HexagonISelLoweringHVX.cpp
70.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
//===-- HexagonISelLoweringHVX.cpp --- Lowering HVX operations ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "HexagonISelLowering.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
static const MVT LegalV64[] = { MVT::v64i8, MVT::v32i16, MVT::v16i32 };
static const MVT LegalW64[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
static const MVT LegalV128[] = { MVT::v128i8, MVT::v64i16, MVT::v32i32 };
static const MVT LegalW128[] = { MVT::v256i8, MVT::v128i16, MVT::v64i32 };
void
HexagonTargetLowering::initializeHVXLowering() {
if (Subtarget.useHVX64BOps()) {
addRegisterClass(MVT::v64i8, &Hexagon::HvxVRRegClass);
addRegisterClass(MVT::v32i16, &Hexagon::HvxVRRegClass);
addRegisterClass(MVT::v16i32, &Hexagon::HvxVRRegClass);
addRegisterClass(MVT::v128i8, &Hexagon::HvxWRRegClass);
addRegisterClass(MVT::v64i16, &Hexagon::HvxWRRegClass);
addRegisterClass(MVT::v32i32, &Hexagon::HvxWRRegClass);
// These "short" boolean vector types should be legal because
// they will appear as results of vector compares. If they were
// not legal, type legalization would try to make them legal
// and that would require using operations that do not use or
// produce such types. That, in turn, would imply using custom
// nodes, which would be unoptimizable by the DAG combiner.
// The idea is to rely on target-independent operations as much
// as possible.
addRegisterClass(MVT::v16i1, &Hexagon::HvxQRRegClass);
addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
} else if (Subtarget.useHVX128BOps()) {
addRegisterClass(MVT::v128i8, &Hexagon::HvxVRRegClass);
addRegisterClass(MVT::v64i16, &Hexagon::HvxVRRegClass);
addRegisterClass(MVT::v32i32, &Hexagon::HvxVRRegClass);
addRegisterClass(MVT::v256i8, &Hexagon::HvxWRRegClass);
addRegisterClass(MVT::v128i16, &Hexagon::HvxWRRegClass);
addRegisterClass(MVT::v64i32, &Hexagon::HvxWRRegClass);
addRegisterClass(MVT::v32i1, &Hexagon::HvxQRRegClass);
addRegisterClass(MVT::v64i1, &Hexagon::HvxQRRegClass);
addRegisterClass(MVT::v128i1, &Hexagon::HvxQRRegClass);
}
// Set up operation actions.
bool Use64b = Subtarget.useHVX64BOps();
ArrayRef<MVT> LegalV = Use64b ? LegalV64 : LegalV128;
ArrayRef<MVT> LegalW = Use64b ? LegalW64 : LegalW128;
MVT ByteV = Use64b ? MVT::v64i8 : MVT::v128i8;
MVT ByteW = Use64b ? MVT::v128i8 : MVT::v256i8;
auto setPromoteTo = [this] (unsigned Opc, MVT FromTy, MVT ToTy) {
setOperationAction(Opc, FromTy, Promote);
AddPromotedToType(Opc, FromTy, ToTy);
};
// Handle bitcasts of vector predicates to scalars (e.g. v32i1 to i32).
// Note: v16i1 -> i16 is handled in type legalization instead of op
// legalization.
setOperationAction(ISD::BITCAST, MVT::i16, Custom);
setOperationAction(ISD::BITCAST, MVT::i32, Custom);
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
setOperationAction(ISD::BITCAST, MVT::v16i1, Custom);
setOperationAction(ISD::BITCAST, MVT::v128i1, Custom);
setOperationAction(ISD::BITCAST, MVT::i128, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, ByteV, Legal);
setOperationAction(ISD::VECTOR_SHUFFLE, ByteW, Legal);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
for (MVT T : LegalV) {
setIndexedLoadAction(ISD::POST_INC, T, Legal);
setIndexedStoreAction(ISD::POST_INC, T, Legal);
setOperationAction(ISD::AND, T, Legal);
setOperationAction(ISD::OR, T, Legal);
setOperationAction(ISD::XOR, T, Legal);
setOperationAction(ISD::ADD, T, Legal);
setOperationAction(ISD::SUB, T, Legal);
setOperationAction(ISD::CTPOP, T, Legal);
setOperationAction(ISD::CTLZ, T, Legal);
if (T != ByteV) {
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
setOperationAction(ISD::BSWAP, T, Legal);
}
setOperationAction(ISD::CTTZ, T, Custom);
setOperationAction(ISD::LOAD, T, Custom);
setOperationAction(ISD::MUL, T, Custom);
setOperationAction(ISD::MULHS, T, Custom);
setOperationAction(ISD::MULHU, T, Custom);
setOperationAction(ISD::BUILD_VECTOR, T, Custom);
// Make concat-vectors custom to handle concats of more than 2 vectors.
setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, T, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, T, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, T, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, T, Custom);
setOperationAction(ISD::ANY_EXTEND, T, Custom);
setOperationAction(ISD::SIGN_EXTEND, T, Custom);
setOperationAction(ISD::ZERO_EXTEND, T, Custom);
if (T != ByteV) {
setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
// HVX only has shifts of words and halfwords.
setOperationAction(ISD::SRA, T, Custom);
setOperationAction(ISD::SHL, T, Custom);
setOperationAction(ISD::SRL, T, Custom);
// Promote all shuffles to operate on vectors of bytes.
setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteV);
}
setCondCodeAction(ISD::SETNE, T, Expand);
setCondCodeAction(ISD::SETLE, T, Expand);
setCondCodeAction(ISD::SETGE, T, Expand);
setCondCodeAction(ISD::SETLT, T, Expand);
setCondCodeAction(ISD::SETULE, T, Expand);
setCondCodeAction(ISD::SETUGE, T, Expand);
setCondCodeAction(ISD::SETULT, T, Expand);
}
for (MVT T : LegalW) {
// Custom-lower BUILD_VECTOR for vector pairs. The standard (target-
// independent) handling of it would convert it to a load, which is
// not always the optimal choice.
setOperationAction(ISD::BUILD_VECTOR, T, Custom);
// Make concat-vectors custom to handle concats of more than 2 vectors.
setOperationAction(ISD::CONCAT_VECTORS, T, Custom);
// Custom-lower these operations for pairs. Expand them into a concat
// of the corresponding operations on individual vectors.
setOperationAction(ISD::ANY_EXTEND, T, Custom);
setOperationAction(ISD::SIGN_EXTEND, T, Custom);
setOperationAction(ISD::ZERO_EXTEND, T, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, T, Custom);
setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, T, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, T, Legal);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, T, Legal);
setOperationAction(ISD::LOAD, T, Custom);
setOperationAction(ISD::STORE, T, Custom);
setOperationAction(ISD::CTLZ, T, Custom);
setOperationAction(ISD::CTTZ, T, Custom);
setOperationAction(ISD::CTPOP, T, Custom);
setOperationAction(ISD::ADD, T, Legal);
setOperationAction(ISD::SUB, T, Legal);
setOperationAction(ISD::MUL, T, Custom);
setOperationAction(ISD::MULHS, T, Custom);
setOperationAction(ISD::MULHU, T, Custom);
setOperationAction(ISD::AND, T, Custom);
setOperationAction(ISD::OR, T, Custom);
setOperationAction(ISD::XOR, T, Custom);
setOperationAction(ISD::SETCC, T, Custom);
setOperationAction(ISD::VSELECT, T, Custom);
if (T != ByteW) {
setOperationAction(ISD::SRA, T, Custom);
setOperationAction(ISD::SHL, T, Custom);
setOperationAction(ISD::SRL, T, Custom);
// Promote all shuffles to operate on vectors of bytes.
setPromoteTo(ISD::VECTOR_SHUFFLE, T, ByteW);
}
}
// Boolean vectors.
for (MVT T : LegalW) {
// Boolean types for vector pairs will overlap with the boolean
// types for single vectors, e.g.
// v64i8 -> v64i1 (single)
// v64i16 -> v64i1 (pair)
// Set these actions first, and allow the single actions to overwrite
// any duplicates.
MVT BoolW = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
setOperationAction(ISD::SETCC, BoolW, Custom);
setOperationAction(ISD::AND, BoolW, Custom);
setOperationAction(ISD::OR, BoolW, Custom);
setOperationAction(ISD::XOR, BoolW, Custom);
}
for (MVT T : LegalV) {
MVT BoolV = MVT::getVectorVT(MVT::i1, T.getVectorNumElements());
setOperationAction(ISD::BUILD_VECTOR, BoolV, Custom);
setOperationAction(ISD::CONCAT_VECTORS, BoolV, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, BoolV, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, BoolV, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, BoolV, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, BoolV, Custom);
setOperationAction(ISD::AND, BoolV, Legal);
setOperationAction(ISD::OR, BoolV, Legal);
setOperationAction(ISD::XOR, BoolV, Legal);
}
if (Use64b) {
for (MVT T: {MVT::v32i8, MVT::v32i16, MVT::v16i8, MVT::v16i16, MVT::v16i32})
setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
} else {
for (MVT T: {MVT::v64i8, MVT::v64i16, MVT::v32i8, MVT::v32i16, MVT::v32i32})
setOperationAction(ISD::SIGN_EXTEND_INREG, T, Legal);
}
setTargetDAGCombine(ISD::VSELECT);
}
SDValue
HexagonTargetLowering::getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
const SDLoc &dl, SelectionDAG &DAG) const {
SmallVector<SDValue,4> IntOps;
IntOps.push_back(DAG.getConstant(IntId, dl, MVT::i32));
for (const SDValue &Op : Ops)
IntOps.push_back(Op);
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, ResTy, IntOps);
}
MVT
HexagonTargetLowering::typeJoin(const TypePair &Tys) const {
assert(Tys.first.getVectorElementType() == Tys.second.getVectorElementType());
MVT ElemTy = Tys.first.getVectorElementType();
return MVT::getVectorVT(ElemTy, Tys.first.getVectorNumElements() +
Tys.second.getVectorNumElements());
}
HexagonTargetLowering::TypePair
HexagonTargetLowering::typeSplit(MVT VecTy) const {
assert(VecTy.isVector());
unsigned NumElem = VecTy.getVectorNumElements();
assert((NumElem % 2) == 0 && "Expecting even-sized vector type");
MVT HalfTy = MVT::getVectorVT(VecTy.getVectorElementType(), NumElem/2);
return { HalfTy, HalfTy };
}
MVT
HexagonTargetLowering::typeExtElem(MVT VecTy, unsigned Factor) const {
MVT ElemTy = VecTy.getVectorElementType();
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() * Factor);
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
}
MVT
HexagonTargetLowering::typeTruncElem(MVT VecTy, unsigned Factor) const {
MVT ElemTy = VecTy.getVectorElementType();
MVT NewElemTy = MVT::getIntegerVT(ElemTy.getSizeInBits() / Factor);
return MVT::getVectorVT(NewElemTy, VecTy.getVectorNumElements());
}
SDValue
HexagonTargetLowering::opCastElem(SDValue Vec, MVT ElemTy,
SelectionDAG &DAG) const {
if (ty(Vec).getVectorElementType() == ElemTy)
return Vec;
MVT CastTy = tyVector(Vec.getValueType().getSimpleVT(), ElemTy);
return DAG.getBitcast(CastTy, Vec);
}
SDValue
HexagonTargetLowering::opJoin(const VectorPair &Ops, const SDLoc &dl,
SelectionDAG &DAG) const {
return DAG.getNode(ISD::CONCAT_VECTORS, dl, typeJoin(ty(Ops)),
Ops.second, Ops.first);
}
HexagonTargetLowering::VectorPair
HexagonTargetLowering::opSplit(SDValue Vec, const SDLoc &dl,
SelectionDAG &DAG) const {
TypePair Tys = typeSplit(ty(Vec));
if (Vec.getOpcode() == HexagonISD::QCAT)
return VectorPair(Vec.getOperand(0), Vec.getOperand(1));
return DAG.SplitVector(Vec, dl, Tys.first, Tys.second);
}
bool
HexagonTargetLowering::isHvxSingleTy(MVT Ty) const {
return Subtarget.isHVXVectorType(Ty) &&
Ty.getSizeInBits() == 8 * Subtarget.getVectorLength();
}
bool
HexagonTargetLowering::isHvxPairTy(MVT Ty) const {
return Subtarget.isHVXVectorType(Ty) &&
Ty.getSizeInBits() == 16 * Subtarget.getVectorLength();
}
bool
HexagonTargetLowering::isHvxBoolTy(MVT Ty) const {
return Subtarget.isHVXVectorType(Ty, true) &&
Ty.getVectorElementType() == MVT::i1;
}
bool HexagonTargetLowering::allowsHvxMemoryAccess(
MVT VecTy, MachineMemOperand::Flags Flags, bool *Fast) const {
// Bool vectors are excluded by default, but make it explicit to
// emphasize that bool vectors cannot be loaded or stored.
// Also, disallow double vector stores (to prevent unnecessary
// store widening in DAG combiner).
if (VecTy.getSizeInBits() > 8*Subtarget.getVectorLength())
return false;
if (!Subtarget.isHVXVectorType(VecTy, /*IncludeBool=*/false))
return false;
if (Fast)
*Fast = true;
return true;
}
bool HexagonTargetLowering::allowsHvxMisalignedMemoryAccesses(
MVT VecTy, MachineMemOperand::Flags Flags, bool *Fast) const {
if (!Subtarget.isHVXVectorType(VecTy))
return false;
// XXX Should this be false? vmemu are a bit slower than vmem.
if (Fast)
*Fast = true;
return true;
}
SDValue
HexagonTargetLowering::convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
SelectionDAG &DAG) const {
if (ElemIdx.getValueType().getSimpleVT() != MVT::i32)
ElemIdx = DAG.getBitcast(MVT::i32, ElemIdx);
unsigned ElemWidth = ElemTy.getSizeInBits();
if (ElemWidth == 8)
return ElemIdx;
unsigned L = Log2_32(ElemWidth/8);
const SDLoc &dl(ElemIdx);
return DAG.getNode(ISD::SHL, dl, MVT::i32,
{ElemIdx, DAG.getConstant(L, dl, MVT::i32)});
}
SDValue
HexagonTargetLowering::getIndexInWord32(SDValue Idx, MVT ElemTy,
SelectionDAG &DAG) const {
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(ElemWidth >= 8 && ElemWidth <= 32);
if (ElemWidth == 32)
return Idx;
if (ty(Idx) != MVT::i32)
Idx = DAG.getBitcast(MVT::i32, Idx);
const SDLoc &dl(Idx);
SDValue Mask = DAG.getConstant(32/ElemWidth - 1, dl, MVT::i32);
SDValue SubIdx = DAG.getNode(ISD::AND, dl, MVT::i32, {Idx, Mask});
return SubIdx;
}
SDValue
HexagonTargetLowering::getByteShuffle(const SDLoc &dl, SDValue Op0,
SDValue Op1, ArrayRef<int> Mask,
SelectionDAG &DAG) const {
MVT OpTy = ty(Op0);
assert(OpTy == ty(Op1));
MVT ElemTy = OpTy.getVectorElementType();
if (ElemTy == MVT::i8)
return DAG.getVectorShuffle(OpTy, dl, Op0, Op1, Mask);
assert(ElemTy.getSizeInBits() >= 8);
MVT ResTy = tyVector(OpTy, MVT::i8);
unsigned ElemSize = ElemTy.getSizeInBits() / 8;
SmallVector<int,128> ByteMask;
for (int M : Mask) {
if (M < 0) {
for (unsigned I = 0; I != ElemSize; ++I)
ByteMask.push_back(-1);
} else {
int NewM = M*ElemSize;
for (unsigned I = 0; I != ElemSize; ++I)
ByteMask.push_back(NewM+I);
}
}
assert(ResTy.getVectorNumElements() == ByteMask.size());
return DAG.getVectorShuffle(ResTy, dl, opCastElem(Op0, MVT::i8, DAG),
opCastElem(Op1, MVT::i8, DAG), ByteMask);
}
SDValue
HexagonTargetLowering::buildHvxVectorReg(ArrayRef<SDValue> Values,
const SDLoc &dl, MVT VecTy,
SelectionDAG &DAG) const {
unsigned VecLen = Values.size();
MachineFunction &MF = DAG.getMachineFunction();
MVT ElemTy = VecTy.getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
unsigned HwLen = Subtarget.getVectorLength();
unsigned ElemSize = ElemWidth / 8;
assert(ElemSize*VecLen == HwLen);
SmallVector<SDValue,32> Words;
if (VecTy.getVectorElementType() != MVT::i32) {
assert((ElemSize == 1 || ElemSize == 2) && "Invalid element size");
unsigned OpsPerWord = (ElemSize == 1) ? 4 : 2;
MVT PartVT = MVT::getVectorVT(VecTy.getVectorElementType(), OpsPerWord);
for (unsigned i = 0; i != VecLen; i += OpsPerWord) {
SDValue W = buildVector32(Values.slice(i, OpsPerWord), dl, PartVT, DAG);
Words.push_back(DAG.getBitcast(MVT::i32, W));
}
} else {
Words.assign(Values.begin(), Values.end());
}
unsigned NumWords = Words.size();
bool IsSplat = true, IsUndef = true;
SDValue SplatV;
for (unsigned i = 0; i != NumWords && IsSplat; ++i) {
if (isUndef(Words[i]))
continue;
IsUndef = false;
if (!SplatV.getNode())
SplatV = Words[i];
else if (SplatV != Words[i])
IsSplat = false;
}
if (IsUndef)
return DAG.getUNDEF(VecTy);
if (IsSplat) {
assert(SplatV.getNode());
auto *IdxN = dyn_cast<ConstantSDNode>(SplatV.getNode());
if (IdxN && IdxN->isNullValue())
return getZero(dl, VecTy, DAG);
return DAG.getNode(HexagonISD::VSPLATW, dl, VecTy, SplatV);
}
// Delay recognizing constant vectors until here, so that we can generate
// a vsplat.
SmallVector<ConstantInt*, 128> Consts(VecLen);
bool AllConst = getBuildVectorConstInts(Values, VecTy, DAG, Consts);
if (AllConst) {
ArrayRef<Constant*> Tmp((Constant**)Consts.begin(),
(Constant**)Consts.end());
Constant *CV = ConstantVector::get(Tmp);
Align Alignment(HwLen);
SDValue CP =
LowerConstantPool(DAG.getConstantPool(CV, VecTy, Alignment), DAG);
return DAG.getLoad(VecTy, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(MF), Alignment);
}
// A special case is a situation where the vector is built entirely from
// elements extracted from another vector. This could be done via a shuffle
// more efficiently, but typically, the size of the source vector will not
// match the size of the vector being built (which precludes the use of a
// shuffle directly).
// This only handles a single source vector, and the vector being built
// should be of a sub-vector type of the source vector type.
auto IsBuildFromExtracts = [this,&Values] (SDValue &SrcVec,
SmallVectorImpl<int> &SrcIdx) {
SDValue Vec;
for (SDValue V : Values) {
if (isUndef(V)) {
SrcIdx.push_back(-1);
continue;
}
if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return false;
// All extracts should come from the same vector.
SDValue T = V.getOperand(0);
if (Vec.getNode() != nullptr && T.getNode() != Vec.getNode())
return false;
Vec = T;
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
if (C == nullptr)
return false;
int I = C->getSExtValue();
assert(I >= 0 && "Negative element index");
SrcIdx.push_back(I);
}
SrcVec = Vec;
return true;
};
SmallVector<int,128> ExtIdx;
SDValue ExtVec;
if (IsBuildFromExtracts(ExtVec, ExtIdx)) {
MVT ExtTy = ty(ExtVec);
unsigned ExtLen = ExtTy.getVectorNumElements();
if (ExtLen == VecLen || ExtLen == 2*VecLen) {
// Construct a new shuffle mask that will produce a vector with the same
// number of elements as the input vector, and such that the vector we
// want will be the initial subvector of it.
SmallVector<int,128> Mask;
BitVector Used(ExtLen);
for (int M : ExtIdx) {
Mask.push_back(M);
if (M >= 0)
Used.set(M);
}
// Fill the rest of the mask with the unused elements of ExtVec in hopes
// that it will result in a permutation of ExtVec's elements. It's still
// fine if it doesn't (e.g. if undefs are present, or elements are
// repeated), but permutations can always be done efficiently via vdelta
// and vrdelta.
for (unsigned I = 0; I != ExtLen; ++I) {
if (Mask.size() == ExtLen)
break;
if (!Used.test(I))
Mask.push_back(I);
}
SDValue S = DAG.getVectorShuffle(ExtTy, dl, ExtVec,
DAG.getUNDEF(ExtTy), Mask);
if (ExtLen == VecLen)
return S;
return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, VecTy, S);
}
}
// Construct two halves in parallel, then or them together.
assert(4*Words.size() == Subtarget.getVectorLength());
SDValue HalfV0 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
SDValue HalfV1 = getInstr(Hexagon::V6_vd0, dl, VecTy, {}, DAG);
SDValue S = DAG.getConstant(4, dl, MVT::i32);
for (unsigned i = 0; i != NumWords/2; ++i) {
SDValue N = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
{HalfV0, Words[i]});
SDValue M = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy,
{HalfV1, Words[i+NumWords/2]});
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {N, S});
HalfV1 = DAG.getNode(HexagonISD::VROR, dl, VecTy, {M, S});
}
HalfV0 = DAG.getNode(HexagonISD::VROR, dl, VecTy,
{HalfV0, DAG.getConstant(HwLen/2, dl, MVT::i32)});
SDValue DstV = DAG.getNode(ISD::OR, dl, VecTy, {HalfV0, HalfV1});
return DstV;
}
SDValue
HexagonTargetLowering::createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
unsigned BitBytes, bool ZeroFill, SelectionDAG &DAG) const {
MVT PredTy = ty(PredV);
unsigned HwLen = Subtarget.getVectorLength();
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
if (Subtarget.isHVXVectorType(PredTy, true)) {
// Move the vector predicate SubV to a vector register, and scale it
// down to match the representation (bytes per type element) that VecV
// uses. The scaling down will pick every 2nd or 4th (every Scale-th
// in general) element and put them at the front of the resulting
// vector. This subvector will then be inserted into the Q2V of VecV.
// To avoid having an operation that generates an illegal type (short
// vector), generate a full size vector.
//
SDValue T = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, PredV);
SmallVector<int,128> Mask(HwLen);
// Scale = BitBytes(PredV) / Given BitBytes.
unsigned Scale = HwLen / (PredTy.getVectorNumElements() * BitBytes);
unsigned BlockLen = PredTy.getVectorNumElements() * BitBytes;
for (unsigned i = 0; i != HwLen; ++i) {
unsigned Num = i % Scale;
unsigned Off = i / Scale;
Mask[BlockLen*Num + Off] = i;
}
SDValue S = DAG.getVectorShuffle(ByteTy, dl, T, DAG.getUNDEF(ByteTy), Mask);
if (!ZeroFill)
return S;
// Fill the bytes beyond BlockLen with 0s.
MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
{DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
SDValue M = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, Q);
return DAG.getNode(ISD::AND, dl, ByteTy, S, M);
}
// Make sure that this is a valid scalar predicate.
assert(PredTy == MVT::v2i1 || PredTy == MVT::v4i1 || PredTy == MVT::v8i1);
unsigned Bytes = 8 / PredTy.getVectorNumElements();
SmallVector<SDValue,4> Words[2];
unsigned IdxW = 0;
auto Lo32 = [&DAG, &dl] (SDValue P) {
return DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, P);
};
auto Hi32 = [&DAG, &dl] (SDValue P) {
return DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, P);
};
SDValue W0 = isUndef(PredV)
? DAG.getUNDEF(MVT::i64)
: DAG.getNode(HexagonISD::P2D, dl, MVT::i64, PredV);
Words[IdxW].push_back(Hi32(W0));
Words[IdxW].push_back(Lo32(W0));
while (Bytes < BitBytes) {
IdxW ^= 1;
Words[IdxW].clear();
if (Bytes < 4) {
for (const SDValue &W : Words[IdxW ^ 1]) {
SDValue T = expandPredicate(W, dl, DAG);
Words[IdxW].push_back(Hi32(T));
Words[IdxW].push_back(Lo32(T));
}
} else {
for (const SDValue &W : Words[IdxW ^ 1]) {
Words[IdxW].push_back(W);
Words[IdxW].push_back(W);
}
}
Bytes *= 2;
}
assert(Bytes == BitBytes);
SDValue Vec = ZeroFill ? getZero(dl, ByteTy, DAG) : DAG.getUNDEF(ByteTy);
SDValue S4 = DAG.getConstant(HwLen-4, dl, MVT::i32);
for (const SDValue &W : Words[IdxW]) {
Vec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Vec, S4);
Vec = DAG.getNode(HexagonISD::VINSERTW0, dl, ByteTy, Vec, W);
}
return Vec;
}
SDValue
HexagonTargetLowering::buildHvxVectorPred(ArrayRef<SDValue> Values,
const SDLoc &dl, MVT VecTy,
SelectionDAG &DAG) const {
// Construct a vector V of bytes, such that a comparison V >u 0 would
// produce the required vector predicate.
unsigned VecLen = Values.size();
unsigned HwLen = Subtarget.getVectorLength();
assert(VecLen <= HwLen || VecLen == 8*HwLen);
SmallVector<SDValue,128> Bytes;
bool AllT = true, AllF = true;
auto IsTrue = [] (SDValue V) {
if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
return !N->isNullValue();
return false;
};
auto IsFalse = [] (SDValue V) {
if (const auto *N = dyn_cast<ConstantSDNode>(V.getNode()))
return N->isNullValue();
return false;
};
if (VecLen <= HwLen) {
// In the hardware, each bit of a vector predicate corresponds to a byte
// of a vector register. Calculate how many bytes does a bit of VecTy
// correspond to.
assert(HwLen % VecLen == 0);
unsigned BitBytes = HwLen / VecLen;
for (SDValue V : Values) {
AllT &= IsTrue(V);
AllF &= IsFalse(V);
SDValue Ext = !V.isUndef() ? DAG.getZExtOrTrunc(V, dl, MVT::i8)
: DAG.getUNDEF(MVT::i8);
for (unsigned B = 0; B != BitBytes; ++B)
Bytes.push_back(Ext);
}
} else {
// There are as many i1 values, as there are bits in a vector register.
// Divide the values into groups of 8 and check that each group consists
// of the same value (ignoring undefs).
for (unsigned I = 0; I != VecLen; I += 8) {
unsigned B = 0;
// Find the first non-undef value in this group.
for (; B != 8; ++B) {
if (!Values[I+B].isUndef())
break;
}
SDValue F = Values[I+B];
AllT &= IsTrue(F);
AllF &= IsFalse(F);
SDValue Ext = (B < 8) ? DAG.getZExtOrTrunc(F, dl, MVT::i8)
: DAG.getUNDEF(MVT::i8);
Bytes.push_back(Ext);
// Verify that the rest of values in the group are the same as the
// first.
for (; B != 8; ++B)
assert(Values[I+B].isUndef() || Values[I+B] == F);
}
}
if (AllT)
return DAG.getNode(HexagonISD::QTRUE, dl, VecTy);
if (AllF)
return DAG.getNode(HexagonISD::QFALSE, dl, VecTy);
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
SDValue ByteVec = buildHvxVectorReg(Bytes, dl, ByteTy, DAG);
return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
}
SDValue
HexagonTargetLowering::extractHvxElementReg(SDValue VecV, SDValue IdxV,
const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
MVT ElemTy = ty(VecV).getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(ElemWidth >= 8 && ElemWidth <= 32);
(void)ElemWidth;
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
SDValue ExWord = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
{VecV, ByteIdx});
if (ElemTy == MVT::i32)
return ExWord;
// Have an extracted word, need to extract the smaller element out of it.
// 1. Extract the bits of (the original) IdxV that correspond to the index
// of the desired element in the 32-bit word.
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
// 2. Extract the element from the word.
SDValue ExVec = DAG.getBitcast(tyVector(ty(ExWord), ElemTy), ExWord);
return extractVector(ExVec, SubIdx, dl, ElemTy, MVT::i32, DAG);
}
SDValue
HexagonTargetLowering::extractHvxElementPred(SDValue VecV, SDValue IdxV,
const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
// Implement other return types if necessary.
assert(ResTy == MVT::i1);
unsigned HwLen = Subtarget.getVectorLength();
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
SDValue ExtB = extractHvxElementReg(ByteVec, IdxV, dl, MVT::i32, DAG);
SDValue Zero = DAG.getTargetConstant(0, dl, MVT::i32);
return getInstr(Hexagon::C2_cmpgtui, dl, MVT::i1, {ExtB, Zero}, DAG);
}
SDValue
HexagonTargetLowering::insertHvxElementReg(SDValue VecV, SDValue IdxV,
SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
MVT ElemTy = ty(VecV).getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
assert(ElemWidth >= 8 && ElemWidth <= 32);
(void)ElemWidth;
auto InsertWord = [&DAG,&dl,this] (SDValue VecV, SDValue ValV,
SDValue ByteIdxV) {
MVT VecTy = ty(VecV);
unsigned HwLen = Subtarget.getVectorLength();
SDValue MaskV = DAG.getNode(ISD::AND, dl, MVT::i32,
{ByteIdxV, DAG.getConstant(-4, dl, MVT::i32)});
SDValue RotV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {VecV, MaskV});
SDValue InsV = DAG.getNode(HexagonISD::VINSERTW0, dl, VecTy, {RotV, ValV});
SDValue SubV = DAG.getNode(ISD::SUB, dl, MVT::i32,
{DAG.getConstant(HwLen, dl, MVT::i32), MaskV});
SDValue TorV = DAG.getNode(HexagonISD::VROR, dl, VecTy, {InsV, SubV});
return TorV;
};
SDValue ByteIdx = convertToByteIndex(IdxV, ElemTy, DAG);
if (ElemTy == MVT::i32)
return InsertWord(VecV, ValV, ByteIdx);
// If this is not inserting a 32-bit word, convert it into such a thing.
// 1. Extract the existing word from the target vector.
SDValue WordIdx = DAG.getNode(ISD::SRL, dl, MVT::i32,
{ByteIdx, DAG.getConstant(2, dl, MVT::i32)});
SDValue Ext = extractHvxElementReg(opCastElem(VecV, MVT::i32, DAG), WordIdx,
dl, MVT::i32, DAG);
// 2. Treating the extracted word as a 32-bit vector, insert the given
// value into it.
SDValue SubIdx = getIndexInWord32(IdxV, ElemTy, DAG);
MVT SubVecTy = tyVector(ty(Ext), ElemTy);
SDValue Ins = insertVector(DAG.getBitcast(SubVecTy, Ext),
ValV, SubIdx, dl, ElemTy, DAG);
// 3. Insert the 32-bit word back into the original vector.
return InsertWord(VecV, Ins, ByteIdx);
}
SDValue
HexagonTargetLowering::insertHvxElementPred(SDValue VecV, SDValue IdxV,
SDValue ValV, const SDLoc &dl, SelectionDAG &DAG) const {
unsigned HwLen = Subtarget.getVectorLength();
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
unsigned Scale = HwLen / ty(VecV).getVectorNumElements();
SDValue ScV = DAG.getConstant(Scale, dl, MVT::i32);
IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV, ScV);
ValV = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i32, ValV);
SDValue InsV = insertHvxElementReg(ByteVec, IdxV, ValV, dl, DAG);
return DAG.getNode(HexagonISD::V2Q, dl, ty(VecV), InsV);
}
SDValue
HexagonTargetLowering::extractHvxSubvectorReg(SDValue VecV, SDValue IdxV,
const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
MVT VecTy = ty(VecV);
unsigned HwLen = Subtarget.getVectorLength();
unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
MVT ElemTy = VecTy.getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
// If the source vector is a vector pair, get the single vector containing
// the subvector of interest. The subvector will never overlap two single
// vectors.
if (isHvxPairTy(VecTy)) {
unsigned SubIdx;
if (Idx * ElemWidth >= 8*HwLen) {
SubIdx = Hexagon::vsub_hi;
Idx -= VecTy.getVectorNumElements() / 2;
} else {
SubIdx = Hexagon::vsub_lo;
}
VecTy = typeSplit(VecTy).first;
VecV = DAG.getTargetExtractSubreg(SubIdx, dl, VecTy, VecV);
if (VecTy == ResTy)
return VecV;
}
// The only meaningful subvectors of a single HVX vector are those that
// fit in a scalar register.
assert(ResTy.getSizeInBits() == 32 || ResTy.getSizeInBits() == 64);
MVT WordTy = tyVector(VecTy, MVT::i32);
SDValue WordVec = DAG.getBitcast(WordTy, VecV);
unsigned WordIdx = (Idx*ElemWidth) / 32;
SDValue W0Idx = DAG.getConstant(WordIdx, dl, MVT::i32);
SDValue W0 = extractHvxElementReg(WordVec, W0Idx, dl, MVT::i32, DAG);
if (ResTy.getSizeInBits() == 32)
return DAG.getBitcast(ResTy, W0);
SDValue W1Idx = DAG.getConstant(WordIdx+1, dl, MVT::i32);
SDValue W1 = extractHvxElementReg(WordVec, W1Idx, dl, MVT::i32, DAG);
SDValue WW = DAG.getNode(HexagonISD::COMBINE, dl, MVT::i64, {W1, W0});
return DAG.getBitcast(ResTy, WW);
}
SDValue
HexagonTargetLowering::extractHvxSubvectorPred(SDValue VecV, SDValue IdxV,
const SDLoc &dl, MVT ResTy, SelectionDAG &DAG) const {
MVT VecTy = ty(VecV);
unsigned HwLen = Subtarget.getVectorLength();
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
// IdxV is required to be a constant.
unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
unsigned ResLen = ResTy.getVectorNumElements();
unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
unsigned Offset = Idx * BitBytes;
SDValue Undef = DAG.getUNDEF(ByteTy);
SmallVector<int,128> Mask;
if (Subtarget.isHVXVectorType(ResTy, true)) {
// Converting between two vector predicates. Since the result is shorter
// than the source, it will correspond to a vector predicate with the
// relevant bits replicated. The replication count is the ratio of the
// source and target vector lengths.
unsigned Rep = VecTy.getVectorNumElements() / ResLen;
assert(isPowerOf2_32(Rep) && HwLen % Rep == 0);
for (unsigned i = 0; i != HwLen/Rep; ++i) {
for (unsigned j = 0; j != Rep; ++j)
Mask.push_back(i + Offset);
}
SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
return DAG.getNode(HexagonISD::V2Q, dl, ResTy, ShuffV);
}
// Converting between a vector predicate and a scalar predicate. In the
// vector predicate, a group of BitBytes bits will correspond to a single
// i1 element of the source vector type. Those bits will all have the same
// value. The same will be true for ByteVec, where each byte corresponds
// to a bit in the vector predicate.
// The algorithm is to traverse the ByteVec, going over the i1 values from
// the source vector, and generate the corresponding representation in an
// 8-byte vector. To avoid repeated extracts from ByteVec, shuffle the
// elements so that the interesting 8 bytes will be in the low end of the
// vector.
unsigned Rep = 8 / ResLen;
// Make sure the output fill the entire vector register, so repeat the
// 8-byte groups as many times as necessary.
for (unsigned r = 0; r != HwLen/ResLen; ++r) {
// This will generate the indexes of the 8 interesting bytes.
for (unsigned i = 0; i != ResLen; ++i) {
for (unsigned j = 0; j != Rep; ++j)
Mask.push_back(Offset + i*BitBytes);
}
}
SDValue Zero = getZero(dl, MVT::i32, DAG);
SDValue ShuffV = DAG.getVectorShuffle(ByteTy, dl, ByteVec, Undef, Mask);
// Combine the two low words from ShuffV into a v8i8, and byte-compare
// them against 0.
SDValue W0 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32, {ShuffV, Zero});
SDValue W1 = DAG.getNode(HexagonISD::VEXTRACTW, dl, MVT::i32,
{ShuffV, DAG.getConstant(4, dl, MVT::i32)});
SDValue Vec64 = DAG.getNode(HexagonISD::COMBINE, dl, MVT::v8i8, {W1, W0});
return getInstr(Hexagon::A4_vcmpbgtui, dl, ResTy,
{Vec64, DAG.getTargetConstant(0, dl, MVT::i32)}, DAG);
}
SDValue
HexagonTargetLowering::insertHvxSubvectorReg(SDValue VecV, SDValue SubV,
SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
MVT VecTy = ty(VecV);
MVT SubTy = ty(SubV);
unsigned HwLen = Subtarget.getVectorLength();
MVT ElemTy = VecTy.getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
bool IsPair = isHvxPairTy(VecTy);
MVT SingleTy = MVT::getVectorVT(ElemTy, (8*HwLen)/ElemWidth);
// The two single vectors that VecV consists of, if it's a pair.
SDValue V0, V1;
SDValue SingleV = VecV;
SDValue PickHi;
if (IsPair) {
V0 = DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, SingleTy, VecV);
V1 = DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, SingleTy, VecV);
SDValue HalfV = DAG.getConstant(SingleTy.getVectorNumElements(),
dl, MVT::i32);
PickHi = DAG.getSetCC(dl, MVT::i1, IdxV, HalfV, ISD::SETUGT);
if (isHvxSingleTy(SubTy)) {
if (const auto *CN = dyn_cast<const ConstantSDNode>(IdxV.getNode())) {
unsigned Idx = CN->getZExtValue();
assert(Idx == 0 || Idx == VecTy.getVectorNumElements()/2);
unsigned SubIdx = (Idx == 0) ? Hexagon::vsub_lo : Hexagon::vsub_hi;
return DAG.getTargetInsertSubreg(SubIdx, dl, VecTy, VecV, SubV);
}
// If IdxV is not a constant, generate the two variants: with the
// SubV as the high and as the low subregister, and select the right
// pair based on the IdxV.
SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SubV, V1});
SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SubV});
return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
}
// The subvector being inserted must be entirely contained in one of
// the vectors V0 or V1. Set SingleV to the correct one, and update
// IdxV to be the index relative to the beginning of that vector.
SDValue S = DAG.getNode(ISD::SUB, dl, MVT::i32, IdxV, HalfV);
IdxV = DAG.getNode(ISD::SELECT, dl, MVT::i32, PickHi, S, IdxV);
SingleV = DAG.getNode(ISD::SELECT, dl, SingleTy, PickHi, V1, V0);
}
// The only meaningful subvectors of a single HVX vector are those that
// fit in a scalar register.
assert(SubTy.getSizeInBits() == 32 || SubTy.getSizeInBits() == 64);
// Convert IdxV to be index in bytes.
auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
if (!IdxN || !IdxN->isNullValue()) {
IdxV = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
DAG.getConstant(ElemWidth/8, dl, MVT::i32));
SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, IdxV);
}
// When inserting a single word, the rotation back to the original position
// would be by HwLen-Idx, but if two words are inserted, it will need to be
// by (HwLen-4)-Idx.
unsigned RolBase = HwLen;
if (VecTy.getSizeInBits() == 32) {
SDValue V = DAG.getBitcast(MVT::i32, SubV);
SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, V);
} else {
SDValue V = DAG.getBitcast(MVT::i64, SubV);
SDValue R0 = DAG.getTargetExtractSubreg(Hexagon::isub_lo, dl, MVT::i32, V);
SDValue R1 = DAG.getTargetExtractSubreg(Hexagon::isub_hi, dl, MVT::i32, V);
SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R0);
SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV,
DAG.getConstant(4, dl, MVT::i32));
SingleV = DAG.getNode(HexagonISD::VINSERTW0, dl, SingleTy, SingleV, R1);
RolBase = HwLen-4;
}
// If the vector wasn't ror'ed, don't ror it back.
if (RolBase != 4 || !IdxN || !IdxN->isNullValue()) {
SDValue RolV = DAG.getNode(ISD::SUB, dl, MVT::i32,
DAG.getConstant(RolBase, dl, MVT::i32), IdxV);
SingleV = DAG.getNode(HexagonISD::VROR, dl, SingleTy, SingleV, RolV);
}
if (IsPair) {
SDValue InLo = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {SingleV, V1});
SDValue InHi = DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, {V0, SingleV});
return DAG.getNode(ISD::SELECT, dl, VecTy, PickHi, InHi, InLo);
}
return SingleV;
}
SDValue
HexagonTargetLowering::insertHvxSubvectorPred(SDValue VecV, SDValue SubV,
SDValue IdxV, const SDLoc &dl, SelectionDAG &DAG) const {
MVT VecTy = ty(VecV);
MVT SubTy = ty(SubV);
assert(Subtarget.isHVXVectorType(VecTy, true));
// VecV is an HVX vector predicate. SubV may be either an HVX vector
// predicate as well, or it can be a scalar predicate.
unsigned VecLen = VecTy.getVectorNumElements();
unsigned HwLen = Subtarget.getVectorLength();
assert(HwLen % VecLen == 0 && "Unexpected vector type");
unsigned Scale = VecLen / SubTy.getVectorNumElements();
unsigned BitBytes = HwLen / VecLen;
unsigned BlockLen = HwLen / Scale;
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
SDValue ByteVec = DAG.getNode(HexagonISD::Q2V, dl, ByteTy, VecV);
SDValue ByteSub = createHvxPrefixPred(SubV, dl, BitBytes, false, DAG);
SDValue ByteIdx;
auto *IdxN = dyn_cast<ConstantSDNode>(IdxV.getNode());
if (!IdxN || !IdxN->isNullValue()) {
ByteIdx = DAG.getNode(ISD::MUL, dl, MVT::i32, IdxV,
DAG.getConstant(BitBytes, dl, MVT::i32));
ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteIdx);
}
// ByteVec is the target vector VecV rotated in such a way that the
// subvector should be inserted at index 0. Generate a predicate mask
// and use vmux to do the insertion.
MVT BoolTy = MVT::getVectorVT(MVT::i1, HwLen);
SDValue Q = getInstr(Hexagon::V6_pred_scalar2, dl, BoolTy,
{DAG.getConstant(BlockLen, dl, MVT::i32)}, DAG);
ByteVec = getInstr(Hexagon::V6_vmux, dl, ByteTy, {Q, ByteSub, ByteVec}, DAG);
// Rotate ByteVec back, and convert to a vector predicate.
if (!IdxN || !IdxN->isNullValue()) {
SDValue HwLenV = DAG.getConstant(HwLen, dl, MVT::i32);
SDValue ByteXdi = DAG.getNode(ISD::SUB, dl, MVT::i32, HwLenV, ByteIdx);
ByteVec = DAG.getNode(HexagonISD::VROR, dl, ByteTy, ByteVec, ByteXdi);
}
return DAG.getNode(HexagonISD::V2Q, dl, VecTy, ByteVec);
}
SDValue
HexagonTargetLowering::extendHvxVectorPred(SDValue VecV, const SDLoc &dl,
MVT ResTy, bool ZeroExt, SelectionDAG &DAG) const {
// Sign- and any-extending of a vector predicate to a vector register is
// equivalent to Q2V. For zero-extensions, generate a vmux between 0 and
// a vector of 1s (where the 1s are of type matching the vector type).
assert(Subtarget.isHVXVectorType(ResTy));
if (!ZeroExt)
return DAG.getNode(HexagonISD::Q2V, dl, ResTy, VecV);
assert(ty(VecV).getVectorNumElements() == ResTy.getVectorNumElements());
SDValue True = DAG.getNode(HexagonISD::VSPLAT, dl, ResTy,
DAG.getConstant(1, dl, MVT::i32));
SDValue False = getZero(dl, ResTy, DAG);
return DAG.getSelect(dl, ResTy, VecV, True, False);
}
SDValue
HexagonTargetLowering::compressHvxPred(SDValue VecQ, const SDLoc &dl,
MVT ResTy, SelectionDAG &DAG) const {
// Given a predicate register VecQ, transfer bits VecQ[0..HwLen-1]
// (i.e. the entire predicate register) to bits [0..HwLen-1] of a
// vector register. The remaining bits of the vector register are
// unspecified.
MachineFunction &MF = DAG.getMachineFunction();
unsigned HwLen = Subtarget.getVectorLength();
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
MVT PredTy = ty(VecQ);
unsigned PredLen = PredTy.getVectorNumElements();
assert(HwLen % PredLen == 0);
MVT VecTy = MVT::getVectorVT(MVT::getIntegerVT(8*HwLen/PredLen), PredLen);
Type *Int8Ty = Type::getInt8Ty(*DAG.getContext());
SmallVector<Constant*, 128> Tmp;
// Create an array of bytes (hex): 01,02,04,08,10,20,40,80, 01,02,04,08,...
// These are bytes with the LSB rotated left with respect to their index.
for (unsigned i = 0; i != HwLen/8; ++i) {
for (unsigned j = 0; j != 8; ++j)
Tmp.push_back(ConstantInt::get(Int8Ty, 1ull << j));
}
Constant *CV = ConstantVector::get(Tmp);
Align Alignment(HwLen);
SDValue CP =
LowerConstantPool(DAG.getConstantPool(CV, ByteTy, Alignment), DAG);
SDValue Bytes =
DAG.getLoad(ByteTy, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(MF), Alignment);
// Select the bytes that correspond to true bits in the vector predicate.
SDValue Sel = DAG.getSelect(dl, VecTy, VecQ, DAG.getBitcast(VecTy, Bytes),
getZero(dl, VecTy, DAG));
// Calculate the OR of all bytes in each group of 8. That will compress
// all the individual bits into a single byte.
// First, OR groups of 4, via vrmpy with 0x01010101.
SDValue All1 =
DAG.getSplatBuildVector(MVT::v4i8, dl, DAG.getConstant(1, dl, MVT::i32));
SDValue Vrmpy = getInstr(Hexagon::V6_vrmpyub, dl, ByteTy, {Sel, All1}, DAG);
// Then rotate the accumulated vector by 4 bytes, and do the final OR.
SDValue Rot = getInstr(Hexagon::V6_valignbi, dl, ByteTy,
{Vrmpy, Vrmpy, DAG.getTargetConstant(4, dl, MVT::i32)}, DAG);
SDValue Vor = DAG.getNode(ISD::OR, dl, ByteTy, {Vrmpy, Rot});
// Pick every 8th byte and coalesce them at the beginning of the output.
// For symmetry, coalesce every 1+8th byte after that, then every 2+8th
// byte and so on.
SmallVector<int,128> Mask;
for (unsigned i = 0; i != HwLen; ++i)
Mask.push_back((8*i) % HwLen + i/(HwLen/8));
SDValue Collect =
DAG.getVectorShuffle(ByteTy, dl, Vor, DAG.getUNDEF(ByteTy), Mask);
return DAG.getBitcast(ResTy, Collect);
}
SDValue
HexagonTargetLowering::LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG)
const {
const SDLoc &dl(Op);
MVT VecTy = ty(Op);
unsigned Size = Op.getNumOperands();
SmallVector<SDValue,128> Ops;
for (unsigned i = 0; i != Size; ++i)
Ops.push_back(Op.getOperand(i));
if (VecTy.getVectorElementType() == MVT::i1)
return buildHvxVectorPred(Ops, dl, VecTy, DAG);
if (VecTy.getSizeInBits() == 16*Subtarget.getVectorLength()) {
ArrayRef<SDValue> A(Ops);
MVT SingleTy = typeSplit(VecTy).first;
SDValue V0 = buildHvxVectorReg(A.take_front(Size/2), dl, SingleTy, DAG);
SDValue V1 = buildHvxVectorReg(A.drop_front(Size/2), dl, SingleTy, DAG);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VecTy, V0, V1);
}
return buildHvxVectorReg(Ops, dl, VecTy, DAG);
}
SDValue
HexagonTargetLowering::LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG)
const {
// Vector concatenation of two integer (non-bool) vectors does not need
// special lowering. Custom-lower concats of bool vectors and expand
// concats of more than 2 vectors.
MVT VecTy = ty(Op);
const SDLoc &dl(Op);
unsigned NumOp = Op.getNumOperands();
if (VecTy.getVectorElementType() != MVT::i1) {
if (NumOp == 2)
return Op;
// Expand the other cases into a build-vector.
SmallVector<SDValue,8> Elems;
for (SDValue V : Op.getNode()->ops())
DAG.ExtractVectorElements(V, Elems);
// A vector of i16 will be broken up into a build_vector of i16's.
// This is a problem, since at the time of operation legalization,
// all operations are expected to be type-legalized, and i16 is not
// a legal type. If any of the extracted elements is not of a valid
// type, sign-extend it to a valid one.
for (unsigned i = 0, e = Elems.size(); i != e; ++i) {
SDValue V = Elems[i];
MVT Ty = ty(V);
if (!isTypeLegal(Ty)) {
EVT NTy = getTypeToTransformTo(*DAG.getContext(), Ty);
if (V.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
Elems[i] = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, NTy,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, NTy,
V.getOperand(0), V.getOperand(1)),
DAG.getValueType(Ty));
continue;
}
// A few less complicated cases.
if (V.getOpcode() == ISD::Constant)
Elems[i] = DAG.getSExtOrTrunc(V, dl, NTy);
else if (V.isUndef())
Elems[i] = DAG.getUNDEF(NTy);
else
llvm_unreachable("Unexpected vector element");
}
}
return DAG.getBuildVector(VecTy, dl, Elems);
}
assert(VecTy.getVectorElementType() == MVT::i1);
unsigned HwLen = Subtarget.getVectorLength();
assert(isPowerOf2_32(NumOp) && HwLen % NumOp == 0);
SDValue Op0 = Op.getOperand(0);
// If the operands are HVX types (i.e. not scalar predicates), then
// defer the concatenation, and create QCAT instead.
if (Subtarget.isHVXVectorType(ty(Op0), true)) {
if (NumOp == 2)
return DAG.getNode(HexagonISD::QCAT, dl, VecTy, Op0, Op.getOperand(1));
ArrayRef<SDUse> U(Op.getNode()->ops());
SmallVector<SDValue,4> SV(U.begin(), U.end());
ArrayRef<SDValue> Ops(SV);
MVT HalfTy = typeSplit(VecTy).first;
SDValue V0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
Ops.take_front(NumOp/2));
SDValue V1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfTy,
Ops.take_back(NumOp/2));
return DAG.getNode(HexagonISD::QCAT, dl, VecTy, V0, V1);
}
// Count how many bytes (in a vector register) each bit in VecTy
// corresponds to.
unsigned BitBytes = HwLen / VecTy.getVectorNumElements();
SmallVector<SDValue,8> Prefixes;
for (SDValue V : Op.getNode()->op_values()) {
SDValue P = createHvxPrefixPred(V, dl, BitBytes, true, DAG);
Prefixes.push_back(P);
}
unsigned InpLen = ty(Op.getOperand(0)).getVectorNumElements();
MVT ByteTy = MVT::getVectorVT(MVT::i8, HwLen);
SDValue S = DAG.getConstant(InpLen*BitBytes, dl, MVT::i32);
SDValue Res = getZero(dl, ByteTy, DAG);
for (unsigned i = 0, e = Prefixes.size(); i != e; ++i) {
Res = DAG.getNode(HexagonISD::VROR, dl, ByteTy, Res, S);
Res = DAG.getNode(ISD::OR, dl, ByteTy, Res, Prefixes[e-i-1]);
}
return DAG.getNode(HexagonISD::V2Q, dl, VecTy, Res);
}
SDValue
HexagonTargetLowering::LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG)
const {
// Change the type of the extracted element to i32.
SDValue VecV = Op.getOperand(0);
MVT ElemTy = ty(VecV).getVectorElementType();
const SDLoc &dl(Op);
SDValue IdxV = Op.getOperand(1);
if (ElemTy == MVT::i1)
return extractHvxElementPred(VecV, IdxV, dl, ty(Op), DAG);
return extractHvxElementReg(VecV, IdxV, dl, ty(Op), DAG);
}
SDValue
HexagonTargetLowering::LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG)
const {
const SDLoc &dl(Op);
SDValue VecV = Op.getOperand(0);
SDValue ValV = Op.getOperand(1);
SDValue IdxV = Op.getOperand(2);
MVT ElemTy = ty(VecV).getVectorElementType();
if (ElemTy == MVT::i1)
return insertHvxElementPred(VecV, IdxV, ValV, dl, DAG);
return insertHvxElementReg(VecV, IdxV, ValV, dl, DAG);
}
SDValue
HexagonTargetLowering::LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG)
const {
SDValue SrcV = Op.getOperand(0);
MVT SrcTy = ty(SrcV);
MVT DstTy = ty(Op);
SDValue IdxV = Op.getOperand(1);
unsigned Idx = cast<ConstantSDNode>(IdxV.getNode())->getZExtValue();
assert(Idx % DstTy.getVectorNumElements() == 0);
(void)Idx;
const SDLoc &dl(Op);
MVT ElemTy = SrcTy.getVectorElementType();
if (ElemTy == MVT::i1)
return extractHvxSubvectorPred(SrcV, IdxV, dl, DstTy, DAG);
return extractHvxSubvectorReg(SrcV, IdxV, dl, DstTy, DAG);
}
SDValue
HexagonTargetLowering::LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG)
const {
// Idx does not need to be a constant.
SDValue VecV = Op.getOperand(0);
SDValue ValV = Op.getOperand(1);
SDValue IdxV = Op.getOperand(2);
const SDLoc &dl(Op);
MVT VecTy = ty(VecV);
MVT ElemTy = VecTy.getVectorElementType();
if (ElemTy == MVT::i1)
return insertHvxSubvectorPred(VecV, ValV, IdxV, dl, DAG);
return insertHvxSubvectorReg(VecV, ValV, IdxV, dl, DAG);
}
SDValue
HexagonTargetLowering::LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const {
// Lower any-extends of boolean vectors to sign-extends, since they
// translate directly to Q2V. Zero-extending could also be done equally
// fast, but Q2V is used/recognized in more places.
// For all other vectors, use zero-extend.
MVT ResTy = ty(Op);
SDValue InpV = Op.getOperand(0);
MVT ElemTy = ty(InpV).getVectorElementType();
if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
return LowerHvxSignExt(Op, DAG);
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(Op), ResTy, InpV);
}
SDValue
HexagonTargetLowering::LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const {
MVT ResTy = ty(Op);
SDValue InpV = Op.getOperand(0);
MVT ElemTy = ty(InpV).getVectorElementType();
if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), false, DAG);
return Op;
}
SDValue
HexagonTargetLowering::LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const {
MVT ResTy = ty(Op);
SDValue InpV = Op.getOperand(0);
MVT ElemTy = ty(InpV).getVectorElementType();
if (ElemTy == MVT::i1 && Subtarget.isHVXVectorType(ResTy))
return extendHvxVectorPred(InpV, SDLoc(Op), ty(Op), true, DAG);
return Op;
}
SDValue
HexagonTargetLowering::LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const {
// Lower vector CTTZ into a computation using CTLZ (Hacker's Delight):
// cttz(x) = bitwidth(x) - ctlz(~x & (x-1))
const SDLoc &dl(Op);
MVT ResTy = ty(Op);
SDValue InpV = Op.getOperand(0);
assert(ResTy == ty(InpV));
// Calculate the vectors of 1 and bitwidth(x).
MVT ElemTy = ty(InpV).getVectorElementType();
unsigned ElemWidth = ElemTy.getSizeInBits();
// Using uint64_t because a shift by 32 can happen.
uint64_t Splat1 = 0, SplatW = 0;
assert(isPowerOf2_32(ElemWidth) && ElemWidth <= 32);
for (unsigned i = 0; i != 32/ElemWidth; ++i) {
Splat1 = (Splat1 << ElemWidth) | 1;
SplatW = (SplatW << ElemWidth) | ElemWidth;
}
SDValue Vec1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
DAG.getConstant(uint32_t(Splat1), dl, MVT::i32));
SDValue VecW = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
DAG.getConstant(uint32_t(SplatW), dl, MVT::i32));
SDValue VecN1 = DAG.getNode(HexagonISD::VSPLATW, dl, ResTy,
DAG.getConstant(-1, dl, MVT::i32));
// Do not use DAG.getNOT, because that would create BUILD_VECTOR with
// a BITCAST. Here we can skip the BITCAST (so we don't have to handle
// it separately in custom combine or selection).
SDValue A = DAG.getNode(ISD::AND, dl, ResTy,
{DAG.getNode(ISD::XOR, dl, ResTy, {InpV, VecN1}),
DAG.getNode(ISD::SUB, dl, ResTy, {InpV, Vec1})});
return DAG.getNode(ISD::SUB, dl, ResTy,
{VecW, DAG.getNode(ISD::CTLZ, dl, ResTy, A)});
}
SDValue
HexagonTargetLowering::LowerHvxMul(SDValue Op, SelectionDAG &DAG) const {
MVT ResTy = ty(Op);
assert(ResTy.isVector() && isHvxSingleTy(ResTy));
const SDLoc &dl(Op);
SmallVector<int,256> ShuffMask;
MVT ElemTy = ResTy.getVectorElementType();
unsigned VecLen = ResTy.getVectorNumElements();
SDValue Vs = Op.getOperand(0);
SDValue Vt = Op.getOperand(1);
switch (ElemTy.SimpleTy) {
case MVT::i8: {
// For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
// V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
// where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
MVT ExtTy = typeExtElem(ResTy, 2);
unsigned MpyOpc = ElemTy == MVT::i8 ? Hexagon::V6_vmpybv
: Hexagon::V6_vmpyhv;
SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
// Discard high halves of the resulting values, collect the low halves.
for (unsigned I = 0; I < VecLen; I += 2) {
ShuffMask.push_back(I); // Pick even element.
ShuffMask.push_back(I+VecLen); // Pick odd element.
}
VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
return DAG.getBitcast(ResTy, BS);
}
case MVT::i16:
// For i16 there is V6_vmpyih, which acts exactly like the MUL opcode.
// (There is also V6_vmpyhv, which behaves in an analogous way to
// V6_vmpybv.)
return getInstr(Hexagon::V6_vmpyih, dl, ResTy, {Vs, Vt}, DAG);
case MVT::i32: {
// Use the following sequence for signed word multiply:
// T0 = V6_vmpyiowh Vs, Vt
// T1 = V6_vaslw T0, 16
// T2 = V6_vmpyiewuh_acc T1, Vs, Vt
SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
SDValue T0 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {Vs, Vt}, DAG);
SDValue T1 = getInstr(Hexagon::V6_vaslw, dl, ResTy, {T0, S16}, DAG);
SDValue T2 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
{T1, Vs, Vt}, DAG);
return T2;
}
default:
break;
}
return SDValue();
}
SDValue
HexagonTargetLowering::LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const {
MVT ResTy = ty(Op);
assert(ResTy.isVector());
const SDLoc &dl(Op);
SmallVector<int,256> ShuffMask;
MVT ElemTy = ResTy.getVectorElementType();
unsigned VecLen = ResTy.getVectorNumElements();
SDValue Vs = Op.getOperand(0);
SDValue Vt = Op.getOperand(1);
bool IsSigned = Op.getOpcode() == ISD::MULHS;
if (ElemTy == MVT::i8 || ElemTy == MVT::i16) {
// For i8 vectors Vs = (a0, a1, ...), Vt = (b0, b1, ...),
// V6_vmpybv Vs, Vt produces a pair of i16 vectors Hi:Lo,
// where Lo = (a0*b0, a2*b2, ...), Hi = (a1*b1, a3*b3, ...).
// For i16, use V6_vmpyhv, which behaves in an analogous way to
// V6_vmpybv: results Lo and Hi are products of even/odd elements
// respectively.
MVT ExtTy = typeExtElem(ResTy, 2);
unsigned MpyOpc = ElemTy == MVT::i8
? (IsSigned ? Hexagon::V6_vmpybv : Hexagon::V6_vmpyubv)
: (IsSigned ? Hexagon::V6_vmpyhv : Hexagon::V6_vmpyuhv);
SDValue M = getInstr(MpyOpc, dl, ExtTy, {Vs, Vt}, DAG);
// Discard low halves of the resulting values, collect the high halves.
for (unsigned I = 0; I < VecLen; I += 2) {
ShuffMask.push_back(I+1); // Pick even element.
ShuffMask.push_back(I+VecLen+1); // Pick odd element.
}
VectorPair P = opSplit(opCastElem(M, ElemTy, DAG), dl, DAG);
SDValue BS = getByteShuffle(dl, P.first, P.second, ShuffMask, DAG);
return DAG.getBitcast(ResTy, BS);
}
assert(ElemTy == MVT::i32);
SDValue S16 = DAG.getConstant(16, dl, MVT::i32);
if (IsSigned) {
// mulhs(Vs,Vt) =
// = [(Hi(Vs)*2^16 + Lo(Vs)) *s (Hi(Vt)*2^16 + Lo(Vt))] >> 32
// = [Hi(Vs)*2^16 *s Hi(Vt)*2^16 + Hi(Vs) *su Lo(Vt)*2^16
// + Lo(Vs) *us (Hi(Vt)*2^16 + Lo(Vt))] >> 32
// = [Hi(Vs) *s Hi(Vt)*2^32 + Hi(Vs) *su Lo(Vt)*2^16
// + Lo(Vs) *us Vt] >> 32
// The low half of Lo(Vs)*Lo(Vt) will be discarded (it's not added to
// anything, so it cannot produce any carry over to higher bits),
// so everything in [] can be shifted by 16 without loss of precision.
// = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + Lo(Vs)*Vt >> 16] >> 16
// = [Hi(Vs) *s Hi(Vt)*2^16 + Hi(Vs)*su Lo(Vt) + V6_vmpyewuh(Vs,Vt)] >> 16
// Denote Hi(Vs) = Vs':
// = [Vs'*s Hi(Vt)*2^16 + Vs' *su Lo(Vt) + V6_vmpyewuh(Vt,Vs)] >> 16
// = Vs'*s Hi(Vt) + (V6_vmpyiewuh(Vs',Vt) + V6_vmpyewuh(Vt,Vs)) >> 16
SDValue T0 = getInstr(Hexagon::V6_vmpyewuh, dl, ResTy, {Vt, Vs}, DAG);
// Get Vs':
SDValue S0 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {Vs, S16}, DAG);
SDValue T1 = getInstr(Hexagon::V6_vmpyiewuh_acc, dl, ResTy,
{T0, S0, Vt}, DAG);
// Shift by 16:
SDValue S2 = getInstr(Hexagon::V6_vasrw, dl, ResTy, {T1, S16}, DAG);
// Get Vs'*Hi(Vt):
SDValue T2 = getInstr(Hexagon::V6_vmpyiowh, dl, ResTy, {S0, Vt}, DAG);
// Add:
SDValue T3 = DAG.getNode(ISD::ADD, dl, ResTy, {S2, T2});
return T3;
}
// Unsigned mulhw. (Would expansion using signed mulhw be better?)
auto LoVec = [&DAG,ResTy,dl] (SDValue Pair) {
return DAG.getTargetExtractSubreg(Hexagon::vsub_lo, dl, ResTy, Pair);
};
auto HiVec = [&DAG,ResTy,dl] (SDValue Pair) {
return DAG.getTargetExtractSubreg(Hexagon::vsub_hi, dl, ResTy, Pair);
};
MVT PairTy = typeJoin({ResTy, ResTy});
SDValue P = getInstr(Hexagon::V6_lvsplatw, dl, ResTy,
{DAG.getConstant(0x02020202, dl, MVT::i32)}, DAG);
// Multiply-unsigned halfwords:
// LoVec = Vs.uh[2i] * Vt.uh[2i],
// HiVec = Vs.uh[2i+1] * Vt.uh[2i+1]
SDValue T0 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, Vt}, DAG);
// The low halves in the LoVec of the pair can be discarded. They are
// not added to anything (in the full-precision product), so they cannot
// produce a carry into the higher bits.
SDValue T1 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {LoVec(T0), S16}, DAG);
// Swap low and high halves in Vt, and do the halfword multiplication
// to get products Vs.uh[2i] * Vt.uh[2i+1] and Vs.uh[2i+1] * Vt.uh[2i].
SDValue D0 = getInstr(Hexagon::V6_vdelta, dl, ResTy, {Vt, P}, DAG);
SDValue T2 = getInstr(Hexagon::V6_vmpyuhv, dl, PairTy, {Vs, D0}, DAG);
// T2 has mixed products of halfwords: Lo(Vt)*Hi(Vs) and Hi(Vt)*Lo(Vs).
// These products are words, but cannot be added directly because the
// sums could overflow. Add these products, by halfwords, where each sum
// of a pair of halfwords gives a word.
SDValue T3 = getInstr(Hexagon::V6_vadduhw, dl, PairTy,
{LoVec(T2), HiVec(T2)}, DAG);
// Add the high halfwords from the products of the low halfwords.
SDValue T4 = DAG.getNode(ISD::ADD, dl, ResTy, {T1, LoVec(T3)});
SDValue T5 = getInstr(Hexagon::V6_vlsrw, dl, ResTy, {T4, S16}, DAG);
SDValue T6 = DAG.getNode(ISD::ADD, dl, ResTy, {HiVec(T0), HiVec(T3)});
SDValue T7 = DAG.getNode(ISD::ADD, dl, ResTy, {T5, T6});
return T7;
}
SDValue
HexagonTargetLowering::LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const {
SDValue ValQ = Op.getOperand(0);
MVT ResTy = ty(Op);
MVT VecTy = ty(ValQ);
const SDLoc &dl(Op);
if (isHvxBoolTy(VecTy) && ResTy.isScalarInteger()) {
unsigned HwLen = Subtarget.getVectorLength();
MVT WordTy = MVT::getVectorVT(MVT::i32, HwLen/4);
SDValue VQ = compressHvxPred(ValQ, dl, WordTy, DAG);
unsigned BitWidth = ResTy.getSizeInBits();
if (BitWidth < 64) {
SDValue W0 = extractHvxElementReg(VQ, DAG.getConstant(0, dl, MVT::i32),
dl, MVT::i32, DAG);
if (BitWidth == 32)
return W0;
assert(BitWidth < 32u);
return DAG.getZExtOrTrunc(W0, dl, ResTy);
}
// The result is >= 64 bits. The only options are 64 or 128.
assert(BitWidth == 64 || BitWidth == 128);
SmallVector<SDValue,4> Words;
for (unsigned i = 0; i != BitWidth/32; ++i) {
SDValue W = extractHvxElementReg(
VQ, DAG.getConstant(i, dl, MVT::i32), dl, MVT::i32, DAG);
Words.push_back(W);
}
SmallVector<SDValue,2> Combines;
assert(Words.size() % 2 == 0);
for (unsigned i = 0, e = Words.size(); i < e; i += 2) {
SDValue C = DAG.getNode(
HexagonISD::COMBINE, dl, MVT::i64, {Words[i+1], Words[i]});
Combines.push_back(C);
}
if (BitWidth == 64)
return Combines[0];
return DAG.getNode(ISD::BUILD_PAIR, dl, ResTy, Combines);
}
return Op;
}
SDValue
HexagonTargetLowering::LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const {
// Sign- and zero-extends are legal.
assert(Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG);
return DAG.getNode(ISD::ZERO_EXTEND_VECTOR_INREG, SDLoc(Op), ty(Op),
Op.getOperand(0));
}
SDValue
HexagonTargetLowering::LowerHvxShift(SDValue Op, SelectionDAG &DAG) const {
if (SDValue S = getVectorShiftByInt(Op, DAG))
return S;
return Op;
}
SDValue
HexagonTargetLowering::LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const {
const SDLoc &dl(Op);
MVT ResTy = ty(Op);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
bool Use64b = Subtarget.useHVX64BOps();
unsigned IntPredCast = Use64b ? Intrinsic::hexagon_V6_pred_typecast
: Intrinsic::hexagon_V6_pred_typecast_128B;
if (IntNo == IntPredCast) {
SDValue Vs = Op.getOperand(1);
MVT OpTy = ty(Vs);
if (isHvxBoolTy(ResTy) && isHvxBoolTy(OpTy)) {
if (ResTy == OpTy)
return Vs;
return DAG.getNode(HexagonISD::TYPECAST, dl, ResTy, Vs);
}
}
return Op;
}
SDValue
HexagonTargetLowering::SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const {
assert(!Op.isMachineOpcode());
SmallVector<SDValue,2> OpsL, OpsH;
const SDLoc &dl(Op);
auto SplitVTNode = [&DAG,this] (const VTSDNode *N) {
MVT Ty = typeSplit(N->getVT().getSimpleVT()).first;
SDValue TV = DAG.getValueType(Ty);
return std::make_pair(TV, TV);
};
for (SDValue A : Op.getNode()->ops()) {
VectorPair P = Subtarget.isHVXVectorType(ty(A), true)
? opSplit(A, dl, DAG)
: std::make_pair(A, A);
// Special case for type operand.
if (Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
if (const auto *N = dyn_cast<const VTSDNode>(A.getNode()))
P = SplitVTNode(N);
}
OpsL.push_back(P.first);
OpsH.push_back(P.second);
}
MVT ResTy = ty(Op);
MVT HalfTy = typeSplit(ResTy).first;
SDValue L = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsL);
SDValue H = DAG.getNode(Op.getOpcode(), dl, HalfTy, OpsH);
SDValue S = DAG.getNode(ISD::CONCAT_VECTORS, dl, ResTy, L, H);
return S;
}
SDValue
HexagonTargetLowering::SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const {
LSBaseSDNode *BN = cast<LSBaseSDNode>(Op.getNode());
assert(BN->isUnindexed());
MVT MemTy = BN->getMemoryVT().getSimpleVT();
if (!isHvxPairTy(MemTy))
return Op;
const SDLoc &dl(Op);
unsigned HwLen = Subtarget.getVectorLength();
MVT SingleTy = typeSplit(MemTy).first;
SDValue Chain = BN->getChain();
SDValue Base0 = BN->getBasePtr();
SDValue Base1 = DAG.getMemBasePlusOffset(Base0, HwLen, dl);
MachineMemOperand *MOp0 = nullptr, *MOp1 = nullptr;
if (MachineMemOperand *MMO = BN->getMemOperand()) {
MachineFunction &MF = DAG.getMachineFunction();
MOp0 = MF.getMachineMemOperand(MMO, 0, HwLen);
MOp1 = MF.getMachineMemOperand(MMO, HwLen, HwLen);
}
unsigned MemOpc = BN->getOpcode();
SDValue NewOp;
if (MemOpc == ISD::LOAD) {
SDValue Load0 = DAG.getLoad(SingleTy, dl, Chain, Base0, MOp0);
SDValue Load1 = DAG.getLoad(SingleTy, dl, Chain, Base1, MOp1);
NewOp = DAG.getMergeValues(
{ DAG.getNode(ISD::CONCAT_VECTORS, dl, MemTy, Load0, Load1),
DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
Load0.getValue(1), Load1.getValue(1)) }, dl);
} else {
assert(MemOpc == ISD::STORE);
VectorPair Vals = opSplit(cast<StoreSDNode>(Op)->getValue(), dl, DAG);
SDValue Store0 = DAG.getStore(Chain, dl, Vals.first, Base0, MOp0);
SDValue Store1 = DAG.getStore(Chain, dl, Vals.second, Base1, MOp1);
NewOp = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store0, Store1);
}
return NewOp;
}
SDValue
HexagonTargetLowering::LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const {
unsigned Opc = Op.getOpcode();
bool IsPairOp = isHvxPairTy(ty(Op)) ||
llvm::any_of(Op.getNode()->ops(), [this] (SDValue V) {
return isHvxPairTy(ty(V));
});
if (IsPairOp) {
switch (Opc) {
default:
break;
case ISD::LOAD:
case ISD::STORE:
return SplitHvxMemOp(Op, DAG);
case ISD::CTPOP:
case ISD::CTLZ:
case ISD::CTTZ:
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SRA:
case ISD::SHL:
case ISD::SRL:
case ISD::SETCC:
case ISD::VSELECT:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::SIGN_EXTEND_INREG:
return SplitHvxPairOp(Op, DAG);
}
}
switch (Opc) {
default:
break;
case ISD::BUILD_VECTOR: return LowerHvxBuildVector(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerHvxConcatVectors(Op, DAG);
case ISD::INSERT_SUBVECTOR: return LowerHvxInsertSubvector(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerHvxInsertElement(Op, DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerHvxExtractSubvector(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerHvxExtractElement(Op, DAG);
case ISD::BITCAST: return LowerHvxBitcast(Op, DAG);
case ISD::ANY_EXTEND: return LowerHvxAnyExt(Op, DAG);
case ISD::SIGN_EXTEND: return LowerHvxSignExt(Op, DAG);
case ISD::ZERO_EXTEND: return LowerHvxZeroExt(Op, DAG);
case ISD::CTTZ: return LowerHvxCttz(Op, DAG);
case ISD::SRA:
case ISD::SHL:
case ISD::SRL: return LowerHvxShift(Op, DAG);
case ISD::MUL: return LowerHvxMul(Op, DAG);
case ISD::MULHS:
case ISD::MULHU: return LowerHvxMulh(Op, DAG);
case ISD::ANY_EXTEND_VECTOR_INREG: return LowerHvxExtend(Op, DAG);
case ISD::SETCC:
case ISD::INTRINSIC_VOID: return Op;
case ISD::INTRINSIC_WO_CHAIN: return LowerHvxIntrinsic(Op, DAG);
// Unaligned loads will be handled by the default lowering.
case ISD::LOAD: return SDValue();
}
#ifndef NDEBUG
Op.dumpr(&DAG);
#endif
llvm_unreachable("Unhandled HVX operation");
}
void
HexagonTargetLowering::LowerHvxOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
}
void
HexagonTargetLowering::ReplaceHvxNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
unsigned Opc = N->getOpcode();
switch (Opc) {
case ISD::BITCAST:
if (isHvxBoolTy(ty(N->getOperand(0)))) {
SDValue Op(N, 0);
SDValue C = LowerHvxBitcast(Op, DAG);
Results.push_back(C);
}
break;
default:
break;
}
}
SDValue
HexagonTargetLowering::PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI)
const {
const SDLoc &dl(N);
SDValue Op(N, 0);
unsigned Opc = Op.getOpcode();
if (Opc == ISD::VSELECT) {
// (vselect (xor x, qtrue), v0, v1) -> (vselect x, v1, v0)
SDValue Cond = Op.getOperand(0);
if (Cond->getOpcode() == ISD::XOR) {
SDValue C0 = Cond.getOperand(0), C1 = Cond.getOperand(1);
if (C1->getOpcode() == HexagonISD::QTRUE) {
SDValue VSel = DCI.DAG.getNode(ISD::VSELECT, dl, ty(Op), C0,
Op.getOperand(2), Op.getOperand(1));
return VSel;
}
}
}
return SDValue();
}
bool
HexagonTargetLowering::isHvxOperation(SDValue Op) const {
// If the type of the result, or any operand type are HVX vector types,
// this is an HVX operation.
return Subtarget.isHVXVectorType(ty(Op), true) ||
llvm::any_of(Op.getNode()->ops(),
[this] (SDValue V) {
return Subtarget.isHVXVectorType(ty(V), true);
});
}
bool
HexagonTargetLowering::isHvxOperation(SDNode *N) const {
// If the type of any result, or any operand type are HVX vector types,
// this is an HVX operation.
auto IsHvxTy = [this] (EVT Ty) {
return Ty.isSimple() && Subtarget.isHVXVectorType(Ty.getSimpleVT(), true);
};
auto IsHvxOp = [this] (SDValue Op) {
return Subtarget.isHVXVectorType(ty(Op), true);
};
return llvm::any_of(N->values(), IsHvxTy) || llvm::any_of(N->ops(), IsHvxOp);
}