -CSFPRegsSize - CPURegSize : 0;

  MipsTargetStreamer &TS = getTargetStreamer();
  // Print CPUBitmask
  TS.emitMask(CPUBitmask, CPUTopSavedRegOff);

  // Print FPUBitmask
  TS.emitFMask(FPUBitmask, FPUTopSavedRegOff);
}

//===----------------------------------------------------------------------===//
// Frame and Set directives
//===----------------------------------------------------------------------===//

/// Frame Directive
void MipsAsmPrinter::emitFrameDirective() {
  const TargetRegisterInfo &RI = *MF->getSubtarget().getRegisterInfo();

  Register stackReg = RI.getFrameRegister(*MF);
  unsigned returnReg = RI.getRARegister();
  unsigned stackSize = MF->getFrameInfo().getStackSize();

  getTargetStreamer().emitFrame(stackReg, stackSize, returnReg);
}

/// Emit Set directives.
const char *MipsAsmPrinter::getCurrentABIString() const {
  switch (static_cast<MipsTargetMachine &>(TM).getABI().GetEnumValue()) {
  case MipsABIInfo::ABI::O32:  return "abi32";
  case MipsABIInfo::ABI::N32:  return "abiN32";
  case MipsABIInfo::ABI::N64:  return "abi64";
  default: llvm_unreachable("Unknown Mips ABI");
  }
}

void MipsAsmPrinter::emitFunctionEntryLabel() {
  MipsTargetStreamer &TS = getTargetStreamer();

  // NaCl sandboxing requires that indirect call instructions are masked.
  // This means that function entry points should be bundle-aligned.
  if (Subtarget->isTargetNaCl())
    emitAlignment(std::max(MF->getAlignment(), MIPS_NACL_BUNDLE_ALIGN));

  if (Subtarget->inMicroMipsMode()) {
    TS.emitDirectiveSetMicroMips();
    TS.setUsesMicroMips();
    TS.updateABIInfo(*Subtarget);
  } else
    TS.emitDirectiveSetNoMicroMips();

  if (Subtarget->inMips16Mode())
    TS.emitDirectiveSetMips16();
  else
    TS.emitDirectiveSetNoMips16();

  TS.emitDirectiveEnt(*CurrentFnSym);
  OutStreamer->emitLabel(CurrentFnSym);
}

/// EmitFunctionBodyStart - Targets can override this to emit stuff before
/// the first basic block in the function.
void MipsAsmPrinter::emitFunctionBodyStart() {
  MipsTargetStreamer &TS = getTargetStreamer();

  MCInstLowering.Initialize(&MF->getContext());

  bool IsNakedFunction = MF->getFunction().hasFnAttribute(Attribute::Naked);
  if (!IsNakedFunction)
    emitFrameDirective();

  if (!IsNakedFunction)
    printSavedRegsBitmask();

  if (!Subtarget->inMips16Mode()) {
    TS.emitDirectiveSetNoReorder();
    TS.emitDirectiveSetNoMacro();
    TS.emitDirectiveSetNoAt();
  }
}

/// EmitFunctionBodyEnd - Targets can override this to emit stuff after
/// the last basic block in the function.
void MipsAsmPrinter::emitFunctionBodyEnd() {
  MipsTargetStreamer &TS = getTargetStreamer();

  // There are instruction for this macros, but they must
  // always be at the function end, and we can't emit and
  // break with BB logic.
  if (!Subtarget->inMips16Mode()) {
    TS.emitDirectiveSetAt();
    TS.emitDirectiveSetMacro();
    TS.emitDirectiveSetReorder();
  }
  TS.emitDirectiveEnd(CurrentFnSym->getName());
  // Make sure to terminate any constant pools that were at the end
  // of the function.
  if (!InConstantPool)
    return;
  InConstantPool = false;
  OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
}

void MipsAsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
  AsmPrinter::emitBasicBlockEnd(MBB);
  MipsTargetStreamer &TS = getTargetStreamer();
  if (MBB.empty())
    TS.emitDirectiveInsn();
}

/// isBlockOnlyReachableByFallthough - Return true if the basic block has
/// exactly one predecessor and the control transfer mechanism between
/// the predecessor and this block is a fall-through.
bool MipsAsmPrinter::isBlockOnlyReachableByFallthrough(const MachineBasicBlock*
                                                       MBB) const {
  // The predecessor has to be immediately before this block.
  const MachineBasicBlock *Pred = *MBB->pred_begin();

  // If the predecessor is a switch statement, assume a jump table
  // implementation, so it is not a fall through.
  if (const BasicBlock *bb = Pred->getBasicBlock())
    if (isa<SwitchInst>(bb->getTerminator()))
      return false;

  // If this is a landing pad, it isn't a fall through.  If it has no preds,
  // then nothing falls through to it.
  if (MBB->isEHPad() || MBB->pred_empty())
    return false;

  // If there isn't exactly one predecessor, it can't be a fall through.
  MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
  ++PI2;

  if (PI2 != MBB->pred_end())
    return false;

  // The predecessor has to be immediately before this block.
  if (!Pred->isLayoutSuccessor(MBB))
    return false;

  // If the block is completely empty, then it definitely does fall through.
  if (Pred->empty())
    return true;

  // Otherwise, check the last instruction.
  // Check if the last terminator is an unconditional branch.
  MachineBasicBlock::const_iterator I = Pred->end();
  while (I != Pred->begin() && !(--I)->isTerminator()) ;

  return !I->isBarrier();
}

// Print out an operand for an inline asm expression.
bool MipsAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
                                     const char *ExtraCode, raw_ostream &O) {
  // Does this asm operand have a single letter operand modifier?
  if (ExtraCode && ExtraCode[0]) {
    if (ExtraCode[1] != 0) return true; // Unknown modifier.

    const MachineOperand &MO = MI->getOperand(OpNum);
    switch (ExtraCode[0]) {
    default:
      // See if this is a generic print operand
      return AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O);
    case 'X': // hex const int
      if ((MO.getType()) != MachineOperand::MO_Immediate)
        return true;
      O << "0x" << Twine::utohexstr(MO.getImm());
      return false;
    case 'x': // hex const int (low 16 bits)
      if ((MO.getType()) != MachineOperand::MO_Immediate)
        return true;
      O << "0x" << Twine::utohexstr(MO.getImm() & 0xffff);
      return false;
    case 'd': // decimal const int
      if ((MO.getType()) != MachineOperand::MO_Immediate)
        return true;
      O << MO.getImm();
      return false;
    case 'm': // decimal const int minus 1
      if ((MO.getType()) != MachineOperand::MO_Immediate)
        return true;
      O << MO.getImm() - 1;
      return false;
    case 'y': // exact log2
      if ((MO.getType()) != MachineOperand::MO_Immediate)
        return true;
      if (!isPowerOf2_64(MO.getImm()))
        return true;
      O << Log2_64(MO.getImm());
      return false;
    case 'z':
      // $0 if zero, regular printing otherwise
      if (MO.getType() == MachineOperand::MO_Immediate && MO.getImm() == 0) {
        O << "$0";
        return false;
      }
      // If not, call printOperand as normal.
      break;
    case 'D': // Second part of a double word register operand
    case 'L': // Low order register of a double word register operand
    case 'M': // High order register of a double word register operand
    {
      if (OpNum == 0)
        return true;
      const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
      if (!FlagsOP.isImm())
        return true;
      unsigned Flags = FlagsOP.getImm();
      unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
      // Number of registers represented by this operand. We are looking
      // for 2 for 32 bit mode and 1 for 64 bit mode.
      if (NumVals != 2) {
        if (Subtarget->isGP64bit() && NumVals == 1 && MO.isReg()) {
          Register Reg = MO.getReg();
          O << '$' << MipsInstPrinter::getRegisterName(Reg);
          return false;
        }
        return true;
      }

      unsigned RegOp = OpNum;
      if (!Subtarget->isGP64bit()){
        // Endianness reverses which register holds the high or low value
        // between M and L.
        switch(ExtraCode[0]) {
        case 'M':
          RegOp = (Subtarget->isLittle()) ? OpNum + 1 : OpNum;
          break;
        case 'L':
          RegOp = (Subtarget->isLittle()) ? OpNum : OpNum + 1;
          break;
        case 'D': // Always the second part
          RegOp = OpNum + 1;
        }
        if (RegOp >= MI->getNumOperands())
          return true;
        const MachineOperand &MO = MI->getOperand(RegOp);
        if (!MO.isReg())
          return true;
        Register Reg = MO.getReg();
        O << '$' << MipsInstPrinter::getRegisterName(Reg);
        return false;
      }
      break;
    }
    case 'w':
      // Print MSA registers for the 'f' constraint
      // In LLVM, the 'w' modifier doesn't need to do anything.
      // We can just call printOperand as normal.
      break;
    }
  }

  printOperand(MI, OpNum, O);
  return false;
}

bool MipsAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
                                           unsigned OpNum,
                                           const char *ExtraCode,
                                           raw_ostream &O) {
  assert(OpNum + 1 < MI->getNumOperands() && "Insufficient operands");
  const MachineOperand &BaseMO = MI->getOperand(OpNum);
  const MachineOperand &OffsetMO = MI->getOperand(OpNum + 1);
  assert(BaseMO.isReg() &&
         "Unexpected base pointer for inline asm memory operand.");
  assert(OffsetMO.isImm() &&
         "Unexpected offset for inline asm memory operand.");
  int Offset = OffsetMO.getImm();

  // Currently we are expecting either no ExtraCode or 'D','M','L'.
  if (ExtraCode) {
    switch (ExtraCode[0]) {
    case 'D':
      Offset += 4;
      break;
    case 'M':
      if (Subtarget->isLittle())
        Offset += 4;
      break;
    case 'L':
      if (!Subtarget->isLittle())
        Offset += 4;
      break;
    default:
      return true; // Unknown modifier.
    }
  }

  O << Offset << "($" << MipsInstPrinter::getRegisterName(BaseMO.getReg())
    << ")";

  return false;
}

void MipsAsmPrinter::printOperand(const MachineInstr *MI, int opNum,
                                  raw_ostream &O) {
  const MachineOperand &MO = MI->getOperand(opNum);
  bool closeP = false;

  if (MO.getTargetFlags())
    closeP = true;

  switch(MO.getTargetFlags()) {
  case MipsII::MO_GPREL:    O << "%gp_rel("; break;
  case MipsII::MO_GOT_CALL: O << "%call16("; break;
  case MipsII::MO_GOT:      O << "%got(";    break;
  case MipsII::MO_ABS_HI:   O << "%hi(";     break;
  case MipsII::MO_ABS_LO:   O << "%lo(";     break;
  case MipsII::MO_HIGHER:   O << "%higher("; break;
  case MipsII::MO_HIGHEST:  O << "%highest(("; break;
  case MipsII::MO_TLSGD:    O << "%tlsgd(";  break;
  case MipsII::MO_GOTTPREL: O << "%gottprel("; break;
  case MipsII::MO_TPREL_HI: O << "%tprel_hi("; break;
  case MipsII::MO_TPREL_LO: O << "%tprel_lo("; break;
  case MipsII::MO_GPOFF_HI: O << "%hi(%neg(%gp_rel("; break;
  case MipsII::MO_GPOFF_LO: O << "%lo(%neg(%gp_rel("; break;
  case MipsII::MO_GOT_DISP: O << "%got_disp("; break;
  case MipsII::MO_GOT_PAGE: O << "%got_page("; break;
  case MipsII::MO_GOT_OFST: O << "%got_ofst("; break;
  }

  switch (MO.getType()) {
    case MachineOperand::MO_Register:
      O << '$'
        << StringRef(MipsInstPrinter::getRegisterName(MO.getReg())).lower();
      break;

    case MachineOperand::MO_Immediate:
      O << MO.getImm();
      break;

    case MachineOperand::MO_MachineBasicBlock:
      MO.getMBB()->getSymbol()->print(O, MAI);
      return;

    case MachineOperand::MO_GlobalAddress:
      PrintSymbolOperand(MO, O);
      break;

    case MachineOperand::MO_BlockAddress: {
      MCSymbol *BA = GetBlockAddressSymbol(MO.getBlockAddress());
      O << BA->getName();
      break;
    }

    case MachineOperand::MO_ConstantPoolIndex:
      O << getDataLayout().getPrivateGlobalPrefix() << "CPI"
        << getFunctionNumber() << "_" << MO.getIndex();
      if (MO.getOffset())
        O << "+" << MO.getOffset();
      break;

    default:
      llvm_unreachable("<unknown operand type>");
  }

  if (closeP) O << ")";
}

void MipsAsmPrinter::
printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O) {
  // Load/Store memory operands -- imm($reg)
  // If PIC target the target is loaded as the
  // pattern lw $25,%call16($28)

  // opNum can be invalid if instruction has reglist as operand.
  // MemOperand is always last operand of instruction (base + offset).
  switch (MI->getOpcode()) {
  default:
    break;
  case Mips::SWM32_MM:
  case Mips::LWM32_MM:
    opNum = MI->getNumOperands() - 2;
    break;
  }

  printOperand(MI, opNum+1, O);
  O << "(";
  printOperand(MI, opNum, O);
  O << ")";
}

void MipsAsmPrinter::
printMemOperandEA(const MachineInstr *MI, int opNum, raw_ostream &O) {
  // when using stack locations for not load/store instructions
  // print the same way as all normal 3 operand instructions.
  printOperand(MI, opNum, O);
  O << ", ";
  printOperand(MI, opNum+1, O);
}

void MipsAsmPrinter::
printFCCOperand(const MachineInstr *MI, int opNum, raw_ostream &O,
                const char *Modifier) {
  const MachineOperand &MO = MI->getOperand(opNum);
  O << Mips::MipsFCCToString((Mips::CondCode)MO.getImm());
}

void MipsAsmPrinter::
printRegisterList(const MachineInstr *MI, int opNum, raw_ostream &O) {
  for (int i = opNum, e = MI->getNumOperands(); i != e; ++i) {
    if (i != opNum) O << ", ";
    printOperand(MI, i, O);
  }
}

void MipsAsmPrinter::emitStartOfAsmFile(Module &M) {
  MipsTargetStreamer &TS = getTargetStreamer();

  // MipsTargetStreamer has an initialization order problem when emitting an
  // object file directly (see MipsTargetELFStreamer for full details). Work
  // around it by re-initializing the PIC state here.
  TS.setPic(OutContext.getObjectFileInfo()->isPositionIndependent());

  // Compute MIPS architecture attributes based on the default subtarget
  // that we'd have constructed. Module level directives aren't LTO
  // clean anyhow.
  // FIXME: For ifunc related functions we could iterate over and look
  // for a feature string that doesn't match the default one.
  const Triple &TT = TM.getTargetTriple();
  StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
  StringRef FS = TM.getTargetFeatureString();
  const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
  const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM, None);

  bool IsABICalls = STI.isABICalls();
  const MipsABIInfo &ABI = MTM.getABI();
  if (IsABICalls) {
    TS.emitDirectiveAbiCalls();
    // FIXME: This condition should be a lot more complicated that it is here.
    //        Ideally it should test for properties of the ABI and not the ABI
    //        itself.
    //        For the moment, I'm only correcting enough to make MIPS-IV work.
    if (!isPositionIndependent() && STI.hasSym32())
      TS.emitDirectiveOptionPic0();
  }

  // Tell the assembler which ABI we are using
  std::string SectionName = std::string(".mdebug.") + getCurrentABIString();
  OutStreamer->SwitchSection(
      OutContext.getELFSection(SectionName, ELF::SHT_PROGBITS, 0));

  // NaN: At the moment we only support:
  // 1. .nan legacy (default)
  // 2. .nan 2008
  STI.isNaN2008() ? TS.emitDirectiveNaN2008()
                  : TS.emitDirectiveNaNLegacy();

  // TODO: handle O64 ABI

  TS.updateABIInfo(STI);

  // We should always emit a '.module fp=...' but binutils 2.24 does not accept
  // it. We therefore emit it when it contradicts the ABI defaults (-mfpxx or
  // -mfp64) and omit it otherwise.
  if ((ABI.IsO32() && (STI.isABI_FPXX() || STI.isFP64bit())) ||
      STI.useSoftFloat())
    TS.emitDirectiveModuleFP();

  // We should always emit a '.module [no]oddspreg' but binutils 2.24 does not
  // accept it. We therefore emit it when it contradicts the default or an
  // option has changed the default (i.e. FPXX) and omit it otherwise.
  if (ABI.IsO32() && (!STI.useOddSPReg() || STI.isABI_FPXX()))
    TS.emitDirectiveModuleOddSPReg();

  // Switch to the .text section.
  OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
}

void MipsAsmPrinter::emitInlineAsmStart() const {
  MipsTargetStreamer &TS = getTargetStreamer();

  // GCC's choice of assembler options for inline assembly code ('at', 'macro'
  // and 'reorder') is different from LLVM's choice for generated code ('noat',
  // 'nomacro' and 'noreorder').
  // In order to maintain compatibility with inline assembly code which depends
  // on GCC's assembler options being used, we have to switch to those options
  // for the duration of the inline assembly block and then switch back.
  TS.emitDirectiveSetPush();
  TS.emitDirectiveSetAt();
  TS.emitDirectiveSetMacro();
  TS.emitDirectiveSetReorder();
  OutStreamer->AddBlankLine();
}

void MipsAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
                                      const MCSubtargetInfo *EndInfo) const {
  OutStreamer->AddBlankLine();
  getTargetStreamer().emitDirectiveSetPop();
}

void MipsAsmPrinter::EmitJal(const MCSubtargetInfo &STI, MCSymbol *Symbol) {
  MCInst I;
  I.setOpcode(Mips::JAL);
  I.addOperand(
      MCOperand::createExpr(MCSymbolRefExpr::create(Symbol, OutContext)));
  OutStreamer->emitInstruction(I, STI);
}

void MipsAsmPrinter::EmitInstrReg(const MCSubtargetInfo &STI, unsigned Opcode,
                                  unsigned Reg) {
  MCInst I;
  I.setOpcode(Opcode);
  I.addOperand(MCOperand::createReg(Reg));
  OutStreamer->emitInstruction(I, STI);
}

void MipsAsmPrinter::EmitInstrRegReg(const MCSubtargetInfo &STI,
                                     unsigned Opcode, unsigned Reg1,
                                     unsigned Reg2) {
  MCInst I;
  //
  // Because of the current td files for Mips32, the operands for MTC1
  // appear backwards from their normal assembly order. It's not a trivial
  // change to fix this in the td file so we adjust for it here.
  //
  if (Opcode == Mips::MTC1) {
    unsigned Temp = Reg1;
    Reg1 = Reg2;
    Reg2 = Temp;
  }
  I.setOpcode(Opcode);
  I.addOperand(MCOperand::createReg(Reg1));
  I.addOperand(MCOperand::createReg(Reg2));
  OutStreamer->emitInstruction(I, STI);
}

void MipsAsmPrinter::EmitInstrRegRegReg(const MCSubtargetInfo &STI,
                                        unsigned Opcode, unsigned Reg1,
                                        unsigned Reg2, unsigned Reg3) {
  MCInst I;
  I.setOpcode(Opcode);
  I.addOperand(MCOperand::createReg(Reg1));
  I.addOperand(MCOperand::createReg(Reg2));
  I.addOperand(MCOperand::createReg(Reg3));
  OutStreamer->emitInstruction(I, STI);
}

void MipsAsmPrinter::EmitMovFPIntPair(const MCSubtargetInfo &STI,
                                      unsigned MovOpc, unsigned Reg1,
                                      unsigned Reg2, unsigned FPReg1,
                                      unsigned FPReg2, bool LE) {
  if (!LE) {
    unsigned temp = Reg1;
    Reg1 = Reg2;
    Reg2 = temp;
  }
  EmitInstrRegReg(STI, MovOpc, Reg1, FPReg1);
  EmitInstrRegReg(STI, MovOpc, Reg2, FPReg2);
}

void MipsAsmPrinter::EmitSwapFPIntParams(const MCSubtargetInfo &STI,
                                         Mips16HardFloatInfo::FPParamVariant PV,
                                         bool LE, bool ToFP) {
  using namespace Mips16HardFloatInfo;

  unsigned MovOpc = ToFP ? Mips::MTC1 : Mips::MFC1;
  switch (PV) {
  case FSig:
    EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
    break;
  case FFSig:
    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F14, LE);
    break;
  case FDSig:
    EmitInstrRegReg(STI, MovOpc, Mips::A0, Mips::F12);
    EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
    break;
  case DSig:
    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
    break;
  case DDSig:
    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
    EmitMovFPIntPair(STI, MovOpc, Mips::A2, Mips::A3, Mips::F14, Mips::F15, LE);
    break;
  case DFSig:
    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F12, Mips::F13, LE);
    EmitInstrRegReg(STI, MovOpc, Mips::A2, Mips::F14);
    break;
  case NoSig:
    return;
  }
}

void MipsAsmPrinter::EmitSwapFPIntRetval(
    const MCSubtargetInfo &STI, Mips16HardFloatInfo::FPReturnVariant RV,
    bool LE) {
  using namespace Mips16HardFloatInfo;

  unsigned MovOpc = Mips::MFC1;
  switch (RV) {
  case FRet:
    EmitInstrRegReg(STI, MovOpc, Mips::V0, Mips::F0);
    break;
  case DRet:
    EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
    break;
  case CFRet:
    EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
    break;
  case CDRet:
    EmitMovFPIntPair(STI, MovOpc, Mips::V0, Mips::V1, Mips::F0, Mips::F1, LE);
    EmitMovFPIntPair(STI, MovOpc, Mips::A0, Mips::A1, Mips::F2, Mips::F3, LE);
    break;
  case NoFPRet:
    break;
  }
}

void MipsAsmPrinter::EmitFPCallStub(
    const char *Symbol, const Mips16HardFloatInfo::FuncSignature *Signature) {
  using namespace Mips16HardFloatInfo;

  MCSymbol *MSymbol = OutContext.getOrCreateSymbol(StringRef(Symbol));
  bool LE = getDataLayout().isLittleEndian();
  // Construct a local MCSubtargetInfo here.
  // This is because the MachineFunction won't exist (but have not yet been
  // freed) and since we're at the global level we can use the default
  // constructed subtarget.
  std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo(
      TM.getTargetTriple().str(), TM.getTargetCPU(),
      TM.getTargetFeatureString()));

  //
  // .global xxxx
  //
  OutStreamer->emitSymbolAttribute(MSymbol, MCSA_Global);
  const char *RetType;
  //
  // make the comment field identifying the return and parameter
  // types of the floating point stub
  // # Stub function to call rettype xxxx (params)
  //
  switch (Signature->RetSig) {
  case FRet:
    RetType = "float";
    break;
  case DRet:
    RetType = "double";
    break;
  case CFRet:
    RetType = "complex";
    break;
  case CDRet:
    RetType = "double complex";
    break;
  case NoFPRet:
    RetType = "";
    break;
  }
  const char *Parms;
  switch (Signature->ParamSig) {
  case FSig:
    Parms = "float";
    break;
  case FFSig:
    Parms = "float, float";
    break;
  case FDSig:
    Parms = "float, double";
    break;
  case DSig:
    Parms = "double";
    break;
  case DDSig:
    Parms = "double, double";
    break;
  case DFSig:
    Parms = "double, float";
    break;
  case NoSig:
    Parms = "";
    break;
  }
  OutStreamer->AddComment("\t# Stub function to call " + Twine(RetType) + " " +
                          Twine(Symbol) + " (" + Twine(Parms) + ")");
  //
  // probably not necessary but we save and restore the current section state
  //
  OutStreamer->PushSection();
  //
  // .section mips16.call.fpxxxx,"ax",@progbits
  //
  MCSectionELF *M = OutContext.getELFSection(
      ".mips16.call.fp." + std::string(Symbol), ELF::SHT_PROGBITS,
      ELF::SHF_ALLOC | ELF::SHF_EXECINSTR);
  OutStreamer->SwitchSection(M, nullptr);
  //
  // .align 2
  //
  OutStreamer->emitValueToAlignment(4);
  MipsTargetStreamer &TS = getTargetStreamer();
  //
  // .set nomips16
  // .set nomicromips
  //
  TS.emitDirectiveSetNoMips16();
  TS.emitDirectiveSetNoMicroMips();
  //
  // .ent __call_stub_fp_xxxx
  // .type  __call_stub_fp_xxxx,@function
  //  __call_stub_fp_xxxx:
  //
  std::string x = "__call_stub_fp_" + std::string(Symbol);
  MCSymbolELF *Stub =
      cast<MCSymbolELF>(OutContext.getOrCreateSymbol(StringRef(x)));
  TS.emitDirectiveEnt(*Stub);
  MCSymbol *MType =
      OutContext.getOrCreateSymbol("__call_stub_fp_" + Twine(Symbol));
  OutStreamer->emitSymbolAttribute(MType, MCSA_ELF_TypeFunction);
  OutStreamer->emitLabel(Stub);

  // Only handle non-pic for now.
  assert(!isPositionIndependent() &&
         "should not be here if we are compiling pic");
  TS.emitDirectiveSetReorder();
  //
  // We need to add a MipsMCExpr class to MCTargetDesc to fully implement
  // stubs without raw text but this current patch is for compiler generated
  // functions and they all return some value.
  // The calling sequence for non pic is different in that case and we need
  // to implement %lo and %hi in order to handle the case of no return value
  // See the corresponding method in Mips16HardFloat for details.
  //
  // mov the return address to S2.
  // we have no stack space to store it and we are about to make another call.
  // We need to make sure that the enclosing function knows to save S2
  // This should have already been handled.
  //
  // Mov $18, $31

  EmitInstrRegRegReg(*STI, Mips::OR, Mips::S2, Mips::RA, Mips::ZERO);

  EmitSwapFPIntParams(*STI, Signature->ParamSig, LE, true);

  // Jal xxxx
  //
  EmitJal(*STI, MSymbol);

  // fix return values
  EmitSwapFPIntRetval(*STI, Signature->RetSig, LE);
  //
  // do the return
  // if (Signature->RetSig == NoFPRet)
  //  llvm_unreachable("should not be any stubs here with no return value");
  // else
  EmitInstrReg(*STI, Mips::JR, Mips::S2);

  MCSymbol *Tmp = OutContext.createTempSymbol();
  OutStreamer->emitLabel(Tmp);
  const MCSymbolRefExpr *E = MCSymbolRefExpr::create(Stub, OutContext);
  const MCSymbolRefExpr *T = MCSymbolRefExpr::create(Tmp, OutContext);
  const MCExpr *T_min_E = MCBinaryExpr::createSub(T, E, OutContext);
  OutStreamer->emitELFSize(Stub, T_min_E);
  TS.emitDirectiveEnd(x);
  OutStreamer->PopSection();
}

void MipsAsmPrinter::emitEndOfAsmFile(Module &M) {
  // Emit needed stubs
  //
  for (std::map<
           const char *,
           const Mips16HardFloatInfo::FuncSignature *>::const_iterator
           it = StubsNeeded.begin();
       it != StubsNeeded.end(); ++it) {
    const char *Symbol = it->first;
    const Mips16HardFloatInfo::FuncSignature *Signature = it->second;
    EmitFPCallStub(Symbol, Signature);
  }
  // return to the text section
  OutStreamer->SwitchSection(OutContext.getObjectFileInfo()->getTextSection());
}

void MipsAsmPrinter::EmitSled(const MachineInstr &MI, SledKind Kind) {
  const uint8_t NoopsInSledCount = Subtarget->isGP64bit() ? 15 : 11;
  // For mips32 we want to emit the following pattern:
  //
  // .Lxray_sled_N:
  //   ALIGN
  //   B .tmpN
  //   11 NOP instructions (44 bytes)
  //   ADDIU T9, T9, 52
  // .tmpN
  //
  // We need the 44 bytes (11 instructions) because at runtime, we'd
  // be patching over the full 48 bytes (12 instructions) with the following
  // pattern:
  //
  //   ADDIU    SP, SP, -8
  //   NOP
  //   SW       RA, 4(SP)
  //   SW       T9, 0(SP)
  //   LUI      T9, %hi(__xray_FunctionEntry/Exit)
  //   ORI      T9, T9, %lo(__xray_FunctionEntry/Exit)
  //   LUI      T0, %hi(function_id)
  //   JALR     T9
  //   ORI      T0, T0, %lo(function_id)
  //   LW       T9, 0(SP)
  //   LW       RA, 4(SP)
  //   ADDIU    SP, SP, 8
  //
  // We add 52 bytes to t9 because we want to adjust the function pointer to
  // the actual start of function i.e. the address just after the noop sled.
  // We do this because gp displacement relocation is emitted at the start of
  // of the function i.e after the nop sled and to correctly calculate the
  // global offset table address, t9 must hold the address of the instruction
  // containing the gp displacement relocation.
  // FIXME: Is this correct for the static relocation model?
  //
  // For mips64 we want to emit the following pattern:
  //
  // .Lxray_sled_N:
  //   ALIGN
  //   B .tmpN
  //   15 NOP instructions (60 bytes)
  // .tmpN
  //
  // We need the 60 bytes (15 instructions) because at runtime, we'd
  // be patching over the full 64 bytes (16 instructions) with the following
  // pattern:
  //
  //   DADDIU   SP, SP, -16
  //   NOP
  //   SD       RA, 8(SP)
  //   SD       T9, 0(SP)
  //   LUI      T9, %highest(__xray_FunctionEntry/Exit)
  //   ORI      T9, T9, %higher(__xray_FunctionEntry/Exit)
  //   DSLL     T9, T9, 16
  //   ORI      T9, T9, %hi(__xray_FunctionEntry/Exit)
  //   DSLL     T9, T9, 16
  //   ORI      T9, T9, %lo(__xray_FunctionEntry/Exit)
  //   LUI      T0, %hi(function_id)
  //   JALR     T9
  //   ADDIU    T0, T0, %lo(function_id)
  //   LD       T9, 0(SP)
  //   LD       RA, 8(SP)
  //   DADDIU   SP, SP, 16
  //
  OutStreamer->emitCodeAlignment(4);
  auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
  OutStreamer->emitLabel(CurSled);
  auto Target = OutContext.createTempSymbol();

  // Emit "B .tmpN" instruction, which jumps over the nop sled to the actual
  // start of function
  const MCExpr *TargetExpr = MCSymbolRefExpr::create(
      Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext);
  EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::BEQ)
                                   .addReg(Mips::ZERO)
                                   .addReg(Mips::ZERO)
                                   .addExpr(TargetExpr));

  for (int8_t I = 0; I < NoopsInSledCount; I++)
    EmitToStreamer(*OutStreamer, MCInstBuilder(Mips::SLL)
                                     .addReg(Mips::ZERO)
                                     .addReg(Mips::ZERO)
                                     .addImm(0));

  OutStreamer->emitLabel(Target);

  if (!Subtarget->isGP64bit()) {
    EmitToStreamer(*OutStreamer,
                   MCInstBuilder(Mips::ADDiu)
                       .addReg(Mips::T9)
                       .addReg(Mips::T9)
                       .addImm(0x34));
  }

  recordSled(CurSled, MI, Kind);
}

void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI) {
  EmitSled(MI, SledKind::FUNCTION_ENTER);
}

void MipsAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
  EmitSled(MI, SledKind::FUNCTION_EXIT);
}

void MipsAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
  EmitSled(MI, SledKind::TAIL_CALL);
}

void MipsAsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
                                           raw_ostream &OS) {
  // TODO: implement
}

// Emit .dtprelword or .dtpreldword directive
// and value for debug thread local expression.
void MipsAsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
  if (auto *MipsExpr = dyn_cast<MipsMCExpr>(Value)) {
    if (MipsExpr && MipsExpr->getKind() == MipsMCExpr::MEK_DTPREL) {
      switch (Size) {
      case 4:
        OutStreamer->emitDTPRel32Value(MipsExpr->getSubExpr());
        break;
      case 8:
        OutStreamer->emitDTPRel64Value(MipsExpr->getSubExpr());
        break;
      default:
        llvm_unreachable("Unexpected size of expression value.");
      }
      return;
    }
  }
  AsmPrinter::emitDebugValue(Value, Size);
}

// Align all targets of indirect branches on bundle size.  Used only if target
// is NaCl.
void MipsAsmPrinter::NaClAlignIndirectJumpTargets(MachineFunction &MF) {
  // Align all blocks that are jumped to through jump table.
  if (MachineJumpTableInfo *JtInfo = MF.getJumpTableInfo()) {
    const std::vector<MachineJumpTableEntry> &JT = JtInfo->getJumpTables();
    for (unsigned I = 0; I < JT.size(); ++I) {
      const std::vector<MachineBasicBlock*> &MBBs = JT[I].MBBs;

      for (unsigned J = 0; J < MBBs.size(); ++J)
        MBBs[J]->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
    }
  }

  // If basic block address is taken, block can be target of indirect branch.
  for (auto &MBB : MF) {
    if (MBB.hasAddressTaken())
      MBB.setAlignment(MIPS_NACL_BUNDLE_ALIGN);
  }
}

bool MipsAsmPrinter::isLongBranchPseudo(int Opcode) const {
  return (Opcode == Mips::LONG_BRANCH_LUi
          || Opcode == Mips::LONG_BRANCH_LUi2Op
          || Opcode == Mips::LONG_BRANCH_LUi2Op_64
          || Opcode == Mips::LONG_BRANCH_ADDiu
          || Opcode == Mips::LONG_BRANCH_ADDiu2Op
          || Opcode == Mips::LONG_BRANCH_DADDiu
          || Opcode == Mips::LONG_BRANCH_DADDiu2Op);
}

// Force static initialization.
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeMipsAsmPrinter() {
  RegisterAsmPrinter<MipsAsmPrinter> X(getTheMipsTarget());
  RegisterAsmPrinter<MipsAsmPrinter> Y(getTheMipselTarget());
  RegisterAsmPrinter<MipsAsmPrinter> A(getTheMips64Target());
  RegisterAsmPrinter<MipsAsmPrinter> B(getTheMips64elTarget());
}