HexagonISelLowering.h 22.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
//===-- HexagonISelLowering.h - Hexagon DAG Lowering Interface --*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that Hexagon uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H
#define LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H

#include "Hexagon.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/Support/MachineValueType.h"
#include <cstdint>
#include <utility>

namespace llvm {

namespace HexagonISD {

    enum NodeType : unsigned {
      OP_BEGIN = ISD::BUILTIN_OP_END,

      CONST32 = OP_BEGIN,
      CONST32_GP,  // For marking data present in GP.
      ADDC,        // Add with carry: (X, Y, Cin) -> (X+Y, Cout).
      SUBC,        // Sub with carry: (X, Y, Cin) -> (X+~Y+Cin, Cout).
      ALLOCA,

      AT_GOT,      // Index in GOT.
      AT_PCREL,    // Offset relative to PC.

      CALL,        // Function call.
      CALLnr,      // Function call that does not return.
      CALLR,

      RET_FLAG,    // Return with a flag operand.
      BARRIER,     // Memory barrier.
      JT,          // Jump table.
      CP,          // Constant pool.

      COMBINE,
      VSPLAT,      // Generic splat, selection depends on argument/return
                   // types.
      VASL,
      VASR,
      VLSR,

      TSTBIT,
      INSERT,
      EXTRACTU,
      VEXTRACTW,
      VINSERTW0,
      VROR,
      TC_RETURN,
      EH_RETURN,
      DCFETCH,
      READCYCLE,
      PTRUE,
      PFALSE,
      D2P,         // Convert 8-byte value to 8-bit predicate register. [*]
      P2D,         // Convert 8-bit predicate register to 8-byte value. [*]
      V2Q,         // Convert HVX vector to a vector predicate reg. [*]
      Q2V,         // Convert vector predicate to an HVX vector. [*]
                   // [*] The equivalence is defined as "Q <=> (V != 0)",
                   //     where the != operation compares bytes.
                   // Note: V != 0 is implemented as V >u 0.
      QCAT,
      QTRUE,
      QFALSE,
      VZERO,
      VSPLATW,     // HVX splat of a 32-bit word with an arbitrary result type.
      TYPECAST,    // No-op that's used to convert between different legal
                   // types in a register.
      VALIGN,      // Align two vectors (in Op0, Op1) to one that would have
                   // been loaded from address in Op2.
      VALIGNADDR,  // Align vector address: Op0 & -Op1, except when it is
                   // an address in a vector load, then it's a no-op.
      OP_END
    };

} // end namespace HexagonISD

  class HexagonSubtarget;

  class HexagonTargetLowering : public TargetLowering {
    int VarArgsFrameOffset;   // Frame offset to start of varargs area.
    const HexagonTargetMachine &HTM;
    const HexagonSubtarget &Subtarget;

    bool CanReturnSmallStruct(const Function* CalleeFn, unsigned& RetSize)
        const;

  public:
    explicit HexagonTargetLowering(const TargetMachine &TM,
                                   const HexagonSubtarget &ST);

    bool isHVXVectorType(MVT Ty) const;

    /// IsEligibleForTailCallOptimization - Check whether the call is eligible
    /// for tail call optimization. Targets which want to do tail call
    /// optimization should implement this function.
    bool IsEligibleForTailCallOptimization(SDValue Callee,
        CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet,
        bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs,
        const SmallVectorImpl<SDValue> &OutVals,
        const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const;

    bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                            MachineFunction &MF,
                            unsigned Intrinsic) const override;

    bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
    bool isTruncateFree(EVT VT1, EVT VT2) const override;

    bool isCheapToSpeculateCttz() const override { return true; }
    bool isCheapToSpeculateCtlz() const override { return true; }
    bool isCtlzFast() const override { return true; }

    bool hasBitTest(SDValue X, SDValue Y) const override;

    bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;

    /// Return true if an FMA operation is faster than a pair of mul and add
    /// instructions. fmuladd intrinsics will be expanded to FMAs when this
    /// method returns true (and FMAs are legal), otherwise fmuladd is
    /// expanded to mul + add.
    bool isFMAFasterThanFMulAndFAdd(const MachineFunction &,
                                    EVT) const override;

    // Should we expand the build vector with shuffles?
    bool shouldExpandBuildVectorWithShuffles(EVT VT,
        unsigned DefinedValues) const override;

    bool isShuffleMaskLegal(ArrayRef<int> Mask, EVT VT) const override;
    TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT)
        const override;

    SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
    void LowerOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
                               SelectionDAG &DAG) const override;
    void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
                            SelectionDAG &DAG) const override;

    const char *getTargetNodeName(unsigned Opcode) const override;

    SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVECTOR_SHIFT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerROTL(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBITCAST(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerANY_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerSIGN_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerZERO_EXTEND(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerLoad(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerStore(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUnalignedLoad(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerUAddSubO(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerAddSubCarry(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_LABEL(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
    SDValue
    LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                         const SmallVectorImpl<ISD::InputArg> &Ins,
                         const SDLoc &dl, SelectionDAG &DAG,
                         SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
        SelectionDAG &DAG) const;
    SDValue LowerToTLSInitialExecModel(GlobalAddressSDNode *GA,
        SelectionDAG &DAG) const;
    SDValue LowerToTLSLocalExecModel(GlobalAddressSDNode *GA,
        SelectionDAG &DAG) const;
    SDValue GetDynamicTLSAddr(SelectionDAG &DAG, SDValue Chain,
        GlobalAddressSDNode *GA, SDValue InFlag, EVT PtrVT,
        unsigned ReturnReg, unsigned char OperandFlags) const;
    SDValue LowerGLOBAL_OFFSET_TABLE(SDValue Op, SelectionDAG &DAG) const;

    SDValue LowerCall(TargetLowering::CallLoweringInfo &CLI,
        SmallVectorImpl<SDValue> &InVals) const override;
    SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                            CallingConv::ID CallConv, bool isVarArg,
                            const SmallVectorImpl<ISD::InputArg> &Ins,
                            const SDLoc &dl, SelectionDAG &DAG,
                            SmallVectorImpl<SDValue> &InVals,
                            const SmallVectorImpl<SDValue> &OutVals,
                            SDValue Callee) const;

    SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const;
    SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;

    bool CanLowerReturn(CallingConv::ID CallConv,
                        MachineFunction &MF, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        LLVMContext &Context) const override;

    SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                        const SmallVectorImpl<ISD::OutputArg> &Outs,
                        const SmallVectorImpl<SDValue> &OutVals,
                        const SDLoc &dl, SelectionDAG &DAG) const override;

    SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

    bool mayBeEmittedAsTailCall(const CallInst *CI) const override;

    Register getRegisterByName(const char* RegName, LLT VT,
                               const MachineFunction &MF) const override;

    /// If a physical register, this returns the register that receives the
    /// exception address on entry to an EH pad.
    Register
    getExceptionPointerRegister(const Constant *PersonalityFn) const override {
      return Hexagon::R0;
    }

    /// If a physical register, this returns the register that receives the
    /// exception typeid on entry to a landing pad.
    Register
    getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
      return Hexagon::R1;
    }

    SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;

    EVT getSetCCResultType(const DataLayout &, LLVMContext &C,
                           EVT VT) const override {
      if (!VT.isVector())
        return MVT::i1;
      else
        return EVT::getVectorVT(C, MVT::i1, VT.getVectorNumElements());
    }

    bool getPostIndexedAddressParts(SDNode *N, SDNode *Op,
                                    SDValue &Base, SDValue &Offset,
                                    ISD::MemIndexedMode &AM,
                                    SelectionDAG &DAG) const override;

    ConstraintType getConstraintType(StringRef Constraint) const override;

    std::pair<unsigned, const TargetRegisterClass *>
    getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                                 StringRef Constraint, MVT VT) const override;

    unsigned
    getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
      if (ConstraintCode == "o")
        return InlineAsm::Constraint_o;
      return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
    }

    // Intrinsics
    SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const;
    /// isLegalAddressingMode - Return true if the addressing mode represented
    /// by AM is legal for this target, for a load/store of the specified type.
    /// The type may be VoidTy, in which case only return true if the addressing
    /// mode is legal for a load/store of any legal type.
    /// TODO: Handle pre/postinc as well.
    bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
                               Type *Ty, unsigned AS,
                               Instruction *I = nullptr) const override;
    /// Return true if folding a constant offset with the given GlobalAddress
    /// is legal.  It is frequently not legal in PIC relocation models.
    bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;

    bool isFPImmLegal(const APFloat &Imm, EVT VT,
                      bool ForCodeSize) const override;

    /// isLegalICmpImmediate - Return true if the specified immediate is legal
    /// icmp immediate, that is the target has icmp instructions which can
    /// compare a register against the immediate without having to materialize
    /// the immediate into a register.
    bool isLegalICmpImmediate(int64_t Imm) const override;

    EVT getOptimalMemOpType(const MemOp &Op,
                            const AttributeList &FuncAttributes) const override;

    bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
                            unsigned AddrSpace, Align Alignment,
                            MachineMemOperand::Flags Flags,
                            bool *Fast) const override;

    bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AddrSpace,
        unsigned Alignment, MachineMemOperand::Flags Flags, bool *Fast)
        const override;

    /// Returns relocation base for the given PIC jumptable.
    SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG)
                                     const override;

    bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
                               EVT NewVT) const override;

    // Handling of atomic RMW instructions.
    Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
        AtomicOrdering Ord) const override;
    Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
        Value *Addr, AtomicOrdering Ord) const override;
    AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
    bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
    AtomicExpansionKind
    shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;

    AtomicExpansionKind
    shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override {
      return AtomicExpansionKind::LLSC;
    }

  private:
    void initializeHVXLowering();
    void validateConstPtrAlignment(SDValue Ptr, const SDLoc &dl,
                                   unsigned NeedAlign) const;

    std::pair<SDValue,int> getBaseAndOffset(SDValue Addr) const;

    bool getBuildVectorConstInts(ArrayRef<SDValue> Values, MVT VecTy,
                                 SelectionDAG &DAG,
                                 MutableArrayRef<ConstantInt*> Consts) const;
    SDValue buildVector32(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
                          SelectionDAG &DAG) const;
    SDValue buildVector64(ArrayRef<SDValue> Elem, const SDLoc &dl, MVT VecTy,
                          SelectionDAG &DAG) const;
    SDValue extractVector(SDValue VecV, SDValue IdxV, const SDLoc &dl,
                          MVT ValTy, MVT ResTy, SelectionDAG &DAG) const;
    SDValue insertVector(SDValue VecV, SDValue ValV, SDValue IdxV,
                         const SDLoc &dl, MVT ValTy, SelectionDAG &DAG) const;
    SDValue expandPredicate(SDValue Vec32, const SDLoc &dl,
                            SelectionDAG &DAG) const;
    SDValue contractPredicate(SDValue Vec64, const SDLoc &dl,
                              SelectionDAG &DAG) const;
    SDValue getVectorShiftByInt(SDValue Op, SelectionDAG &DAG) const;

    bool isUndef(SDValue Op) const {
      if (Op.isMachineOpcode())
        return Op.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF;
      return Op.getOpcode() == ISD::UNDEF;
    }
    SDValue getInstr(unsigned MachineOpc, const SDLoc &dl, MVT Ty,
                     ArrayRef<SDValue> Ops, SelectionDAG &DAG) const {
      SDNode *N = DAG.getMachineNode(MachineOpc, dl, Ty, Ops);
      return SDValue(N, 0);
    }
    SDValue getZero(const SDLoc &dl, MVT Ty, SelectionDAG &DAG) const;

    using VectorPair = std::pair<SDValue, SDValue>;
    using TypePair = std::pair<MVT, MVT>;

    SDValue getInt(unsigned IntId, MVT ResTy, ArrayRef<SDValue> Ops,
                   const SDLoc &dl, SelectionDAG &DAG) const;

    MVT ty(SDValue Op) const {
      return Op.getValueType().getSimpleVT();
    }
    TypePair ty(const VectorPair &Ops) const {
      return { Ops.first.getValueType().getSimpleVT(),
               Ops.second.getValueType().getSimpleVT() };
    }
    MVT tyScalar(MVT Ty) const {
      if (!Ty.isVector())
        return Ty;
      return MVT::getIntegerVT(Ty.getSizeInBits());
    }
    MVT tyVector(MVT Ty, MVT ElemTy) const {
      if (Ty.isVector() && Ty.getVectorElementType() == ElemTy)
        return Ty;
      unsigned TyWidth = Ty.getSizeInBits();
      unsigned ElemWidth = ElemTy.getSizeInBits();
      assert((TyWidth % ElemWidth) == 0);
      return MVT::getVectorVT(ElemTy, TyWidth/ElemWidth);
    }

    MVT typeJoin(const TypePair &Tys) const;
    TypePair typeSplit(MVT Ty) const;
    MVT typeExtElem(MVT VecTy, unsigned Factor) const;
    MVT typeTruncElem(MVT VecTy, unsigned Factor) const;

    SDValue opJoin(const VectorPair &Ops, const SDLoc &dl,
                   SelectionDAG &DAG) const;
    VectorPair opSplit(SDValue Vec, const SDLoc &dl, SelectionDAG &DAG) const;
    SDValue opCastElem(SDValue Vec, MVT ElemTy, SelectionDAG &DAG) const;

    bool allowsHvxMemoryAccess(MVT VecTy, MachineMemOperand::Flags Flags,
                               bool *Fast) const;
    bool allowsHvxMisalignedMemoryAccesses(MVT VecTy,
                                           MachineMemOperand::Flags Flags,
                                           bool *Fast) const;

    bool isHvxSingleTy(MVT Ty) const;
    bool isHvxPairTy(MVT Ty) const;
    bool isHvxBoolTy(MVT Ty) const;
    SDValue convertToByteIndex(SDValue ElemIdx, MVT ElemTy,
                               SelectionDAG &DAG) const;
    SDValue getIndexInWord32(SDValue Idx, MVT ElemTy, SelectionDAG &DAG) const;
    SDValue getByteShuffle(const SDLoc &dl, SDValue Op0, SDValue Op1,
                           ArrayRef<int> Mask, SelectionDAG &DAG) const;

    SDValue buildHvxVectorReg(ArrayRef<SDValue> Values, const SDLoc &dl,
                              MVT VecTy, SelectionDAG &DAG) const;
    SDValue buildHvxVectorPred(ArrayRef<SDValue> Values, const SDLoc &dl,
                               MVT VecTy, SelectionDAG &DAG) const;
    SDValue createHvxPrefixPred(SDValue PredV, const SDLoc &dl,
                                unsigned BitBytes, bool ZeroFill,
                                SelectionDAG &DAG) const;
    SDValue extractHvxElementReg(SDValue VecV, SDValue IdxV, const SDLoc &dl,
                                 MVT ResTy, SelectionDAG &DAG) const;
    SDValue extractHvxElementPred(SDValue VecV, SDValue IdxV, const SDLoc &dl,
                                  MVT ResTy, SelectionDAG &DAG) const;
    SDValue insertHvxElementReg(SDValue VecV, SDValue IdxV, SDValue ValV,
                                const SDLoc &dl, SelectionDAG &DAG) const;
    SDValue insertHvxElementPred(SDValue VecV, SDValue IdxV, SDValue ValV,
                                 const SDLoc &dl, SelectionDAG &DAG) const;
    SDValue extractHvxSubvectorReg(SDValue VecV, SDValue IdxV, const SDLoc &dl,
                                   MVT ResTy, SelectionDAG &DAG) const;
    SDValue extractHvxSubvectorPred(SDValue VecV, SDValue IdxV, const SDLoc &dl,
                                    MVT ResTy, SelectionDAG &DAG) const;
    SDValue insertHvxSubvectorReg(SDValue VecV, SDValue SubV, SDValue IdxV,
                                  const SDLoc &dl, SelectionDAG &DAG) const;
    SDValue insertHvxSubvectorPred(SDValue VecV, SDValue SubV, SDValue IdxV,
                                   const SDLoc &dl, SelectionDAG &DAG) const;
    SDValue extendHvxVectorPred(SDValue VecV, const SDLoc &dl, MVT ResTy,
                                bool ZeroExt, SelectionDAG &DAG) const;
    SDValue compressHvxPred(SDValue VecQ, const SDLoc &dl, MVT ResTy,
                            SelectionDAG &DAG) const;

    SDValue LowerHvxBuildVector(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxConcatVectors(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxExtractElement(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxInsertElement(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxExtractSubvector(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxInsertSubvector(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxBitcast(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxAnyExt(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxSignExt(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxZeroExt(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxCttz(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxMul(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxMulh(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxSetCC(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxExtend(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxShift(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxIntrinsic(SDValue Op, SelectionDAG &DAG) const;
    SDValue LowerHvxStore(SDValue Op, SelectionDAG &DAG) const;
    SDValue HvxVecPredBitcastComputation(SDValue Op, SelectionDAG &DAG) const;

    SDValue SplitHvxPairOp(SDValue Op, SelectionDAG &DAG) const;
    SDValue SplitHvxMemOp(SDValue Op, SelectionDAG &DAG) const;

    std::pair<const TargetRegisterClass*, uint8_t>
    findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT)
        const override;

    bool isHvxOperation(SDValue Op) const;
    bool isHvxOperation(SDNode *N) const;
    SDValue LowerHvxOperation(SDValue Op, SelectionDAG &DAG) const;
    void LowerHvxOperationWrapper(SDNode *N, SmallVectorImpl<SDValue> &Results,
                                  SelectionDAG &DAG) const;
    void ReplaceHvxNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
                               SelectionDAG &DAG) const;
    SDValue PerformHvxDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
  };

} // end namespace llvm

#endif // LLVM_LIB_TARGET_HEXAGON_HEXAGONISELLOWERING_H