HexagonMCChecker.cpp
26.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
//===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the checking of insns inside a bundle according to the
// packet constraint rules of the Hexagon ISA.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/HexagonMCChecker.h"
#include "MCTargetDesc/HexagonBaseInfo.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCShuffler.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/SourceMgr.h"
#include <cassert>
using namespace llvm;
static cl::opt<bool>
RelaxNVChecks("relax-nv-checks", cl::init(false), cl::ZeroOrMore,
cl::Hidden, cl::desc("Relax checks of new-value validity"));
const HexagonMCChecker::PredSense
HexagonMCChecker::Unconditional(Hexagon::NoRegister, false);
void HexagonMCChecker::init() {
// Initialize read-only registers set.
ReadOnly.insert(Hexagon::PC);
ReadOnly.insert(Hexagon::C9_8);
// Figure out the loop-registers definitions.
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0?
Defs[Hexagon::LC0].insert(Unconditional);
}
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0?
Defs[Hexagon::LC1].insert(Unconditional);
}
if (HexagonMCInstrInfo::isBundle(MCB))
// Unfurl a bundle.
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
MCInst const &Inst = *I.getInst();
if (HexagonMCInstrInfo::isDuplex(MCII, Inst)) {
init(*Inst.getOperand(0).getInst());
init(*Inst.getOperand(1).getInst());
} else
init(Inst);
}
else
init(MCB);
}
void HexagonMCChecker::initReg(MCInst const &MCI, unsigned R, unsigned &PredReg,
bool &isTrue) {
if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) {
// Note an used predicate register.
PredReg = R;
isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI);
// Note use of new predicate register.
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
NewPreds.insert(PredReg);
} else
// Note register use. Super-registers are not tracked directly,
// but their components.
for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
SRI.isValid(); ++SRI)
if (!MCSubRegIterator(*SRI, &RI).isValid())
// Skip super-registers used indirectly.
Uses.insert(*SRI);
if (HexagonMCInstrInfo::IsReverseVecRegPair(R))
ReversePairs.insert(R);
}
void HexagonMCChecker::init(MCInst const &MCI) {
const MCInstrDesc &MCID = HexagonMCInstrInfo::getDesc(MCII, MCI);
unsigned PredReg = Hexagon::NoRegister;
bool isTrue = false;
// Get used registers.
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
if (MCI.getOperand(i).isReg())
initReg(MCI, MCI.getOperand(i).getReg(), PredReg, isTrue);
for (unsigned i = 0; i < MCID.getNumImplicitUses(); ++i)
initReg(MCI, MCID.getImplicitUses()[i], PredReg, isTrue);
// Get implicit register definitions.
if (const MCPhysReg *ImpDef = MCID.getImplicitDefs())
for (; *ImpDef; ++ImpDef) {
unsigned R = *ImpDef;
if (Hexagon::R31 != R && MCID.isCall())
// Any register other than the LR and the PC are actually volatile ones
// as defined by the ABI, not modified implicitly by the call insn.
continue;
if (Hexagon::PC == R)
// Branches are the only insns that can change the PC,
// otherwise a read-only register.
continue;
if (Hexagon::USR_OVF == R)
// Many insns change the USR implicitly, but only one or another flag.
// The instruction table models the USR.OVF flag, which can be
// implicitly modified more than once, but cannot be modified in the
// same packet with an instruction that modifies is explicitly. Deal
// with such situations individually.
SoftDefs.insert(R);
else if (isPredicateRegister(R) &&
HexagonMCInstrInfo::isPredicateLate(MCII, MCI))
// Include implicit late predicates.
LatePreds.insert(R);
else
Defs[R].insert(PredSense(PredReg, isTrue));
}
// Figure out explicit register definitions.
for (unsigned i = 0; i < MCID.getNumDefs(); ++i) {
unsigned R = MCI.getOperand(i).getReg(), S = Hexagon::NoRegister;
// USR has subregisters (while C8 does not for technical reasons), so
// reset R to USR, since we know how to handle multiple defs of USR,
// taking into account its subregisters.
if (R == Hexagon::C8)
R = Hexagon::USR;
if (HexagonMCInstrInfo::IsReverseVecRegPair(R))
ReversePairs.insert(R);
// Note register definitions, direct ones as well as indirect side-effects.
// Super-registers are not tracked directly, but their components.
for (MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
SRI.isValid(); ++SRI) {
if (MCSubRegIterator(*SRI, &RI).isValid())
// Skip super-registers defined indirectly.
continue;
if (R == *SRI) {
if (S == R)
// Avoid scoring the defined register multiple times.
continue;
else
// Note that the defined register has already been scored.
S = R;
}
if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI)
// P3:0 is a special case, since multiple predicate register definitions
// in a packet is allowed as the equivalent of their logical "and".
// Only an explicit definition of P3:0 is noted as such; if a
// side-effect, then note as a soft definition.
SoftDefs.insert(*SRI);
else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) &&
isPredicateRegister(*SRI))
// Some insns produce predicates too late to be used in the same packet.
LatePreds.insert(*SRI);
else if (i == 0 && HexagonMCInstrInfo::getType(MCII, MCI) ==
HexagonII::TypeCVI_VM_TMP_LD)
// Temporary loads should be used in the same packet, but don't commit
// results, so it should be disregarded if another insn changes the same
// register.
// TODO: relies on the impossibility of a current and a temporary loads
// in the same packet.
TmpDefs.insert(*SRI);
else if (i <= 1 && HexagonMCInstrInfo::hasNewValue2(MCII, MCI))
// vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and
// destination registers with this instruction. same for vdeal(Vx,Vy,Rx)
Uses.insert(*SRI);
else
Defs[*SRI].insert(PredSense(PredReg, isTrue));
}
}
// Figure out definitions of new predicate registers.
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
if (MCI.getOperand(i).isReg()) {
unsigned P = MCI.getOperand(i).getReg();
if (isPredicateRegister(P))
NewPreds.insert(P);
}
}
HexagonMCChecker::HexagonMCChecker(MCContext &Context, MCInstrInfo const &MCII,
MCSubtargetInfo const &STI, MCInst &mcb,
MCRegisterInfo const &ri, bool ReportErrors)
: Context(Context), MCB(mcb), RI(ri), MCII(MCII), STI(STI),
ReportErrors(ReportErrors), ReversePairs() {
init();
}
HexagonMCChecker::HexagonMCChecker(HexagonMCChecker const &Other,
MCSubtargetInfo const &STI,
bool CopyReportErrors)
: Context(Other.Context), MCB(Other.MCB), RI(Other.RI), MCII(Other.MCII),
STI(STI), ReportErrors(CopyReportErrors ? Other.ReportErrors : false),
ReversePairs() {
init();
}
bool HexagonMCChecker::check(bool FullCheck) {
bool chkP = checkPredicates();
bool chkNV = checkNewValues();
bool chkR = checkRegisters();
bool chkRRO = checkRegistersReadOnly();
checkRegisterCurDefs();
bool chkS = checkSolo();
bool chkSh = true;
if (FullCheck)
chkSh = checkShuffle();
bool chkSl = true;
if (FullCheck)
chkSl = checkSlots();
bool chkAXOK = checkAXOK();
bool chkCofMax1 = checkCOFMax1();
bool chkHWLoop = checkHWLoop();
bool chkLegalVecRegPair = checkLegalVecRegPair();
bool chk = chkP && chkNV && chkR && chkRRO && chkS && chkSh && chkSl &&
chkAXOK && chkCofMax1 && chkHWLoop && chkLegalVecRegPair;
return chk;
}
static bool isDuplexAGroup(unsigned Opcode) {
switch (Opcode) {
case Hexagon::SA1_addi:
case Hexagon::SA1_addrx:
case Hexagon::SA1_addsp:
case Hexagon::SA1_and1:
case Hexagon::SA1_clrf:
case Hexagon::SA1_clrfnew:
case Hexagon::SA1_clrt:
case Hexagon::SA1_clrtnew:
case Hexagon::SA1_cmpeqi:
case Hexagon::SA1_combine0i:
case Hexagon::SA1_combine1i:
case Hexagon::SA1_combine2i:
case Hexagon::SA1_combine3i:
case Hexagon::SA1_combinerz:
case Hexagon::SA1_combinezr:
case Hexagon::SA1_dec:
case Hexagon::SA1_inc:
case Hexagon::SA1_seti:
case Hexagon::SA1_setin1:
case Hexagon::SA1_sxtb:
case Hexagon::SA1_sxth:
case Hexagon::SA1_tfr:
case Hexagon::SA1_zxtb:
case Hexagon::SA1_zxth:
return true;
break;
default:
return false;
}
}
static bool isNeitherAnorX(MCInstrInfo const &MCII, MCInst const &ID) {
unsigned Result = 0;
unsigned Type = HexagonMCInstrInfo::getType(MCII, ID);
if (Type == HexagonII::TypeDUPLEX) {
unsigned subInst0Opcode = ID.getOperand(0).getInst()->getOpcode();
unsigned subInst1Opcode = ID.getOperand(1).getInst()->getOpcode();
Result += !isDuplexAGroup(subInst0Opcode);
Result += !isDuplexAGroup(subInst1Opcode);
} else
Result +=
Type != HexagonII::TypeALU32_2op && Type != HexagonII::TypeALU32_3op &&
Type != HexagonII::TypeALU32_ADDI && Type != HexagonII::TypeS_2op &&
Type != HexagonII::TypeS_3op &&
(Type != HexagonII::TypeALU64 || HexagonMCInstrInfo::isFloat(MCII, ID));
return Result != 0;
}
bool HexagonMCChecker::checkAXOK() {
MCInst const *HasSoloAXInst = nullptr;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (HexagonMCInstrInfo::isSoloAX(MCII, I)) {
HasSoloAXInst = &I;
}
}
if (!HasSoloAXInst)
return true;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (&I != HasSoloAXInst && isNeitherAnorX(MCII, I)) {
reportError(
HasSoloAXInst->getLoc(),
Twine("Instruction can only be in a packet with ALU or non-FPU XTYPE "
"instructions"));
reportError(I.getLoc(),
Twine("Not an ALU or non-FPU XTYPE instruction"));
return false;
}
}
return true;
}
void HexagonMCChecker::reportBranchErrors() {
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
if (Desc.isBranch() || Desc.isCall() || Desc.isReturn())
reportNote(I.getLoc(), "Branching instruction");
}
}
bool HexagonMCChecker::checkHWLoop() {
if (!HexagonMCInstrInfo::isInnerLoop(MCB) &&
!HexagonMCInstrInfo::isOuterLoop(MCB))
return true;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
if (Desc.isBranch() || Desc.isCall() || Desc.isReturn()) {
reportError(MCB.getLoc(),
"Branches cannot be in a packet with hardware loops");
reportBranchErrors();
return false;
}
}
return true;
}
bool HexagonMCChecker::checkCOFMax1() {
SmallVector<MCInst const *, 2> BranchLocations;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
if (Desc.isBranch() || Desc.isCall() || Desc.isReturn())
BranchLocations.push_back(&I);
}
for (unsigned J = 0, N = BranchLocations.size(); J < N; ++J) {
MCInst const &I = *BranchLocations[J];
if (HexagonMCInstrInfo::isCofMax1(MCII, I)) {
bool Relax1 = HexagonMCInstrInfo::isCofRelax1(MCII, I);
bool Relax2 = HexagonMCInstrInfo::isCofRelax2(MCII, I);
if (N > 1 && !Relax1 && !Relax2) {
reportError(I.getLoc(),
"Instruction may not be in a packet with other branches");
reportBranchErrors();
return false;
}
if (N > 1 && J == 0 && !Relax1) {
reportError(I.getLoc(),
"Instruction may not be the first branch in packet");
reportBranchErrors();
return false;
}
if (N > 1 && J == 1 && !Relax2) {
reportError(I.getLoc(),
"Instruction may not be the second branch in packet");
reportBranchErrors();
return false;
}
}
}
return true;
}
bool HexagonMCChecker::checkSlots() {
unsigned slotsUsed = 0;
for (auto HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
MCInst const &MCI = *HMI.getInst();
if (HexagonMCInstrInfo::isImmext(MCI))
continue;
if (HexagonMCInstrInfo::isDuplex(MCII, MCI))
slotsUsed += 2;
else
++slotsUsed;
}
if (slotsUsed > HEXAGON_PACKET_SIZE) {
reportError("invalid instruction packet: out of slots");
return false;
}
return true;
}
// Check legal use of predicate registers.
bool HexagonMCChecker::checkPredicates() {
// Check for proper use of new predicate registers.
for (const auto &I : NewPreds) {
unsigned P = I;
if (!Defs.count(P) || LatePreds.count(P) || Defs.count(Hexagon::P3_0)) {
// Error out if the new predicate register is not defined,
// or defined "late"
// (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }").
reportErrorNewValue(P);
return false;
}
}
// Check for proper use of auto-anded of predicate registers.
for (const auto &I : LatePreds) {
unsigned P = I;
if (LatePreds.count(P) > 1 || Defs.count(P)) {
// Error out if predicate register defined "late" multiple times or
// defined late and regularly defined
// (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }".
reportErrorRegisters(P);
return false;
}
}
return true;
}
// Check legal use of new values.
bool HexagonMCChecker::checkNewValues() {
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (!HexagonMCInstrInfo::isNewValue(MCII, I))
continue;
auto Consumer = HexagonMCInstrInfo::predicateInfo(MCII, I);
bool Branch = HexagonMCInstrInfo::getDesc(MCII, I).isBranch();
MCOperand const &Op = HexagonMCInstrInfo::getNewValueOperand(MCII, I);
assert(Op.isReg());
auto Producer = registerProducer(Op.getReg(), Consumer);
if (std::get<0>(Producer) == nullptr) {
reportError(I.getLoc(), "New value register consumer has no producer");
return false;
}
if (!RelaxNVChecks) {
// Checks that statically prove correct new value consumption
if (std::get<2>(Producer).isPredicated() &&
(!Consumer.isPredicated() ||
llvm::HexagonMCInstrInfo::getType(MCII, I) == HexagonII::TypeNCJ)) {
reportNote(
std::get<0>(Producer)->getLoc(),
"Register producer is predicated and consumer is unconditional");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
if (std::get<2>(Producer).Register != Hexagon::NoRegister &&
std::get<2>(Producer).Register != Consumer.Register) {
reportNote(std::get<0>(Producer)->getLoc(),
"Register producer does not use the same predicate "
"register as the consumer");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
}
if (std::get<2>(Producer).Register == Consumer.Register &&
Consumer.PredicatedTrue != std::get<2>(Producer).PredicatedTrue) {
reportNote(
std::get<0>(Producer)->getLoc(),
"Register producer has the opposite predicate sense as consumer");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
MCInstrDesc const &Desc =
HexagonMCInstrInfo::getDesc(MCII, *std::get<0>(Producer));
if (Desc.OpInfo[std::get<1>(Producer)].RegClass ==
Hexagon::DoubleRegsRegClassID) {
reportNote(std::get<0>(Producer)->getLoc(),
"Double registers cannot be new-value producers");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
if ((Desc.mayLoad() && std::get<1>(Producer) == 1) ||
(Desc.mayStore() && std::get<1>(Producer) == 0)) {
unsigned Mode =
HexagonMCInstrInfo::getAddrMode(MCII, *std::get<0>(Producer));
StringRef ModeError;
if (Mode == HexagonII::AbsoluteSet)
ModeError = "Absolute-set";
if (Mode == HexagonII::PostInc)
ModeError = "Auto-increment";
if (!ModeError.empty()) {
reportNote(std::get<0>(Producer)->getLoc(),
ModeError + " registers cannot be a new-value "
"producer");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
}
if (Branch && HexagonMCInstrInfo::isFloat(MCII, *std::get<0>(Producer))) {
reportNote(std::get<0>(Producer)->getLoc(),
"FPU instructions cannot be new-value producers for jumps");
reportError(I.getLoc(),
"Instruction does not have a valid new register producer");
return false;
}
}
return true;
}
bool HexagonMCChecker::checkRegistersReadOnly() {
for (auto I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
MCInst const &Inst = *I.getInst();
unsigned Defs = HexagonMCInstrInfo::getDesc(MCII, Inst).getNumDefs();
for (unsigned j = 0; j < Defs; ++j) {
MCOperand const &Operand = Inst.getOperand(j);
assert(Operand.isReg() && "Def is not a register");
unsigned Register = Operand.getReg();
if (ReadOnly.find(Register) != ReadOnly.end()) {
reportError(Inst.getLoc(), "Cannot write to read-only register `" +
Twine(RI.getName(Register)) + "'");
return false;
}
}
}
return true;
}
bool HexagonMCChecker::registerUsed(unsigned Register) {
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB))
for (unsigned j = HexagonMCInstrInfo::getDesc(MCII, I).getNumDefs(),
n = I.getNumOperands();
j < n; ++j) {
MCOperand const &Operand = I.getOperand(j);
if (Operand.isReg() && Operand.getReg() == Register)
return true;
}
return false;
}
std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo>
HexagonMCChecker::registerProducer(
unsigned Register, HexagonMCInstrInfo::PredicateInfo ConsumerPredicate) {
std::tuple<MCInst const *, unsigned, HexagonMCInstrInfo::PredicateInfo>
WrongSense;
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, I);
auto ProducerPredicate = HexagonMCInstrInfo::predicateInfo(MCII, I);
for (unsigned J = 0, N = Desc.getNumDefs(); J < N; ++J)
for (auto K = MCRegAliasIterator(I.getOperand(J).getReg(), &RI, true);
K.isValid(); ++K)
if (*K == Register) {
if (RelaxNVChecks ||
(ProducerPredicate.Register == ConsumerPredicate.Register &&
(ProducerPredicate.Register == Hexagon::NoRegister ||
ProducerPredicate.PredicatedTrue ==
ConsumerPredicate.PredicatedTrue)))
return std::make_tuple(&I, J, ProducerPredicate);
std::get<0>(WrongSense) = &I;
std::get<1>(WrongSense) = J;
std::get<2>(WrongSense) = ProducerPredicate;
}
if (Register == Hexagon::VTMP && HexagonMCInstrInfo::hasTmpDst(MCII, I))
return std::make_tuple(&I, 0, HexagonMCInstrInfo::PredicateInfo());
}
return WrongSense;
}
void HexagonMCChecker::checkRegisterCurDefs() {
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (HexagonMCInstrInfo::isCVINew(MCII, I) &&
HexagonMCInstrInfo::getDesc(MCII, I).mayLoad()) {
unsigned Register = I.getOperand(0).getReg();
if (!registerUsed(Register))
reportWarning("Register `" + Twine(RI.getName(Register)) +
"' used with `.cur' "
"but not used in the same packet");
}
}
}
// Check for legal register uses and definitions.
bool HexagonMCChecker::checkRegisters() {
// Check for proper register definitions.
for (const auto &I : Defs) {
unsigned R = I.first;
if (isLoopRegister(R) && Defs.count(R) > 1 &&
(HexagonMCInstrInfo::isInnerLoop(MCB) ||
HexagonMCInstrInfo::isOuterLoop(MCB))) {
// Error out for definitions of loop registers at the end of a loop.
reportError("loop-setup and some branch instructions "
"cannot be in the same packet");
return false;
}
if (SoftDefs.count(R)) {
// Error out for explicit changes to registers also weakly defined
// (e.g., "{ usr = r0; r0 = sfadd(...) }").
unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:.
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
reportErrorRegisters(BadR);
return false;
}
if (!isPredicateRegister(R) && Defs[R].size() > 1) {
// Check for multiple register definitions.
PredSet &PM = Defs[R];
// Check for multiple unconditional register definitions.
if (PM.count(Unconditional)) {
// Error out on an unconditional change when there are any other
// changes, conditional or not.
unsigned UsrR = Hexagon::USR;
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
reportErrorRegisters(BadR);
return false;
}
// Check for multiple conditional register definitions.
for (const auto &J : PM) {
PredSense P = J;
// Check for multiple uses of the same condition.
if (PM.count(P) > 1) {
// Error out on conditional changes based on the same predicate
// (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }").
reportErrorRegisters(R);
return false;
}
// Check for the use of the complementary condition.
P.second = !P.second;
if (PM.count(P) && PM.size() > 2) {
// Error out on conditional changes based on the same predicate
// multiple times
// (e.g., "if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =...").
reportErrorRegisters(R);
return false;
}
}
}
}
// Check for use of temporary definitions.
for (const auto &I : TmpDefs) {
unsigned R = I;
if (!Uses.count(R)) {
// special case for vhist
bool vHistFound = false;
for (auto const &HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
if (HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) ==
HexagonII::TypeCVI_HIST) {
vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp
break;
}
}
// Warn on an unused temporary definition.
if (!vHistFound) {
reportWarning("register `" + Twine(RI.getName(R)) +
"' used with `.tmp' but not used in the same packet");
return true;
}
}
}
return true;
}
// Check for legal use of solo insns.
bool HexagonMCChecker::checkSolo() {
if (HexagonMCInstrInfo::bundleSize(MCB) > 1)
for (auto const &I : HexagonMCInstrInfo::bundleInstructions(MCII, MCB)) {
if (HexagonMCInstrInfo::isSolo(MCII, I)) {
reportError(I.getLoc(), "Instruction is marked `isSolo' and "
"cannot have other instructions in "
"the same packet");
return false;
}
}
return true;
}
bool HexagonMCChecker::checkShuffle() {
HexagonMCShuffler MCSDX(Context, ReportErrors, MCII, STI, MCB);
return MCSDX.check();
}
void HexagonMCChecker::compoundRegisterMap(unsigned &Register) {
switch (Register) {
default:
break;
case Hexagon::R15:
Register = Hexagon::R23;
break;
case Hexagon::R14:
Register = Hexagon::R22;
break;
case Hexagon::R13:
Register = Hexagon::R21;
break;
case Hexagon::R12:
Register = Hexagon::R20;
break;
case Hexagon::R11:
Register = Hexagon::R19;
break;
case Hexagon::R10:
Register = Hexagon::R18;
break;
case Hexagon::R9:
Register = Hexagon::R17;
break;
case Hexagon::R8:
Register = Hexagon::R16;
break;
}
}
void HexagonMCChecker::reportErrorRegisters(unsigned Register) {
reportError("register `" + Twine(RI.getName(Register)) +
"' modified more than once");
}
void HexagonMCChecker::reportErrorNewValue(unsigned Register) {
reportError("register `" + Twine(RI.getName(Register)) +
"' used with `.new' "
"but not validly modified in the same packet");
}
void HexagonMCChecker::reportError(Twine const &Msg) {
reportError(MCB.getLoc(), Msg);
}
void HexagonMCChecker::reportError(SMLoc Loc, Twine const &Msg) {
if (ReportErrors)
Context.reportError(Loc, Msg);
}
void HexagonMCChecker::reportNote(SMLoc Loc, llvm::Twine const &Msg) {
if (ReportErrors) {
auto SM = Context.getSourceManager();
if (SM)
SM->PrintMessage(Loc, SourceMgr::DK_Note, Msg);
}
}
void HexagonMCChecker::reportWarning(Twine const &Msg) {
if (ReportErrors)
Context.reportWarning(MCB.getLoc(), Msg);
}
bool HexagonMCChecker::checkLegalVecRegPair() {
const bool IsPermitted = STI.getFeatureBits()[Hexagon::ArchV67];
const bool HasReversePairs = ReversePairs.size() != 0;
if (!IsPermitted && HasReversePairs) {
for (auto R : ReversePairs)
reportError("register pair `" + Twine(RI.getName(R)) +
"' is not permitted for this architecture");
return false;
}
return true;
}