LanaiAsmParser.cpp 40.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
//===-- LanaiAsmParser.cpp - Parse Lanai assembly to MCInst instructions --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "LanaiAluCode.h"
#include "LanaiCondCode.h"
#include "LanaiInstrInfo.h"
#include "MCTargetDesc/LanaiMCExpr.h"
#include "TargetInfo/LanaiTargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SMLoc.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>

using namespace llvm;

// Auto-generated by TableGen
static unsigned MatchRegisterName(StringRef Name);

namespace {

struct LanaiOperand;

class LanaiAsmParser : public MCTargetAsmParser {
  // Parse operands
  std::unique_ptr<LanaiOperand> parseRegister(bool RestoreOnFailure = false);

  std::unique_ptr<LanaiOperand> parseImmediate();

  std::unique_ptr<LanaiOperand> parseIdentifier();

  unsigned parseAluOperator(bool PreOp, bool PostOp);

  // Split the mnemonic stripping conditional code and quantifiers
  StringRef splitMnemonic(StringRef Name, SMLoc NameLoc,
                          OperandVector *Operands);

  bool parsePrePost(StringRef Type, int *OffsetValue);

  bool ParseDirective(AsmToken DirectiveID) override;

  bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
                        SMLoc NameLoc, OperandVector &Operands) override;

  bool ParseRegister(unsigned &RegNum, SMLoc &StartLoc, SMLoc &EndLoc) override;
  OperandMatchResultTy tryParseRegister(unsigned &RegNo, SMLoc &StartLoc,
                                        SMLoc &EndLoc) override;

  bool MatchAndEmitInstruction(SMLoc IdLoc, unsigned &Opcode,
                               OperandVector &Operands, MCStreamer &Out,
                               uint64_t &ErrorInfo,
                               bool MatchingInlineAsm) override;

// Auto-generated instruction matching functions
#define GET_ASSEMBLER_HEADER
#include "LanaiGenAsmMatcher.inc"

  OperandMatchResultTy parseOperand(OperandVector *Operands,
                                    StringRef Mnemonic);

  OperandMatchResultTy parseMemoryOperand(OperandVector &Operands);

public:
  LanaiAsmParser(const MCSubtargetInfo &STI, MCAsmParser &Parser,
                 const MCInstrInfo &MII, const MCTargetOptions &Options)
      : MCTargetAsmParser(Options, STI, MII), Parser(Parser),
        Lexer(Parser.getLexer()), SubtargetInfo(STI) {
    setAvailableFeatures(
        ComputeAvailableFeatures(SubtargetInfo.getFeatureBits()));
  }

private:
  MCAsmParser &Parser;
  MCAsmLexer &Lexer;

  const MCSubtargetInfo &SubtargetInfo;
};

// LanaiOperand - Instances of this class represented a parsed machine
// instruction
struct LanaiOperand : public MCParsedAsmOperand {
  enum KindTy {
    TOKEN,
    REGISTER,
    IMMEDIATE,
    MEMORY_IMM,
    MEMORY_REG_IMM,
    MEMORY_REG_REG,
  } Kind;

  SMLoc StartLoc, EndLoc;

  struct Token {
    const char *Data;
    unsigned Length;
  };

  struct RegOp {
    unsigned RegNum;
  };

  struct ImmOp {
    const MCExpr *Value;
  };

  struct MemOp {
    unsigned BaseReg;
    unsigned OffsetReg;
    unsigned AluOp;
    const MCExpr *Offset;
  };

  union {
    struct Token Tok;
    struct RegOp Reg;
    struct ImmOp Imm;
    struct MemOp Mem;
  };

  explicit LanaiOperand(KindTy Kind) : MCParsedAsmOperand(), Kind(Kind) {}

public:
  // The functions below are used by the autogenerated ASM matcher and hence to
  // be of the form expected.

  // getStartLoc - Gets location of the first token of this operand
  SMLoc getStartLoc() const override { return StartLoc; }

  // getEndLoc - Gets location of the last token of this operand
  SMLoc getEndLoc() const override { return EndLoc; }

  unsigned getReg() const override {
    assert(isReg() && "Invalid type access!");
    return Reg.RegNum;
  }

  const MCExpr *getImm() const {
    assert(isImm() && "Invalid type access!");
    return Imm.Value;
  }

  StringRef getToken() const {
    assert(isToken() && "Invalid type access!");
    return StringRef(Tok.Data, Tok.Length);
  }

  unsigned getMemBaseReg() const {
    assert(isMem() && "Invalid type access!");
    return Mem.BaseReg;
  }

  unsigned getMemOffsetReg() const {
    assert(isMem() && "Invalid type access!");
    return Mem.OffsetReg;
  }

  const MCExpr *getMemOffset() const {
    assert(isMem() && "Invalid type access!");
    return Mem.Offset;
  }

  unsigned getMemOp() const {
    assert(isMem() && "Invalid type access!");
    return Mem.AluOp;
  }

  // Functions for testing operand type
  bool isReg() const override { return Kind == REGISTER; }

  bool isImm() const override { return Kind == IMMEDIATE; }

  bool isMem() const override {
    return isMemImm() || isMemRegImm() || isMemRegReg();
  }

  bool isMemImm() const { return Kind == MEMORY_IMM; }

  bool isMemRegImm() const { return Kind == MEMORY_REG_IMM; }

  bool isMemRegReg() const { return Kind == MEMORY_REG_REG; }

  bool isMemSpls() const { return isMemRegImm() || isMemRegReg(); }

  bool isToken() const override { return Kind == TOKEN; }

  bool isBrImm() {
    if (!isImm())
      return false;

    // Constant case
    const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Imm.Value);
    if (!MCE)
      return true;
    int64_t Value = MCE->getValue();
    // Check if value fits in 25 bits with 2 least significant bits 0.
    return isShiftedUInt<23, 2>(static_cast<int32_t>(Value));
  }

  bool isBrTarget() { return isBrImm() || isToken(); }

  bool isCallTarget() { return isImm() || isToken(); }

  bool isHiImm16() {
    if (!isImm())
      return false;

    // Constant case
    if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
      int64_t Value = ConstExpr->getValue();
      return Value != 0 && isShiftedUInt<16, 16>(Value);
    }

    // Symbolic reference expression
    if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
      return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI;

    // Binary expression
    if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value))
      if (const LanaiMCExpr *SymbolRefExpr =
              dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
        return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI;

    return false;
  }

  bool isHiImm16And() {
    if (!isImm())
      return false;

    const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
    if (ConstExpr) {
      int64_t Value = ConstExpr->getValue();
      // Check if in the form 0xXYZWffff
      return (Value != 0) && ((Value & ~0xffff0000) == 0xffff);
    }
    return false;
  }

  bool isLoImm16() {
    if (!isImm())
      return false;

    // Constant case
    if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
      int64_t Value = ConstExpr->getValue();
      // Check if value fits in 16 bits
      return isUInt<16>(static_cast<int32_t>(Value));
    }

    // Symbolic reference expression
    if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
      return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;

    // Binary expression
    if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value))
      if (const LanaiMCExpr *SymbolRefExpr =
              dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
        return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;

    return false;
  }

  bool isLoImm16Signed() {
    if (!isImm())
      return false;

    // Constant case
    if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
      int64_t Value = ConstExpr->getValue();
      // Check if value fits in 16 bits or value of the form 0xffffxyzw
      return isInt<16>(static_cast<int32_t>(Value));
    }

    // Symbolic reference expression
    if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
      return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;

    // Binary expression
    if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value))
      if (const LanaiMCExpr *SymbolRefExpr =
              dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
        return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO;

    return false;
  }

  bool isLoImm16And() {
    if (!isImm())
      return false;

    const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
    if (ConstExpr) {
      int64_t Value = ConstExpr->getValue();
      // Check if in the form 0xffffXYZW
      return ((Value & ~0xffff) == 0xffff0000);
    }
    return false;
  }

  bool isImmShift() {
    if (!isImm())
      return false;

    const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
    if (!ConstExpr)
      return false;
    int64_t Value = ConstExpr->getValue();
    return (Value >= -31) && (Value <= 31);
  }

  bool isLoImm21() {
    if (!isImm())
      return false;

    // Constant case
    if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value)) {
      int64_t Value = ConstExpr->getValue();
      return isUInt<21>(Value);
    }

    // Symbolic reference expression
    if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Imm.Value))
      return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None;
    if (const MCSymbolRefExpr *SymbolRefExpr =
            dyn_cast<MCSymbolRefExpr>(Imm.Value)) {
      return SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None;
    }

    // Binary expression
    if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Imm.Value)) {
      if (const LanaiMCExpr *SymbolRefExpr =
              dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS()))
        return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None;
      if (const MCSymbolRefExpr *SymbolRefExpr =
              dyn_cast<MCSymbolRefExpr>(BinaryExpr->getLHS()))
        return SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None;
    }

    return false;
  }

  bool isImm10() {
    if (!isImm())
      return false;

    const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
    if (!ConstExpr)
      return false;
    int64_t Value = ConstExpr->getValue();
    return isInt<10>(Value);
  }

  bool isCondCode() {
    if (!isImm())
      return false;

    const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Imm.Value);
    if (!ConstExpr)
      return false;
    uint64_t Value = ConstExpr->getValue();
    // The condition codes are between 0 (ICC_T) and 15 (ICC_LE). If the
    // unsigned value of the immediate is less than LPCC::UNKNOWN (16) then
    // value corresponds to a valid condition code.
    return Value < LPCC::UNKNOWN;
  }

  void addExpr(MCInst &Inst, const MCExpr *Expr) const {
    // Add as immediates where possible. Null MCExpr = 0
    if (Expr == nullptr)
      Inst.addOperand(MCOperand::createImm(0));
    else if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Expr))
      Inst.addOperand(
          MCOperand::createImm(static_cast<int32_t>(ConstExpr->getValue())));
    else
      Inst.addOperand(MCOperand::createExpr(Expr));
  }

  void addRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(getReg()));
  }

  void addImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addBrTargetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addCallTargetOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addCondCodeOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addMemImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    const MCExpr *Expr = getMemOffset();
    addExpr(Inst, Expr);
  }

  void addMemRegImmOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
    const MCExpr *Expr = getMemOffset();
    addExpr(Inst, Expr);
    Inst.addOperand(MCOperand::createImm(getMemOp()));
  }

  void addMemRegRegOperands(MCInst &Inst, unsigned N) const {
    assert(N == 3 && "Invalid number of operands!");
    Inst.addOperand(MCOperand::createReg(getMemBaseReg()));
    assert(getMemOffsetReg() != 0 && "Invalid offset");
    Inst.addOperand(MCOperand::createReg(getMemOffsetReg()));
    Inst.addOperand(MCOperand::createImm(getMemOp()));
  }

  void addMemSplsOperands(MCInst &Inst, unsigned N) const {
    if (isMemRegImm())
      addMemRegImmOperands(Inst, N);
    if (isMemRegReg())
      addMemRegRegOperands(Inst, N);
  }

  void addImmShiftOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addImm10Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    addExpr(Inst, getImm());
  }

  void addLoImm16Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
      Inst.addOperand(
          MCOperand::createImm(static_cast<int32_t>(ConstExpr->getValue())));
    else if (isa<LanaiMCExpr>(getImm())) {
#ifndef NDEBUG
      const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(getImm());
      assert(SymbolRefExpr &&
             SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_LO);
#endif
      Inst.addOperand(MCOperand::createExpr(getImm()));
    } else if (isa<MCBinaryExpr>(getImm())) {
#ifndef NDEBUG
      const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(getImm());
      assert(BinaryExpr && isa<LanaiMCExpr>(BinaryExpr->getLHS()) &&
             cast<LanaiMCExpr>(BinaryExpr->getLHS())->getKind() ==
                 LanaiMCExpr::VK_Lanai_ABS_LO);
#endif
      Inst.addOperand(MCOperand::createExpr(getImm()));
    } else
      assert(false && "Operand type not supported.");
  }

  void addLoImm16AndOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
      Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() & 0xffff));
    else
      assert(false && "Operand type not supported.");
  }

  void addHiImm16Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
      Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() >> 16));
    else if (isa<LanaiMCExpr>(getImm())) {
#ifndef NDEBUG
      const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(getImm());
      assert(SymbolRefExpr &&
             SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_ABS_HI);
#endif
      Inst.addOperand(MCOperand::createExpr(getImm()));
    } else if (isa<MCBinaryExpr>(getImm())) {
#ifndef NDEBUG
      const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(getImm());
      assert(BinaryExpr && isa<LanaiMCExpr>(BinaryExpr->getLHS()) &&
             cast<LanaiMCExpr>(BinaryExpr->getLHS())->getKind() ==
                 LanaiMCExpr::VK_Lanai_ABS_HI);
#endif
      Inst.addOperand(MCOperand::createExpr(getImm()));
    } else
      assert(false && "Operand type not supported.");
  }

  void addHiImm16AndOperands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
      Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() >> 16));
    else
      assert(false && "Operand type not supported.");
  }

  void addLoImm21Operands(MCInst &Inst, unsigned N) const {
    assert(N == 1 && "Invalid number of operands!");
    if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(getImm()))
      Inst.addOperand(MCOperand::createImm(ConstExpr->getValue() & 0x1fffff));
    else if (isa<LanaiMCExpr>(getImm())) {
#ifndef NDEBUG
      const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(getImm());
      assert(SymbolRefExpr &&
             SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None);
#endif
      Inst.addOperand(MCOperand::createExpr(getImm()));
    } else if (isa<MCSymbolRefExpr>(getImm())) {
#ifndef NDEBUG
      const MCSymbolRefExpr *SymbolRefExpr =
          dyn_cast<MCSymbolRefExpr>(getImm());
      assert(SymbolRefExpr &&
             SymbolRefExpr->getKind() == MCSymbolRefExpr::VK_None);
#endif
      Inst.addOperand(MCOperand::createExpr(getImm()));
    } else if (isa<MCBinaryExpr>(getImm())) {
#ifndef NDEBUG
      const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(getImm());
      assert(BinaryExpr && isa<LanaiMCExpr>(BinaryExpr->getLHS()) &&
             cast<LanaiMCExpr>(BinaryExpr->getLHS())->getKind() ==
                 LanaiMCExpr::VK_Lanai_None);
#endif
      Inst.addOperand(MCOperand::createExpr(getImm()));
    } else
      assert(false && "Operand type not supported.");
  }

  void print(raw_ostream &OS) const override {
    switch (Kind) {
    case IMMEDIATE:
      OS << "Imm: " << getImm() << "\n";
      break;
    case TOKEN:
      OS << "Token: " << getToken() << "\n";
      break;
    case REGISTER:
      OS << "Reg: %r" << getReg() << "\n";
      break;
    case MEMORY_IMM:
      OS << "MemImm: " << *getMemOffset() << "\n";
      break;
    case MEMORY_REG_IMM:
      OS << "MemRegImm: " << getMemBaseReg() << "+" << *getMemOffset() << "\n";
      break;
    case MEMORY_REG_REG:
      assert(getMemOffset() == nullptr);
      OS << "MemRegReg: " << getMemBaseReg() << "+"
         << "%r" << getMemOffsetReg() << "\n";
      break;
    }
  }

  static std::unique_ptr<LanaiOperand> CreateToken(StringRef Str, SMLoc Start) {
    auto Op = std::make_unique<LanaiOperand>(TOKEN);
    Op->Tok.Data = Str.data();
    Op->Tok.Length = Str.size();
    Op->StartLoc = Start;
    Op->EndLoc = Start;
    return Op;
  }

  static std::unique_ptr<LanaiOperand> createReg(unsigned RegNum, SMLoc Start,
                                                 SMLoc End) {
    auto Op = std::make_unique<LanaiOperand>(REGISTER);
    Op->Reg.RegNum = RegNum;
    Op->StartLoc = Start;
    Op->EndLoc = End;
    return Op;
  }

  static std::unique_ptr<LanaiOperand> createImm(const MCExpr *Value,
                                                 SMLoc Start, SMLoc End) {
    auto Op = std::make_unique<LanaiOperand>(IMMEDIATE);
    Op->Imm.Value = Value;
    Op->StartLoc = Start;
    Op->EndLoc = End;
    return Op;
  }

  static std::unique_ptr<LanaiOperand>
  MorphToMemImm(std::unique_ptr<LanaiOperand> Op) {
    const MCExpr *Imm = Op->getImm();
    Op->Kind = MEMORY_IMM;
    Op->Mem.BaseReg = 0;
    Op->Mem.AluOp = LPAC::ADD;
    Op->Mem.OffsetReg = 0;
    Op->Mem.Offset = Imm;
    return Op;
  }

  static std::unique_ptr<LanaiOperand>
  MorphToMemRegReg(unsigned BaseReg, std::unique_ptr<LanaiOperand> Op,
                   unsigned AluOp) {
    unsigned OffsetReg = Op->getReg();
    Op->Kind = MEMORY_REG_REG;
    Op->Mem.BaseReg = BaseReg;
    Op->Mem.AluOp = AluOp;
    Op->Mem.OffsetReg = OffsetReg;
    Op->Mem.Offset = nullptr;
    return Op;
  }

  static std::unique_ptr<LanaiOperand>
  MorphToMemRegImm(unsigned BaseReg, std::unique_ptr<LanaiOperand> Op,
                   unsigned AluOp) {
    const MCExpr *Imm = Op->getImm();
    Op->Kind = MEMORY_REG_IMM;
    Op->Mem.BaseReg = BaseReg;
    Op->Mem.AluOp = AluOp;
    Op->Mem.OffsetReg = 0;
    Op->Mem.Offset = Imm;
    return Op;
  }
};

} // end anonymous namespace

bool LanaiAsmParser::ParseDirective(AsmToken /*DirectiveId*/) { return true; }

bool LanaiAsmParser::MatchAndEmitInstruction(SMLoc IdLoc, unsigned &Opcode,
                                             OperandVector &Operands,
                                             MCStreamer &Out,
                                             uint64_t &ErrorInfo,
                                             bool MatchingInlineAsm) {
  MCInst Inst;
  SMLoc ErrorLoc;

  switch (MatchInstructionImpl(Operands, Inst, ErrorInfo, MatchingInlineAsm)) {
  case Match_Success:
    Out.emitInstruction(Inst, SubtargetInfo);
    Opcode = Inst.getOpcode();
    return false;
  case Match_MissingFeature:
    return Error(IdLoc, "Instruction use requires option to be enabled");
  case Match_MnemonicFail:
    return Error(IdLoc, "Unrecognized instruction mnemonic");
  case Match_InvalidOperand: {
    ErrorLoc = IdLoc;
    if (ErrorInfo != ~0U) {
      if (ErrorInfo >= Operands.size())
        return Error(IdLoc, "Too few operands for instruction");

      ErrorLoc = ((LanaiOperand &)*Operands[ErrorInfo]).getStartLoc();
      if (ErrorLoc == SMLoc())
        ErrorLoc = IdLoc;
    }
    return Error(ErrorLoc, "Invalid operand for instruction");
  }
  default:
    break;
  }

  llvm_unreachable("Unknown match type detected!");
}

// Both '%rN' and 'rN' are parsed as valid registers. This was done to remain
// backwards compatible with GCC and the different ways inline assembly is
// handled.
// TODO: see if there isn't a better way to do this.
std::unique_ptr<LanaiOperand>
LanaiAsmParser::parseRegister(bool RestoreOnFailure) {
  SMLoc Start = Parser.getTok().getLoc();
  SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
  Optional<AsmToken> PercentTok;

  unsigned RegNum;
  // Eat the '%'.
  if (Lexer.getKind() == AsmToken::Percent) {
    PercentTok = Parser.getTok();
    Parser.Lex();
  }
  if (Lexer.getKind() == AsmToken::Identifier) {
    RegNum = MatchRegisterName(Lexer.getTok().getIdentifier());
    if (RegNum == 0) {
      if (PercentTok.hasValue() && RestoreOnFailure)
        Lexer.UnLex(PercentTok.getValue());
      return nullptr;
    }
    Parser.Lex(); // Eat identifier token
    return LanaiOperand::createReg(RegNum, Start, End);
  }
  if (PercentTok.hasValue() && RestoreOnFailure)
    Lexer.UnLex(PercentTok.getValue());
  return nullptr;
}

bool LanaiAsmParser::ParseRegister(unsigned &RegNum, SMLoc &StartLoc,
                                   SMLoc &EndLoc) {
  const AsmToken &Tok = getParser().getTok();
  StartLoc = Tok.getLoc();
  EndLoc = Tok.getEndLoc();
  std::unique_ptr<LanaiOperand> Op = parseRegister(/*RestoreOnFailure=*/false);
  if (Op != nullptr)
    RegNum = Op->getReg();
  return (Op == nullptr);
}

OperandMatchResultTy LanaiAsmParser::tryParseRegister(unsigned &RegNum,
                                                      SMLoc &StartLoc,
                                                      SMLoc &EndLoc) {
  const AsmToken &Tok = getParser().getTok();
  StartLoc = Tok.getLoc();
  EndLoc = Tok.getEndLoc();
  std::unique_ptr<LanaiOperand> Op = parseRegister(/*RestoreOnFailure=*/true);
  if (Op == nullptr)
    return MatchOperand_NoMatch;
  RegNum = Op->getReg();
  return MatchOperand_Success;
}

std::unique_ptr<LanaiOperand> LanaiAsmParser::parseIdentifier() {
  SMLoc Start = Parser.getTok().getLoc();
  SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
  const MCExpr *Res, *RHS = nullptr;
  LanaiMCExpr::VariantKind Kind = LanaiMCExpr::VK_Lanai_None;

  if (Lexer.getKind() != AsmToken::Identifier)
    return nullptr;

  StringRef Identifier;
  if (Parser.parseIdentifier(Identifier))
    return nullptr;

  // Check if identifier has a modifier
  if (Identifier.equals_lower("hi"))
    Kind = LanaiMCExpr::VK_Lanai_ABS_HI;
  else if (Identifier.equals_lower("lo"))
    Kind = LanaiMCExpr::VK_Lanai_ABS_LO;

  // If the identifier corresponds to a variant then extract the real
  // identifier.
  if (Kind != LanaiMCExpr::VK_Lanai_None) {
    if (Lexer.getKind() != AsmToken::LParen) {
      Error(Lexer.getLoc(), "Expected '('");
      return nullptr;
    }
    Lexer.Lex(); // lex '('

    // Parse identifier
    if (Parser.parseIdentifier(Identifier))
      return nullptr;
  }

  // If addition parse the RHS.
  if (Lexer.getKind() == AsmToken::Plus && Parser.parseExpression(RHS))
    return nullptr;

  // For variants parse the final ')'
  if (Kind != LanaiMCExpr::VK_Lanai_None) {
    if (Lexer.getKind() != AsmToken::RParen) {
      Error(Lexer.getLoc(), "Expected ')'");
      return nullptr;
    }
    Lexer.Lex(); // lex ')'
  }

  End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
  MCSymbol *Sym = getContext().getOrCreateSymbol(Identifier);
  const MCExpr *Expr = MCSymbolRefExpr::create(Sym, getContext());
  Res = LanaiMCExpr::create(Kind, Expr, getContext());

  // Nest if this was an addition
  if (RHS)
    Res = MCBinaryExpr::createAdd(Res, RHS, getContext());

  return LanaiOperand::createImm(Res, Start, End);
}

std::unique_ptr<LanaiOperand> LanaiAsmParser::parseImmediate() {
  SMLoc Start = Parser.getTok().getLoc();
  SMLoc End = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);

  const MCExpr *ExprVal;
  switch (Lexer.getKind()) {
  case AsmToken::Identifier:
    return parseIdentifier();
  case AsmToken::Plus:
  case AsmToken::Minus:
  case AsmToken::Integer:
  case AsmToken::Dot:
    if (!Parser.parseExpression(ExprVal))
      return LanaiOperand::createImm(ExprVal, Start, End);
    LLVM_FALLTHROUGH;
  default:
    return nullptr;
  }
}

static unsigned AluWithPrePost(unsigned AluCode, bool PreOp, bool PostOp) {
  if (PreOp)
    return LPAC::makePreOp(AluCode);
  if (PostOp)
    return LPAC::makePostOp(AluCode);
  return AluCode;
}

unsigned LanaiAsmParser::parseAluOperator(bool PreOp, bool PostOp) {
  StringRef IdString;
  Parser.parseIdentifier(IdString);
  unsigned AluCode = LPAC::stringToLanaiAluCode(IdString);
  if (AluCode == LPAC::UNKNOWN) {
    Error(Parser.getTok().getLoc(), "Can't parse ALU operator");
    return 0;
  }
  return AluCode;
}

static int SizeForSuffix(StringRef T) {
  return StringSwitch<int>(T).EndsWith(".h", 2).EndsWith(".b", 1).Default(4);
}

bool LanaiAsmParser::parsePrePost(StringRef Type, int *OffsetValue) {
  bool PreOrPost = false;
  if (Lexer.getKind() == Lexer.peekTok(true).getKind()) {
    PreOrPost = true;
    if (Lexer.is(AsmToken::Minus))
      *OffsetValue = -SizeForSuffix(Type);
    else if (Lexer.is(AsmToken::Plus))
      *OffsetValue = SizeForSuffix(Type);
    else
      return false;

    // Eat the '-' '-' or '+' '+'
    Parser.Lex();
    Parser.Lex();
  } else if (Lexer.is(AsmToken::Star)) {
    Parser.Lex(); // Eat the '*'
    PreOrPost = true;
  }

  return PreOrPost;
}

bool shouldBeSls(const LanaiOperand &Op) {
  // The instruction should be encoded as an SLS if the constant is word
  // aligned and will fit in 21 bits
  if (const MCConstantExpr *ConstExpr = dyn_cast<MCConstantExpr>(Op.getImm())) {
    int64_t Value = ConstExpr->getValue();
    return (Value % 4 == 0) && (Value >= 0) && (Value <= 0x1fffff);
  }
  // The instruction should be encoded as an SLS if the operand is a symbolic
  // reference with no variant.
  if (const LanaiMCExpr *SymbolRefExpr = dyn_cast<LanaiMCExpr>(Op.getImm()))
    return SymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None;
  // The instruction should be encoded as an SLS if the operand is a binary
  // expression with the left-hand side being a symbolic reference with no
  // variant.
  if (const MCBinaryExpr *BinaryExpr = dyn_cast<MCBinaryExpr>(Op.getImm())) {
    const LanaiMCExpr *LHSSymbolRefExpr =
        dyn_cast<LanaiMCExpr>(BinaryExpr->getLHS());
    return (LHSSymbolRefExpr &&
            LHSSymbolRefExpr->getKind() == LanaiMCExpr::VK_Lanai_None);
  }
  return false;
}

// Matches memory operand. Returns true if error encountered.
OperandMatchResultTy
LanaiAsmParser::parseMemoryOperand(OperandVector &Operands) {
  // Try to match a memory operand.
  // The memory operands are of the form:
  //  (1)  Register|Immediate|'' '[' '*'? Register '*'? ']' or
  //                            ^
  //  (2)  '[' '*'? Register '*'? AluOperator Register ']'
  //      ^
  //  (3)  '[' '--'|'++' Register '--'|'++' ']'
  //
  //  (4) '[' Immediate ']' (for SLS)

  // Store the type for use in parsing pre/post increment/decrement operators
  StringRef Type;
  if (Operands[0]->isToken())
    Type = static_cast<LanaiOperand *>(Operands[0].get())->getToken();

  // Use 0 if no offset given
  int OffsetValue = 0;
  unsigned BaseReg = 0;
  unsigned AluOp = LPAC::ADD;
  bool PostOp = false, PreOp = false;

  // Try to parse the offset
  std::unique_ptr<LanaiOperand> Op = parseRegister();
  if (!Op)
    Op = parseImmediate();

  // Only continue if next token is '['
  if (Lexer.isNot(AsmToken::LBrac)) {
    if (!Op)
      return MatchOperand_NoMatch;

    // The start of this custom parsing overlaps with register/immediate so
    // consider this as a successful match of an operand of that type as the
    // token stream can't be rewound to allow them to match separately.
    Operands.push_back(std::move(Op));
    return MatchOperand_Success;
  }

  Parser.Lex(); // Eat the '['.
  std::unique_ptr<LanaiOperand> Offset = nullptr;
  if (Op)
    Offset.swap(Op);

  // Determine if a pre operation
  PreOp = parsePrePost(Type, &OffsetValue);

  Op = parseRegister();
  if (!Op) {
    if (!Offset) {
      if ((Op = parseImmediate()) && Lexer.is(AsmToken::RBrac)) {
        Parser.Lex(); // Eat the ']'

        // Memory address operations aligned to word boundary are encoded as
        // SLS, the rest as RM.
        if (shouldBeSls(*Op)) {
          Operands.push_back(LanaiOperand::MorphToMemImm(std::move(Op)));
        } else {
          if (!Op->isLoImm16Signed()) {
            Error(Parser.getTok().getLoc(),
                  "Memory address is not word "
                  "aligned and larger than class RM can handle");
            return MatchOperand_ParseFail;
          }
          Operands.push_back(LanaiOperand::MorphToMemRegImm(
              Lanai::R0, std::move(Op), LPAC::ADD));
        }
        return MatchOperand_Success;
      }
    }

    Error(Parser.getTok().getLoc(),
          "Unknown operand, expected register or immediate");
    return MatchOperand_ParseFail;
  }
  BaseReg = Op->getReg();

  // Determine if a post operation
  if (!PreOp)
    PostOp = parsePrePost(Type, &OffsetValue);

  // If ] match form (1) else match form (2)
  if (Lexer.is(AsmToken::RBrac)) {
    Parser.Lex(); // Eat the ']'.
    if (!Offset) {
      SMLoc Start = Parser.getTok().getLoc();
      SMLoc End =
          SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
      const MCConstantExpr *OffsetConstExpr =
          MCConstantExpr::create(OffsetValue, getContext());
      Offset = LanaiOperand::createImm(OffsetConstExpr, Start, End);
    }
  } else {
    if (Offset || OffsetValue != 0) {
      Error(Parser.getTok().getLoc(), "Expected ']'");
      return MatchOperand_ParseFail;
    }

    // Parse operator
    AluOp = parseAluOperator(PreOp, PostOp);

    // Second form requires offset register
    Offset = parseRegister();
    if (!BaseReg || Lexer.isNot(AsmToken::RBrac)) {
      Error(Parser.getTok().getLoc(), "Expected ']'");
      return MatchOperand_ParseFail;
    }
    Parser.Lex(); // Eat the ']'.
  }

  // First form has addition as operator. Add pre- or post-op indicator as
  // needed.
  AluOp = AluWithPrePost(AluOp, PreOp, PostOp);

  // Ensure immediate offset is not too large
  if (Offset->isImm() && !Offset->isLoImm16Signed()) {
    Error(Parser.getTok().getLoc(),
          "Memory address is not word "
          "aligned and larger than class RM can handle");
    return MatchOperand_ParseFail;
  }

  Operands.push_back(
      Offset->isImm()
          ? LanaiOperand::MorphToMemRegImm(BaseReg, std::move(Offset), AluOp)
          : LanaiOperand::MorphToMemRegReg(BaseReg, std::move(Offset), AluOp));

  return MatchOperand_Success;
}

// Looks at a token type and creates the relevant operand from this
// information, adding to operands.
// If operand was parsed, returns false, else true.
OperandMatchResultTy
LanaiAsmParser::parseOperand(OperandVector *Operands, StringRef Mnemonic) {
  // Check if the current operand has a custom associated parser, if so, try to
  // custom parse the operand, or fallback to the general approach.
  OperandMatchResultTy Result = MatchOperandParserImpl(*Operands, Mnemonic);

  if (Result == MatchOperand_Success)
    return Result;
  if (Result == MatchOperand_ParseFail) {
    Parser.eatToEndOfStatement();
    return Result;
  }

  // Attempt to parse token as register
  std::unique_ptr<LanaiOperand> Op = parseRegister();

  // Attempt to parse token as immediate
  if (!Op)
    Op = parseImmediate();

  // If the token could not be parsed then fail
  if (!Op) {
    Error(Parser.getTok().getLoc(), "Unknown operand");
    Parser.eatToEndOfStatement();
    return MatchOperand_ParseFail;
  }

  // Push back parsed operand into list of operands
  Operands->push_back(std::move(Op));

  return MatchOperand_Success;
}

// Split the mnemonic into ASM operand, conditional code and instruction
// qualifier (half-word, byte).
StringRef LanaiAsmParser::splitMnemonic(StringRef Name, SMLoc NameLoc,
                                        OperandVector *Operands) {
  size_t Next = Name.find('.');

  StringRef Mnemonic = Name;

  bool IsBRR = false;
  if (Name.endswith(".r")) {
    Mnemonic = Name.substr(0, Name.size() - 2);
    IsBRR = true;
  }

  // Match b?? and s?? (BR, BRR, and SCC instruction classes).
  if (Mnemonic[0] == 'b' ||
      (Mnemonic[0] == 's' && !Mnemonic.startswith("sel") &&
       !Mnemonic.startswith("st"))) {
    // Parse instructions with a conditional code. For example, 'bne' is
    // converted into two operands 'b' and 'ne'.
    LPCC::CondCode CondCode =
        LPCC::suffixToLanaiCondCode(Mnemonic.substr(1, Next));
    if (CondCode != LPCC::UNKNOWN) {
      Mnemonic = Mnemonic.slice(0, 1);
      Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc));
      Operands->push_back(LanaiOperand::createImm(
          MCConstantExpr::create(CondCode, getContext()), NameLoc, NameLoc));
      if (IsBRR) {
        Operands->push_back(LanaiOperand::CreateToken(".r", NameLoc));
      }
      return Mnemonic;
    }
  }

  // Parse other instructions with condition codes (RR instructions).
  // We ignore .f here and assume they are flag-setting operations, not
  // conditional codes (except for select instructions where flag-setting
  // variants are not yet implemented).
  if (Mnemonic.startswith("sel") ||
      (!Mnemonic.endswith(".f") && !Mnemonic.startswith("st"))) {
    LPCC::CondCode CondCode = LPCC::suffixToLanaiCondCode(Mnemonic);
    if (CondCode != LPCC::UNKNOWN) {
      size_t Next = Mnemonic.rfind('.', Name.size());
      // 'sel' doesn't use a predicate operand whose printer adds the period,
      // but instead has the period as part of the identifier (i.e., 'sel.' is
      // expected by the generated matcher). If the mnemonic starts with 'sel'
      // then include the period as part of the mnemonic, else don't include it
      // as part of the mnemonic.
      if (Mnemonic.startswith("sel")) {
        Mnemonic = Mnemonic.substr(0, Next + 1);
      } else {
        Mnemonic = Mnemonic.substr(0, Next);
      }
      Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc));
      Operands->push_back(LanaiOperand::createImm(
          MCConstantExpr::create(CondCode, getContext()), NameLoc, NameLoc));
      return Mnemonic;
    }
  }

  Operands->push_back(LanaiOperand::CreateToken(Mnemonic, NameLoc));
  if (IsBRR) {
    Operands->push_back(LanaiOperand::CreateToken(".r", NameLoc));
  }

  return Mnemonic;
}

static bool IsMemoryAssignmentError(const OperandVector &Operands) {
  // Detects if a memory operation has an erroneous base register modification.
  // Memory operations are detected by matching the types of operands.
  //
  // TODO: This test is focussed on one specific instance (ld/st).
  // Extend it to handle more cases or be more robust.
  bool Modifies = false;

  int Offset = 0;

  if (Operands.size() < 5)
    return false;
  else if (Operands[0]->isToken() && Operands[1]->isReg() &&
           Operands[2]->isImm() && Operands[3]->isImm() && Operands[4]->isReg())
    Offset = 0;
  else if (Operands[0]->isToken() && Operands[1]->isToken() &&
           Operands[2]->isReg() && Operands[3]->isImm() &&
           Operands[4]->isImm() && Operands[5]->isReg())
    Offset = 1;
  else
    return false;

  int PossibleAluOpIdx = Offset + 3;
  int PossibleBaseIdx = Offset + 1;
  int PossibleDestIdx = Offset + 4;
  if (LanaiOperand *PossibleAluOp =
          static_cast<LanaiOperand *>(Operands[PossibleAluOpIdx].get()))
    if (PossibleAluOp->isImm())
      if (const MCConstantExpr *ConstExpr =
              dyn_cast<MCConstantExpr>(PossibleAluOp->getImm()))
        Modifies = LPAC::modifiesOp(ConstExpr->getValue());
  return Modifies && Operands[PossibleBaseIdx]->isReg() &&
         Operands[PossibleDestIdx]->isReg() &&
         Operands[PossibleBaseIdx]->getReg() ==
             Operands[PossibleDestIdx]->getReg();
}

static bool IsRegister(const MCParsedAsmOperand &op) {
  return static_cast<const LanaiOperand &>(op).isReg();
}

static bool MaybePredicatedInst(const OperandVector &Operands) {
  if (Operands.size() < 4 || !IsRegister(*Operands[1]) ||
      !IsRegister(*Operands[2]))
    return false;
  return StringSwitch<bool>(
             static_cast<const LanaiOperand &>(*Operands[0]).getToken())
      .StartsWith("addc", true)
      .StartsWith("add", true)
      .StartsWith("and", true)
      .StartsWith("sh", true)
      .StartsWith("subb", true)
      .StartsWith("sub", true)
      .StartsWith("or", true)
      .StartsWith("xor", true)
      .Default(false);
}

bool LanaiAsmParser::ParseInstruction(ParseInstructionInfo & /*Info*/,
                                      StringRef Name, SMLoc NameLoc,
                                      OperandVector &Operands) {
  // First operand is token for instruction
  StringRef Mnemonic = splitMnemonic(Name, NameLoc, &Operands);

  // If there are no more operands, then finish
  if (Lexer.is(AsmToken::EndOfStatement))
    return false;

  // Parse first operand
  if (parseOperand(&Operands, Mnemonic) != MatchOperand_Success)
    return true;

  // If it is a st instruction with one 1 operand then it is a "store true".
  // Transform <"st"> to <"s">, <LPCC:ICC_T>
  if (Lexer.is(AsmToken::EndOfStatement) && Name == "st" &&
      Operands.size() == 2) {
    Operands.erase(Operands.begin(), Operands.begin() + 1);
    Operands.insert(Operands.begin(), LanaiOperand::CreateToken("s", NameLoc));
    Operands.insert(Operands.begin() + 1,
                    LanaiOperand::createImm(
                        MCConstantExpr::create(LPCC::ICC_T, getContext()),
                        NameLoc, NameLoc));
  }

  // If the instruction is a bt instruction with 1 operand (in assembly) then it
  // is an unconditional branch instruction and the first two elements of
  // operands need to be merged.
  if (Lexer.is(AsmToken::EndOfStatement) && Name.startswith("bt") &&
      Operands.size() == 3) {
    Operands.erase(Operands.begin(), Operands.begin() + 2);
    Operands.insert(Operands.begin(), LanaiOperand::CreateToken("bt", NameLoc));
  }

  // Parse until end of statement, consuming commas between operands
  while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.is(AsmToken::Comma)) {
    // Consume comma token
    Lex();

    // Parse next operand
    if (parseOperand(&Operands, Mnemonic) != MatchOperand_Success)
      return true;
  }

  if (IsMemoryAssignmentError(Operands)) {
    Error(Parser.getTok().getLoc(),
          "the destination register can't equal the base register in an "
          "instruction that modifies the base register.");
    return true;
  }

  // Insert always true operand for instruction that may be predicated but
  // are not. Currently the autogenerated parser always expects a predicate.
  if (MaybePredicatedInst(Operands)) {
    Operands.insert(Operands.begin() + 1,
                    LanaiOperand::createImm(
                        MCConstantExpr::create(LPCC::ICC_T, getContext()),
                        NameLoc, NameLoc));
  }

  return false;
}

#define GET_REGISTER_MATCHER
#define GET_MATCHER_IMPLEMENTATION
#include "LanaiGenAsmMatcher.inc"

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeLanaiAsmParser() {
  RegisterMCAsmParser<LanaiAsmParser> x(getTheLanaiTarget());
}