HexagonHardwareLoops.cpp 70.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
//===- HexagonHardwareLoops.cpp - Identify and generate hardware loops ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass identifies loops where we can generate the Hexagon hardware
// loop instruction.  The hardware loop can perform loop branches with a
// zero-cycle overhead.
//
// The pattern that defines the induction variable can changed depending on
// prior optimizations.  For example, the IndVarSimplify phase run by 'opt'
// normalizes induction variables, and the Loop Strength Reduction pass
// run by 'llc' may also make changes to the induction variable.
// The pattern detected by this phase is due to running Strength Reduction.
//
// Criteria for hardware loops:
//  - Countable loops (w/ ind. var for a trip count)
//  - Assumes loops are normalized by IndVarSimplify
//  - Try inner-most loops first
//  - No function calls in loops.
//
//===----------------------------------------------------------------------===//

#include "HexagonInstrInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "hwloops"

#ifndef NDEBUG
static cl::opt<int> HWLoopLimit("hexagon-max-hwloop", cl::Hidden, cl::init(-1));

// Option to create preheader only for a specific function.
static cl::opt<std::string> PHFn("hexagon-hwloop-phfn", cl::Hidden,
                                 cl::init(""));
#endif

// Option to create a preheader if one doesn't exist.
static cl::opt<bool> HWCreatePreheader("hexagon-hwloop-preheader",
    cl::Hidden, cl::init(true),
    cl::desc("Add a preheader to a hardware loop if one doesn't exist"));

// Turn it off by default. If a preheader block is not created here, the
// software pipeliner may be unable to find a block suitable to serve as
// a preheader. In that case SWP will not run.
static cl::opt<bool> SpecPreheader("hwloop-spec-preheader", cl::init(false),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Allow speculation of preheader "
  "instructions"));

STATISTIC(NumHWLoops, "Number of loops converted to hardware loops");

namespace llvm {

  FunctionPass *createHexagonHardwareLoops();
  void initializeHexagonHardwareLoopsPass(PassRegistry&);

} // end namespace llvm

namespace {

  class CountValue;

  struct HexagonHardwareLoops : public MachineFunctionPass {
    MachineLoopInfo            *MLI;
    MachineRegisterInfo        *MRI;
    MachineDominatorTree       *MDT;
    const HexagonInstrInfo     *TII;
    const HexagonRegisterInfo  *TRI;
#ifndef NDEBUG
    static int Counter;
#endif

  public:
    static char ID;

    HexagonHardwareLoops() : MachineFunctionPass(ID) {}

    bool runOnMachineFunction(MachineFunction &MF) override;

    StringRef getPassName() const override { return "Hexagon Hardware Loops"; }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineDominatorTree>();
      AU.addRequired<MachineLoopInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    using LoopFeederMap = std::map<unsigned, MachineInstr *>;

    /// Kinds of comparisons in the compare instructions.
    struct Comparison {
      enum Kind {
        EQ  = 0x01,
        NE  = 0x02,
        L   = 0x04,
        G   = 0x08,
        U   = 0x40,
        LTs = L,
        LEs = L | EQ,
        GTs = G,
        GEs = G | EQ,
        LTu = L      | U,
        LEu = L | EQ | U,
        GTu = G      | U,
        GEu = G | EQ | U
      };

      static Kind getSwappedComparison(Kind Cmp) {
        assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator");
        if ((Cmp & L) || (Cmp & G))
          return (Kind)(Cmp ^ (L|G));
        return Cmp;
      }

      static Kind getNegatedComparison(Kind Cmp) {
        if ((Cmp & L) || (Cmp & G))
          return (Kind)((Cmp ^ (L | G)) ^ EQ);
        if ((Cmp & NE) || (Cmp & EQ))
          return (Kind)(Cmp ^ (EQ | NE));
        return (Kind)0;
      }

      static bool isSigned(Kind Cmp) {
        return (Cmp & (L | G) && !(Cmp & U));
      }

      static bool isUnsigned(Kind Cmp) {
        return (Cmp & U);
      }
    };

    /// Find the register that contains the loop controlling
    /// induction variable.
    /// If successful, it will return true and set the \p Reg, \p IVBump
    /// and \p IVOp arguments.  Otherwise it will return false.
    /// The returned induction register is the register R that follows the
    /// following induction pattern:
    /// loop:
    ///   R = phi ..., [ R.next, LatchBlock ]
    ///   R.next = R + #bump
    ///   if (R.next < #N) goto loop
    /// IVBump is the immediate value added to R, and IVOp is the instruction
    /// "R.next = R + #bump".
    bool findInductionRegister(MachineLoop *L, unsigned &Reg,
                               int64_t &IVBump, MachineInstr *&IVOp) const;

    /// Return the comparison kind for the specified opcode.
    Comparison::Kind getComparisonKind(unsigned CondOpc,
                                       MachineOperand *InitialValue,
                                       const MachineOperand *Endvalue,
                                       int64_t IVBump) const;

    /// Analyze the statements in a loop to determine if the loop
    /// has a computable trip count and, if so, return a value that represents
    /// the trip count expression.
    CountValue *getLoopTripCount(MachineLoop *L,
                                 SmallVectorImpl<MachineInstr *> &OldInsts);

    /// Return the expression that represents the number of times
    /// a loop iterates.  The function takes the operands that represent the
    /// loop start value, loop end value, and induction value.  Based upon
    /// these operands, the function attempts to compute the trip count.
    /// If the trip count is not directly available (as an immediate value,
    /// or a register), the function will attempt to insert computation of it
    /// to the loop's preheader.
    CountValue *computeCount(MachineLoop *Loop, const MachineOperand *Start,
                             const MachineOperand *End, unsigned IVReg,
                             int64_t IVBump, Comparison::Kind Cmp) const;

    /// Return true if the instruction is not valid within a hardware
    /// loop.
    bool isInvalidLoopOperation(const MachineInstr *MI,
                                bool IsInnerHWLoop) const;

    /// Return true if the loop contains an instruction that inhibits
    /// using the hardware loop.
    bool containsInvalidInstruction(MachineLoop *L, bool IsInnerHWLoop) const;

    /// Given a loop, check if we can convert it to a hardware loop.
    /// If so, then perform the conversion and return true.
    bool convertToHardwareLoop(MachineLoop *L, bool &L0used, bool &L1used);

    /// Return true if the instruction is now dead.
    bool isDead(const MachineInstr *MI,
                SmallVectorImpl<MachineInstr *> &DeadPhis) const;

    /// Remove the instruction if it is now dead.
    void removeIfDead(MachineInstr *MI);

    /// Make sure that the "bump" instruction executes before the
    /// compare.  We need that for the IV fixup, so that the compare
    /// instruction would not use a bumped value that has not yet been
    /// defined.  If the instructions are out of order, try to reorder them.
    bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI);

    /// Return true if MO and MI pair is visited only once. If visited
    /// more than once, this indicates there is recursion. In such a case,
    /// return false.
    bool isLoopFeeder(MachineLoop *L, MachineBasicBlock *A, MachineInstr *MI,
                      const MachineOperand *MO,
                      LoopFeederMap &LoopFeederPhi) const;

    /// Return true if the Phi may generate a value that may underflow,
    /// or may wrap.
    bool phiMayWrapOrUnderflow(MachineInstr *Phi, const MachineOperand *EndVal,
                               MachineBasicBlock *MBB, MachineLoop *L,
                               LoopFeederMap &LoopFeederPhi) const;

    /// Return true if the induction variable may underflow an unsigned
    /// value in the first iteration.
    bool loopCountMayWrapOrUnderFlow(const MachineOperand *InitVal,
                                     const MachineOperand *EndVal,
                                     MachineBasicBlock *MBB, MachineLoop *L,
                                     LoopFeederMap &LoopFeederPhi) const;

    /// Check if the given operand has a compile-time known constant
    /// value. Return true if yes, and false otherwise. When returning true, set
    /// Val to the corresponding constant value.
    bool checkForImmediate(const MachineOperand &MO, int64_t &Val) const;

    /// Check if the operand has a compile-time known constant value.
    bool isImmediate(const MachineOperand &MO) const {
      int64_t V;
      return checkForImmediate(MO, V);
    }

    /// Return the immediate for the specified operand.
    int64_t getImmediate(const MachineOperand &MO) const {
      int64_t V;
      if (!checkForImmediate(MO, V))
        llvm_unreachable("Invalid operand");
      return V;
    }

    /// Reset the given machine operand to now refer to a new immediate
    /// value.  Assumes that the operand was already referencing an immediate
    /// value, either directly, or via a register.
    void setImmediate(MachineOperand &MO, int64_t Val);

    /// Fix the data flow of the induction variable.
    /// The desired flow is: phi ---> bump -+-> comparison-in-latch.
    ///                                     |
    ///                                     +-> back to phi
    /// where "bump" is the increment of the induction variable:
    ///   iv = iv + #const.
    /// Due to some prior code transformations, the actual flow may look
    /// like this:
    ///   phi -+-> bump ---> back to phi
    ///        |
    ///        +-> comparison-in-latch (against upper_bound-bump),
    /// i.e. the comparison that controls the loop execution may be using
    /// the value of the induction variable from before the increment.
    ///
    /// Return true if the loop's flow is the desired one (i.e. it's
    /// either been fixed, or no fixing was necessary).
    /// Otherwise, return false.  This can happen if the induction variable
    /// couldn't be identified, or if the value in the latch's comparison
    /// cannot be adjusted to reflect the post-bump value.
    bool fixupInductionVariable(MachineLoop *L);

    /// Given a loop, if it does not have a preheader, create one.
    /// Return the block that is the preheader.
    MachineBasicBlock *createPreheaderForLoop(MachineLoop *L);
  };

  char HexagonHardwareLoops::ID = 0;
#ifndef NDEBUG
  int HexagonHardwareLoops::Counter = 0;
#endif

  /// Abstraction for a trip count of a loop. A smaller version
  /// of the MachineOperand class without the concerns of changing the
  /// operand representation.
  class CountValue {
  public:
    enum CountValueType {
      CV_Register,
      CV_Immediate
    };

  private:
    CountValueType Kind;
    union Values {
      struct {
        unsigned Reg;
        unsigned Sub;
      } R;
      unsigned ImmVal;
    } Contents;

  public:
    explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) {
      Kind = t;
      if (Kind == CV_Register) {
        Contents.R.Reg = v;
        Contents.R.Sub = u;
      } else {
        Contents.ImmVal = v;
      }
    }

    bool isReg() const { return Kind == CV_Register; }
    bool isImm() const { return Kind == CV_Immediate; }

    unsigned getReg() const {
      assert(isReg() && "Wrong CountValue accessor");
      return Contents.R.Reg;
    }

    unsigned getSubReg() const {
      assert(isReg() && "Wrong CountValue accessor");
      return Contents.R.Sub;
    }

    unsigned getImm() const {
      assert(isImm() && "Wrong CountValue accessor");
      return Contents.ImmVal;
    }

    void print(raw_ostream &OS, const TargetRegisterInfo *TRI = nullptr) const {
      if (isReg()) { OS << printReg(Contents.R.Reg, TRI, Contents.R.Sub); }
      if (isImm()) { OS << Contents.ImmVal; }
    }
  };

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops",
                      "Hexagon Hardware Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops",
                    "Hexagon Hardware Loops", false, false)

FunctionPass *llvm::createHexagonHardwareLoops() {
  return new HexagonHardwareLoops();
}

bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n");
  if (skipFunction(MF.getFunction()))
    return false;

  bool Changed = false;

  MLI = &getAnalysis<MachineLoopInfo>();
  MRI = &MF.getRegInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  const HexagonSubtarget &HST = MF.getSubtarget<HexagonSubtarget>();
  TII = HST.getInstrInfo();
  TRI = HST.getRegisterInfo();

  for (auto &L : *MLI)
    if (!L->getParentLoop()) {
      bool L0Used = false;
      bool L1Used = false;
      Changed |= convertToHardwareLoop(L, L0Used, L1Used);
    }

  return Changed;
}

bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L,
                                                 unsigned &Reg,
                                                 int64_t &IVBump,
                                                 MachineInstr *&IVOp
                                                 ) const {
  MachineBasicBlock *Header = L->getHeader();
  MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
  MachineBasicBlock *Latch = L->getLoopLatch();
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
  if (!Header || !Preheader || !Latch || !ExitingBlock)
    return false;

  // This pair represents an induction register together with an immediate
  // value that will be added to it in each loop iteration.
  using RegisterBump = std::pair<unsigned, int64_t>;

  // Mapping:  R.next -> (R, bump), where R, R.next and bump are derived
  // from an induction operation
  //   R.next = R + bump
  // where bump is an immediate value.
  using InductionMap = std::map<unsigned, RegisterBump>;

  InductionMap IndMap;

  using instr_iterator = MachineBasicBlock::instr_iterator;

  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
       I != E && I->isPHI(); ++I) {
    MachineInstr *Phi = &*I;

    // Have a PHI instruction.  Get the operand that corresponds to the
    // latch block, and see if is a result of an addition of form "reg+imm",
    // where the "reg" is defined by the PHI node we are looking at.
    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
      if (Phi->getOperand(i+1).getMBB() != Latch)
        continue;

      Register PhiOpReg = Phi->getOperand(i).getReg();
      MachineInstr *DI = MRI->getVRegDef(PhiOpReg);

      if (DI->getDesc().isAdd()) {
        // If the register operand to the add is the PHI we're looking at, this
        // meets the induction pattern.
        Register IndReg = DI->getOperand(1).getReg();
        MachineOperand &Opnd2 = DI->getOperand(2);
        int64_t V;
        if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
          Register UpdReg = DI->getOperand(0).getReg();
          IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
        }
      }
    }  // for (i)
  }  // for (instr)

  SmallVector<MachineOperand,2> Cond;
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
  if (NotAnalyzed)
    return false;

  unsigned PredR, PredPos, PredRegFlags;
  if (!TII->getPredReg(Cond, PredR, PredPos, PredRegFlags))
    return false;

  MachineInstr *PredI = MRI->getVRegDef(PredR);
  if (!PredI->isCompare())
    return false;

  Register CmpReg1, CmpReg2;
  int CmpImm = 0, CmpMask = 0;
  bool CmpAnalyzed =
      TII->analyzeCompare(*PredI, CmpReg1, CmpReg2, CmpMask, CmpImm);
  // Fail if the compare was not analyzed, or it's not comparing a register
  // with an immediate value.  Not checking the mask here, since we handle
  // the individual compare opcodes (including A4_cmpb*) later on.
  if (!CmpAnalyzed)
    return false;

  // Exactly one of the input registers to the comparison should be among
  // the induction registers.
  InductionMap::iterator IndMapEnd = IndMap.end();
  InductionMap::iterator F = IndMapEnd;
  if (CmpReg1 != 0) {
    InductionMap::iterator F1 = IndMap.find(CmpReg1);
    if (F1 != IndMapEnd)
      F = F1;
  }
  if (CmpReg2 != 0) {
    InductionMap::iterator F2 = IndMap.find(CmpReg2);
    if (F2 != IndMapEnd) {
      if (F != IndMapEnd)
        return false;
      F = F2;
    }
  }
  if (F == IndMapEnd)
    return false;

  Reg = F->second.first;
  IVBump = F->second.second;
  IVOp = MRI->getVRegDef(F->first);
  return true;
}

// Return the comparison kind for the specified opcode.
HexagonHardwareLoops::Comparison::Kind
HexagonHardwareLoops::getComparisonKind(unsigned CondOpc,
                                        MachineOperand *InitialValue,
                                        const MachineOperand *EndValue,
                                        int64_t IVBump) const {
  Comparison::Kind Cmp = (Comparison::Kind)0;
  switch (CondOpc) {
  case Hexagon::C2_cmpeq:
  case Hexagon::C2_cmpeqi:
  case Hexagon::C2_cmpeqp:
    Cmp = Comparison::EQ;
    break;
  case Hexagon::C4_cmpneq:
  case Hexagon::C4_cmpneqi:
    Cmp = Comparison::NE;
    break;
  case Hexagon::C2_cmplt:
    Cmp = Comparison::LTs;
    break;
  case Hexagon::C2_cmpltu:
    Cmp = Comparison::LTu;
    break;
  case Hexagon::C4_cmplte:
  case Hexagon::C4_cmpltei:
    Cmp = Comparison::LEs;
    break;
  case Hexagon::C4_cmplteu:
  case Hexagon::C4_cmplteui:
    Cmp = Comparison::LEu;
    break;
  case Hexagon::C2_cmpgt:
  case Hexagon::C2_cmpgti:
  case Hexagon::C2_cmpgtp:
    Cmp = Comparison::GTs;
    break;
  case Hexagon::C2_cmpgtu:
  case Hexagon::C2_cmpgtui:
  case Hexagon::C2_cmpgtup:
    Cmp = Comparison::GTu;
    break;
  case Hexagon::C2_cmpgei:
    Cmp = Comparison::GEs;
    break;
  case Hexagon::C2_cmpgeui:
    Cmp = Comparison::GEs;
    break;
  default:
    return (Comparison::Kind)0;
  }
  return Cmp;
}

/// Analyze the statements in a loop to determine if the loop has
/// a computable trip count and, if so, return a value that represents
/// the trip count expression.
///
/// This function iterates over the phi nodes in the loop to check for
/// induction variable patterns that are used in the calculation for
/// the number of time the loop is executed.
CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L,
    SmallVectorImpl<MachineInstr *> &OldInsts) {
  MachineBasicBlock *TopMBB = L->getTopBlock();
  MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin();
  assert(PI != TopMBB->pred_end() &&
         "Loop must have more than one incoming edge!");
  MachineBasicBlock *Backedge = *PI++;
  if (PI == TopMBB->pred_end())  // dead loop?
    return nullptr;
  MachineBasicBlock *Incoming = *PI++;
  if (PI != TopMBB->pred_end())  // multiple backedges?
    return nullptr;

  // Make sure there is one incoming and one backedge and determine which
  // is which.
  if (L->contains(Incoming)) {
    if (L->contains(Backedge))
      return nullptr;
    std::swap(Incoming, Backedge);
  } else if (!L->contains(Backedge))
    return nullptr;

  // Look for the cmp instruction to determine if we can get a useful trip
  // count.  The trip count can be either a register or an immediate.  The
  // location of the value depends upon the type (reg or imm).
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
  if (!ExitingBlock)
    return nullptr;

  unsigned IVReg = 0;
  int64_t IVBump = 0;
  MachineInstr *IVOp;
  bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp);
  if (!FoundIV)
    return nullptr;

  MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);

  MachineOperand *InitialValue = nullptr;
  MachineInstr *IV_Phi = MRI->getVRegDef(IVReg);
  MachineBasicBlock *Latch = L->getLoopLatch();
  for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) {
    MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB();
    if (MBB == Preheader)
      InitialValue = &IV_Phi->getOperand(i);
    else if (MBB == Latch)
      IVReg = IV_Phi->getOperand(i).getReg();  // Want IV reg after bump.
  }
  if (!InitialValue)
    return nullptr;

  SmallVector<MachineOperand,2> Cond;
  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
  if (NotAnalyzed)
    return nullptr;

  MachineBasicBlock *Header = L->getHeader();
  // TB must be non-null.  If FB is also non-null, one of them must be
  // the header.  Otherwise, branch to TB could be exiting the loop, and
  // the fall through can go to the header.
  assert (TB && "Exit block without a branch?");
  if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
    MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
    SmallVector<MachineOperand,2> LCond;
    bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
    if (NotAnalyzed)
      return nullptr;
    if (TB == Latch)
      TB = (LTB == Header) ? LTB : LFB;
    else
      FB = (LTB == Header) ? LTB: LFB;
  }
  assert ((!FB || TB == Header || FB == Header) && "Branches not to header?");
  if (!TB || (FB && TB != Header && FB != Header))
    return nullptr;

  // Branches of form "if (!P) ..." cause HexagonInstrInfo::analyzeBranch
  // to put imm(0), followed by P in the vector Cond.
  // If TB is not the header, it means that the "not-taken" path must lead
  // to the header.
  bool Negated = TII->predOpcodeHasNot(Cond) ^ (TB != Header);
  unsigned PredReg, PredPos, PredRegFlags;
  if (!TII->getPredReg(Cond, PredReg, PredPos, PredRegFlags))
    return nullptr;
  MachineInstr *CondI = MRI->getVRegDef(PredReg);
  unsigned CondOpc = CondI->getOpcode();

  Register CmpReg1, CmpReg2;
  int Mask = 0, ImmValue = 0;
  bool AnalyzedCmp =
      TII->analyzeCompare(*CondI, CmpReg1, CmpReg2, Mask, ImmValue);
  if (!AnalyzedCmp)
    return nullptr;

  // The comparison operator type determines how we compute the loop
  // trip count.
  OldInsts.push_back(CondI);
  OldInsts.push_back(IVOp);

  // Sadly, the following code gets information based on the position
  // of the operands in the compare instruction.  This has to be done
  // this way, because the comparisons check for a specific relationship
  // between the operands (e.g. is-less-than), rather than to find out
  // what relationship the operands are in (as on PPC).
  Comparison::Kind Cmp;
  bool isSwapped = false;
  const MachineOperand &Op1 = CondI->getOperand(1);
  const MachineOperand &Op2 = CondI->getOperand(2);
  const MachineOperand *EndValue = nullptr;

  if (Op1.isReg()) {
    if (Op2.isImm() || Op1.getReg() == IVReg)
      EndValue = &Op2;
    else {
      EndValue = &Op1;
      isSwapped = true;
    }
  }

  if (!EndValue)
    return nullptr;

  Cmp = getComparisonKind(CondOpc, InitialValue, EndValue, IVBump);
  if (!Cmp)
    return nullptr;
  if (Negated)
    Cmp = Comparison::getNegatedComparison(Cmp);
  if (isSwapped)
    Cmp = Comparison::getSwappedComparison(Cmp);

  if (InitialValue->isReg()) {
    Register R = InitialValue->getReg();
    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
    if (!MDT->properlyDominates(DefBB, Header)) {
      int64_t V;
      if (!checkForImmediate(*InitialValue, V))
        return nullptr;
    }
    OldInsts.push_back(MRI->getVRegDef(R));
  }
  if (EndValue->isReg()) {
    Register R = EndValue->getReg();
    MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent();
    if (!MDT->properlyDominates(DefBB, Header)) {
      int64_t V;
      if (!checkForImmediate(*EndValue, V))
        return nullptr;
    }
    OldInsts.push_back(MRI->getVRegDef(R));
  }

  return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp);
}

/// Helper function that returns the expression that represents the
/// number of times a loop iterates.  The function takes the operands that
/// represent the loop start value, loop end value, and induction value.
/// Based upon these operands, the function attempts to compute the trip count.
CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop,
                                               const MachineOperand *Start,
                                               const MachineOperand *End,
                                               unsigned IVReg,
                                               int64_t IVBump,
                                               Comparison::Kind Cmp) const {
  // Cannot handle comparison EQ, i.e. while (A == B).
  if (Cmp == Comparison::EQ)
    return nullptr;

  // Check if either the start or end values are an assignment of an immediate.
  // If so, use the immediate value rather than the register.
  if (Start->isReg()) {
    const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg());
    if (StartValInstr && (StartValInstr->getOpcode() == Hexagon::A2_tfrsi ||
                          StartValInstr->getOpcode() == Hexagon::A2_tfrpi))
      Start = &StartValInstr->getOperand(1);
  }
  if (End->isReg()) {
    const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
    if (EndValInstr && (EndValInstr->getOpcode() == Hexagon::A2_tfrsi ||
                        EndValInstr->getOpcode() == Hexagon::A2_tfrpi))
      End = &EndValInstr->getOperand(1);
  }

  if (!Start->isReg() && !Start->isImm())
    return nullptr;
  if (!End->isReg() && !End->isImm())
    return nullptr;

  bool CmpLess =     Cmp & Comparison::L;
  bool CmpGreater =  Cmp & Comparison::G;
  bool CmpHasEqual = Cmp & Comparison::EQ;

  // Avoid certain wrap-arounds.  This doesn't detect all wrap-arounds.
  if (CmpLess && IVBump < 0)
    // Loop going while iv is "less" with the iv value going down.  Must wrap.
    return nullptr;

  if (CmpGreater && IVBump > 0)
    // Loop going while iv is "greater" with the iv value going up.  Must wrap.
    return nullptr;

  // Phis that may feed into the loop.
  LoopFeederMap LoopFeederPhi;

  // Check if the initial value may be zero and can be decremented in the first
  // iteration. If the value is zero, the endloop instruction will not decrement
  // the loop counter, so we shouldn't generate a hardware loop in this case.
  if (loopCountMayWrapOrUnderFlow(Start, End, Loop->getLoopPreheader(), Loop,
                                  LoopFeederPhi))
      return nullptr;

  if (Start->isImm() && End->isImm()) {
    // Both, start and end are immediates.
    int64_t StartV = Start->getImm();
    int64_t EndV = End->getImm();
    int64_t Dist = EndV - StartV;
    if (Dist == 0)
      return nullptr;

    bool Exact = (Dist % IVBump) == 0;

    if (Cmp == Comparison::NE) {
      if (!Exact)
        return nullptr;
      if ((Dist < 0) ^ (IVBump < 0))
        return nullptr;
    }

    // For comparisons that include the final value (i.e. include equality
    // with the final value), we need to increase the distance by 1.
    if (CmpHasEqual)
      Dist = Dist > 0 ? Dist+1 : Dist-1;

    // For the loop to iterate, CmpLess should imply Dist > 0.  Similarly,
    // CmpGreater should imply Dist < 0.  These conditions could actually
    // fail, for example, in unreachable code (which may still appear to be
    // reachable in the CFG).
    if ((CmpLess && Dist < 0) || (CmpGreater && Dist > 0))
      return nullptr;

    // "Normalized" distance, i.e. with the bump set to +-1.
    int64_t Dist1 = (IVBump > 0) ? (Dist +  (IVBump - 1)) / IVBump
                                 : (-Dist + (-IVBump - 1)) / (-IVBump);
    assert (Dist1 > 0 && "Fishy thing.  Both operands have the same sign.");

    uint64_t Count = Dist1;

    if (Count > 0xFFFFFFFFULL)
      return nullptr;

    return new CountValue(CountValue::CV_Immediate, Count);
  }

  // A general case: Start and End are some values, but the actual
  // iteration count may not be available.  If it is not, insert
  // a computation of it into the preheader.

  // If the induction variable bump is not a power of 2, quit.
  // Othwerise we'd need a general integer division.
  if (!isPowerOf2_64(std::abs(IVBump)))
    return nullptr;

  MachineBasicBlock *PH = MLI->findLoopPreheader(Loop, SpecPreheader);
  assert (PH && "Should have a preheader by now");
  MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator();
  DebugLoc DL;
  if (InsertPos != PH->end())
    DL = InsertPos->getDebugLoc();

  // If Start is an immediate and End is a register, the trip count
  // will be "reg - imm".  Hexagon's "subtract immediate" instruction
  // is actually "reg + -imm".

  // If the loop IV is going downwards, i.e. if the bump is negative,
  // then the iteration count (computed as End-Start) will need to be
  // negated.  To avoid the negation, just swap Start and End.
  if (IVBump < 0) {
    std::swap(Start, End);
    IVBump = -IVBump;
  }
  // Cmp may now have a wrong direction, e.g.  LEs may now be GEs.
  // Signedness, and "including equality" are preserved.

  bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm)
  bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg)

  int64_t StartV = 0, EndV = 0;
  if (Start->isImm())
    StartV = Start->getImm();
  if (End->isImm())
    EndV = End->getImm();

  int64_t AdjV = 0;
  // To compute the iteration count, we would need this computation:
  //   Count = (End - Start + (IVBump-1)) / IVBump
  // or, when CmpHasEqual:
  //   Count = (End - Start + (IVBump-1)+1) / IVBump
  // The "IVBump-1" part is the adjustment (AdjV).  We can avoid
  // generating an instruction specifically to add it if we can adjust
  // the immediate values for Start or End.

  if (CmpHasEqual) {
    // Need to add 1 to the total iteration count.
    if (Start->isImm())
      StartV--;
    else if (End->isImm())
      EndV++;
    else
      AdjV += 1;
  }

  if (Cmp != Comparison::NE) {
    if (Start->isImm())
      StartV -= (IVBump-1);
    else if (End->isImm())
      EndV += (IVBump-1);
    else
      AdjV += (IVBump-1);
  }

  unsigned R = 0, SR = 0;
  if (Start->isReg()) {
    R = Start->getReg();
    SR = Start->getSubReg();
  } else {
    R = End->getReg();
    SR = End->getSubReg();
  }
  const TargetRegisterClass *RC = MRI->getRegClass(R);
  // Hardware loops cannot handle 64-bit registers.  If it's a double
  // register, it has to have a subregister.
  if (!SR && RC == &Hexagon::DoubleRegsRegClass)
    return nullptr;
  const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass;

  // Compute DistR (register with the distance between Start and End).
  unsigned DistR, DistSR;

  // Avoid special case, where the start value is an imm(0).
  if (Start->isImm() && StartV == 0) {
    DistR = End->getReg();
    DistSR = End->getSubReg();
  } else {
    const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::A2_sub) :
                              (RegToImm ? TII->get(Hexagon::A2_subri) :
                                          TII->get(Hexagon::A2_addi));
    if (RegToReg || RegToImm) {
      Register SubR = MRI->createVirtualRegister(IntRC);
      MachineInstrBuilder SubIB =
        BuildMI(*PH, InsertPos, DL, SubD, SubR);

      if (RegToReg)
        SubIB.addReg(End->getReg(), 0, End->getSubReg())
          .addReg(Start->getReg(), 0, Start->getSubReg());
      else
        SubIB.addImm(EndV)
          .addReg(Start->getReg(), 0, Start->getSubReg());
      DistR = SubR;
    } else {
      // If the loop has been unrolled, we should use the original loop count
      // instead of recalculating the value. This will avoid additional
      // 'Add' instruction.
      const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg());
      if (EndValInstr->getOpcode() == Hexagon::A2_addi &&
          EndValInstr->getOperand(1).getSubReg() == 0 &&
          EndValInstr->getOperand(2).getImm() == StartV) {
        DistR = EndValInstr->getOperand(1).getReg();
      } else {
        Register SubR = MRI->createVirtualRegister(IntRC);
        MachineInstrBuilder SubIB =
          BuildMI(*PH, InsertPos, DL, SubD, SubR);
        SubIB.addReg(End->getReg(), 0, End->getSubReg())
             .addImm(-StartV);
        DistR = SubR;
      }
    }
    DistSR = 0;
  }

  // From DistR, compute AdjR (register with the adjusted distance).
  unsigned AdjR, AdjSR;

  if (AdjV == 0) {
    AdjR = DistR;
    AdjSR = DistSR;
  } else {
    // Generate CountR = ADD DistR, AdjVal
    Register AddR = MRI->createVirtualRegister(IntRC);
    MCInstrDesc const &AddD = TII->get(Hexagon::A2_addi);
    BuildMI(*PH, InsertPos, DL, AddD, AddR)
      .addReg(DistR, 0, DistSR)
      .addImm(AdjV);

    AdjR = AddR;
    AdjSR = 0;
  }

  // From AdjR, compute CountR (register with the final count).
  unsigned CountR, CountSR;

  if (IVBump == 1) {
    CountR = AdjR;
    CountSR = AdjSR;
  } else {
    // The IV bump is a power of two. Log_2(IV bump) is the shift amount.
    unsigned Shift = Log2_32(IVBump);

    // Generate NormR = LSR DistR, Shift.
    Register LsrR = MRI->createVirtualRegister(IntRC);
    const MCInstrDesc &LsrD = TII->get(Hexagon::S2_lsr_i_r);
    BuildMI(*PH, InsertPos, DL, LsrD, LsrR)
      .addReg(AdjR, 0, AdjSR)
      .addImm(Shift);

    CountR = LsrR;
    CountSR = 0;
  }

  return new CountValue(CountValue::CV_Register, CountR, CountSR);
}

/// Return true if the operation is invalid within hardware loop.
bool HexagonHardwareLoops::isInvalidLoopOperation(const MachineInstr *MI,
                                                  bool IsInnerHWLoop) const {
  // Call is not allowed because the callee may use a hardware loop except for
  // the case when the call never returns.
  if (MI->getDesc().isCall())
    return !TII->doesNotReturn(*MI);

  // Check if the instruction defines a hardware loop register.
  using namespace Hexagon;

  static const unsigned Regs01[] = { LC0, SA0, LC1, SA1 };
  static const unsigned Regs1[]  = { LC1, SA1 };
  auto CheckRegs = IsInnerHWLoop ? makeArrayRef(Regs01, array_lengthof(Regs01))
                                 : makeArrayRef(Regs1, array_lengthof(Regs1));
  for (unsigned R : CheckRegs)
    if (MI->modifiesRegister(R, TRI))
      return true;

  return false;
}

/// Return true if the loop contains an instruction that inhibits
/// the use of the hardware loop instruction.
bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L,
    bool IsInnerHWLoop) const {
  LLVM_DEBUG(dbgs() << "\nhw_loop head, "
                    << printMBBReference(**L->block_begin()));
  for (MachineBasicBlock *MBB : L->getBlocks()) {
    for (MachineBasicBlock::iterator
           MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) {
      const MachineInstr *MI = &*MII;
      if (isInvalidLoopOperation(MI, IsInnerHWLoop)) {
        LLVM_DEBUG(dbgs() << "\nCannot convert to hw_loop due to:";
                   MI->dump(););
        return true;
      }
    }
  }
  return false;
}

/// Returns true if the instruction is dead.  This was essentially
/// copied from DeadMachineInstructionElim::isDead, but with special cases
/// for inline asm, physical registers and instructions with side effects
/// removed.
bool HexagonHardwareLoops::isDead(const MachineInstr *MI,
                              SmallVectorImpl<MachineInstr *> &DeadPhis) const {
  // Examine each operand.
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || !MO.isDef())
      continue;

    Register Reg = MO.getReg();
    if (MRI->use_nodbg_empty(Reg))
      continue;

    using use_nodbg_iterator = MachineRegisterInfo::use_nodbg_iterator;

    // This instruction has users, but if the only user is the phi node for the
    // parent block, and the only use of that phi node is this instruction, then
    // this instruction is dead: both it (and the phi node) can be removed.
    use_nodbg_iterator I = MRI->use_nodbg_begin(Reg);
    use_nodbg_iterator End = MRI->use_nodbg_end();
    if (std::next(I) != End || !I->getParent()->isPHI())
      return false;

    MachineInstr *OnePhi = I->getParent();
    for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) {
      const MachineOperand &OPO = OnePhi->getOperand(j);
      if (!OPO.isReg() || !OPO.isDef())
        continue;

      Register OPReg = OPO.getReg();
      use_nodbg_iterator nextJ;
      for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg);
           J != End; J = nextJ) {
        nextJ = std::next(J);
        MachineOperand &Use = *J;
        MachineInstr *UseMI = Use.getParent();

        // If the phi node has a user that is not MI, bail.
        if (MI != UseMI)
          return false;
      }
    }
    DeadPhis.push_back(OnePhi);
  }

  // If there are no defs with uses, the instruction is dead.
  return true;
}

void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) {
  // This procedure was essentially copied from DeadMachineInstructionElim.

  SmallVector<MachineInstr*, 1> DeadPhis;
  if (isDead(MI, DeadPhis)) {
    LLVM_DEBUG(dbgs() << "HW looping will remove: " << *MI);

    // It is possible that some DBG_VALUE instructions refer to this
    // instruction.  Examine each def operand for such references;
    // if found, mark the DBG_VALUE as undef (but don't delete it).
    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg() || !MO.isDef())
        continue;
      Register Reg = MO.getReg();
      MachineRegisterInfo::use_iterator nextI;
      for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg),
           E = MRI->use_end(); I != E; I = nextI) {
        nextI = std::next(I);  // I is invalidated by the setReg
        MachineOperand &Use = *I;
        MachineInstr *UseMI = I->getParent();
        if (UseMI == MI)
          continue;
        if (Use.isDebug())
          UseMI->getOperand(0).setReg(0U);
      }
    }

    MI->eraseFromParent();
    for (unsigned i = 0; i < DeadPhis.size(); ++i)
      DeadPhis[i]->eraseFromParent();
  }
}

/// Check if the loop is a candidate for converting to a hardware
/// loop.  If so, then perform the transformation.
///
/// This function works on innermost loops first.  A loop can be converted
/// if it is a counting loop; either a register value or an immediate.
///
/// The code makes several assumptions about the representation of the loop
/// in llvm.
bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L,
                                                 bool &RecL0used,
                                                 bool &RecL1used) {
  // This is just for sanity.
  assert(L->getHeader() && "Loop without a header?");

  bool Changed = false;
  bool L0Used = false;
  bool L1Used = false;

  // Process nested loops first.
  for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
    Changed |= convertToHardwareLoop(*I, RecL0used, RecL1used);
    L0Used |= RecL0used;
    L1Used |= RecL1used;
  }

  // If a nested loop has been converted, then we can't convert this loop.
  if (Changed && L0Used && L1Used)
    return Changed;

  unsigned LOOP_i;
  unsigned LOOP_r;
  unsigned ENDLOOP;

  // Flag used to track loopN instruction:
  // 1 - Hardware loop is being generated for the inner most loop.
  // 0 - Hardware loop is being generated for the outer loop.
  unsigned IsInnerHWLoop = 1;

  if (L0Used) {
    LOOP_i = Hexagon::J2_loop1i;
    LOOP_r = Hexagon::J2_loop1r;
    ENDLOOP = Hexagon::ENDLOOP1;
    IsInnerHWLoop = 0;
  } else {
    LOOP_i = Hexagon::J2_loop0i;
    LOOP_r = Hexagon::J2_loop0r;
    ENDLOOP = Hexagon::ENDLOOP0;
  }

#ifndef NDEBUG
  // Stop trying after reaching the limit (if any).
  int Limit = HWLoopLimit;
  if (Limit >= 0) {
    if (Counter >= HWLoopLimit)
      return false;
    Counter++;
  }
#endif

  // Does the loop contain any invalid instructions?
  if (containsInvalidInstruction(L, IsInnerHWLoop))
    return false;

  MachineBasicBlock *LastMBB = L->findLoopControlBlock();
  // Don't generate hw loop if the loop has more than one exit.
  if (!LastMBB)
    return false;

  MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator();
  if (LastI == LastMBB->end())
    return false;

  // Is the induction variable bump feeding the latch condition?
  if (!fixupInductionVariable(L))
    return false;

  // Ensure the loop has a preheader: the loop instruction will be
  // placed there.
  MachineBasicBlock *Preheader = MLI->findLoopPreheader(L, SpecPreheader);
  if (!Preheader) {
    Preheader = createPreheaderForLoop(L);
    if (!Preheader)
      return false;
  }

  MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator();

  SmallVector<MachineInstr*, 2> OldInsts;
  // Are we able to determine the trip count for the loop?
  CountValue *TripCount = getLoopTripCount(L, OldInsts);
  if (!TripCount)
    return false;

  // Is the trip count available in the preheader?
  if (TripCount->isReg()) {
    // There will be a use of the register inserted into the preheader,
    // so make sure that the register is actually defined at that point.
    MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg());
    MachineBasicBlock *BBDef = TCDef->getParent();
    if (!MDT->dominates(BBDef, Preheader))
      return false;
  }

  // Determine the loop start.
  MachineBasicBlock *TopBlock = L->getTopBlock();
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
  MachineBasicBlock *LoopStart = nullptr;
  if (ExitingBlock !=  L->getLoopLatch()) {
    MachineBasicBlock *TB = nullptr, *FB = nullptr;
    SmallVector<MachineOperand, 2> Cond;

    if (TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false))
      return false;

    if (L->contains(TB))
      LoopStart = TB;
    else if (L->contains(FB))
      LoopStart = FB;
    else
      return false;
  }
  else
    LoopStart = TopBlock;

  // Convert the loop to a hardware loop.
  LLVM_DEBUG(dbgs() << "Change to hardware loop at "; L->dump());
  DebugLoc DL;
  if (InsertPos != Preheader->end())
    DL = InsertPos->getDebugLoc();

  if (TripCount->isReg()) {
    // Create a copy of the loop count register.
    Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
    BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg)
      .addReg(TripCount->getReg(), 0, TripCount->getSubReg());
    // Add the Loop instruction to the beginning of the loop.
    BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r)).addMBB(LoopStart)
      .addReg(CountReg);
  } else {
    assert(TripCount->isImm() && "Expecting immediate value for trip count");
    // Add the Loop immediate instruction to the beginning of the loop,
    // if the immediate fits in the instructions.  Otherwise, we need to
    // create a new virtual register.
    int64_t CountImm = TripCount->getImm();
    if (!TII->isValidOffset(LOOP_i, CountImm, TRI)) {
      Register CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
      BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::A2_tfrsi), CountReg)
        .addImm(CountImm);
      BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_r))
        .addMBB(LoopStart).addReg(CountReg);
    } else
      BuildMI(*Preheader, InsertPos, DL, TII->get(LOOP_i))
        .addMBB(LoopStart).addImm(CountImm);
  }

  // Make sure the loop start always has a reference in the CFG.  We need
  // to create a BlockAddress operand to get this mechanism to work both the
  // MachineBasicBlock and BasicBlock objects need the flag set.
  LoopStart->setHasAddressTaken();
  // This line is needed to set the hasAddressTaken flag on the BasicBlock
  // object.
  BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock()));

  // Replace the loop branch with an endloop instruction.
  DebugLoc LastIDL = LastI->getDebugLoc();
  BuildMI(*LastMBB, LastI, LastIDL, TII->get(ENDLOOP)).addMBB(LoopStart);

  // The loop ends with either:
  //  - a conditional branch followed by an unconditional branch, or
  //  - a conditional branch to the loop start.
  if (LastI->getOpcode() == Hexagon::J2_jumpt ||
      LastI->getOpcode() == Hexagon::J2_jumpf) {
    // Delete one and change/add an uncond. branch to out of the loop.
    MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB();
    LastI = LastMBB->erase(LastI);
    if (!L->contains(BranchTarget)) {
      if (LastI != LastMBB->end())
        LastI = LastMBB->erase(LastI);
      SmallVector<MachineOperand, 0> Cond;
      TII->insertBranch(*LastMBB, BranchTarget, nullptr, Cond, LastIDL);
    }
  } else {
    // Conditional branch to loop start; just delete it.
    LastMBB->erase(LastI);
  }
  delete TripCount;

  // The induction operation and the comparison may now be
  // unneeded. If these are unneeded, then remove them.
  for (unsigned i = 0; i < OldInsts.size(); ++i)
    removeIfDead(OldInsts[i]);

  ++NumHWLoops;

  // Set RecL1used and RecL0used only after hardware loop has been
  // successfully generated. Doing it earlier can cause wrong loop instruction
  // to be used.
  if (L0Used) // Loop0 was already used. So, the correct loop must be loop1.
    RecL1used = true;
  else
    RecL0used = true;

  return true;
}

bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI,
                                            MachineInstr *CmpI) {
  assert (BumpI != CmpI && "Bump and compare in the same instruction?");

  MachineBasicBlock *BB = BumpI->getParent();
  if (CmpI->getParent() != BB)
    return false;

  using instr_iterator = MachineBasicBlock::instr_iterator;

  // Check if things are in order to begin with.
  for (instr_iterator I(BumpI), E = BB->instr_end(); I != E; ++I)
    if (&*I == CmpI)
      return true;

  // Out of order.
  Register PredR = CmpI->getOperand(0).getReg();
  bool FoundBump = false;
  instr_iterator CmpIt = CmpI->getIterator(), NextIt = std::next(CmpIt);
  for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) {
    MachineInstr *In = &*I;
    for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) {
      MachineOperand &MO = In->getOperand(i);
      if (MO.isReg() && MO.isUse()) {
        if (MO.getReg() == PredR)  // Found an intervening use of PredR.
          return false;
      }
    }

    if (In == BumpI) {
      BB->splice(++BumpI->getIterator(), BB, CmpI->getIterator());
      FoundBump = true;
      break;
    }
  }
  assert (FoundBump && "Cannot determine instruction order");
  return FoundBump;
}

/// This function is required to break recursion. Visiting phis in a loop may
/// result in recursion during compilation. We break the recursion by making
/// sure that we visit a MachineOperand and its definition in a
/// MachineInstruction only once. If we attempt to visit more than once, then
/// there is recursion, and will return false.
bool HexagonHardwareLoops::isLoopFeeder(MachineLoop *L, MachineBasicBlock *A,
                                        MachineInstr *MI,
                                        const MachineOperand *MO,
                                        LoopFeederMap &LoopFeederPhi) const {
  if (LoopFeederPhi.find(MO->getReg()) == LoopFeederPhi.end()) {
    LLVM_DEBUG(dbgs() << "\nhw_loop head, "
                      << printMBBReference(**L->block_begin()));
    // Ignore all BBs that form Loop.
    for (MachineBasicBlock *MBB : L->getBlocks()) {
      if (A == MBB)
        return false;
    }
    MachineInstr *Def = MRI->getVRegDef(MO->getReg());
    LoopFeederPhi.insert(std::make_pair(MO->getReg(), Def));
    return true;
  } else
    // Already visited node.
    return false;
}

/// Return true if a Phi may generate a value that can underflow.
/// This function calls loopCountMayWrapOrUnderFlow for each Phi operand.
bool HexagonHardwareLoops::phiMayWrapOrUnderflow(
    MachineInstr *Phi, const MachineOperand *EndVal, MachineBasicBlock *MBB,
    MachineLoop *L, LoopFeederMap &LoopFeederPhi) const {
  assert(Phi->isPHI() && "Expecting a Phi.");
  // Walk through each Phi, and its used operands. Make sure that
  // if there is recursion in Phi, we won't generate hardware loops.
  for (int i = 1, n = Phi->getNumOperands(); i < n; i += 2)
    if (isLoopFeeder(L, MBB, Phi, &(Phi->getOperand(i)), LoopFeederPhi))
      if (loopCountMayWrapOrUnderFlow(&(Phi->getOperand(i)), EndVal,
                                      Phi->getParent(), L, LoopFeederPhi))
        return true;
  return false;
}

/// Return true if the induction variable can underflow in the first iteration.
/// An example, is an initial unsigned value that is 0 and is decrement in the
/// first itertion of a do-while loop.  In this case, we cannot generate a
/// hardware loop because the endloop instruction does not decrement the loop
/// counter if it is <= 1. We only need to perform this analysis if the
/// initial value is a register.
///
/// This function assumes the initial value may underfow unless proven
/// otherwise. If the type is signed, then we don't care because signed
/// underflow is undefined. We attempt to prove the initial value is not
/// zero by perfoming a crude analysis of the loop counter. This function
/// checks if the initial value is used in any comparison prior to the loop
/// and, if so, assumes the comparison is a range check. This is inexact,
/// but will catch the simple cases.
bool HexagonHardwareLoops::loopCountMayWrapOrUnderFlow(
    const MachineOperand *InitVal, const MachineOperand *EndVal,
    MachineBasicBlock *MBB, MachineLoop *L,
    LoopFeederMap &LoopFeederPhi) const {
  // Only check register values since they are unknown.
  if (!InitVal->isReg())
    return false;

  if (!EndVal->isImm())
    return false;

  // A register value that is assigned an immediate is a known value, and it
  // won't underflow in the first iteration.
  int64_t Imm;
  if (checkForImmediate(*InitVal, Imm))
    return (EndVal->getImm() == Imm);

  Register Reg = InitVal->getReg();

  // We don't know the value of a physical register.
  if (!Register::isVirtualRegister(Reg))
    return true;

  MachineInstr *Def = MRI->getVRegDef(Reg);
  if (!Def)
    return true;

  // If the initial value is a Phi or copy and the operands may not underflow,
  // then the definition cannot be underflow either.
  if (Def->isPHI() && !phiMayWrapOrUnderflow(Def, EndVal, Def->getParent(),
                                             L, LoopFeederPhi))
    return false;
  if (Def->isCopy() && !loopCountMayWrapOrUnderFlow(&(Def->getOperand(1)),
                                                    EndVal, Def->getParent(),
                                                    L, LoopFeederPhi))
    return false;

  // Iterate over the uses of the initial value. If the initial value is used
  // in a compare, then we assume this is a range check that ensures the loop
  // doesn't underflow. This is not an exact test and should be improved.
  for (MachineRegisterInfo::use_instr_nodbg_iterator I = MRI->use_instr_nodbg_begin(Reg),
         E = MRI->use_instr_nodbg_end(); I != E; ++I) {
    MachineInstr *MI = &*I;
    Register CmpReg1, CmpReg2;
    int CmpMask = 0, CmpValue = 0;

    if (!TII->analyzeCompare(*MI, CmpReg1, CmpReg2, CmpMask, CmpValue))
      continue;

    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    SmallVector<MachineOperand, 2> Cond;
    if (TII->analyzeBranch(*MI->getParent(), TBB, FBB, Cond, false))
      continue;

    Comparison::Kind Cmp =
        getComparisonKind(MI->getOpcode(), nullptr, nullptr, 0);
    if (Cmp == 0)
      continue;
    if (TII->predOpcodeHasNot(Cond) ^ (TBB != MBB))
      Cmp = Comparison::getNegatedComparison(Cmp);
    if (CmpReg2 != 0 && CmpReg2 == Reg)
      Cmp = Comparison::getSwappedComparison(Cmp);

    // Signed underflow is undefined.
    if (Comparison::isSigned(Cmp))
      return false;

    // Check if there is a comparison of the initial value. If the initial value
    // is greater than or not equal to another value, then assume this is a
    // range check.
    if ((Cmp & Comparison::G) || Cmp == Comparison::NE)
      return false;
  }

  // OK - this is a hack that needs to be improved. We really need to analyze
  // the instructions performed on the initial value. This works on the simplest
  // cases only.
  if (!Def->isCopy() && !Def->isPHI())
    return false;

  return true;
}

bool HexagonHardwareLoops::checkForImmediate(const MachineOperand &MO,
                                             int64_t &Val) const {
  if (MO.isImm()) {
    Val = MO.getImm();
    return true;
  }
  if (!MO.isReg())
    return false;

  // MO is a register. Check whether it is defined as an immediate value,
  // and if so, get the value of it in TV. That value will then need to be
  // processed to handle potential subregisters in MO.
  int64_t TV;

  Register R = MO.getReg();
  if (!Register::isVirtualRegister(R))
    return false;
  MachineInstr *DI = MRI->getVRegDef(R);
  unsigned DOpc = DI->getOpcode();
  switch (DOpc) {
    case TargetOpcode::COPY:
    case Hexagon::A2_tfrsi:
    case Hexagon::A2_tfrpi:
    case Hexagon::CONST32:
    case Hexagon::CONST64:
      // Call recursively to avoid an extra check whether operand(1) is
      // indeed an immediate (it could be a global address, for example),
      // plus we can handle COPY at the same time.
      if (!checkForImmediate(DI->getOperand(1), TV))
        return false;
      break;
    case Hexagon::A2_combineii:
    case Hexagon::A4_combineir:
    case Hexagon::A4_combineii:
    case Hexagon::A4_combineri:
    case Hexagon::A2_combinew: {
      const MachineOperand &S1 = DI->getOperand(1);
      const MachineOperand &S2 = DI->getOperand(2);
      int64_t V1, V2;
      if (!checkForImmediate(S1, V1) || !checkForImmediate(S2, V2))
        return false;
      TV = V2 | (static_cast<uint64_t>(V1) << 32);
      break;
    }
    case TargetOpcode::REG_SEQUENCE: {
      const MachineOperand &S1 = DI->getOperand(1);
      const MachineOperand &S3 = DI->getOperand(3);
      int64_t V1, V3;
      if (!checkForImmediate(S1, V1) || !checkForImmediate(S3, V3))
        return false;
      unsigned Sub2 = DI->getOperand(2).getImm();
      unsigned Sub4 = DI->getOperand(4).getImm();
      if (Sub2 == Hexagon::isub_lo && Sub4 == Hexagon::isub_hi)
        TV = V1 | (V3 << 32);
      else if (Sub2 == Hexagon::isub_hi && Sub4 == Hexagon::isub_lo)
        TV = V3 | (V1 << 32);
      else
        llvm_unreachable("Unexpected form of REG_SEQUENCE");
      break;
    }

    default:
      return false;
  }

  // By now, we should have successfully obtained the immediate value defining
  // the register referenced in MO. Handle a potential use of a subregister.
  switch (MO.getSubReg()) {
    case Hexagon::isub_lo:
      Val = TV & 0xFFFFFFFFULL;
      break;
    case Hexagon::isub_hi:
      Val = (TV >> 32) & 0xFFFFFFFFULL;
      break;
    default:
      Val = TV;
      break;
  }
  return true;
}

void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) {
  if (MO.isImm()) {
    MO.setImm(Val);
    return;
  }

  assert(MO.isReg());
  Register R = MO.getReg();
  MachineInstr *DI = MRI->getVRegDef(R);

  const TargetRegisterClass *RC = MRI->getRegClass(R);
  Register NewR = MRI->createVirtualRegister(RC);
  MachineBasicBlock &B = *DI->getParent();
  DebugLoc DL = DI->getDebugLoc();
  BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR).addImm(Val);
  MO.setReg(NewR);
}

static bool isImmValidForOpcode(unsigned CmpOpc, int64_t Imm) {
  // These two instructions are not extendable.
  if (CmpOpc == Hexagon::A4_cmpbeqi)
    return isUInt<8>(Imm);
  if (CmpOpc == Hexagon::A4_cmpbgti)
    return isInt<8>(Imm);
  // The rest of the comparison-with-immediate instructions are extendable.
  return true;
}

bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) {
  MachineBasicBlock *Header = L->getHeader();
  MachineBasicBlock *Latch = L->getLoopLatch();
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();

  if (!(Header && Latch && ExitingBlock))
    return false;

  // These data structures follow the same concept as the corresponding
  // ones in findInductionRegister (where some comments are).
  using RegisterBump = std::pair<unsigned, int64_t>;
  using RegisterInduction = std::pair<unsigned, RegisterBump>;
  using RegisterInductionSet = std::set<RegisterInduction>;

  // Register candidates for induction variables, with their associated bumps.
  RegisterInductionSet IndRegs;

  // Look for induction patterns:
  //   %1 = PHI ..., [ latch, %2 ]
  //   %2 = ADD %1, imm
  using instr_iterator = MachineBasicBlock::instr_iterator;

  for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
       I != E && I->isPHI(); ++I) {
    MachineInstr *Phi = &*I;

    // Have a PHI instruction.
    for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) {
      if (Phi->getOperand(i+1).getMBB() != Latch)
        continue;

      Register PhiReg = Phi->getOperand(i).getReg();
      MachineInstr *DI = MRI->getVRegDef(PhiReg);

      if (DI->getDesc().isAdd()) {
        // If the register operand to the add/sub is the PHI we are looking
        // at, this meets the induction pattern.
        Register IndReg = DI->getOperand(1).getReg();
        MachineOperand &Opnd2 = DI->getOperand(2);
        int64_t V;
        if (MRI->getVRegDef(IndReg) == Phi && checkForImmediate(Opnd2, V)) {
          Register UpdReg = DI->getOperand(0).getReg();
          IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V)));
        }
      }
    }  // for (i)
  }  // for (instr)

  if (IndRegs.empty())
    return false;

  MachineBasicBlock *TB = nullptr, *FB = nullptr;
  SmallVector<MachineOperand,2> Cond;
  // analyzeBranch returns true if it fails to analyze branch.
  bool NotAnalyzed = TII->analyzeBranch(*ExitingBlock, TB, FB, Cond, false);
  if (NotAnalyzed || Cond.empty())
    return false;

  if (ExitingBlock != Latch && (TB == Latch || FB == Latch)) {
    MachineBasicBlock *LTB = nullptr, *LFB = nullptr;
    SmallVector<MachineOperand,2> LCond;
    bool NotAnalyzed = TII->analyzeBranch(*Latch, LTB, LFB, LCond, false);
    if (NotAnalyzed)
      return false;

    // Since latch is not the exiting block, the latch branch should be an
    // unconditional branch to the loop header.
    if (TB == Latch)
      TB = (LTB == Header) ? LTB : LFB;
    else
      FB = (LTB == Header) ? LTB : LFB;
  }
  if (TB != Header) {
    if (FB != Header) {
      // The latch/exit block does not go back to the header.
      return false;
    }
    // FB is the header (i.e., uncond. jump to branch header)
    // In this case, the LoopBody -> TB should not be a back edge otherwise
    // it could result in an infinite loop after conversion to hw_loop.
    // This case can happen when the Latch has two jumps like this:
    // Jmp_c OuterLoopHeader <-- TB
    // Jmp   InnerLoopHeader <-- FB
    if (MDT->dominates(TB, FB))
      return false;
  }

  // Expecting a predicate register as a condition.  It won't be a hardware
  // predicate register at this point yet, just a vreg.
  // HexagonInstrInfo::analyzeBranch for negated branches inserts imm(0)
  // into Cond, followed by the predicate register.  For non-negated branches
  // it's just the register.
  unsigned CSz = Cond.size();
  if (CSz != 1 && CSz != 2)
    return false;

  if (!Cond[CSz-1].isReg())
    return false;

  Register P = Cond[CSz - 1].getReg();
  MachineInstr *PredDef = MRI->getVRegDef(P);

  if (!PredDef->isCompare())
    return false;

  SmallSet<unsigned,2> CmpRegs;
  MachineOperand *CmpImmOp = nullptr;

  // Go over all operands to the compare and look for immediate and register
  // operands.  Assume that if the compare has a single register use and a
  // single immediate operand, then the register is being compared with the
  // immediate value.
  for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
    MachineOperand &MO = PredDef->getOperand(i);
    if (MO.isReg()) {
      // Skip all implicit references.  In one case there was:
      //   %140 = FCMPUGT32_rr %138, %139, implicit %usr
      if (MO.isImplicit())
        continue;
      if (MO.isUse()) {
        if (!isImmediate(MO)) {
          CmpRegs.insert(MO.getReg());
          continue;
        }
        // Consider the register to be the "immediate" operand.
        if (CmpImmOp)
          return false;
        CmpImmOp = &MO;
      }
    } else if (MO.isImm()) {
      if (CmpImmOp)    // A second immediate argument?  Confusing.  Bail out.
        return false;
      CmpImmOp = &MO;
    }
  }

  if (CmpRegs.empty())
    return false;

  // Check if the compared register follows the order we want.  Fix if needed.
  for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end();
       I != E; ++I) {
    // This is a success.  If the register used in the comparison is one that
    // we have identified as a bumped (updated) induction register, there is
    // nothing to do.
    if (CmpRegs.count(I->first))
      return true;

    // Otherwise, if the register being compared comes out of a PHI node,
    // and has been recognized as following the induction pattern, and is
    // compared against an immediate, we can fix it.
    const RegisterBump &RB = I->second;
    if (CmpRegs.count(RB.first)) {
      if (!CmpImmOp) {
        // If both operands to the compare instruction are registers, see if
        // it can be changed to use induction register as one of the operands.
        MachineInstr *IndI = nullptr;
        MachineInstr *nonIndI = nullptr;
        MachineOperand *IndMO = nullptr;
        MachineOperand *nonIndMO = nullptr;

        for (unsigned i = 1, n = PredDef->getNumOperands(); i < n; ++i) {
          MachineOperand &MO = PredDef->getOperand(i);
          if (MO.isReg() && MO.getReg() == RB.first) {
            LLVM_DEBUG(dbgs() << "\n DefMI(" << i
                              << ") = " << *(MRI->getVRegDef(I->first)));
            if (IndI)
              return false;

            IndI = MRI->getVRegDef(I->first);
            IndMO = &MO;
          } else if (MO.isReg()) {
            LLVM_DEBUG(dbgs() << "\n DefMI(" << i
                              << ") = " << *(MRI->getVRegDef(MO.getReg())));
            if (nonIndI)
              return false;

            nonIndI = MRI->getVRegDef(MO.getReg());
            nonIndMO = &MO;
          }
        }
        if (IndI && nonIndI &&
            nonIndI->getOpcode() == Hexagon::A2_addi &&
            nonIndI->getOperand(2).isImm() &&
            nonIndI->getOperand(2).getImm() == - RB.second) {
          bool Order = orderBumpCompare(IndI, PredDef);
          if (Order) {
            IndMO->setReg(I->first);
            nonIndMO->setReg(nonIndI->getOperand(1).getReg());
            return true;
          }
        }
        return false;
      }

      // It is not valid to do this transformation on an unsigned comparison
      // because it may underflow.
      Comparison::Kind Cmp =
          getComparisonKind(PredDef->getOpcode(), nullptr, nullptr, 0);
      if (!Cmp || Comparison::isUnsigned(Cmp))
        return false;

      // If the register is being compared against an immediate, try changing
      // the compare instruction to use induction register and adjust the
      // immediate operand.
      int64_t CmpImm = getImmediate(*CmpImmOp);
      int64_t V = RB.second;
      // Handle Overflow (64-bit).
      if (((V > 0) && (CmpImm > INT64_MAX - V)) ||
          ((V < 0) && (CmpImm < INT64_MIN - V)))
        return false;
      CmpImm += V;
      // Most comparisons of register against an immediate value allow
      // the immediate to be constant-extended. There are some exceptions
      // though. Make sure the new combination will work.
      if (CmpImmOp->isImm())
        if (!isImmValidForOpcode(PredDef->getOpcode(), CmpImm))
          return false;

      // Make sure that the compare happens after the bump.  Otherwise,
      // after the fixup, the compare would use a yet-undefined register.
      MachineInstr *BumpI = MRI->getVRegDef(I->first);
      bool Order = orderBumpCompare(BumpI, PredDef);
      if (!Order)
        return false;

      // Finally, fix the compare instruction.
      setImmediate(*CmpImmOp, CmpImm);
      for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) {
        MachineOperand &MO = PredDef->getOperand(i);
        if (MO.isReg() && MO.getReg() == RB.first) {
          MO.setReg(I->first);
          return true;
        }
      }
    }
  }

  return false;
}

/// createPreheaderForLoop - Create a preheader for a given loop.
MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop(
      MachineLoop *L) {
  if (MachineBasicBlock *TmpPH = MLI->findLoopPreheader(L, SpecPreheader))
    return TmpPH;
  if (!HWCreatePreheader)
    return nullptr;

  MachineBasicBlock *Header = L->getHeader();
  MachineBasicBlock *Latch = L->getLoopLatch();
  MachineBasicBlock *ExitingBlock = L->findLoopControlBlock();
  MachineFunction *MF = Header->getParent();
  DebugLoc DL;

#ifndef NDEBUG
  if ((!PHFn.empty()) && (PHFn != MF->getName()))
    return nullptr;
#endif

  if (!Latch || !ExitingBlock || Header->hasAddressTaken())
    return nullptr;

  using instr_iterator = MachineBasicBlock::instr_iterator;

  // Verify that all existing predecessors have analyzable branches
  // (or no branches at all).
  using MBBVector = std::vector<MachineBasicBlock *>;

  MBBVector Preds(Header->pred_begin(), Header->pred_end());
  SmallVector<MachineOperand,2> Tmp1;
  MachineBasicBlock *TB = nullptr, *FB = nullptr;

  if (TII->analyzeBranch(*ExitingBlock, TB, FB, Tmp1, false))
    return nullptr;

  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
    MachineBasicBlock *PB = *I;
    bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp1, false);
    if (NotAnalyzed)
      return nullptr;
  }

  MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock();
  MF->insert(Header->getIterator(), NewPH);

  if (Header->pred_size() > 2) {
    // Ensure that the header has only two predecessors: the preheader and
    // the loop latch.  Any additional predecessors of the header should
    // join at the newly created preheader. Inspect all PHI nodes from the
    // header and create appropriate corresponding PHI nodes in the preheader.

    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
         I != E && I->isPHI(); ++I) {
      MachineInstr *PN = &*I;

      const MCInstrDesc &PD = TII->get(TargetOpcode::PHI);
      MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL);
      NewPH->insert(NewPH->end(), NewPN);

      Register PR = PN->getOperand(0).getReg();
      const TargetRegisterClass *RC = MRI->getRegClass(PR);
      Register NewPR = MRI->createVirtualRegister(RC);
      NewPN->addOperand(MachineOperand::CreateReg(NewPR, true));

      // Copy all non-latch operands of a header's PHI node to the newly
      // created PHI node in the preheader.
      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
        Register PredR = PN->getOperand(i).getReg();
        unsigned PredRSub = PN->getOperand(i).getSubReg();
        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
        if (PredB == Latch)
          continue;

        MachineOperand MO = MachineOperand::CreateReg(PredR, false);
        MO.setSubReg(PredRSub);
        NewPN->addOperand(MO);
        NewPN->addOperand(MachineOperand::CreateMBB(PredB));
      }

      // Remove copied operands from the old PHI node and add the value
      // coming from the preheader's PHI.
      for (int i = PN->getNumOperands()-2; i > 0; i -= 2) {
        MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB();
        if (PredB != Latch) {
          PN->RemoveOperand(i+1);
          PN->RemoveOperand(i);
        }
      }
      PN->addOperand(MachineOperand::CreateReg(NewPR, false));
      PN->addOperand(MachineOperand::CreateMBB(NewPH));
    }
  } else {
    assert(Header->pred_size() == 2);

    // The header has only two predecessors, but the non-latch predecessor
    // is not a preheader (e.g. it has other successors, etc.)
    // In such a case we don't need any extra PHI nodes in the new preheader,
    // all we need is to adjust existing PHIs in the header to now refer to
    // the new preheader.
    for (instr_iterator I = Header->instr_begin(), E = Header->instr_end();
         I != E && I->isPHI(); ++I) {
      MachineInstr *PN = &*I;
      for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) {
        MachineOperand &MO = PN->getOperand(i+1);
        if (MO.getMBB() != Latch)
          MO.setMBB(NewPH);
      }
    }
  }

  // "Reroute" the CFG edges to link in the new preheader.
  // If any of the predecessors falls through to the header, insert a branch
  // to the new preheader in that place.
  SmallVector<MachineOperand,1> Tmp2;
  SmallVector<MachineOperand,1> EmptyCond;

  TB = FB = nullptr;

  for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) {
    MachineBasicBlock *PB = *I;
    if (PB != Latch) {
      Tmp2.clear();
      bool NotAnalyzed = TII->analyzeBranch(*PB, TB, FB, Tmp2, false);
      (void)NotAnalyzed; // suppress compiler warning
      assert (!NotAnalyzed && "Should be analyzable!");
      if (TB != Header && (Tmp2.empty() || FB != Header))
        TII->insertBranch(*PB, NewPH, nullptr, EmptyCond, DL);
      PB->ReplaceUsesOfBlockWith(Header, NewPH);
    }
  }

  // It can happen that the latch block will fall through into the header.
  // Insert an unconditional branch to the header.
  TB = FB = nullptr;
  bool LatchNotAnalyzed = TII->analyzeBranch(*Latch, TB, FB, Tmp2, false);
  (void)LatchNotAnalyzed; // suppress compiler warning
  assert (!LatchNotAnalyzed && "Should be analyzable!");
  if (!TB && !FB)
    TII->insertBranch(*Latch, Header, nullptr, EmptyCond, DL);

  // Finally, the branch from the preheader to the header.
  TII->insertBranch(*NewPH, Header, nullptr, EmptyCond, DL);
  NewPH->addSuccessor(Header);

  MachineLoop *ParentLoop = L->getParentLoop();
  if (ParentLoop)
    ParentLoop->addBasicBlockToLoop(NewPH, MLI->getBase());

  // Update the dominator information with the new preheader.
  if (MDT) {
    if (MachineDomTreeNode *HN = MDT->getNode(Header)) {
      if (MachineDomTreeNode *DHN = HN->getIDom()) {
        MDT->addNewBlock(NewPH, DHN->getBlock());
        MDT->changeImmediateDominator(Header, NewPH);
      }
    }
  }

  return NewPH;
}