HexagonStoreWidening.cpp 20.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
//===- HexagonStoreWidening.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Replace sequences of "narrow" stores to adjacent memory locations with
// a fewer "wide" stores that have the same effect.
// For example, replace:
//   S4_storeirb_io  %100, 0, 0   ; store-immediate-byte
//   S4_storeirb_io  %100, 1, 0   ; store-immediate-byte
// with
//   S4_storeirh_io  %100, 0, 0   ; store-immediate-halfword
// The above is the general idea.  The actual cases handled by the code
// may be a bit more complex.
// The purpose of this pass is to reduce the number of outstanding stores,
// or as one could say, "reduce store queue pressure".  Also, wide stores
// mean fewer stores, and since there are only two memory instructions allowed
// per packet, it also means fewer packets, and ultimately fewer cycles.
//===---------------------------------------------------------------------===//

#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <vector>

#define DEBUG_TYPE "hexagon-widen-stores"

using namespace llvm;

namespace llvm {

FunctionPass *createHexagonStoreWidening();
void initializeHexagonStoreWideningPass(PassRegistry&);

} // end namespace llvm

namespace {

  struct HexagonStoreWidening : public MachineFunctionPass {
    const HexagonInstrInfo      *TII;
    const HexagonRegisterInfo   *TRI;
    const MachineRegisterInfo   *MRI;
    AliasAnalysis               *AA;
    MachineFunction             *MF;

  public:
    static char ID;

    HexagonStoreWidening() : MachineFunctionPass(ID) {
      initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    StringRef getPassName() const override { return "Hexagon Store Widening"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<AAResultsWrapperPass>();
      AU.addPreserved<AAResultsWrapperPass>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    static bool handledStoreType(const MachineInstr *MI);

  private:
    static const int MaxWideSize = 4;

    using InstrGroup = std::vector<MachineInstr *>;
    using InstrGroupList = std::vector<InstrGroup>;

    bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
    bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
    void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
        InstrGroup::iterator End, InstrGroup &Group);
    void createStoreGroups(MachineBasicBlock &MBB,
        InstrGroupList &StoreGroups);
    bool processBasicBlock(MachineBasicBlock &MBB);
    bool processStoreGroup(InstrGroup &Group);
    bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
        InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
    bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
    bool replaceStores(InstrGroup &OG, InstrGroup &NG);
    bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
  };

} // end anonymous namespace

char HexagonStoreWidening::ID = 0;

INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
                "Hexason Store Widening", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
                "Hexagon Store Widening", false, false)

// Some local helper functions...
static unsigned getBaseAddressRegister(const MachineInstr *MI) {
  const MachineOperand &MO = MI->getOperand(0);
  assert(MO.isReg() && "Expecting register operand");
  return MO.getReg();
}

static int64_t getStoreOffset(const MachineInstr *MI) {
  unsigned OpC = MI->getOpcode();
  assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");

  switch (OpC) {
    case Hexagon::S4_storeirb_io:
    case Hexagon::S4_storeirh_io:
    case Hexagon::S4_storeiri_io: {
      const MachineOperand &MO = MI->getOperand(1);
      assert(MO.isImm() && "Expecting immediate offset");
      return MO.getImm();
    }
  }
  dbgs() << *MI;
  llvm_unreachable("Store offset calculation missing for a handled opcode");
  return 0;
}

static const MachineMemOperand &getStoreTarget(const MachineInstr *MI) {
  assert(!MI->memoperands_empty() && "Expecting memory operands");
  return **MI->memoperands_begin();
}

// Filtering function: any stores whose opcodes are not "approved" of by
// this function will not be subjected to widening.
inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
  // For now, only handle stores of immediate values.
  // Also, reject stores to stack slots.
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
    case Hexagon::S4_storeirb_io:
    case Hexagon::S4_storeirh_io:
    case Hexagon::S4_storeiri_io:
      // Base address must be a register. (Implement FI later.)
      return MI->getOperand(0).isReg();
    default:
      return false;
  }
}

// Check if the machine memory operand MMO is aliased with any of the
// stores in the store group Stores.
bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
      const MachineMemOperand &MMO) {
  if (!MMO.getValue())
    return true;

  MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());

  for (auto SI : Stores) {
    const MachineMemOperand &SMO = getStoreTarget(SI);
    if (!SMO.getValue())
      return true;

    MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
    if (AA->alias(L, SL))
      return true;
  }

  return false;
}

// Check if the machine instruction MI accesses any storage aliased with
// any store in the group Stores.
bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
      const MachineInstr *MI) {
  for (auto &I : MI->memoperands())
    if (instrAliased(Stores, *I))
      return true;
  return false;
}

// Inspect a machine basic block, and generate store groups out of stores
// encountered in the block.
//
// A store group is a group of stores that use the same base register,
// and which can be reordered within that group without altering the
// semantics of the program.  A single store group could be widened as
// a whole, if there existed a single store instruction with the same
// semantics as the entire group.  In many cases, a single store group
// may need more than one wide store.
void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
      InstrGroupList &StoreGroups) {
  InstrGroup AllInsns;

  // Copy all instruction pointers from the basic block to a temporary
  // list.  This will allow operating on the list, and modifying its
  // elements without affecting the basic block.
  for (auto &I : MBB)
    AllInsns.push_back(&I);

  // Traverse all instructions in the AllInsns list, and if we encounter
  // a store, then try to create a store group starting at that instruction
  // i.e. a sequence of independent stores that can be widened.
  for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
    MachineInstr *MI = *I;
    // Skip null pointers (processed instructions).
    if (!MI || !handledStoreType(MI))
      continue;

    // Found a store.  Try to create a store group.
    InstrGroup G;
    createStoreGroup(MI, I+1, E, G);
    if (G.size() > 1)
      StoreGroups.push_back(G);
  }
}

// Create a single store group.  The stores need to be independent between
// themselves, and also there cannot be other instructions between them
// that could read or modify storage being stored into.
void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
      InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
  assert(handledStoreType(BaseStore) && "Unexpected instruction");
  unsigned BaseReg = getBaseAddressRegister(BaseStore);
  InstrGroup Other;

  Group.push_back(BaseStore);

  for (auto I = Begin; I != End; ++I) {
    MachineInstr *MI = *I;
    if (!MI)
      continue;

    if (handledStoreType(MI)) {
      // If this store instruction is aliased with anything already in the
      // group, terminate the group now.
      if (instrAliased(Group, getStoreTarget(MI)))
        return;
      // If this store is aliased to any of the memory instructions we have
      // seen so far (that are not a part of this group), terminate the group.
      if (instrAliased(Other, getStoreTarget(MI)))
        return;

      unsigned BR = getBaseAddressRegister(MI);
      if (BR == BaseReg) {
        Group.push_back(MI);
        *I = nullptr;
        continue;
      }
    }

    // Assume calls are aliased to everything.
    if (MI->isCall() || MI->hasUnmodeledSideEffects())
      return;

    if (MI->mayLoadOrStore()) {
      if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
        return;
      Other.push_back(MI);
    }
  } // for
}

// Check if store instructions S1 and S2 are adjacent.  More precisely,
// S2 has to access memory immediately following that accessed by S1.
bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
      const MachineInstr *S2) {
  if (!handledStoreType(S1) || !handledStoreType(S2))
    return false;

  const MachineMemOperand &S1MO = getStoreTarget(S1);

  // Currently only handling immediate stores.
  int Off1 = S1->getOperand(1).getImm();
  int Off2 = S2->getOperand(1).getImm();

  return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
                     : int(Off1+S1MO.getSize()) == Off2;
}

/// Given a sequence of adjacent stores, and a maximum size of a single wide
/// store, pick a group of stores that  can be replaced by a single store
/// of size not exceeding MaxSize.  The selected sequence will be recorded
/// in OG ("old group" of instructions).
/// OG should be empty on entry, and should be left empty if the function
/// fails.
bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
      InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
      unsigned MaxSize) {
  assert(Begin != End && "No instructions to analyze");
  assert(OG.empty() && "Old group not empty on entry");

  if (std::distance(Begin, End) <= 1)
    return false;

  MachineInstr *FirstMI = *Begin;
  assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
  const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
  unsigned Alignment = FirstMMO.getAlign().value();
  unsigned SizeAccum = FirstMMO.getSize();
  unsigned FirstOffset = getStoreOffset(FirstMI);

  // The initial value of SizeAccum should always be a power of 2.
  assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");

  // If the size of the first store equals to or exceeds the limit, do nothing.
  if (SizeAccum >= MaxSize)
    return false;

  // If the size of the first store is greater than or equal to the address
  // stored to, then the store cannot be made any wider.
  if (SizeAccum >= Alignment)
    return false;

  // The offset of a store will put restrictions on how wide the store can be.
  // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
  // If the first store already exhausts the offset limits, quit.  Test this
  // by checking if the next wider size would exceed the limit.
  if ((2*SizeAccum-1) & FirstOffset)
    return false;

  OG.push_back(FirstMI);
  MachineInstr *S1 = FirstMI;

  // Pow2Num will be the largest number of elements in OG such that the sum
  // of sizes of stores 0...Pow2Num-1 will be a power of 2.
  unsigned Pow2Num = 1;
  unsigned Pow2Size = SizeAccum;

  // Be greedy: keep accumulating stores as long as they are to adjacent
  // memory locations, and as long as the total number of bytes stored
  // does not exceed the limit (MaxSize).
  // Keep track of when the total size covered is a power of 2, since
  // this is a size a single store can cover.
  for (InstrGroup::iterator I = Begin + 1; I != End; ++I) {
    MachineInstr *S2 = *I;
    // Stores are sorted, so if S1 and S2 are not adjacent, there won't be
    // any other store to fill the "hole".
    if (!storesAreAdjacent(S1, S2))
      break;

    unsigned S2Size = getStoreTarget(S2).getSize();
    if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
      break;

    OG.push_back(S2);
    SizeAccum += S2Size;
    if (isPowerOf2_32(SizeAccum)) {
      Pow2Num = OG.size();
      Pow2Size = SizeAccum;
    }
    if ((2*Pow2Size-1) & FirstOffset)
      break;

    S1 = S2;
  }

  // The stores don't add up to anything that can be widened.  Clean up.
  if (Pow2Num <= 1) {
    OG.clear();
    return false;
  }

  // Only leave the stored being widened.
  OG.resize(Pow2Num);
  TotalSize = Pow2Size;
  return true;
}

/// Given an "old group" OG of stores, create a "new group" NG of instructions
/// to replace them.  Ideally, NG would only have a single instruction in it,
/// but that may only be possible for store-immediate.
bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
      unsigned TotalSize) {
  // XXX Current limitations:
  // - only expect stores of immediate values in OG,
  // - only handle a TotalSize of up to 4.

  if (TotalSize > 4)
    return false;

  unsigned Acc = 0;  // Value accumulator.
  unsigned Shift = 0;

  for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
    MachineInstr *MI = *I;
    const MachineMemOperand &MMO = getStoreTarget(MI);
    MachineOperand &SO = MI->getOperand(2);  // Source.
    assert(SO.isImm() && "Expecting an immediate operand");

    unsigned NBits = MMO.getSize()*8;
    unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
    unsigned Val = (SO.getImm() & Mask) << Shift;
    Acc |= Val;
    Shift += NBits;
  }

  MachineInstr *FirstSt = OG.front();
  DebugLoc DL = OG.back()->getDebugLoc();
  const MachineMemOperand &OldM = getStoreTarget(FirstSt);
  MachineMemOperand *NewM =
      MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
                               TotalSize, OldM.getAlign(), OldM.getAAInfo());

  if (Acc < 0x10000) {
    // Create mem[hw] = #Acc
    unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
                    (TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
    assert(WOpc && "Unexpected size");

    int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
    const MCInstrDesc &StD = TII->get(WOpc);
    MachineOperand &MR = FirstSt->getOperand(0);
    int64_t Off = FirstSt->getOperand(1).getImm();
    MachineInstr *StI =
        BuildMI(*MF, DL, StD)
            .addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
            .addImm(Off)
            .addImm(Val);
    StI->addMemOperand(*MF, NewM);
    NG.push_back(StI);
  } else {
    // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
    const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
    const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
    Register VReg = MF->getRegInfo().createVirtualRegister(RC);
    MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
                           .addImm(int(Acc));
    NG.push_back(TfrI);

    unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
                    (TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
    assert(WOpc && "Unexpected size");

    const MCInstrDesc &StD = TII->get(WOpc);
    MachineOperand &MR = FirstSt->getOperand(0);
    int64_t Off = FirstSt->getOperand(1).getImm();
    MachineInstr *StI =
        BuildMI(*MF, DL, StD)
            .addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
            .addImm(Off)
            .addReg(VReg, RegState::Kill);
    StI->addMemOperand(*MF, NewM);
    NG.push_back(StI);
  }

  return true;
}

// Replace instructions from the old group OG with instructions from the
// new group NG.  Conceptually, remove all instructions in OG, and then
// insert all instructions in NG, starting at where the first instruction
// from OG was (in the order in which they appeared in the basic block).
// (The ordering in OG does not have to match the order in the basic block.)
bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
  LLVM_DEBUG({
    dbgs() << "Replacing:\n";
    for (auto I : OG)
      dbgs() << "  " << *I;
    dbgs() << "with\n";
    for (auto I : NG)
      dbgs() << "  " << *I;
  });

  MachineBasicBlock *MBB = OG.back()->getParent();
  MachineBasicBlock::iterator InsertAt = MBB->end();

  // Need to establish the insertion point.  The best one is right before
  // the first store in the OG, but in the order in which the stores occur
  // in the program list.  Since the ordering in OG does not correspond
  // to the order in the program list, we need to do some work to find
  // the insertion point.

  // Create a set of all instructions in OG (for quick lookup).
  SmallPtrSet<MachineInstr*, 4> InstrSet;
  for (auto I : OG)
    InstrSet.insert(I);

  // Traverse the block, until we hit an instruction from OG.
  for (auto &I : *MBB) {
    if (InstrSet.count(&I)) {
      InsertAt = I;
      break;
    }
  }

  assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");

  bool AtBBStart = false;

  // InsertAt points at the first instruction that will be removed.  We need
  // to move it out of the way, so it remains valid after removing all the
  // old stores, and so we are able to recover it back to the proper insertion
  // position.
  if (InsertAt != MBB->begin())
    --InsertAt;
  else
    AtBBStart = true;

  for (auto I : OG)
    I->eraseFromParent();

  if (!AtBBStart)
    ++InsertAt;
  else
    InsertAt = MBB->begin();

  for (auto I : NG)
    MBB->insert(InsertAt, I);

  return true;
}

// Break up the group into smaller groups, each of which can be replaced by
// a single wide store.  Widen each such smaller group and replace the old
// instructions with the widened ones.
bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
  bool Changed = false;
  InstrGroup::iterator I = Group.begin(), E = Group.end();
  InstrGroup OG, NG;   // Old and new groups.
  unsigned CollectedSize;

  while (I != E) {
    OG.clear();
    NG.clear();

    bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
                createWideStores(OG, NG, CollectedSize)              &&
                replaceStores(OG, NG);
    if (!Succ)
      continue;

    assert(OG.size() > 1 && "Created invalid group");
    assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
    I += OG.size()-1;

    Changed = true;
  }

  return Changed;
}

// Process a single basic block: create the store groups, and replace them
// with the widened stores, if possible.  Processing of each basic block
// is independent from processing of any other basic block.  This transfor-
// mation could be stopped after having processed any basic block without
// any ill effects (other than not having performed widening in the unpro-
// cessed blocks).  Also, the basic blocks can be processed in any order.
bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
  InstrGroupList SGs;
  bool Changed = false;

  createStoreGroups(MBB, SGs);

  auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
    return getStoreOffset(A) < getStoreOffset(B);
  };
  for (auto &G : SGs) {
    assert(G.size() > 1 && "Store group with fewer than 2 elements");
    llvm::sort(G, Less);

    Changed |= processStoreGroup(G);
  }

  return Changed;
}

bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
  if (skipFunction(MFn.getFunction()))
    return false;

  MF = &MFn;
  auto &ST = MFn.getSubtarget<HexagonSubtarget>();
  TII = ST.getInstrInfo();
  TRI = ST.getRegisterInfo();
  MRI = &MFn.getRegInfo();
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();

  bool Changed = false;

  for (auto &B : MFn)
    Changed |= processBasicBlock(B);

  return Changed;
}

FunctionPass *llvm::createHexagonStoreWidening() {
  return new HexagonStoreWidening();
}