HexagonShuffler.cpp
22.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
//===- HexagonShuffler.cpp - Instruction bundle shuffling -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the shuffling of insns inside a bundle according to the
// packet formation rules of the Hexagon ISA.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "hexagon-shuffle"
#include "MCTargetDesc/HexagonShuffler.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
// Insn shuffling priority.
class HexagonBid {
// The priority is directly proportional to how restricted the insn is based
// on its flexibility to run on the available slots. So, the fewer slots it
// may run on, the higher its priority.
enum { MAX = 360360 }; // LCD of 1/2, 1/3, 1/4,... 1/15.
unsigned Bid = 0;
public:
HexagonBid() = default;
HexagonBid(unsigned B) { Bid = B ? MAX / countPopulation(B) : 0; }
// Check if the insn priority is overflowed.
bool isSold() const { return (Bid >= MAX); }
HexagonBid &operator+=(const HexagonBid &B) {
Bid += B.Bid;
return *this;
}
};
// Slot shuffling allocation.
class HexagonUnitAuction {
HexagonBid Scores[HEXAGON_PACKET_SIZE];
// Mask indicating which slot is unavailable.
unsigned isSold : HEXAGON_PACKET_SIZE;
public:
HexagonUnitAuction(unsigned cs = 0) : isSold(cs) {}
// Allocate slots.
bool bid(unsigned B) {
// Exclude already auctioned slots from the bid.
unsigned b = B & ~isSold;
if (b) {
for (unsigned i = 0; i < HEXAGON_PACKET_SIZE; ++i)
if (b & (1 << i)) {
// Request candidate slots.
Scores[i] += HexagonBid(b);
isSold |= Scores[i].isSold() << i;
}
return true;
} else
// Error if the desired slots are already full.
return false;
}
};
} // end anonymous namespace
unsigned HexagonResource::setWeight(unsigned s) {
const unsigned SlotWeight = 8;
const unsigned MaskWeight = SlotWeight - 1;
unsigned Units = getUnits();
unsigned Key = ((1u << s) & Units) != 0;
// Calculate relative weight of the insn for the given slot, weighing it the
// heavier the more restrictive the insn is and the lowest the slots that the
// insn may be executed in.
if (Key == 0 || Units == 0 || (SlotWeight * s >= 32))
return Weight = 0;
unsigned Ctpop = countPopulation(Units);
unsigned Cttz = countTrailingZeros(Units);
Weight = (1u << (SlotWeight * s)) * ((MaskWeight - Ctpop) << Cttz);
return Weight;
}
HexagonCVIResource::HexagonCVIResource(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
unsigned s,
MCInst const *id)
: HexagonResource(s) {
const unsigned ItinUnits = HexagonMCInstrInfo::getCVIResources(MCII, STI, *id);
unsigned Lanes;
const unsigned Units = HexagonConvertUnits(ItinUnits, &Lanes);
if (Units == 0 && Lanes == 0) {
// For core insns.
Valid = false;
setUnits(0);
setLanes(0);
setLoad(false);
setStore(false);
} else {
// For an HVX insn.
Valid = true;
setUnits(Units);
setLanes(Lanes);
setLoad(HexagonMCInstrInfo::getDesc(MCII, *id).mayLoad());
setStore(HexagonMCInstrInfo::getDesc(MCII, *id).mayStore());
}
}
struct CVIUnits {
unsigned Units;
unsigned Lanes;
};
using HVXInstsT = SmallVector<struct CVIUnits, 8>;
static unsigned makeAllBits(unsigned startBit, unsigned Lanes)
{
for (unsigned i = 1; i < Lanes; ++i)
startBit = (startBit << 1) | startBit;
return startBit;
}
static bool checkHVXPipes(const HVXInstsT &hvxInsts, unsigned startIdx,
unsigned usedUnits) {
if (startIdx < hvxInsts.size()) {
if (!hvxInsts[startIdx].Units)
return checkHVXPipes(hvxInsts, startIdx + 1, usedUnits);
for (unsigned b = 0x1; b <= 0x8; b <<= 1) {
if ((hvxInsts[startIdx].Units & b) == 0)
continue;
unsigned allBits = makeAllBits(b, hvxInsts[startIdx].Lanes);
if ((allBits & usedUnits) == 0) {
if (checkHVXPipes(hvxInsts, startIdx + 1, usedUnits | allBits))
return true;
}
}
return false;
}
return true;
}
HexagonShuffler::HexagonShuffler(MCContext &Context, bool ReportErrors,
MCInstrInfo const &MCII,
MCSubtargetInfo const &STI)
: Context(Context), MCII(MCII), STI(STI), ReportErrors(ReportErrors) {
reset();
}
void HexagonShuffler::reset() {
Packet.clear();
BundleFlags = 0;
CheckFailure = false;
}
void HexagonShuffler::append(MCInst const &ID, MCInst const *Extender,
unsigned S) {
HexagonInstr PI(MCII, STI, &ID, Extender, S);
Packet.push_back(PI);
}
static const unsigned Slot0Mask = 1 << 0;
static const unsigned Slot1Mask = 1 << 1;
static const unsigned Slot3Mask = 1 << 3;
static const unsigned slotSingleLoad = Slot0Mask;
static const unsigned slotSingleStore = Slot0Mask;
void HexagonShuffler::restrictSlot1AOK(HexagonPacketSummary const &Summary) {
if (Summary.Slot1AOKLoc)
for (HexagonInstr &ISJ : insts()) {
MCInst const &Inst = ISJ.getDesc();
const unsigned Type = HexagonMCInstrInfo::getType(MCII, Inst);
if (Type != HexagonII::TypeALU32_2op &&
Type != HexagonII::TypeALU32_3op &&
Type != HexagonII::TypeALU32_ADDI) {
const unsigned Units = ISJ.Core.getUnits();
if (Units & Slot1Mask) {
AppliedRestrictions.push_back(std::make_pair(
Inst.getLoc(),
"Instruction was restricted from being in slot 1"));
AppliedRestrictions.push_back(std::make_pair(
*Summary.Slot1AOKLoc, "Instruction can only be combined "
"with an ALU instruction in slot 1"));
ISJ.Core.setUnits(Units & ~Slot1Mask);
}
}
}
}
void HexagonShuffler::restrictNoSlot1Store(
HexagonPacketSummary const &Summary) {
// If this packet contains an instruction that bars slot-1 stores,
// we should mask off slot 1 from all of the store instructions in
// this packet.
if (!Summary.NoSlot1StoreLoc)
return;
bool AppliedRestriction = false;
for (HexagonInstr &ISJ : insts()) {
MCInst const &Inst = ISJ.getDesc();
if (HexagonMCInstrInfo::getDesc(MCII, Inst).mayStore()) {
unsigned Units = ISJ.Core.getUnits();
if (Units & Slot1Mask) {
AppliedRestriction = true;
AppliedRestrictions.push_back(std::make_pair(
Inst.getLoc(), "Instruction was restricted from being in slot 1"));
ISJ.Core.setUnits(Units & ~Slot1Mask);
}
}
}
if (AppliedRestriction)
AppliedRestrictions.push_back(
std::make_pair(*Summary.NoSlot1StoreLoc,
"Instruction does not allow a store in slot 1"));
}
bool HexagonShuffler::applySlotRestrictions(
HexagonPacketSummary const &Summary) {
// These restrictions can modify the slot masks in the instructions
// in the Packet member. They should run unconditionally and their
// order does not matter.
restrictSlot1AOK(Summary);
restrictNoSlot1Store(Summary);
permitNonSlot();
// These restrictions can modify the slot masks in the instructions
// in the Packet member, but they can also detect constraint failures
// which are fatal.
if (!CheckFailure)
restrictStoreLoadOrder(Summary);
if (!CheckFailure)
restrictBranchOrder(Summary);
if (!CheckFailure)
restrictPreferSlot3(Summary);
return !CheckFailure;
}
void HexagonShuffler::restrictBranchOrder(HexagonPacketSummary const &Summary) {
// preserve branch order
const bool HasMultipleBranches = Summary.branchInsts.size() > 1;
if (!HasMultipleBranches)
return;
if (Summary.branchInsts.size() > 2) {
reportError(Twine("too many branches in packet"));
return;
}
const static std::pair<unsigned, unsigned> jumpSlots[] = {
{8, 4}, {8, 2}, {8, 1}, {4, 2}, {4, 1}, {2, 1}};
// try all possible choices
for (std::pair<unsigned, unsigned> jumpSlot : jumpSlots) {
// validate first jump with this slot rule
if (!(jumpSlot.first & Summary.branchInsts[0]->Core.getUnits()))
continue;
// validate second jump with this slot rule
if (!(jumpSlot.second & Summary.branchInsts[1]->Core.getUnits()))
continue;
// both valid for this configuration, set new slot rules
const HexagonPacket PacketSave = Packet;
Summary.branchInsts[0]->Core.setUnits(jumpSlot.first);
Summary.branchInsts[1]->Core.setUnits(jumpSlot.second);
const bool HasShuffledPacket = tryAuction(Summary).hasValue();
if (HasShuffledPacket)
return;
// if yes, great, if not then restore original slot mask
// restore original values
Packet = PacketSave;
}
reportError("invalid instruction packet: out of slots");
}
void HexagonShuffler::permitNonSlot() {
for (HexagonInstr &ISJ : insts()) {
const bool RequiresSlot = HexagonMCInstrInfo::requiresSlot(STI, *ISJ.ID);
if (!RequiresSlot)
ISJ.Core.setAllUnits();
}
}
bool HexagonShuffler::ValidResourceUsage(HexagonPacketSummary const &Summary) {
Optional<HexagonPacket> ShuffledPacket = tryAuction(Summary);
if (!ShuffledPacket) {
reportError("invalid instruction packet: slot error");
return false;
} else {
Packet = *ShuffledPacket;
}
// Verify the CVI slot subscriptions.
std::stable_sort(begin(), end(), HexagonInstr::lessCVI);
// create vector of hvx instructions to check
HVXInstsT hvxInsts;
hvxInsts.clear();
for (const_iterator I = cbegin(); I != cend(); ++I) {
struct CVIUnits inst;
inst.Units = I->CVI.getUnits();
inst.Lanes = I->CVI.getLanes();
if (inst.Units == 0)
continue; // not an hvx inst or an hvx inst that doesn't uses any pipes
hvxInsts.push_back(inst);
}
// if there are any hvx instructions in this packet, check pipe usage
if (hvxInsts.size() > 0) {
unsigned startIdx, usedUnits;
startIdx = usedUnits = 0x0;
if (!checkHVXPipes(hvxInsts, startIdx, usedUnits)) {
// too many pipes used to be valid
reportError(Twine("invalid instruction packet: slot error"));
return false;
}
}
return true;
}
bool HexagonShuffler::restrictStoreLoadOrder(
HexagonPacketSummary const &Summary) {
// Modify packet accordingly.
// TODO: need to reserve slots #0 and #1 for duplex insns.
static const unsigned slotFirstLoadStore = Slot1Mask;
static const unsigned slotLastLoadStore = Slot0Mask;
unsigned slotLoadStore = slotFirstLoadStore;
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
MCInst const &ID = ISJ->getDesc();
if (!ISJ->Core.getUnits())
// Error if insn may not be executed in any slot.
return false;
// A single load must use slot #0.
if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
if (Summary.loads == 1 && Summary.loads == Summary.memory &&
Summary.memops == 0)
// Pin the load to slot #0.
switch (ID.getOpcode()) {
case Hexagon::V6_vgathermw:
case Hexagon::V6_vgathermh:
case Hexagon::V6_vgathermhw:
case Hexagon::V6_vgathermwq:
case Hexagon::V6_vgathermhq:
case Hexagon::V6_vgathermhwq:
// Slot1 only loads
break;
default:
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleLoad);
break;
}
else if (Summary.loads >= 1 && isMemReorderDisabled()) { // }:mem_noshuf
// Loads must keep the original order ONLY if
// isMemReorderDisabled() == true
if (slotLoadStore < slotLastLoadStore) {
// Error if no more slots available for loads.
reportError("invalid instruction packet: too many loads");
return false;
}
// Pin the load to the highest slot available to it.
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
// Update the next highest slot available to loads.
slotLoadStore >>= 1;
}
}
// A single store must use slot #0.
if (HexagonMCInstrInfo::getDesc(MCII, ID).mayStore()) {
if (!Summary.store0) {
const bool PacketHasNoOnlySlot0 =
llvm::none_of(insts(), [&](HexagonInstr const &I) {
return I.Core.getUnits() == Slot0Mask &&
I.ID->getOpcode() != ID.getOpcode();
});
const bool SafeToMoveToSlot0 =
(Summary.loads == 0) ||
(!isMemReorderDisabled() && PacketHasNoOnlySlot0);
if (Summary.stores == 1 && SafeToMoveToSlot0)
// Pin the store to slot #0 only if isMemReorderDisabled() == false
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotSingleStore);
else if (Summary.stores >= 1) {
if (slotLoadStore < slotLastLoadStore) {
// Error if no more slots available for stores.
reportError("invalid instruction packet: too many stores");
return false;
}
// Pin the store to the highest slot available to it.
ISJ->Core.setUnits(ISJ->Core.getUnits() & slotLoadStore);
// Update the next highest slot available to stores.
slotLoadStore >>= 1;
}
}
if (Summary.store1 && Summary.stores > 1) {
// Error if a single store with another store.
reportError("invalid instruction packet: too many stores");
return false;
}
}
}
return true;
}
HexagonShuffler::HexagonPacketSummary HexagonShuffler::GetPacketSummary() {
HexagonPacketSummary Summary = HexagonPacketSummary();
// Collect information from the insns in the packet.
for (iterator ISJ = begin(); ISJ != end(); ++ISJ) {
MCInst const &ID = ISJ->getDesc();
if (HexagonMCInstrInfo::isRestrictSlot1AOK(MCII, ID))
Summary.Slot1AOKLoc = ID.getLoc();
if (HexagonMCInstrInfo::isRestrictNoSlot1Store(MCII, ID))
Summary.NoSlot1StoreLoc = ID.getLoc();
if (HexagonMCInstrInfo::prefersSlot3(MCII, ID)) {
++Summary.pSlot3Cnt;
Summary.PrefSlot3Inst = ISJ;
}
Summary.ReservedSlotMask |=
HexagonMCInstrInfo::getOtherReservedSlots(MCII, STI, ID);
switch (HexagonMCInstrInfo::getType(MCII, ID)) {
case HexagonII::TypeS_2op:
case HexagonII::TypeS_3op:
case HexagonII::TypeALU64:
break;
case HexagonII::TypeJ:
Summary.branchInsts.push_back(ISJ);
break;
case HexagonII::TypeCVI_VM_VP_LDU:
case HexagonII::TypeCVI_VM_LD:
case HexagonII::TypeCVI_VM_TMP_LD:
case HexagonII::TypeCVI_GATHER:
case HexagonII::TypeCVI_GATHER_DV:
case HexagonII::TypeCVI_GATHER_RST:
++Summary.NonZCVIloads;
LLVM_FALLTHROUGH;
case HexagonII::TypeCVI_ZW:
++Summary.AllCVIloads;
LLVM_FALLTHROUGH;
case HexagonII::TypeLD:
++Summary.loads;
++Summary.memory;
if (ISJ->Core.getUnits() == slotSingleLoad ||
HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_VP_LDU)
++Summary.load0;
if (HexagonMCInstrInfo::getDesc(MCII, ID).isReturn())
Summary.branchInsts.push_back(ISJ);
break;
case HexagonII::TypeCVI_VM_STU:
case HexagonII::TypeCVI_VM_ST:
case HexagonII::TypeCVI_VM_NEW_ST:
case HexagonII::TypeCVI_SCATTER:
case HexagonII::TypeCVI_SCATTER_DV:
case HexagonII::TypeCVI_SCATTER_RST:
case HexagonII::TypeCVI_SCATTER_NEW_RST:
case HexagonII::TypeCVI_SCATTER_NEW_ST:
++Summary.CVIstores;
LLVM_FALLTHROUGH;
case HexagonII::TypeST:
++Summary.stores;
++Summary.memory;
if (ISJ->Core.getUnits() == slotSingleStore ||
HexagonMCInstrInfo::getType(MCII, ID) == HexagonII::TypeCVI_VM_STU)
++Summary.store0;
break;
case HexagonII::TypeV4LDST:
++Summary.loads;
++Summary.stores;
++Summary.store1;
++Summary.memops;
++Summary.memory;
break;
case HexagonII::TypeNCJ:
++Summary.memory; // NV insns are memory-like.
Summary.branchInsts.push_back(ISJ);
break;
case HexagonII::TypeV2LDST:
if (HexagonMCInstrInfo::getDesc(MCII, ID).mayLoad()) {
++Summary.loads;
++Summary.memory;
if (ISJ->Core.getUnits() == slotSingleLoad ||
HexagonMCInstrInfo::getType(MCII, ID) ==
HexagonII::TypeCVI_VM_VP_LDU)
++Summary.load0;
} else {
assert(HexagonMCInstrInfo::getDesc(MCII, ID).mayStore());
++Summary.memory;
++Summary.stores;
}
break;
case HexagonII::TypeCR:
// Legacy conditional branch predicated on a register.
case HexagonII::TypeCJ:
if (HexagonMCInstrInfo::getDesc(MCII, ID).isBranch())
Summary.branchInsts.push_back(ISJ);
break;
case HexagonII::TypeDUPLEX: {
++Summary.duplex;
MCInst const &Inst0 = *ID.getOperand(0).getInst();
MCInst const &Inst1 = *ID.getOperand(1).getInst();
if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isBranch())
Summary.branchInsts.push_back(ISJ);
if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isBranch())
Summary.branchInsts.push_back(ISJ);
if (HexagonMCInstrInfo::getDesc(MCII, Inst0).isReturn())
Summary.branchInsts.push_back(ISJ);
if (HexagonMCInstrInfo::getDesc(MCII, Inst1).isReturn())
Summary.branchInsts.push_back(ISJ);
break;
}
}
}
return Summary;
}
bool HexagonShuffler::ValidPacketMemoryOps(
HexagonPacketSummary const &Summary) const {
// Check if the packet is legal.
const unsigned ZCVIloads = Summary.AllCVIloads - Summary.NonZCVIloads;
const bool ValidHVXMem =
Summary.NonZCVIloads <= 1 && ZCVIloads <= 1 && Summary.CVIstores <= 1;
const bool InvalidPacket =
((Summary.load0 > 1 || Summary.store0 > 1 || !ValidHVXMem) ||
(Summary.duplex > 1 || (Summary.duplex && Summary.memory)));
return !InvalidPacket;
}
void HexagonShuffler::restrictPreferSlot3(HexagonPacketSummary const &Summary) {
// flag if an instruction requires to be in slot 3
const bool HasOnlySlot3 = llvm::any_of(insts(), [&](HexagonInstr const &I) {
return (I.Core.getUnits() == Slot3Mask);
});
const bool NeedsPrefSlot3Shuffle =
(Summary.branchInsts.size() <= 1 && !HasOnlySlot3 &&
Summary.pSlot3Cnt == 1 && Summary.PrefSlot3Inst);
if (!NeedsPrefSlot3Shuffle)
return;
HexagonInstr *PrefSlot3Inst = *Summary.PrefSlot3Inst;
// save off slot mask of instruction marked with A_PREFER_SLOT3
// and then pin it to slot #3
const unsigned saveUnits = PrefSlot3Inst->Core.getUnits();
PrefSlot3Inst->Core.setUnits(saveUnits & Slot3Mask);
const bool HasShuffledPacket = tryAuction(Summary).hasValue();
if (HasShuffledPacket)
return;
PrefSlot3Inst->Core.setUnits(saveUnits);
}
/// Check that the packet is legal and enforce relative insn order.
bool HexagonShuffler::check() {
const HexagonPacketSummary Summary = GetPacketSummary();
if (!applySlotRestrictions(Summary))
return false;
if (!ValidPacketMemoryOps(Summary)) {
reportError("invalid instruction packet");
return false;
}
ValidResourceUsage(Summary);
return !CheckFailure;
}
llvm::Optional<HexagonShuffler::HexagonPacket>
HexagonShuffler::tryAuction(HexagonPacketSummary const &Summary) const {
HexagonPacket PacketResult = Packet;
HexagonUnitAuction AuctionCore(Summary.ReservedSlotMask);
std::stable_sort(PacketResult.begin(), PacketResult.end(),
HexagonInstr::lessCore);
const bool ValidSlots =
llvm::all_of(insts(PacketResult), [&AuctionCore](HexagonInstr const &I) {
return AuctionCore.bid(I.Core.getUnits());
});
LLVM_DEBUG(
dbgs() << "Shuffle attempt: " << (ValidSlots ? "passed" : "failed")
<< "\n";
for (HexagonInstr const &ISJ : insts(PacketResult))
dbgs() << "\t" << HexagonMCInstrInfo::getName(MCII, *ISJ.ID) << ": "
<< llvm::format_hex(ISJ.Core.getUnits(), 4, true) << "\n";
);
Optional<HexagonPacket> Res;
if (ValidSlots)
Res = PacketResult;
return Res;
}
bool HexagonShuffler::shuffle() {
if (size() > HEXAGON_PACKET_SIZE) {
// Ignore a packet with with more than what a packet can hold
// or with compound or duplex insns for now.
reportError(Twine("invalid instruction packet"));
return false;
}
// Check and prepare packet.
bool Ok = true;
if (size() > 1 && (Ok = check()))
// Reorder the handles for each slot.
for (unsigned nSlot = 0, emptySlots = 0; nSlot < HEXAGON_PACKET_SIZE;
++nSlot) {
iterator ISJ, ISK;
unsigned slotSkip, slotWeight;
// Prioritize the handles considering their restrictions.
for (ISJ = ISK = Packet.begin(), slotSkip = slotWeight = 0;
ISK != Packet.end(); ++ISK, ++slotSkip)
if (slotSkip < nSlot - emptySlots)
// Note which handle to begin at.
++ISJ;
else
// Calculate the weight of the slot.
slotWeight += ISK->Core.setWeight(HEXAGON_PACKET_SIZE - nSlot - 1);
if (slotWeight)
// Sort the packet, favoring source order,
// beginning after the previous slot.
std::stable_sort(ISJ, Packet.end());
else
// Skip unused slot.
++emptySlots;
}
LLVM_DEBUG(
for (HexagonInstr const &ISJ : insts()) {
dbgs().write_hex(ISJ.Core.getUnits());
if (ISJ.CVI.isValid()) {
dbgs() << '/';
dbgs().write_hex(ISJ.CVI.getUnits()) << '|';
dbgs() << ISJ.CVI.getLanes();
}
dbgs() << ':'
<< HexagonMCInstrInfo::getDesc(MCII, ISJ.getDesc()).getOpcode()
<< '\n';
} dbgs() << '\n';
);
return Ok;
}
void HexagonShuffler::reportError(Twine const &Msg) {
CheckFailure = true;
if (ReportErrors) {
for (auto const &I : AppliedRestrictions) {
auto SM = Context.getSourceManager();
if (SM)
SM->PrintMessage(I.first, SourceMgr::DK_Note, I.second);
}
Context.reportError(Loc, Msg);
}
}