HexagonVectorLoopCarriedReuse.cpp 24 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
//===- HexagonVectorLoopCarriedReuse.cpp ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass removes the computation of provably redundant expressions that have
// been computed earlier in a previous iteration. It relies on the use of PHIs
// to identify loop carried dependences. This is scalar replacement for vector
// types.
//
//-----------------------------------------------------------------------------
// Motivation: Consider the case where we have the following loop structure.
//
// Loop:
//  t0 = a[i];
//  t1 = f(t0);
//  t2 = g(t1);
//  ...
//  t3 = a[i+1];
//  t4 = f(t3);
//  t5 = g(t4);
//  t6 = op(t2, t5)
//  cond_branch <Loop>
//
// This can be converted to
//  t00 = a[0];
//  t10 = f(t00);
//  t20 = g(t10);
// Loop:
//  t2 = t20;
//  t3 = a[i+1];
//  t4 = f(t3);
//  t5 = g(t4);
//  t6 = op(t2, t5)
//  t20 = t5
//  cond_branch <Loop>
//
// SROA does a good job of reusing a[i+1] as a[i] in the next iteration.
// Such a loop comes to this pass in the following form.
//
// LoopPreheader:
//  X0 = a[0];
// Loop:
//  X2 = PHI<(X0, LoopPreheader), (X1, Loop)>
//  t1 = f(X2)   <-- I1
//  t2 = g(t1)
//  ...
//  X1 = a[i+1]
//  t4 = f(X1)   <-- I2
//  t5 = g(t4)
//  t6 = op(t2, t5)
//  cond_branch <Loop>
//
// In this pass, we look for PHIs such as X2 whose incoming values come only
// from the Loop Preheader and over the backedge and additionaly, both these
// values are the results of the same operation in terms of opcode. We call such
// a PHI node a dependence chain or DepChain. In this case, the dependence of X2
// over X1 is carried over only one iteration and so the DepChain is only one
// PHI node long.
//
// Then, we traverse the uses of the PHI (X2) and the uses of the value of the
// PHI coming  over the backedge (X1). We stop at the first pair of such users
// I1 (of X2) and I2 (of X1) that meet the following conditions.
// 1. I1 and I2 are the same operation, but with different operands.
// 2. X2 and X1 are used at the same operand number in the two instructions.
// 3. All other operands Op1 of I1 and Op2 of I2 are also such that there is a
//    a DepChain from Op1 to Op2 of the same length as that between X2 and X1.
//
// We then make the following transformation
// LoopPreheader:
//  X0 = a[0];
//  Y0 = f(X0);
// Loop:
//  X2 = PHI<(X0, LoopPreheader), (X1, Loop)>
//  Y2 = PHI<(Y0, LoopPreheader), (t4, Loop)>
//  t1 = f(X2)   <-- Will be removed by DCE.
//  t2 = g(Y2)
//  ...
//  X1 = a[i+1]
//  t4 = f(X1)
//  t5 = g(t4)
//  t6 = op(t2, t5)
//  cond_branch <Loop>
//
// We proceed until we cannot find any more such instructions I1 and I2.
//
// --- DepChains & Loop carried dependences ---
// Consider a single basic block loop such as
//
// LoopPreheader:
//  X0 = ...
//  Y0 = ...
// Loop:
//  X2 = PHI<(X0, LoopPreheader), (X1, Loop)>
//  Y2 = PHI<(Y0, LoopPreheader), (X2, Loop)>
//  ...
//  X1 = ...
//  ...
//  cond_branch <Loop>
//
// Then there is a dependence between X2 and X1 that goes back one iteration,
// i.e. X1 is used as X2 in the very next iteration. We represent this as a
// DepChain from X2 to X1 (X2->X1).
// Similarly, there is a dependence between Y2 and X1 that goes back two
// iterations. X1 is used as Y2 two iterations after it is computed. This is
// represented by a DepChain as (Y2->X2->X1).
//
// A DepChain has the following properties.
// 1. Num of edges in DepChain = Number of Instructions in DepChain = Number of
//    iterations of carried dependence + 1.
// 2. All instructions in the DepChain except the last are PHIs.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <map>
#include <memory>
#include <set>

using namespace llvm;

#define DEBUG_TYPE "hexagon-vlcr"

STATISTIC(HexagonNumVectorLoopCarriedReuse,
          "Number of values that were reused from a previous iteration.");

static cl::opt<int> HexagonVLCRIterationLim("hexagon-vlcr-iteration-lim",
    cl::Hidden,
    cl::desc("Maximum distance of loop carried dependences that are handled"),
    cl::init(2), cl::ZeroOrMore);

namespace llvm {

void initializeHexagonVectorLoopCarriedReusePass(PassRegistry&);
Pass *createHexagonVectorLoopCarriedReusePass();

} // end namespace llvm

namespace {

  // See info about DepChain in the comments at the top of this file.
  using ChainOfDependences = SmallVector<Instruction *, 4>;

  class DepChain {
    ChainOfDependences Chain;

  public:
    bool isIdentical(DepChain &Other) const {
      if (Other.size() != size())
        return false;
      ChainOfDependences &OtherChain = Other.getChain();
      for (int i = 0; i < size(); ++i) {
        if (Chain[i] != OtherChain[i])
          return false;
      }
      return true;
    }

    ChainOfDependences &getChain() {
      return Chain;
    }

    int size() const {
      return Chain.size();
    }

    void clear() {
      Chain.clear();
    }

    void push_back(Instruction *I) {
      Chain.push_back(I);
    }

    int iterations() const {
      return size() - 1;
    }

    Instruction *front() const {
      return Chain.front();
    }

    Instruction *back() const {
      return Chain.back();
    }

    Instruction *&operator[](const int index) {
      return Chain[index];
    }

   friend raw_ostream &operator<< (raw_ostream &OS, const DepChain &D);
  };

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<<(raw_ostream &OS, const DepChain &D) {
    const ChainOfDependences &CD = D.Chain;
    int ChainSize = CD.size();
    OS << "**DepChain Start::**\n";
    for (int i = 0; i < ChainSize -1; ++i) {
      OS << *(CD[i]) << " -->\n";
    }
    OS << *CD[ChainSize-1] << "\n";
    return OS;
  }

  struct ReuseValue {
    Instruction *Inst2Replace = nullptr;

    // In the new PHI node that we'll construct this is the value that'll be
    // used over the backedge. This is the value that gets reused from a
    // previous iteration.
    Instruction *BackedgeInst = nullptr;
    std::map<Instruction *, DepChain *> DepChains;
    int Iterations = -1;

    ReuseValue() = default;

    void reset() {
      Inst2Replace = nullptr;
      BackedgeInst = nullptr;
      DepChains.clear();
      Iterations = -1;
    }
    bool isDefined() { return Inst2Replace != nullptr; }
  };

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<<(raw_ostream &OS, const ReuseValue &RU) {
    OS << "** ReuseValue ***\n";
    OS << "Instruction to Replace: " << *(RU.Inst2Replace) << "\n";
    OS << "Backedge Instruction: " << *(RU.BackedgeInst) << "\n";
    return OS;
  }

  class HexagonVectorLoopCarriedReuse : public LoopPass {
  public:
    static char ID;

    explicit HexagonVectorLoopCarriedReuse() : LoopPass(ID) {
      PassRegistry *PR = PassRegistry::getPassRegistry();
      initializeHexagonVectorLoopCarriedReusePass(*PR);
    }

    StringRef getPassName() const override {
      return "Hexagon-specific loop carried reuse for HVX vectors";
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<LoopInfoWrapperPass>();
      AU.addRequiredID(LoopSimplifyID);
      AU.addRequiredID(LCSSAID);
      AU.addPreservedID(LCSSAID);
      AU.setPreservesCFG();
    }

    bool runOnLoop(Loop *L, LPPassManager &LPM) override;

  private:
    SetVector<DepChain *> Dependences;
    std::set<Instruction *> ReplacedInsts;
    Loop *CurLoop;
    ReuseValue ReuseCandidate;

    bool doVLCR();
    void findLoopCarriedDeps();
    void findValueToReuse();
    void findDepChainFromPHI(Instruction *I, DepChain &D);
    void reuseValue();
    Value *findValueInBlock(Value *Op, BasicBlock *BB);
    DepChain *getDepChainBtwn(Instruction *I1, Instruction *I2, int Iters);
    bool isEquivalentOperation(Instruction *I1, Instruction *I2);
    bool canReplace(Instruction *I);
    bool isCallInstCommutative(CallInst *C);
  };

} // end anonymous namespace

char HexagonVectorLoopCarriedReuse::ID = 0;

INITIALIZE_PASS_BEGIN(HexagonVectorLoopCarriedReuse, "hexagon-vlcr",
    "Hexagon-specific predictive commoning for HVX vectors", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
INITIALIZE_PASS_END(HexagonVectorLoopCarriedReuse, "hexagon-vlcr",
    "Hexagon-specific predictive commoning for HVX vectors", false, false)

bool HexagonVectorLoopCarriedReuse::runOnLoop(Loop *L, LPPassManager &LPM) {
  if (skipLoop(L))
    return false;

  if (!L->getLoopPreheader())
    return false;

  // Work only on innermost loops.
  if (!L->getSubLoops().empty())
    return false;

  // Work only on single basic blocks loops.
  if (L->getNumBlocks() != 1)
    return false;

  CurLoop = L;

  return doVLCR();
}

bool HexagonVectorLoopCarriedReuse::isCallInstCommutative(CallInst *C) {
  switch (C->getCalledFunction()->getIntrinsicID()) {
    case Intrinsic::hexagon_V6_vaddb:
    case Intrinsic::hexagon_V6_vaddb_128B:
    case Intrinsic::hexagon_V6_vaddh:
    case Intrinsic::hexagon_V6_vaddh_128B:
    case Intrinsic::hexagon_V6_vaddw:
    case Intrinsic::hexagon_V6_vaddw_128B:
    case Intrinsic::hexagon_V6_vaddubh:
    case Intrinsic::hexagon_V6_vaddubh_128B:
    case Intrinsic::hexagon_V6_vadduhw:
    case Intrinsic::hexagon_V6_vadduhw_128B:
    case Intrinsic::hexagon_V6_vaddhw:
    case Intrinsic::hexagon_V6_vaddhw_128B:
    case Intrinsic::hexagon_V6_vmaxb:
    case Intrinsic::hexagon_V6_vmaxb_128B:
    case Intrinsic::hexagon_V6_vmaxh:
    case Intrinsic::hexagon_V6_vmaxh_128B:
    case Intrinsic::hexagon_V6_vmaxw:
    case Intrinsic::hexagon_V6_vmaxw_128B:
    case Intrinsic::hexagon_V6_vmaxub:
    case Intrinsic::hexagon_V6_vmaxub_128B:
    case Intrinsic::hexagon_V6_vmaxuh:
    case Intrinsic::hexagon_V6_vmaxuh_128B:
    case Intrinsic::hexagon_V6_vminub:
    case Intrinsic::hexagon_V6_vminub_128B:
    case Intrinsic::hexagon_V6_vminuh:
    case Intrinsic::hexagon_V6_vminuh_128B:
    case Intrinsic::hexagon_V6_vminb:
    case Intrinsic::hexagon_V6_vminb_128B:
    case Intrinsic::hexagon_V6_vminh:
    case Intrinsic::hexagon_V6_vminh_128B:
    case Intrinsic::hexagon_V6_vminw:
    case Intrinsic::hexagon_V6_vminw_128B:
    case Intrinsic::hexagon_V6_vmpyub:
    case Intrinsic::hexagon_V6_vmpyub_128B:
    case Intrinsic::hexagon_V6_vmpyuh:
    case Intrinsic::hexagon_V6_vmpyuh_128B:
    case Intrinsic::hexagon_V6_vavgub:
    case Intrinsic::hexagon_V6_vavgub_128B:
    case Intrinsic::hexagon_V6_vavgh:
    case Intrinsic::hexagon_V6_vavgh_128B:
    case Intrinsic::hexagon_V6_vavguh:
    case Intrinsic::hexagon_V6_vavguh_128B:
    case Intrinsic::hexagon_V6_vavgw:
    case Intrinsic::hexagon_V6_vavgw_128B:
    case Intrinsic::hexagon_V6_vavgb:
    case Intrinsic::hexagon_V6_vavgb_128B:
    case Intrinsic::hexagon_V6_vavguw:
    case Intrinsic::hexagon_V6_vavguw_128B:
    case Intrinsic::hexagon_V6_vabsdiffh:
    case Intrinsic::hexagon_V6_vabsdiffh_128B:
    case Intrinsic::hexagon_V6_vabsdiffub:
    case Intrinsic::hexagon_V6_vabsdiffub_128B:
    case Intrinsic::hexagon_V6_vabsdiffuh:
    case Intrinsic::hexagon_V6_vabsdiffuh_128B:
    case Intrinsic::hexagon_V6_vabsdiffw:
    case Intrinsic::hexagon_V6_vabsdiffw_128B:
      return true;
    default:
      return false;
  }
}

bool HexagonVectorLoopCarriedReuse::isEquivalentOperation(Instruction *I1,
                                                          Instruction *I2) {
  if (!I1->isSameOperationAs(I2))
    return false;
  // This check is in place specifically for intrinsics. isSameOperationAs will
  // return two for any two hexagon intrinsics because they are essentially the
  // same instruciton (CallInst). We need to scratch the surface to see if they
  // are calls to the same function.
  if (CallInst *C1 = dyn_cast<CallInst>(I1)) {
    if (CallInst *C2 = dyn_cast<CallInst>(I2)) {
      if (C1->getCalledFunction() != C2->getCalledFunction())
        return false;
    }
  }

  // If both the Instructions are of Vector Type and any of the element
  // is integer constant, check their values too for equivalence.
  if (I1->getType()->isVectorTy() && I2->getType()->isVectorTy()) {
    unsigned NumOperands = I1->getNumOperands();
    for (unsigned i = 0; i < NumOperands; ++i) {
      ConstantInt *C1 = dyn_cast<ConstantInt>(I1->getOperand(i));
      ConstantInt *C2 = dyn_cast<ConstantInt>(I2->getOperand(i));
      if(!C1) continue;
      assert(C2);
      if (C1->getSExtValue() != C2->getSExtValue())
        return false;
    }
  }

  return true;
}

bool HexagonVectorLoopCarriedReuse::canReplace(Instruction *I) {
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
  if (!II)
    return true;

  switch (II->getIntrinsicID()) {
  case Intrinsic::hexagon_V6_hi:
  case Intrinsic::hexagon_V6_lo:
  case Intrinsic::hexagon_V6_hi_128B:
  case Intrinsic::hexagon_V6_lo_128B:
    LLVM_DEBUG(dbgs() << "Not considering for reuse: " << *II << "\n");
    return false;
  default:
    return true;
  }
}
void HexagonVectorLoopCarriedReuse::findValueToReuse() {
  for (auto *D : Dependences) {
    LLVM_DEBUG(dbgs() << "Processing dependence " << *(D->front()) << "\n");
    if (D->iterations() > HexagonVLCRIterationLim) {
      LLVM_DEBUG(
          dbgs()
          << ".. Skipping because number of iterations > than the limit\n");
      continue;
    }

    PHINode *PN = cast<PHINode>(D->front());
    Instruction *BEInst = D->back();
    int Iters = D->iterations();
    BasicBlock *BB = PN->getParent();
    LLVM_DEBUG(dbgs() << "Checking if any uses of " << *PN
                      << " can be reused\n");

    SmallVector<Instruction *, 4> PNUsers;
    for (auto UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) {
      Use &U = *UI;
      Instruction *User = cast<Instruction>(U.getUser());

      if (User->getParent() != BB)
        continue;
      if (ReplacedInsts.count(User)) {
        LLVM_DEBUG(dbgs() << *User
                          << " has already been replaced. Skipping...\n");
        continue;
      }
      if (isa<PHINode>(User))
        continue;
      if (User->mayHaveSideEffects())
        continue;
      if (!canReplace(User))
        continue;

      PNUsers.push_back(User);
    }
    LLVM_DEBUG(dbgs() << PNUsers.size() << " use(s) of the PHI in the block\n");

    // For each interesting use I of PN, find an Instruction BEUser that
    // performs the same operation as I on BEInst and whose other operands,
    // if any, can also be rematerialized in OtherBB. We stop when we find the
    // first such Instruction BEUser. This is because once BEUser is
    // rematerialized in OtherBB, we may find more such "fixup" opportunities
    // in this block. So, we'll start over again.
    for (Instruction *I : PNUsers) {
      for (auto UI = BEInst->use_begin(), E = BEInst->use_end(); UI != E;
           ++UI) {
        Use &U = *UI;
        Instruction *BEUser = cast<Instruction>(U.getUser());

        if (BEUser->getParent() != BB)
          continue;
        if (!isEquivalentOperation(I, BEUser))
          continue;

        int NumOperands = I->getNumOperands();

        // Take operands of each PNUser one by one and try to find DepChain
        // with every operand of the BEUser. If any of the operands of BEUser
        // has DepChain with current operand of the PNUser, break the matcher
        // loop. Keep doing this for Every PNUser operand. If PNUser operand
        // does not have DepChain with any of the BEUser operand, break the
        // outer matcher loop, mark the BEUser as null and reset the ReuseCandidate.
        // This ensures that DepChain exist for all the PNUser operand with
        // BEUser operand. This also ensures that DepChains are independent of
        // the positions in PNUser and BEUser.
        std::map<Instruction *, DepChain *> DepChains;
        CallInst *C1 = dyn_cast<CallInst>(I);
        if ((I && I->isCommutative()) || (C1 && isCallInstCommutative(C1))) {
          bool Found = false;
          for (int OpNo = 0; OpNo < NumOperands; ++OpNo) {
            Value *Op = I->getOperand(OpNo);
            Instruction *OpInst = dyn_cast<Instruction>(Op);
            Found = false;
            for (int T = 0; T < NumOperands; ++T) {
              Value *BEOp = BEUser->getOperand(T);
              Instruction *BEOpInst = dyn_cast<Instruction>(BEOp);
              if (!OpInst && !BEOpInst) {
                if (Op == BEOp) {
                  Found = true;
                  break;
                }
              }

              if ((OpInst && !BEOpInst) || (!OpInst && BEOpInst))
                continue;

              DepChain *D = getDepChainBtwn(OpInst, BEOpInst, Iters);

              if (D) {
                Found = true;
                DepChains[OpInst] = D;
                break;
              }
            }
            if (!Found) {
              BEUser = nullptr;
              break;
            }
          }
        } else {

          for (int OpNo = 0; OpNo < NumOperands; ++OpNo) {
            Value *Op = I->getOperand(OpNo);
            Value *BEOp = BEUser->getOperand(OpNo);

            Instruction *OpInst = dyn_cast<Instruction>(Op);
            if (!OpInst) {
              if (Op == BEOp)
                continue;
              // Do not allow reuse to occur when the operands may be different
              // values.
              BEUser = nullptr;
              break;
            }

            Instruction *BEOpInst = dyn_cast<Instruction>(BEOp);
            DepChain *D = getDepChainBtwn(OpInst, BEOpInst, Iters);

            if (D) {
              DepChains[OpInst] = D;
            } else {
              BEUser = nullptr;
              break;
            }
          }
        }
        if (BEUser) {
          LLVM_DEBUG(dbgs() << "Found Value for reuse.\n");
          ReuseCandidate.Inst2Replace = I;
          ReuseCandidate.BackedgeInst = BEUser;
          ReuseCandidate.DepChains = DepChains;
          ReuseCandidate.Iterations = Iters;
          return;
        }
        ReuseCandidate.reset();
      }
    }
  }
  ReuseCandidate.reset();
}

Value *HexagonVectorLoopCarriedReuse::findValueInBlock(Value *Op,
                                                       BasicBlock *BB) {
  PHINode *PN = dyn_cast<PHINode>(Op);
  assert(PN);
  Value *ValueInBlock = PN->getIncomingValueForBlock(BB);
  return ValueInBlock;
}

void HexagonVectorLoopCarriedReuse::reuseValue() {
  LLVM_DEBUG(dbgs() << ReuseCandidate);
  Instruction *Inst2Replace = ReuseCandidate.Inst2Replace;
  Instruction *BEInst = ReuseCandidate.BackedgeInst;
  int NumOperands = Inst2Replace->getNumOperands();
  std::map<Instruction *, DepChain *> &DepChains = ReuseCandidate.DepChains;
  int Iterations = ReuseCandidate.Iterations;
  BasicBlock *LoopPH = CurLoop->getLoopPreheader();
  assert(!DepChains.empty() && "No DepChains");
  LLVM_DEBUG(dbgs() << "reuseValue is making the following changes\n");

  SmallVector<Instruction *, 4> InstsInPreheader;
  for (int i = 0; i < Iterations; ++i) {
    Instruction *InstInPreheader = Inst2Replace->clone();
    SmallVector<Value *, 4> Ops;
    for (int j = 0; j < NumOperands; ++j) {
      Instruction *I = dyn_cast<Instruction>(Inst2Replace->getOperand(j));
      if (!I)
        continue;
      // Get the DepChain corresponding to this operand.
      DepChain &D = *DepChains[I];
      // Get the PHI for the iteration number and find
      // the incoming value from the Loop Preheader for
      // that PHI.
      Value *ValInPreheader = findValueInBlock(D[i], LoopPH);
      InstInPreheader->setOperand(j, ValInPreheader);
    }
    InstsInPreheader.push_back(InstInPreheader);
    InstInPreheader->setName(Inst2Replace->getName() + ".hexagon.vlcr");
    InstInPreheader->insertBefore(LoopPH->getTerminator());
    LLVM_DEBUG(dbgs() << "Added " << *InstInPreheader << " to "
                      << LoopPH->getName() << "\n");
  }
  BasicBlock *BB = BEInst->getParent();
  IRBuilder<> IRB(BB);
  IRB.SetInsertPoint(BB->getFirstNonPHI());
  Value *BEVal = BEInst;
  PHINode *NewPhi;
  for (int i = Iterations-1; i >=0 ; --i) {
    Instruction *InstInPreheader = InstsInPreheader[i];
    NewPhi = IRB.CreatePHI(InstInPreheader->getType(), 2);
    NewPhi->addIncoming(InstInPreheader, LoopPH);
    NewPhi->addIncoming(BEVal, BB);
    LLVM_DEBUG(dbgs() << "Adding " << *NewPhi << " to " << BB->getName()
                      << "\n");
    BEVal = NewPhi;
  }
  // We are in LCSSA form. So, a value defined inside the Loop is used only
  // inside the loop. So, the following is safe.
  Inst2Replace->replaceAllUsesWith(NewPhi);
  ReplacedInsts.insert(Inst2Replace);
  ++HexagonNumVectorLoopCarriedReuse;
}

bool HexagonVectorLoopCarriedReuse::doVLCR() {
  assert(CurLoop->getSubLoops().empty() &&
         "Can do VLCR on the innermost loop only");
  assert((CurLoop->getNumBlocks() == 1) &&
         "Can do VLCR only on single block loops");

  bool Changed = false;
  bool Continue;

  LLVM_DEBUG(dbgs() << "Working on Loop: " << *CurLoop->getHeader() << "\n");
  do {
    // Reset datastructures.
    Dependences.clear();
    Continue = false;

    findLoopCarriedDeps();
    findValueToReuse();
    if (ReuseCandidate.isDefined()) {
      reuseValue();
      Changed = true;
      Continue = true;
    }
    llvm::for_each(Dependences, std::default_delete<DepChain>());
  } while (Continue);
  return Changed;
}

void HexagonVectorLoopCarriedReuse::findDepChainFromPHI(Instruction *I,
                                                        DepChain &D) {
  PHINode *PN = dyn_cast<PHINode>(I);
  if (!PN) {
    D.push_back(I);
    return;
  } else {
    auto NumIncomingValues = PN->getNumIncomingValues();
    if (NumIncomingValues != 2) {
      D.clear();
      return;
    }

    BasicBlock *BB = PN->getParent();
    if (BB != CurLoop->getHeader()) {
      D.clear();
      return;
    }

    Value *BEVal = PN->getIncomingValueForBlock(BB);
    Instruction *BEInst = dyn_cast<Instruction>(BEVal);
    // This is a single block loop with a preheader, so at least
    // one value should come over the backedge.
    assert(BEInst && "There should be a value over the backedge");

    Value *PreHdrVal =
      PN->getIncomingValueForBlock(CurLoop->getLoopPreheader());
    if(!PreHdrVal || !isa<Instruction>(PreHdrVal)) {
      D.clear();
      return;
    }
    D.push_back(PN);
    findDepChainFromPHI(BEInst, D);
  }
}

DepChain *HexagonVectorLoopCarriedReuse::getDepChainBtwn(Instruction *I1,
                                                         Instruction *I2,
                                                         int Iters) {
  for (auto *D : Dependences) {
    if (D->front() == I1 && D->back() == I2 && D->iterations() == Iters)
      return D;
  }
  return nullptr;
}

void HexagonVectorLoopCarriedReuse::findLoopCarriedDeps() {
  BasicBlock *BB = CurLoop->getHeader();
  for (auto I = BB->begin(), E = BB->end(); I != E && isa<PHINode>(I); ++I) {
    auto *PN = cast<PHINode>(I);
    if (!isa<VectorType>(PN->getType()))
      continue;

    DepChain *D = new DepChain();
    findDepChainFromPHI(PN, *D);
    if (D->size() != 0)
      Dependences.insert(D);
    else
      delete D;
  }
  LLVM_DEBUG(dbgs() << "Found " << Dependences.size() << " dependences\n");
  LLVM_DEBUG(for (size_t i = 0; i < Dependences.size();
                  ++i) { dbgs() << *Dependences[i] << "\n"; });
}

Pass *llvm::createHexagonVectorLoopCarriedReusePass() {
  return new HexagonVectorLoopCarriedReuse();
}