HexagonConstExtenders.cpp 70.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
//===- HexagonConstExtenders.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Register.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <set>
#include <utility>
#include <vector>

#define DEBUG_TYPE "hexagon-cext-opt"

using namespace llvm;

static cl::opt<unsigned> CountThreshold("hexagon-cext-threshold",
  cl::init(3), cl::Hidden, cl::ZeroOrMore,
  cl::desc("Minimum number of extenders to trigger replacement"));

static cl::opt<unsigned> ReplaceLimit("hexagon-cext-limit", cl::init(0),
  cl::Hidden, cl::ZeroOrMore, cl::desc("Maximum number of replacements"));

namespace llvm {
  void initializeHexagonConstExtendersPass(PassRegistry&);
  FunctionPass *createHexagonConstExtenders();
}

static int32_t adjustUp(int32_t V, uint8_t A, uint8_t O) {
  assert(isPowerOf2_32(A));
  int32_t U = (V & -A) + O;
  return U >= V ? U : U+A;
}

static int32_t adjustDown(int32_t V, uint8_t A, uint8_t O) {
  assert(isPowerOf2_32(A));
  int32_t U = (V & -A) + O;
  return U <= V ? U : U-A;
}

namespace {
  struct OffsetRange {
    // The range of values between Min and Max that are of form Align*N+Offset,
    // for some integer N. Min and Max are required to be of that form as well,
    // except in the case of an empty range.
    int32_t Min = INT_MIN, Max = INT_MAX;
    uint8_t Align = 1;
    uint8_t Offset = 0;

    OffsetRange() = default;
    OffsetRange(int32_t L, int32_t H, uint8_t A, uint8_t O = 0)
      : Min(L), Max(H), Align(A), Offset(O) {}
    OffsetRange &intersect(OffsetRange A) {
      if (Align < A.Align)
        std::swap(*this, A);

      // Align >= A.Align.
      if (Offset >= A.Offset && (Offset - A.Offset) % A.Align == 0) {
        Min = adjustUp(std::max(Min, A.Min), Align, Offset);
        Max = adjustDown(std::min(Max, A.Max), Align, Offset);
      } else {
        // Make an empty range.
        Min = 0;
        Max = -1;
      }
      // Canonicalize empty ranges.
      if (Min > Max)
        std::tie(Min, Max, Align) = std::make_tuple(0, -1, 1);
      return *this;
    }
    OffsetRange &shift(int32_t S) {
      Min += S;
      Max += S;
      Offset = (Offset+S) % Align;
      return *this;
    }
    OffsetRange &extendBy(int32_t D) {
      // If D < 0, extend Min, otherwise extend Max.
      assert(D % Align == 0);
      if (D < 0)
        Min = (INT_MIN-D < Min) ? Min+D : INT_MIN;
      else
        Max = (INT_MAX-D > Max) ? Max+D : INT_MAX;
      return *this;
    }
    bool empty() const {
      return Min > Max;
    }
    bool contains(int32_t V) const {
      return Min <= V && V <= Max && (V-Offset) % Align == 0;
    }
    bool operator==(const OffsetRange &R) const {
      return Min == R.Min && Max == R.Max && Align == R.Align;
    }
    bool operator!=(const OffsetRange &R) const {
      return !operator==(R);
    }
    bool operator<(const OffsetRange &R) const {
      if (Min != R.Min)
        return Min < R.Min;
      if (Max != R.Max)
        return Max < R.Max;
      return Align < R.Align;
    }
    static OffsetRange zero() { return {0, 0, 1}; }
  };

  struct RangeTree {
    struct Node {
      Node(const OffsetRange &R) : MaxEnd(R.Max), Range(R) {}
      unsigned Height = 1;
      unsigned Count = 1;
      int32_t MaxEnd;
      const OffsetRange &Range;
      Node *Left = nullptr, *Right = nullptr;
    };

    Node *Root = nullptr;

    void add(const OffsetRange &R) {
      Root = add(Root, R);
    }
    void erase(const Node *N) {
      Root = remove(Root, N);
      delete N;
    }
    void order(SmallVectorImpl<Node*> &Seq) const {
      order(Root, Seq);
    }
    SmallVector<Node*,8> nodesWith(int32_t P, bool CheckAlign = true) {
      SmallVector<Node*,8> Nodes;
      nodesWith(Root, P, CheckAlign, Nodes);
      return Nodes;
    }
    void dump() const;
    ~RangeTree() {
      SmallVector<Node*,8> Nodes;
      order(Nodes);
      for (Node *N : Nodes)
        delete N;
    }

  private:
    void dump(const Node *N) const;
    void order(Node *N, SmallVectorImpl<Node*> &Seq) const;
    void nodesWith(Node *N, int32_t P, bool CheckA,
                   SmallVectorImpl<Node*> &Seq) const;

    Node *add(Node *N, const OffsetRange &R);
    Node *remove(Node *N, const Node *D);
    Node *rotateLeft(Node *Lower, Node *Higher);
    Node *rotateRight(Node *Lower, Node *Higher);
    unsigned height(Node *N) {
      return N != nullptr ? N->Height : 0;
    }
    Node *update(Node *N) {
      assert(N != nullptr);
      N->Height = 1 + std::max(height(N->Left), height(N->Right));
      if (N->Left)
        N->MaxEnd = std::max(N->MaxEnd, N->Left->MaxEnd);
      if (N->Right)
        N->MaxEnd = std::max(N->MaxEnd, N->Right->MaxEnd);
      return N;
    }
    Node *rebalance(Node *N) {
      assert(N != nullptr);
      int32_t Balance = height(N->Right) - height(N->Left);
      if (Balance < -1)
        return rotateRight(N->Left, N);
      if (Balance > 1)
        return rotateLeft(N->Right, N);
      return N;
    }
  };

  struct Loc {
    MachineBasicBlock *Block = nullptr;
    MachineBasicBlock::iterator At;

    Loc(MachineBasicBlock *B, MachineBasicBlock::iterator It)
      : Block(B), At(It) {
      if (B->end() == It) {
        Pos = -1;
      } else {
        assert(It->getParent() == B);
        Pos = std::distance(B->begin(), It);
      }
    }
    bool operator<(Loc A) const {
      if (Block != A.Block)
        return Block->getNumber() < A.Block->getNumber();
      if (A.Pos == -1)
        return Pos != A.Pos;
      return Pos != -1 && Pos < A.Pos;
    }
  private:
    int Pos = 0;
  };

  struct HexagonConstExtenders : public MachineFunctionPass {
    static char ID;
    HexagonConstExtenders() : MachineFunctionPass(ID) {}

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    StringRef getPassName() const override {
      return "Hexagon constant-extender optimization";
    }
    bool runOnMachineFunction(MachineFunction &MF) override;

  private:
    struct Register {
      Register() = default;
      Register(unsigned R, unsigned S) : Reg(R), Sub(S) {}
      Register(const MachineOperand &Op)
        : Reg(Op.getReg()), Sub(Op.getSubReg()) {}
      Register &operator=(const MachineOperand &Op) {
        if (Op.isReg()) {
          Reg = Op.getReg();
          Sub = Op.getSubReg();
        } else if (Op.isFI()) {
          Reg = llvm::Register::index2StackSlot(Op.getIndex());
        }
        return *this;
      }
      bool isVReg() const {
        return Reg != 0 && !llvm::Register::isStackSlot(Reg) &&
               llvm::Register::isVirtualRegister(Reg);
      }
      bool isSlot() const {
        return Reg != 0 && llvm::Register::isStackSlot(Reg);
      }
      operator MachineOperand() const {
        if (isVReg())
          return MachineOperand::CreateReg(Reg, /*Def*/false, /*Imp*/false,
                          /*Kill*/false, /*Dead*/false, /*Undef*/false,
                          /*EarlyClobber*/false, Sub);
        if (llvm::Register::isStackSlot(Reg)) {
          int FI = llvm::Register::stackSlot2Index(Reg);
          return MachineOperand::CreateFI(FI);
        }
        llvm_unreachable("Cannot create MachineOperand");
      }
      bool operator==(Register R) const { return Reg == R.Reg && Sub == R.Sub; }
      bool operator!=(Register R) const { return !operator==(R); }
      bool operator<(Register R) const {
        // For std::map.
        return Reg < R.Reg || (Reg == R.Reg && Sub < R.Sub);
      }
      unsigned Reg = 0, Sub = 0;
    };

    struct ExtExpr {
      // A subexpression in which the extender is used. In general, this
      // represents an expression where adding D to the extender will be
      // equivalent to adding D to the expression as a whole. In other
      // words, expr(add(##V,D) = add(expr(##V),D).

      // The original motivation for this are the io/ur addressing modes,
      // where the offset is extended. Consider the io example:
      // In memw(Rs+##V), the ##V could be replaced by a register Rt to
      // form the rr mode: memw(Rt+Rs<<0). In such case, however, the
      // register Rt must have exactly the value of ##V. If there was
      // another instruction memw(Rs+##V+4), it would need a different Rt.
      // Now, if Rt was initialized as "##V+Rs<<0", both of these
      // instructions could use the same Rt, just with different offsets.
      // Here it's clear that "initializer+4" should be the same as if
      // the offset 4 was added to the ##V in the initializer.

      // The only kinds of expressions that support the requirement of
      // commuting with addition are addition and subtraction from ##V.
      // Include shifting the Rs to account for the ur addressing mode:
      //   ##Val + Rs << S
      //   ##Val - Rs
      Register Rs;
      unsigned S = 0;
      bool Neg = false;

      ExtExpr() = default;
      ExtExpr(Register RS, bool NG, unsigned SH) : Rs(RS), S(SH), Neg(NG) {}
      // Expression is trivial if it does not modify the extender.
      bool trivial() const {
        return Rs.Reg == 0;
      }
      bool operator==(const ExtExpr &Ex) const {
        return Rs == Ex.Rs && S == Ex.S && Neg == Ex.Neg;
      }
      bool operator!=(const ExtExpr &Ex) const {
        return !operator==(Ex);
      }
      bool operator<(const ExtExpr &Ex) const {
        if (Rs != Ex.Rs)
          return Rs < Ex.Rs;
        if (S != Ex.S)
          return S < Ex.S;
        return !Neg && Ex.Neg;
      }
    };

    struct ExtDesc {
      MachineInstr *UseMI = nullptr;
      unsigned OpNum = -1u;
      // The subexpression in which the extender is used (e.g. address
      // computation).
      ExtExpr Expr;
      // Optional register that is assigned the value of Expr.
      Register Rd;
      // Def means that the output of the instruction may differ from the
      // original by a constant c, and that the difference can be corrected
      // by adding/subtracting c in all users of the defined register.
      bool IsDef = false;

      MachineOperand &getOp() {
        return UseMI->getOperand(OpNum);
      }
      const MachineOperand &getOp() const {
        return UseMI->getOperand(OpNum);
      }
    };

    struct ExtRoot {
      union {
        const ConstantFP *CFP;  // MO_FPImmediate
        const char *SymbolName; // MO_ExternalSymbol
        const GlobalValue *GV;  // MO_GlobalAddress
        const BlockAddress *BA; // MO_BlockAddress
        int64_t ImmVal;         // MO_Immediate, MO_TargetIndex,
                                // and MO_ConstantPoolIndex
      } V;
      unsigned Kind;            // Same as in MachineOperand.
      unsigned char TF;         // TargetFlags.

      ExtRoot(const MachineOperand &Op);
      bool operator==(const ExtRoot &ER) const {
        return Kind == ER.Kind && V.ImmVal == ER.V.ImmVal;
      }
      bool operator!=(const ExtRoot &ER) const {
        return !operator==(ER);
      }
      bool operator<(const ExtRoot &ER) const;
    };

    struct ExtValue : public ExtRoot {
      int32_t Offset;

      ExtValue(const MachineOperand &Op);
      ExtValue(const ExtDesc &ED) : ExtValue(ED.getOp()) {}
      ExtValue(const ExtRoot &ER, int32_t Off) : ExtRoot(ER), Offset(Off) {}
      bool operator<(const ExtValue &EV) const;
      bool operator==(const ExtValue &EV) const {
        return ExtRoot(*this) == ExtRoot(EV) && Offset == EV.Offset;
      }
      bool operator!=(const ExtValue &EV) const {
        return !operator==(EV);
      }
      explicit operator MachineOperand() const;
    };

    using IndexList = SetVector<unsigned>;
    using ExtenderInit = std::pair<ExtValue, ExtExpr>;
    using AssignmentMap = std::map<ExtenderInit, IndexList>;
    using LocDefList = std::vector<std::pair<Loc, IndexList>>;

    const HexagonSubtarget *HST = nullptr;
    const HexagonInstrInfo *HII = nullptr;
    const HexagonRegisterInfo *HRI = nullptr;
    MachineDominatorTree *MDT = nullptr;
    MachineRegisterInfo *MRI = nullptr;
    std::vector<ExtDesc> Extenders;
    std::vector<unsigned> NewRegs;

    bool isStoreImmediate(unsigned Opc) const;
    bool isRegOffOpcode(unsigned ExtOpc) const ;
    unsigned getRegOffOpcode(unsigned ExtOpc) const;
    unsigned getDirectRegReplacement(unsigned ExtOpc) const;
    OffsetRange getOffsetRange(Register R, const MachineInstr &MI) const;
    OffsetRange getOffsetRange(const ExtDesc &ED) const;
    OffsetRange getOffsetRange(Register Rd) const;

    void recordExtender(MachineInstr &MI, unsigned OpNum);
    void collectInstr(MachineInstr &MI);
    void collect(MachineFunction &MF);
    void assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
                     AssignmentMap &IMap);
    void calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
                            LocDefList &Defs);
    Register insertInitializer(Loc DefL, const ExtenderInit &ExtI);
    bool replaceInstrExact(const ExtDesc &ED, Register ExtR);
    bool replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
                          Register ExtR, int32_t &Diff);
    bool replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI);
    bool replaceExtenders(const AssignmentMap &IMap);

    unsigned getOperandIndex(const MachineInstr &MI,
                             const MachineOperand &Op) const;
    const MachineOperand &getPredicateOp(const MachineInstr &MI) const;
    const MachineOperand &getLoadResultOp(const MachineInstr &MI) const;
    const MachineOperand &getStoredValueOp(const MachineInstr &MI) const;

    friend struct PrintRegister;
    friend struct PrintExpr;
    friend struct PrintInit;
    friend struct PrintIMap;
    friend raw_ostream &operator<< (raw_ostream &OS,
                                    const struct PrintRegister &P);
    friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintExpr &P);
    friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintInit &P);
    friend raw_ostream &operator<< (raw_ostream &OS, const ExtDesc &ED);
    friend raw_ostream &operator<< (raw_ostream &OS, const ExtRoot &ER);
    friend raw_ostream &operator<< (raw_ostream &OS, const ExtValue &EV);
    friend raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR);
    friend raw_ostream &operator<< (raw_ostream &OS, const struct PrintIMap &P);
  };

  using HCE = HexagonConstExtenders;

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<< (raw_ostream &OS, const OffsetRange &OR) {
    if (OR.Min > OR.Max)
      OS << '!';
    OS << '[' << OR.Min << ',' << OR.Max << "]a" << unsigned(OR.Align)
       << '+' << unsigned(OR.Offset);
    return OS;
  }

  struct PrintRegister {
    PrintRegister(HCE::Register R, const HexagonRegisterInfo &I)
      : Rs(R), HRI(I) {}
    HCE::Register Rs;
    const HexagonRegisterInfo &HRI;
  };

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<< (raw_ostream &OS, const PrintRegister &P) {
    if (P.Rs.Reg != 0)
      OS << printReg(P.Rs.Reg, &P.HRI, P.Rs.Sub);
    else
      OS << "noreg";
    return OS;
  }

  struct PrintExpr {
    PrintExpr(const HCE::ExtExpr &E, const HexagonRegisterInfo &I)
      : Ex(E), HRI(I) {}
    const HCE::ExtExpr &Ex;
    const HexagonRegisterInfo &HRI;
  };

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<< (raw_ostream &OS, const PrintExpr &P) {
    OS << "## " << (P.Ex.Neg ? "- " : "+ ");
    if (P.Ex.Rs.Reg != 0)
      OS << printReg(P.Ex.Rs.Reg, &P.HRI, P.Ex.Rs.Sub);
    else
      OS << "__";
    OS << " << " << P.Ex.S;
    return OS;
  }

  struct PrintInit {
    PrintInit(const HCE::ExtenderInit &EI, const HexagonRegisterInfo &I)
      : ExtI(EI), HRI(I) {}
    const HCE::ExtenderInit &ExtI;
    const HexagonRegisterInfo &HRI;
  };

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<< (raw_ostream &OS, const PrintInit &P) {
    OS << '[' << P.ExtI.first << ", "
       << PrintExpr(P.ExtI.second, P.HRI) << ']';
    return OS;
  }

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtDesc &ED) {
    assert(ED.OpNum != -1u);
    const MachineBasicBlock &MBB = *ED.getOp().getParent()->getParent();
    const MachineFunction &MF = *MBB.getParent();
    const auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
    OS << "bb#" << MBB.getNumber() << ": ";
    if (ED.Rd.Reg != 0)
      OS << printReg(ED.Rd.Reg, &HRI, ED.Rd.Sub);
    else
      OS << "__";
    OS << " = " << PrintExpr(ED.Expr, HRI);
    if (ED.IsDef)
      OS << ", def";
    return OS;
  }

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtRoot &ER) {
    switch (ER.Kind) {
      case MachineOperand::MO_Immediate:
        OS << "imm:" << ER.V.ImmVal;
        break;
      case MachineOperand::MO_FPImmediate:
        OS << "fpi:" << *ER.V.CFP;
        break;
      case MachineOperand::MO_ExternalSymbol:
        OS << "sym:" << *ER.V.SymbolName;
        break;
      case MachineOperand::MO_GlobalAddress:
        OS << "gad:" << ER.V.GV->getName();
        break;
      case MachineOperand::MO_BlockAddress:
        OS << "blk:" << *ER.V.BA;
        break;
      case MachineOperand::MO_TargetIndex:
        OS << "tgi:" << ER.V.ImmVal;
        break;
      case MachineOperand::MO_ConstantPoolIndex:
        OS << "cpi:" << ER.V.ImmVal;
        break;
      case MachineOperand::MO_JumpTableIndex:
        OS << "jti:" << ER.V.ImmVal;
        break;
      default:
        OS << "???:" << ER.V.ImmVal;
        break;
    }
    return OS;
  }

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<< (raw_ostream &OS, const HCE::ExtValue &EV) {
    OS << HCE::ExtRoot(EV) << "  off:" << EV.Offset;
    return OS;
  }

  struct PrintIMap {
    PrintIMap(const HCE::AssignmentMap &M, const HexagonRegisterInfo &I)
      : IMap(M), HRI(I) {}
    const HCE::AssignmentMap &IMap;
    const HexagonRegisterInfo &HRI;
  };

  LLVM_ATTRIBUTE_UNUSED
  raw_ostream &operator<< (raw_ostream &OS, const PrintIMap &P) {
    OS << "{\n";
    for (const std::pair<const HCE::ExtenderInit, HCE::IndexList> &Q : P.IMap) {
      OS << "  " << PrintInit(Q.first, P.HRI) << " -> {";
      for (unsigned I : Q.second)
        OS << ' ' << I;
      OS << " }\n";
    }
    OS << "}\n";
    return OS;
  }
}

INITIALIZE_PASS_BEGIN(HexagonConstExtenders, "hexagon-cext-opt",
      "Hexagon constant-extender optimization", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(HexagonConstExtenders, "hexagon-cext-opt",
      "Hexagon constant-extender optimization", false, false)

static unsigned ReplaceCounter = 0;

char HCE::ID = 0;

#ifndef NDEBUG
LLVM_DUMP_METHOD void RangeTree::dump() const {
  dbgs() << "Root: " << Root << '\n';
  if (Root)
    dump(Root);
}

LLVM_DUMP_METHOD void RangeTree::dump(const Node *N) const {
  dbgs() << "Node: " << N << '\n';
  dbgs() << "  Height: " << N->Height << '\n';
  dbgs() << "  Count: " << N->Count << '\n';
  dbgs() << "  MaxEnd: " << N->MaxEnd << '\n';
  dbgs() << "  Range: " << N->Range << '\n';
  dbgs() << "  Left: " << N->Left << '\n';
  dbgs() << "  Right: " << N->Right << "\n\n";

  if (N->Left)
    dump(N->Left);
  if (N->Right)
    dump(N->Right);
}
#endif

void RangeTree::order(Node *N, SmallVectorImpl<Node*> &Seq) const {
  if (N == nullptr)
    return;
  order(N->Left, Seq);
  Seq.push_back(N);
  order(N->Right, Seq);
}

void RangeTree::nodesWith(Node *N, int32_t P, bool CheckA,
      SmallVectorImpl<Node*> &Seq) const {
  if (N == nullptr || N->MaxEnd < P)
    return;
  nodesWith(N->Left, P, CheckA, Seq);
  if (N->Range.Min <= P) {
    if ((CheckA && N->Range.contains(P)) || (!CheckA && P <= N->Range.Max))
      Seq.push_back(N);
    nodesWith(N->Right, P, CheckA, Seq);
  }
}

RangeTree::Node *RangeTree::add(Node *N, const OffsetRange &R) {
  if (N == nullptr)
    return new Node(R);

  if (N->Range == R) {
    N->Count++;
    return N;
  }

  if (R < N->Range)
    N->Left = add(N->Left, R);
  else
    N->Right = add(N->Right, R);
  return rebalance(update(N));
}

RangeTree::Node *RangeTree::remove(Node *N, const Node *D) {
  assert(N != nullptr);

  if (N != D) {
    assert(N->Range != D->Range && "N and D should not be equal");
    if (D->Range < N->Range)
      N->Left = remove(N->Left, D);
    else
      N->Right = remove(N->Right, D);
    return rebalance(update(N));
  }

  // We got to the node we need to remove. If any of its children are
  // missing, simply replace it with the other child.
  if (N->Left == nullptr || N->Right == nullptr)
    return (N->Left == nullptr) ? N->Right : N->Left;

  // Find the rightmost child of N->Left, remove it and plug it in place
  // of N.
  Node *M = N->Left;
  while (M->Right)
    M = M->Right;
  M->Left = remove(N->Left, M);
  M->Right = N->Right;
  return rebalance(update(M));
}

RangeTree::Node *RangeTree::rotateLeft(Node *Lower, Node *Higher) {
  assert(Higher->Right == Lower);
  // The Lower node is on the right from Higher. Make sure that Lower's
  // balance is greater to the right. Otherwise the rotation will create
  // an unbalanced tree again.
  if (height(Lower->Left) > height(Lower->Right))
    Lower = rotateRight(Lower->Left, Lower);
  assert(height(Lower->Left) <= height(Lower->Right));
  Higher->Right = Lower->Left;
  update(Higher);
  Lower->Left = Higher;
  update(Lower);
  return Lower;
}

RangeTree::Node *RangeTree::rotateRight(Node *Lower, Node *Higher) {
  assert(Higher->Left == Lower);
  // The Lower node is on the left from Higher. Make sure that Lower's
  // balance is greater to the left. Otherwise the rotation will create
  // an unbalanced tree again.
  if (height(Lower->Left) < height(Lower->Right))
    Lower = rotateLeft(Lower->Right, Lower);
  assert(height(Lower->Left) >= height(Lower->Right));
  Higher->Left = Lower->Right;
  update(Higher);
  Lower->Right = Higher;
  update(Lower);
  return Lower;
}


HCE::ExtRoot::ExtRoot(const MachineOperand &Op) {
  // Always store ImmVal, since it's the field used for comparisons.
  V.ImmVal = 0;
  if (Op.isImm())
    ; // Keep 0. Do not use Op.getImm() for value here (treat 0 as the root).
  else if (Op.isFPImm())
    V.CFP = Op.getFPImm();
  else if (Op.isSymbol())
    V.SymbolName = Op.getSymbolName();
  else if (Op.isGlobal())
    V.GV = Op.getGlobal();
  else if (Op.isBlockAddress())
    V.BA = Op.getBlockAddress();
  else if (Op.isCPI() || Op.isTargetIndex() || Op.isJTI())
    V.ImmVal = Op.getIndex();
  else
    llvm_unreachable("Unexpected operand type");

  Kind = Op.getType();
  TF = Op.getTargetFlags();
}

bool HCE::ExtRoot::operator< (const HCE::ExtRoot &ER) const {
  if (Kind != ER.Kind)
    return Kind < ER.Kind;
  switch (Kind) {
    case MachineOperand::MO_Immediate:
    case MachineOperand::MO_TargetIndex:
    case MachineOperand::MO_ConstantPoolIndex:
    case MachineOperand::MO_JumpTableIndex:
      return V.ImmVal < ER.V.ImmVal;
    case MachineOperand::MO_FPImmediate: {
      const APFloat &ThisF = V.CFP->getValueAPF();
      const APFloat &OtherF = ER.V.CFP->getValueAPF();
      return ThisF.bitcastToAPInt().ult(OtherF.bitcastToAPInt());
    }
    case MachineOperand::MO_ExternalSymbol:
      return StringRef(V.SymbolName) < StringRef(ER.V.SymbolName);
    case MachineOperand::MO_GlobalAddress:
      // Do not use GUIDs, since they depend on the source path. Moving the
      // source file to a different directory could cause different GUID
      // values for a pair of given symbols. These symbols could then compare
      // "less" in one directory, but "greater" in another.
      assert(!V.GV->getName().empty() && !ER.V.GV->getName().empty());
      return V.GV->getName() < ER.V.GV->getName();
    case MachineOperand::MO_BlockAddress: {
      const BasicBlock *ThisB = V.BA->getBasicBlock();
      const BasicBlock *OtherB = ER.V.BA->getBasicBlock();
      assert(ThisB->getParent() == OtherB->getParent());
      const Function &F = *ThisB->getParent();
      return std::distance(F.begin(), ThisB->getIterator()) <
             std::distance(F.begin(), OtherB->getIterator());
    }
  }
  return V.ImmVal < ER.V.ImmVal;
}

HCE::ExtValue::ExtValue(const MachineOperand &Op) : ExtRoot(Op) {
  if (Op.isImm())
    Offset = Op.getImm();
  else if (Op.isFPImm() || Op.isJTI())
    Offset = 0;
  else if (Op.isSymbol() || Op.isGlobal() || Op.isBlockAddress() ||
           Op.isCPI() || Op.isTargetIndex())
    Offset = Op.getOffset();
  else
    llvm_unreachable("Unexpected operand type");
}

bool HCE::ExtValue::operator< (const HCE::ExtValue &EV) const {
  const ExtRoot &ER = *this;
  if (!(ER == ExtRoot(EV)))
    return ER < EV;
  return Offset < EV.Offset;
}

HCE::ExtValue::operator MachineOperand() const {
  switch (Kind) {
    case MachineOperand::MO_Immediate:
      return MachineOperand::CreateImm(V.ImmVal + Offset);
    case MachineOperand::MO_FPImmediate:
      assert(Offset == 0);
      return MachineOperand::CreateFPImm(V.CFP);
    case MachineOperand::MO_ExternalSymbol:
      assert(Offset == 0);
      return MachineOperand::CreateES(V.SymbolName, TF);
    case MachineOperand::MO_GlobalAddress:
      return MachineOperand::CreateGA(V.GV, Offset, TF);
    case MachineOperand::MO_BlockAddress:
      return MachineOperand::CreateBA(V.BA, Offset, TF);
    case MachineOperand::MO_TargetIndex:
      return MachineOperand::CreateTargetIndex(V.ImmVal, Offset, TF);
    case MachineOperand::MO_ConstantPoolIndex:
      return MachineOperand::CreateCPI(V.ImmVal, Offset, TF);
    case MachineOperand::MO_JumpTableIndex:
      assert(Offset == 0);
      return MachineOperand::CreateJTI(V.ImmVal, TF);
    default:
      llvm_unreachable("Unhandled kind");
 }
}

bool HCE::isStoreImmediate(unsigned Opc) const {
  switch (Opc) {
    case Hexagon::S4_storeirbt_io:
    case Hexagon::S4_storeirbf_io:
    case Hexagon::S4_storeirht_io:
    case Hexagon::S4_storeirhf_io:
    case Hexagon::S4_storeirit_io:
    case Hexagon::S4_storeirif_io:
    case Hexagon::S4_storeirb_io:
    case Hexagon::S4_storeirh_io:
    case Hexagon::S4_storeiri_io:
      return true;
    default:
      break;
  }
  return false;
}

bool HCE::isRegOffOpcode(unsigned Opc) const {
  switch (Opc) {
    case Hexagon::L2_loadrub_io:
    case Hexagon::L2_loadrb_io:
    case Hexagon::L2_loadruh_io:
    case Hexagon::L2_loadrh_io:
    case Hexagon::L2_loadri_io:
    case Hexagon::L2_loadrd_io:
    case Hexagon::L2_loadbzw2_io:
    case Hexagon::L2_loadbzw4_io:
    case Hexagon::L2_loadbsw2_io:
    case Hexagon::L2_loadbsw4_io:
    case Hexagon::L2_loadalignh_io:
    case Hexagon::L2_loadalignb_io:
    case Hexagon::L2_ploadrubt_io:
    case Hexagon::L2_ploadrubf_io:
    case Hexagon::L2_ploadrbt_io:
    case Hexagon::L2_ploadrbf_io:
    case Hexagon::L2_ploadruht_io:
    case Hexagon::L2_ploadruhf_io:
    case Hexagon::L2_ploadrht_io:
    case Hexagon::L2_ploadrhf_io:
    case Hexagon::L2_ploadrit_io:
    case Hexagon::L2_ploadrif_io:
    case Hexagon::L2_ploadrdt_io:
    case Hexagon::L2_ploadrdf_io:
    case Hexagon::S2_storerb_io:
    case Hexagon::S2_storerh_io:
    case Hexagon::S2_storerf_io:
    case Hexagon::S2_storeri_io:
    case Hexagon::S2_storerd_io:
    case Hexagon::S2_pstorerbt_io:
    case Hexagon::S2_pstorerbf_io:
    case Hexagon::S2_pstorerht_io:
    case Hexagon::S2_pstorerhf_io:
    case Hexagon::S2_pstorerft_io:
    case Hexagon::S2_pstorerff_io:
    case Hexagon::S2_pstorerit_io:
    case Hexagon::S2_pstorerif_io:
    case Hexagon::S2_pstorerdt_io:
    case Hexagon::S2_pstorerdf_io:
    case Hexagon::A2_addi:
      return true;
    default:
      break;
  }
  return false;
}

unsigned HCE::getRegOffOpcode(unsigned ExtOpc) const {
  // If there exists an instruction that takes a register and offset,
  // that corresponds to the ExtOpc, return it, otherwise return 0.
  using namespace Hexagon;
  switch (ExtOpc) {
    case A2_tfrsi:    return A2_addi;
    default:
      break;
  }
  const MCInstrDesc &D = HII->get(ExtOpc);
  if (D.mayLoad() || D.mayStore()) {
    uint64_t F = D.TSFlags;
    unsigned AM = (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
    switch (AM) {
      case HexagonII::Absolute:
      case HexagonII::AbsoluteSet:
      case HexagonII::BaseLongOffset:
        switch (ExtOpc) {
          case PS_loadrubabs:
          case L4_loadrub_ap:
          case L4_loadrub_ur:     return L2_loadrub_io;
          case PS_loadrbabs:
          case L4_loadrb_ap:
          case L4_loadrb_ur:      return L2_loadrb_io;
          case PS_loadruhabs:
          case L4_loadruh_ap:
          case L4_loadruh_ur:     return L2_loadruh_io;
          case PS_loadrhabs:
          case L4_loadrh_ap:
          case L4_loadrh_ur:      return L2_loadrh_io;
          case PS_loadriabs:
          case L4_loadri_ap:
          case L4_loadri_ur:      return L2_loadri_io;
          case PS_loadrdabs:
          case L4_loadrd_ap:
          case L4_loadrd_ur:      return L2_loadrd_io;
          case L4_loadbzw2_ap:
          case L4_loadbzw2_ur:    return L2_loadbzw2_io;
          case L4_loadbzw4_ap:
          case L4_loadbzw4_ur:    return L2_loadbzw4_io;
          case L4_loadbsw2_ap:
          case L4_loadbsw2_ur:    return L2_loadbsw2_io;
          case L4_loadbsw4_ap:
          case L4_loadbsw4_ur:    return L2_loadbsw4_io;
          case L4_loadalignh_ap:
          case L4_loadalignh_ur:  return L2_loadalignh_io;
          case L4_loadalignb_ap:
          case L4_loadalignb_ur:  return L2_loadalignb_io;
          case L4_ploadrubt_abs:  return L2_ploadrubt_io;
          case L4_ploadrubf_abs:  return L2_ploadrubf_io;
          case L4_ploadrbt_abs:   return L2_ploadrbt_io;
          case L4_ploadrbf_abs:   return L2_ploadrbf_io;
          case L4_ploadruht_abs:  return L2_ploadruht_io;
          case L4_ploadruhf_abs:  return L2_ploadruhf_io;
          case L4_ploadrht_abs:   return L2_ploadrht_io;
          case L4_ploadrhf_abs:   return L2_ploadrhf_io;
          case L4_ploadrit_abs:   return L2_ploadrit_io;
          case L4_ploadrif_abs:   return L2_ploadrif_io;
          case L4_ploadrdt_abs:   return L2_ploadrdt_io;
          case L4_ploadrdf_abs:   return L2_ploadrdf_io;
          case PS_storerbabs:
          case S4_storerb_ap:
          case S4_storerb_ur:     return S2_storerb_io;
          case PS_storerhabs:
          case S4_storerh_ap:
          case S4_storerh_ur:     return S2_storerh_io;
          case PS_storerfabs:
          case S4_storerf_ap:
          case S4_storerf_ur:     return S2_storerf_io;
          case PS_storeriabs:
          case S4_storeri_ap:
          case S4_storeri_ur:     return S2_storeri_io;
          case PS_storerdabs:
          case S4_storerd_ap:
          case S4_storerd_ur:     return S2_storerd_io;
          case S4_pstorerbt_abs:  return S2_pstorerbt_io;
          case S4_pstorerbf_abs:  return S2_pstorerbf_io;
          case S4_pstorerht_abs:  return S2_pstorerht_io;
          case S4_pstorerhf_abs:  return S2_pstorerhf_io;
          case S4_pstorerft_abs:  return S2_pstorerft_io;
          case S4_pstorerff_abs:  return S2_pstorerff_io;
          case S4_pstorerit_abs:  return S2_pstorerit_io;
          case S4_pstorerif_abs:  return S2_pstorerif_io;
          case S4_pstorerdt_abs:  return S2_pstorerdt_io;
          case S4_pstorerdf_abs:  return S2_pstorerdf_io;
          default:
            break;
        }
        break;
      case HexagonII::BaseImmOffset:
        if (!isStoreImmediate(ExtOpc))
          return ExtOpc;
        break;
      default:
        break;
    }
  }
  return 0;
}

unsigned HCE::getDirectRegReplacement(unsigned ExtOpc) const {
  switch (ExtOpc) {
    case Hexagon::A2_addi:          return Hexagon::A2_add;
    case Hexagon::A2_andir:         return Hexagon::A2_and;
    case Hexagon::A2_combineii:     return Hexagon::A4_combineri;
    case Hexagon::A2_orir:          return Hexagon::A2_or;
    case Hexagon::A2_paddif:        return Hexagon::A2_paddf;
    case Hexagon::A2_paddit:        return Hexagon::A2_paddt;
    case Hexagon::A2_subri:         return Hexagon::A2_sub;
    case Hexagon::A2_tfrsi:         return TargetOpcode::COPY;
    case Hexagon::A4_cmpbeqi:       return Hexagon::A4_cmpbeq;
    case Hexagon::A4_cmpbgti:       return Hexagon::A4_cmpbgt;
    case Hexagon::A4_cmpbgtui:      return Hexagon::A4_cmpbgtu;
    case Hexagon::A4_cmpheqi:       return Hexagon::A4_cmpheq;
    case Hexagon::A4_cmphgti:       return Hexagon::A4_cmphgt;
    case Hexagon::A4_cmphgtui:      return Hexagon::A4_cmphgtu;
    case Hexagon::A4_combineii:     return Hexagon::A4_combineir;
    case Hexagon::A4_combineir:     return TargetOpcode::REG_SEQUENCE;
    case Hexagon::A4_combineri:     return TargetOpcode::REG_SEQUENCE;
    case Hexagon::A4_rcmpeqi:       return Hexagon::A4_rcmpeq;
    case Hexagon::A4_rcmpneqi:      return Hexagon::A4_rcmpneq;
    case Hexagon::C2_cmoveif:       return Hexagon::A2_tfrpf;
    case Hexagon::C2_cmoveit:       return Hexagon::A2_tfrpt;
    case Hexagon::C2_cmpeqi:        return Hexagon::C2_cmpeq;
    case Hexagon::C2_cmpgti:        return Hexagon::C2_cmpgt;
    case Hexagon::C2_cmpgtui:       return Hexagon::C2_cmpgtu;
    case Hexagon::C2_muxii:         return Hexagon::C2_muxir;
    case Hexagon::C2_muxir:         return Hexagon::C2_mux;
    case Hexagon::C2_muxri:         return Hexagon::C2_mux;
    case Hexagon::C4_cmpltei:       return Hexagon::C4_cmplte;
    case Hexagon::C4_cmplteui:      return Hexagon::C4_cmplteu;
    case Hexagon::C4_cmpneqi:       return Hexagon::C4_cmpneq;
    case Hexagon::M2_accii:         return Hexagon::M2_acci;        // T -> T
    /* No M2_macsin */
    case Hexagon::M2_macsip:        return Hexagon::M2_maci;        // T -> T
    case Hexagon::M2_mpysin:        return Hexagon::M2_mpyi;
    case Hexagon::M2_mpysip:        return Hexagon::M2_mpyi;
    case Hexagon::M2_mpysmi:        return Hexagon::M2_mpyi;
    case Hexagon::M2_naccii:        return Hexagon::M2_nacci;       // T -> T
    case Hexagon::M4_mpyri_addi:    return Hexagon::M4_mpyri_addr;
    case Hexagon::M4_mpyri_addr:    return Hexagon::M4_mpyrr_addr;  // _ -> T
    case Hexagon::M4_mpyrr_addi:    return Hexagon::M4_mpyrr_addr;  // _ -> T
    case Hexagon::S4_addaddi:       return Hexagon::M2_acci;        // _ -> T
    case Hexagon::S4_addi_asl_ri:   return Hexagon::S2_asl_i_r_acc; // T -> T
    case Hexagon::S4_addi_lsr_ri:   return Hexagon::S2_lsr_i_r_acc; // T -> T
    case Hexagon::S4_andi_asl_ri:   return Hexagon::S2_asl_i_r_and; // T -> T
    case Hexagon::S4_andi_lsr_ri:   return Hexagon::S2_lsr_i_r_and; // T -> T
    case Hexagon::S4_ori_asl_ri:    return Hexagon::S2_asl_i_r_or;  // T -> T
    case Hexagon::S4_ori_lsr_ri:    return Hexagon::S2_lsr_i_r_or;  // T -> T
    case Hexagon::S4_subaddi:       return Hexagon::M2_subacc;      // _ -> T
    case Hexagon::S4_subi_asl_ri:   return Hexagon::S2_asl_i_r_nac; // T -> T
    case Hexagon::S4_subi_lsr_ri:   return Hexagon::S2_lsr_i_r_nac; // T -> T

    // Store-immediates:
    case Hexagon::S4_storeirbf_io:  return Hexagon::S2_pstorerbf_io;
    case Hexagon::S4_storeirb_io:   return Hexagon::S2_storerb_io;
    case Hexagon::S4_storeirbt_io:  return Hexagon::S2_pstorerbt_io;
    case Hexagon::S4_storeirhf_io:  return Hexagon::S2_pstorerhf_io;
    case Hexagon::S4_storeirh_io:   return Hexagon::S2_storerh_io;
    case Hexagon::S4_storeirht_io:  return Hexagon::S2_pstorerht_io;
    case Hexagon::S4_storeirif_io:  return Hexagon::S2_pstorerif_io;
    case Hexagon::S4_storeiri_io:   return Hexagon::S2_storeri_io;
    case Hexagon::S4_storeirit_io:  return Hexagon::S2_pstorerit_io;

    default:
      break;
  }
  return 0;
}

// Return the allowable deviation from the current value of Rb (i.e. the
// range of values that can be added to the current value) which the
// instruction MI can accommodate.
// The instruction MI is a user of register Rb, which is defined via an
// extender. It may be possible for MI to be tweaked to work for a register
// defined with a slightly different value. For example
//   ... = L2_loadrub_io Rb, 1
// can be modifed to be
//   ... = L2_loadrub_io Rb', 0
// if Rb' = Rb+1.
// The range for Rb would be [Min+1, Max+1], where [Min, Max] is a range
// for L2_loadrub with offset 0. That means that Rb could be replaced with
// Rc, where Rc-Rb belongs to [Min+1, Max+1].
OffsetRange HCE::getOffsetRange(Register Rb, const MachineInstr &MI) const {
  unsigned Opc = MI.getOpcode();
  // Instructions that are constant-extended may be replaced with something
  // else that no longer offers the same range as the original.
  if (!isRegOffOpcode(Opc) || HII->isConstExtended(MI))
    return OffsetRange::zero();

  if (Opc == Hexagon::A2_addi) {
    const MachineOperand &Op1 = MI.getOperand(1), &Op2 = MI.getOperand(2);
    if (Rb != Register(Op1) || !Op2.isImm())
      return OffsetRange::zero();
    OffsetRange R = { -(1<<15)+1, (1<<15)-1, 1 };
    return R.shift(Op2.getImm());
  }

  // HII::getBaseAndOffsetPosition returns the increment position as "offset".
  if (HII->isPostIncrement(MI))
    return OffsetRange::zero();

  const MCInstrDesc &D = HII->get(Opc);
  assert(D.mayLoad() || D.mayStore());

  unsigned BaseP, OffP;
  if (!HII->getBaseAndOffsetPosition(MI, BaseP, OffP) ||
      Rb != Register(MI.getOperand(BaseP)) ||
      !MI.getOperand(OffP).isImm())
    return OffsetRange::zero();

  uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
                  HexagonII::MemAccesSizeMask;
  uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
  unsigned L = Log2_32(A);
  unsigned S = 10+L;  // sint11_L
  int32_t Min = -alignDown((1<<S)-1, A);

  // The range will be shifted by Off. To prefer non-negative offsets,
  // adjust Max accordingly.
  int32_t Off = MI.getOperand(OffP).getImm();
  int32_t Max = Off >= 0 ? 0 : -Off;

  OffsetRange R = { Min, Max, A };
  return R.shift(Off);
}

// Return the allowable deviation from the current value of the extender ED,
// for which the instruction corresponding to ED can be modified without
// using an extender.
// The instruction uses the extender directly. It will be replaced with
// another instruction, say MJ, where the extender will be replaced with a
// register. MJ can allow some variability with respect to the value of
// that register, as is the case with indexed memory instructions.
OffsetRange HCE::getOffsetRange(const ExtDesc &ED) const {
  // The only way that there can be a non-zero range available is if
  // the instruction using ED will be converted to an indexed memory
  // instruction.
  unsigned IdxOpc = getRegOffOpcode(ED.UseMI->getOpcode());
  switch (IdxOpc) {
    case 0:
      return OffsetRange::zero();
    case Hexagon::A2_addi:    // s16
      return { -32767, 32767, 1 };
    case Hexagon::A2_subri:   // s10
      return { -511, 511, 1 };
  }

  if (!ED.UseMI->mayLoad() && !ED.UseMI->mayStore())
    return OffsetRange::zero();
  const MCInstrDesc &D = HII->get(IdxOpc);
  uint64_t F = (D.TSFlags >> HexagonII::MemAccessSizePos) &
                  HexagonII::MemAccesSizeMask;
  uint8_t A = HexagonII::getMemAccessSizeInBytes(HexagonII::MemAccessSize(F));
  unsigned L = Log2_32(A);
  unsigned S = 10+L;  // sint11_L
  int32_t Min = -alignDown((1<<S)-1, A);
  int32_t Max = 0;  // Force non-negative offsets.
  return { Min, Max, A };
}

// Get the allowable deviation from the current value of Rd by checking
// all uses of Rd.
OffsetRange HCE::getOffsetRange(Register Rd) const {
  OffsetRange Range;
  for (const MachineOperand &Op : MRI->use_operands(Rd.Reg)) {
    // Make sure that the register being used by this operand is identical
    // to the register that was defined: using a different subregister
    // precludes any non-trivial range.
    if (Rd != Register(Op))
      return OffsetRange::zero();
    Range.intersect(getOffsetRange(Rd, *Op.getParent()));
  }
  return Range;
}

void HCE::recordExtender(MachineInstr &MI, unsigned OpNum) {
  unsigned Opc = MI.getOpcode();
  ExtDesc ED;
  ED.OpNum = OpNum;

  bool IsLoad = MI.mayLoad();
  bool IsStore = MI.mayStore();

  // Fixed stack slots have negative indexes, and they cannot be used
  // with TRI::stackSlot2Index and TRI::index2StackSlot. This is somewhat
  // unfortunate, but should not be a frequent thing.
  for (MachineOperand &Op : MI.operands())
    if (Op.isFI() && Op.getIndex() < 0)
      return;

  if (IsLoad || IsStore) {
    unsigned AM = HII->getAddrMode(MI);
    switch (AM) {
      // (Re: ##Off + Rb<<S) = Rd: ##Val
      case HexagonII::Absolute:       // (__: ## + __<<_)
        break;
      case HexagonII::AbsoluteSet:    // (Rd: ## + __<<_)
        ED.Rd = MI.getOperand(OpNum-1);
        ED.IsDef = true;
        break;
      case HexagonII::BaseImmOffset:  // (__: ## + Rs<<0)
        // Store-immediates are treated as non-memory operations, since
        // it's the value being stored that is extended (as opposed to
        // a part of the address).
        if (!isStoreImmediate(Opc))
          ED.Expr.Rs = MI.getOperand(OpNum-1);
        break;
      case HexagonII::BaseLongOffset: // (__: ## + Rs<<S)
        ED.Expr.Rs = MI.getOperand(OpNum-2);
        ED.Expr.S = MI.getOperand(OpNum-1).getImm();
        break;
      default:
        llvm_unreachable("Unhandled memory instruction");
    }
  } else {
    switch (Opc) {
      case Hexagon::A2_tfrsi:         // (Rd: ## + __<<_)
        ED.Rd = MI.getOperand(0);
        ED.IsDef = true;
        break;
      case Hexagon::A2_combineii:     // (Rd: ## + __<<_)
      case Hexagon::A4_combineir:
        ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_hi };
        ED.IsDef = true;
        break;
      case Hexagon::A4_combineri:     // (Rd: ## + __<<_)
        ED.Rd = { MI.getOperand(0).getReg(), Hexagon::isub_lo };
        ED.IsDef = true;
        break;
      case Hexagon::A2_addi:          // (Rd: ## + Rs<<0)
        ED.Rd = MI.getOperand(0);
        ED.Expr.Rs = MI.getOperand(OpNum-1);
        break;
      case Hexagon::M2_accii:         // (__: ## + Rs<<0)
      case Hexagon::M2_naccii:
      case Hexagon::S4_addaddi:
        ED.Expr.Rs = MI.getOperand(OpNum-1);
        break;
      case Hexagon::A2_subri:         // (Rd: ## - Rs<<0)
        ED.Rd = MI.getOperand(0);
        ED.Expr.Rs = MI.getOperand(OpNum+1);
        ED.Expr.Neg = true;
        break;
      case Hexagon::S4_subaddi:       // (__: ## - Rs<<0)
        ED.Expr.Rs = MI.getOperand(OpNum+1);
        ED.Expr.Neg = true;
        break;
      default:                        // (__: ## + __<<_)
        break;
    }
  }

  ED.UseMI = &MI;

  // Ignore unnamed globals.
  ExtRoot ER(ED.getOp());
  if (ER.Kind == MachineOperand::MO_GlobalAddress)
    if (ER.V.GV->getName().empty())
      return;
  Extenders.push_back(ED);
}

void HCE::collectInstr(MachineInstr &MI) {
  if (!HII->isConstExtended(MI))
    return;

  // Skip some non-convertible instructions.
  unsigned Opc = MI.getOpcode();
  switch (Opc) {
    case Hexagon::M2_macsin:  // There is no Rx -= mpyi(Rs,Rt).
    case Hexagon::C4_addipc:
    case Hexagon::S4_or_andi:
    case Hexagon::S4_or_andix:
    case Hexagon::S4_or_ori:
      return;
  }
  recordExtender(MI, HII->getCExtOpNum(MI));
}

void HCE::collect(MachineFunction &MF) {
  Extenders.clear();
  for (MachineBasicBlock &MBB : MF) {
    // Skip unreachable blocks.
    if (MBB.getNumber() == -1)
      continue;
    for (MachineInstr &MI : MBB)
      collectInstr(MI);
  }
}

void HCE::assignInits(const ExtRoot &ER, unsigned Begin, unsigned End,
      AssignmentMap &IMap) {
  // Sanity check: make sure that all extenders in the range [Begin..End)
  // share the same root ER.
  for (unsigned I = Begin; I != End; ++I)
    assert(ER == ExtRoot(Extenders[I].getOp()));

  // Construct the list of ranges, such that for each P in Ranges[I],
  // a register Reg = ER+P can be used in place of Extender[I]. If the
  // instruction allows, uses in the form of Reg+Off are considered
  // (here, Off = required_value - P).
  std::vector<OffsetRange> Ranges(End-Begin);

  // For each extender that is a def, visit all uses of the defined register,
  // and produce an offset range that works for all uses. The def doesn't
  // have to be checked, because it can become dead if all uses can be updated
  // to use a different reg/offset.
  for (unsigned I = Begin; I != End; ++I) {
    const ExtDesc &ED = Extenders[I];
    if (!ED.IsDef)
      continue;
    ExtValue EV(ED);
    LLVM_DEBUG(dbgs() << " =" << I << ". " << EV << "  " << ED << '\n');
    assert(ED.Rd.Reg != 0);
    Ranges[I-Begin] = getOffsetRange(ED.Rd).shift(EV.Offset);
    // A2_tfrsi is a special case: it will be replaced with A2_addi, which
    // has a 16-bit signed offset. This means that A2_tfrsi not only has a
    // range coming from its uses, but also from the fact that its replacement
    // has a range as well.
    if (ED.UseMI->getOpcode() == Hexagon::A2_tfrsi) {
      int32_t D = alignDown(32767, Ranges[I-Begin].Align); // XXX hardcoded
      Ranges[I-Begin].extendBy(-D).extendBy(D);
    }
  }

  // Visit all non-def extenders. For each one, determine the offset range
  // available for it.
  for (unsigned I = Begin; I != End; ++I) {
    const ExtDesc &ED = Extenders[I];
    if (ED.IsDef)
      continue;
    ExtValue EV(ED);
    LLVM_DEBUG(dbgs() << "  " << I << ". " << EV << "  " << ED << '\n');
    OffsetRange Dev = getOffsetRange(ED);
    Ranges[I-Begin].intersect(Dev.shift(EV.Offset));
  }

  // Here for each I there is a corresponding Range[I]. Construct the
  // inverse map, that to each range will assign the set of indexes in
  // [Begin..End) that this range corresponds to.
  std::map<OffsetRange, IndexList> RangeMap;
  for (unsigned I = Begin; I != End; ++I)
    RangeMap[Ranges[I-Begin]].insert(I);

  LLVM_DEBUG({
    dbgs() << "Ranges\n";
    for (unsigned I = Begin; I != End; ++I)
      dbgs() << "  " << I << ". " << Ranges[I-Begin] << '\n';
    dbgs() << "RangeMap\n";
    for (auto &P : RangeMap) {
      dbgs() << "  " << P.first << " ->";
      for (unsigned I : P.second)
        dbgs() << ' ' << I;
      dbgs() << '\n';
    }
  });

  // Select the definition points, and generate the assignment between
  // these points and the uses.

  // For each candidate offset, keep a pair CandData consisting of
  // the total number of ranges containing that candidate, and the
  // vector of corresponding RangeTree nodes.
  using CandData = std::pair<unsigned, SmallVector<RangeTree::Node*,8>>;
  std::map<int32_t, CandData> CandMap;

  RangeTree Tree;
  for (const OffsetRange &R : Ranges)
    Tree.add(R);
  SmallVector<RangeTree::Node*,8> Nodes;
  Tree.order(Nodes);

  auto MaxAlign = [](const SmallVectorImpl<RangeTree::Node*> &Nodes,
                     uint8_t Align, uint8_t Offset) {
    for (RangeTree::Node *N : Nodes) {
      if (N->Range.Align <= Align || N->Range.Offset < Offset)
        continue;
      if ((N->Range.Offset - Offset) % Align != 0)
        continue;
      Align = N->Range.Align;
      Offset = N->Range.Offset;
    }
    return std::make_pair(Align, Offset);
  };

  // Construct the set of all potential definition points from the endpoints
  // of the ranges. If a given endpoint also belongs to a different range,
  // but with a higher alignment, also consider the more-highly-aligned
  // value of this endpoint.
  std::set<int32_t> CandSet;
  for (RangeTree::Node *N : Nodes) {
    const OffsetRange &R = N->Range;
    auto P0 = MaxAlign(Tree.nodesWith(R.Min, false), R.Align, R.Offset);
    CandSet.insert(R.Min);
    if (R.Align < P0.first)
      CandSet.insert(adjustUp(R.Min, P0.first, P0.second));
    auto P1 = MaxAlign(Tree.nodesWith(R.Max, false), R.Align, R.Offset);
    CandSet.insert(R.Max);
    if (R.Align < P1.first)
      CandSet.insert(adjustDown(R.Max, P1.first, P1.second));
  }

  // Build the assignment map: candidate C -> { list of extender indexes }.
  // This has to be done iteratively:
  // - pick the candidate that covers the maximum number of extenders,
  // - add the candidate to the map,
  // - remove the extenders from the pool.
  while (true) {
    using CMap = std::map<int32_t,unsigned>;
    CMap Counts;
    for (auto It = CandSet.begin(), Et = CandSet.end(); It != Et; ) {
      auto &&V = Tree.nodesWith(*It);
      unsigned N = std::accumulate(V.begin(), V.end(), 0u,
                    [](unsigned Acc, const RangeTree::Node *N) {
                      return Acc + N->Count;
                    });
      if (N != 0)
        Counts.insert({*It, N});
      It = (N != 0) ? std::next(It) : CandSet.erase(It);
    }
    if (Counts.empty())
      break;

    // Find the best candidate with respect to the number of extenders covered.
    auto BestIt = std::max_element(Counts.begin(), Counts.end(),
                    [](const CMap::value_type &A, const CMap::value_type &B) {
                      return A.second < B.second ||
                             (A.second == B.second && A < B);
                    });
    int32_t Best = BestIt->first;
    ExtValue BestV(ER, Best);
    for (RangeTree::Node *N : Tree.nodesWith(Best)) {
      for (unsigned I : RangeMap[N->Range])
        IMap[{BestV,Extenders[I].Expr}].insert(I);
      Tree.erase(N);
    }
  }

  LLVM_DEBUG(dbgs() << "IMap (before fixup) = " << PrintIMap(IMap, *HRI));

  // There is some ambiguity in what initializer should be used, if the
  // descriptor's subexpression is non-trivial: it can be the entire
  // subexpression (which is what has been done so far), or it can be
  // the extender's value itself, if all corresponding extenders have the
  // exact value of the initializer (i.e. require offset of 0).

  // To reduce the number of initializers, merge such special cases.
  for (std::pair<const ExtenderInit,IndexList> &P : IMap) {
    // Skip trivial initializers.
    if (P.first.second.trivial())
      continue;
    // If the corresponding trivial initializer does not exist, skip this
    // entry.
    const ExtValue &EV = P.first.first;
    AssignmentMap::iterator F = IMap.find({EV, ExtExpr()});
    if (F == IMap.end())
      continue;

    // Finally, check if all extenders have the same value as the initializer.
    // Make sure that extenders that are a part of a stack address are not
    // merged with those that aren't. Stack addresses need an offset field
    // (to be used by frame index elimination), while non-stack expressions
    // can be replaced with forms (such as rr) that do not have such a field.
    // Example:
    //
    // Collected 3 extenders
    //  =2. imm:0  off:32968  bb#2: %7 = ## + __ << 0, def
    //   0. imm:0  off:267  bb#0: __ = ## + SS#1 << 0
    //   1. imm:0  off:267  bb#1: __ = ## + SS#1 << 0
    // Ranges
    //   0. [-756,267]a1+0
    //   1. [-756,267]a1+0
    //   2. [201,65735]a1+0
    // RangeMap
    //   [-756,267]a1+0 -> 0 1
    //   [201,65735]a1+0 -> 2
    // IMap (before fixup) = {
    //   [imm:0  off:267, ## + __ << 0] -> { 2 }
    //   [imm:0  off:267, ## + SS#1 << 0] -> { 0 1 }
    // }
    // IMap (after fixup) = {
    //   [imm:0  off:267, ## + __ << 0] -> { 2 0 1 }
    //   [imm:0  off:267, ## + SS#1 << 0] -> { }
    // }
    // Inserted def in bb#0 for initializer: [imm:0  off:267, ## + __ << 0]
    //   %12:intregs = A2_tfrsi 267
    //
    // The result was
    //   %12:intregs = A2_tfrsi 267
    //   S4_pstorerbt_rr %3, %12, %stack.1, 0, killed %4
    // Which became
    //   r0 = #267
    //   if (p0.new) memb(r0+r29<<#4) = r2

    bool IsStack = any_of(F->second, [this](unsigned I) {
                      return Extenders[I].Expr.Rs.isSlot();
                   });
    auto SameValue = [&EV,this,IsStack](unsigned I) {
      const ExtDesc &ED = Extenders[I];
      return ED.Expr.Rs.isSlot() == IsStack &&
             ExtValue(ED).Offset == EV.Offset;
    };
    if (all_of(P.second, SameValue)) {
      F->second.insert(P.second.begin(), P.second.end());
      P.second.clear();
    }
  }

  LLVM_DEBUG(dbgs() << "IMap (after fixup) = " << PrintIMap(IMap, *HRI));
}

void HCE::calculatePlacement(const ExtenderInit &ExtI, const IndexList &Refs,
      LocDefList &Defs) {
  if (Refs.empty())
    return;

  // The placement calculation is somewhat simple right now: it finds a
  // single location for the def that dominates all refs. Since this may
  // place the def far from the uses, producing several locations for
  // defs that collectively dominate all refs could be better.
  // For now only do the single one.
  DenseSet<MachineBasicBlock*> Blocks;
  DenseSet<MachineInstr*> RefMIs;
  const ExtDesc &ED0 = Extenders[Refs[0]];
  MachineBasicBlock *DomB = ED0.UseMI->getParent();
  RefMIs.insert(ED0.UseMI);
  Blocks.insert(DomB);
  for (unsigned i = 1, e = Refs.size(); i != e; ++i) {
    const ExtDesc &ED = Extenders[Refs[i]];
    MachineBasicBlock *MBB = ED.UseMI->getParent();
    RefMIs.insert(ED.UseMI);
    DomB = MDT->findNearestCommonDominator(DomB, MBB);
    Blocks.insert(MBB);
  }

#ifndef NDEBUG
  // The block DomB should be dominated by the def of each register used
  // in the initializer.
  Register Rs = ExtI.second.Rs;  // Only one reg allowed now.
  const MachineInstr *DefI = Rs.isVReg() ? MRI->getVRegDef(Rs.Reg) : nullptr;

  // This should be guaranteed given that the entire expression is used
  // at each instruction in Refs. Add an assertion just in case.
  assert(!DefI || MDT->dominates(DefI->getParent(), DomB));
#endif

  MachineBasicBlock::iterator It;
  if (Blocks.count(DomB)) {
    // Try to find the latest possible location for the def.
    MachineBasicBlock::iterator End = DomB->end();
    for (It = DomB->begin(); It != End; ++It)
      if (RefMIs.count(&*It))
        break;
    assert(It != End && "Should have found a ref in DomB");
  } else {
    // DomB does not contain any refs.
    It = DomB->getFirstTerminator();
  }
  Loc DefLoc(DomB, It);
  Defs.emplace_back(DefLoc, Refs);
}

HCE::Register HCE::insertInitializer(Loc DefL, const ExtenderInit &ExtI) {
  llvm::Register DefR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
  MachineBasicBlock &MBB = *DefL.Block;
  MachineBasicBlock::iterator At = DefL.At;
  DebugLoc dl = DefL.Block->findDebugLoc(DefL.At);
  const ExtValue &EV = ExtI.first;
  MachineOperand ExtOp(EV);

  const ExtExpr &Ex = ExtI.second;
  const MachineInstr *InitI = nullptr;

  if (Ex.Rs.isSlot()) {
    assert(Ex.S == 0 && "Cannot have a shift of a stack slot");
    assert(!Ex.Neg && "Cannot subtract a stack slot");
    // DefR = PS_fi Rb,##EV
    InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::PS_fi), DefR)
              .add(MachineOperand(Ex.Rs))
              .add(ExtOp);
  } else {
    assert((Ex.Rs.Reg == 0 || Ex.Rs.isVReg()) && "Expecting virtual register");
    if (Ex.trivial()) {
      // DefR = ##EV
      InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_tfrsi), DefR)
                .add(ExtOp);
    } else if (Ex.S == 0) {
      if (Ex.Neg) {
        // DefR = sub(##EV,Rb)
        InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
                  .add(ExtOp)
                  .add(MachineOperand(Ex.Rs));
      } else {
        // DefR = add(Rb,##EV)
        InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
                  .add(MachineOperand(Ex.Rs))
                  .add(ExtOp);
      }
    } else {
      if (HST->useCompound()) {
        unsigned NewOpc = Ex.Neg ? Hexagon::S4_subi_asl_ri
                                 : Hexagon::S4_addi_asl_ri;
        // DefR = add(##EV,asl(Rb,S))
        InitI = BuildMI(MBB, At, dl, HII->get(NewOpc), DefR)
                  .add(ExtOp)
                  .add(MachineOperand(Ex.Rs))
                  .addImm(Ex.S);
      } else {
        // No compounds are available. It is not clear whether we should
        // even process such extenders where the initializer cannot be
        // a single instruction, but do it for now.
        unsigned TmpR = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass);
        BuildMI(MBB, At, dl, HII->get(Hexagon::S2_asl_i_r), TmpR)
          .add(MachineOperand(Ex.Rs))
          .addImm(Ex.S);
        if (Ex.Neg)
          InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_subri), DefR)
                    .add(ExtOp)
                    .add(MachineOperand(Register(TmpR, 0)));
        else
          InitI = BuildMI(MBB, At, dl, HII->get(Hexagon::A2_addi), DefR)
                    .add(MachineOperand(Register(TmpR, 0)))
                    .add(ExtOp);
      }
    }
  }

  assert(InitI);
  (void)InitI;
  LLVM_DEBUG(dbgs() << "Inserted def in bb#" << MBB.getNumber()
                    << " for initializer: " << PrintInit(ExtI, *HRI) << "\n  "
                    << *InitI);
  return { DefR, 0 };
}

// Replace the extender at index Idx with the register ExtR.
bool HCE::replaceInstrExact(const ExtDesc &ED, Register ExtR) {
  MachineInstr &MI = *ED.UseMI;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineBasicBlock::iterator At = MI.getIterator();
  DebugLoc dl = MI.getDebugLoc();
  unsigned ExtOpc = MI.getOpcode();

  // With a few exceptions, direct replacement amounts to creating an
  // instruction with a corresponding register opcode, with all operands
  // the same, except for the register used in place of the extender.
  unsigned RegOpc = getDirectRegReplacement(ExtOpc);

  if (RegOpc == TargetOpcode::REG_SEQUENCE) {
    if (ExtOpc == Hexagon::A4_combineri)
      BuildMI(MBB, At, dl, HII->get(RegOpc))
        .add(MI.getOperand(0))
        .add(MI.getOperand(1))
        .addImm(Hexagon::isub_hi)
        .add(MachineOperand(ExtR))
        .addImm(Hexagon::isub_lo);
    else if (ExtOpc == Hexagon::A4_combineir)
      BuildMI(MBB, At, dl, HII->get(RegOpc))
        .add(MI.getOperand(0))
        .add(MachineOperand(ExtR))
        .addImm(Hexagon::isub_hi)
        .add(MI.getOperand(2))
        .addImm(Hexagon::isub_lo);
    else
      llvm_unreachable("Unexpected opcode became REG_SEQUENCE");
    MBB.erase(MI);
    return true;
  }
  if (ExtOpc == Hexagon::C2_cmpgei || ExtOpc == Hexagon::C2_cmpgeui) {
    unsigned NewOpc = ExtOpc == Hexagon::C2_cmpgei ? Hexagon::C2_cmplt
                                                   : Hexagon::C2_cmpltu;
    BuildMI(MBB, At, dl, HII->get(NewOpc))
      .add(MI.getOperand(0))
      .add(MachineOperand(ExtR))
      .add(MI.getOperand(1));
    MBB.erase(MI);
    return true;
  }

  if (RegOpc != 0) {
    MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
    unsigned RegN = ED.OpNum;
    // Copy all operands except the one that has the extender.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      if (i != RegN)
        MIB.add(MI.getOperand(i));
      else
        MIB.add(MachineOperand(ExtR));
    }
    MIB.cloneMemRefs(MI);
    MBB.erase(MI);
    return true;
  }

  if (MI.mayLoadOrStore() && !isStoreImmediate(ExtOpc)) {
    // For memory instructions, there is an asymmetry in the addressing
    // modes. Addressing modes allowing extenders can be replaced with
    // addressing modes that use registers, but the order of operands
    // (or even their number) may be different.
    // Replacements:
    //   BaseImmOffset (io)  -> BaseRegOffset (rr)
    //   BaseLongOffset (ur) -> BaseRegOffset (rr)
    unsigned RegOpc, Shift;
    unsigned AM = HII->getAddrMode(MI);
    if (AM == HexagonII::BaseImmOffset) {
      RegOpc = HII->changeAddrMode_io_rr(ExtOpc);
      Shift = 0;
    } else if (AM == HexagonII::BaseLongOffset) {
      // Loads:  Rd = L4_loadri_ur Rs, S, ##
      // Stores: S4_storeri_ur Rs, S, ##, Rt
      RegOpc = HII->changeAddrMode_ur_rr(ExtOpc);
      Shift = MI.getOperand(MI.mayLoad() ? 2 : 1).getImm();
    } else {
      llvm_unreachable("Unexpected addressing mode");
    }
#ifndef NDEBUG
    if (RegOpc == -1u) {
      dbgs() << "\nExtOpc: " << HII->getName(ExtOpc) << " has no rr version\n";
      llvm_unreachable("No corresponding rr instruction");
    }
#endif

    unsigned BaseP, OffP;
    HII->getBaseAndOffsetPosition(MI, BaseP, OffP);

    // Build an rr instruction: (RegOff + RegBase<<0)
    MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(RegOpc));
    // First, add the def for loads.
    if (MI.mayLoad())
      MIB.add(getLoadResultOp(MI));
    // Handle possible predication.
    if (HII->isPredicated(MI))
      MIB.add(getPredicateOp(MI));
    // Build the address.
    MIB.add(MachineOperand(ExtR));      // RegOff
    MIB.add(MI.getOperand(BaseP));      // RegBase
    MIB.addImm(Shift);                  // << Shift
    // Add the stored value for stores.
    if (MI.mayStore())
      MIB.add(getStoredValueOp(MI));
    MIB.cloneMemRefs(MI);
    MBB.erase(MI);
    return true;
  }

#ifndef NDEBUG
  dbgs() << '\n' << MI;
#endif
  llvm_unreachable("Unhandled exact replacement");
  return false;
}

// Replace the extender ED with a form corresponding to the initializer ExtI.
bool HCE::replaceInstrExpr(const ExtDesc &ED, const ExtenderInit &ExtI,
      Register ExtR, int32_t &Diff) {
  MachineInstr &MI = *ED.UseMI;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineBasicBlock::iterator At = MI.getIterator();
  DebugLoc dl = MI.getDebugLoc();
  unsigned ExtOpc = MI.getOpcode();

  if (ExtOpc == Hexagon::A2_tfrsi) {
    // A2_tfrsi is a special case: it's replaced with A2_addi, which introduces
    // another range. One range is the one that's common to all tfrsi's uses,
    // this one is the range of immediates in A2_addi. When calculating ranges,
    // the addi's 16-bit argument was included, so now we need to make it such
    // that the produced value is in the range for the uses alone.
    // Most of the time, simply adding Diff will make the addi produce exact
    // result, but if Diff is outside of the 16-bit range, some adjustment
    // will be needed.
    unsigned IdxOpc = getRegOffOpcode(ExtOpc);
    assert(IdxOpc == Hexagon::A2_addi);

    // Clamp Diff to the 16 bit range.
    int32_t D = isInt<16>(Diff) ? Diff : (Diff > 0 ? 32767 : -32768);
    if (Diff > 32767) {
      // Split Diff into two values: one that is close to min/max int16,
      // and the other being the rest, and such that both have the same
      // "alignment" as Diff.
      uint32_t UD = Diff;
      OffsetRange R = getOffsetRange(MI.getOperand(0));
      uint32_t A = std::min<uint32_t>(R.Align, 1u << countTrailingZeros(UD));
      D &= ~(A-1);
    }
    BuildMI(MBB, At, dl, HII->get(IdxOpc))
      .add(MI.getOperand(0))
      .add(MachineOperand(ExtR))
      .addImm(D);
    Diff -= D;
#ifndef NDEBUG
    // Make sure the output is within allowable range for uses.
    // "Diff" is a difference in the "opposite direction", i.e. Ext - DefV,
    // not DefV - Ext, as the getOffsetRange would calculate.
    OffsetRange Uses = getOffsetRange(MI.getOperand(0));
    if (!Uses.contains(-Diff))
      dbgs() << "Diff: " << -Diff << " out of range " << Uses
             << " for " << MI;
    assert(Uses.contains(-Diff));
#endif
    MBB.erase(MI);
    return true;
  }

  const ExtValue &EV = ExtI.first; (void)EV;
  const ExtExpr &Ex = ExtI.second; (void)Ex;

  if (ExtOpc == Hexagon::A2_addi || ExtOpc == Hexagon::A2_subri) {
    // If addi/subri are replaced with the exactly matching initializer,
    // they amount to COPY.
    // Check that the initializer is an exact match (for simplicity).
#ifndef NDEBUG
    bool IsAddi = ExtOpc == Hexagon::A2_addi;
    const MachineOperand &RegOp = MI.getOperand(IsAddi ? 1 : 2);
    const MachineOperand &ImmOp = MI.getOperand(IsAddi ? 2 : 1);
    assert(Ex.Rs == RegOp && EV == ImmOp && Ex.Neg != IsAddi &&
           "Initializer mismatch");
#endif
    BuildMI(MBB, At, dl, HII->get(TargetOpcode::COPY))
      .add(MI.getOperand(0))
      .add(MachineOperand(ExtR));
    Diff = 0;
    MBB.erase(MI);
    return true;
  }
  if (ExtOpc == Hexagon::M2_accii || ExtOpc == Hexagon::M2_naccii ||
      ExtOpc == Hexagon::S4_addaddi || ExtOpc == Hexagon::S4_subaddi) {
    // M2_accii:    add(Rt,add(Rs,V)) (tied)
    // M2_naccii:   sub(Rt,add(Rs,V))
    // S4_addaddi:  add(Rt,add(Rs,V))
    // S4_subaddi:  add(Rt,sub(V,Rs))
    // Check that Rs and V match the initializer expression. The Rs+V is the
    // combination that is considered "subexpression" for V, although Rx+V
    // would also be valid.
#ifndef NDEBUG
    bool IsSub = ExtOpc == Hexagon::S4_subaddi;
    Register Rs = MI.getOperand(IsSub ? 3 : 2);
    ExtValue V = MI.getOperand(IsSub ? 2 : 3);
    assert(EV == V && Rs == Ex.Rs && IsSub == Ex.Neg && "Initializer mismatch");
#endif
    unsigned NewOpc = ExtOpc == Hexagon::M2_naccii ? Hexagon::A2_sub
                                                   : Hexagon::A2_add;
    BuildMI(MBB, At, dl, HII->get(NewOpc))
      .add(MI.getOperand(0))
      .add(MI.getOperand(1))
      .add(MachineOperand(ExtR));
    MBB.erase(MI);
    return true;
  }

  if (MI.mayLoadOrStore()) {
    unsigned IdxOpc = getRegOffOpcode(ExtOpc);
    assert(IdxOpc && "Expecting indexed opcode");
    MachineInstrBuilder MIB = BuildMI(MBB, At, dl, HII->get(IdxOpc));
    // Construct the new indexed instruction.
    // First, add the def for loads.
    if (MI.mayLoad())
      MIB.add(getLoadResultOp(MI));
    // Handle possible predication.
    if (HII->isPredicated(MI))
      MIB.add(getPredicateOp(MI));
    // Build the address.
    MIB.add(MachineOperand(ExtR));
    MIB.addImm(Diff);
    // Add the stored value for stores.
    if (MI.mayStore())
      MIB.add(getStoredValueOp(MI));
    MIB.cloneMemRefs(MI);
    MBB.erase(MI);
    return true;
  }

#ifndef NDEBUG
  dbgs() << '\n' << PrintInit(ExtI, *HRI) << "  " << MI;
#endif
  llvm_unreachable("Unhandled expr replacement");
  return false;
}

bool HCE::replaceInstr(unsigned Idx, Register ExtR, const ExtenderInit &ExtI) {
  if (ReplaceLimit.getNumOccurrences()) {
    if (ReplaceLimit <= ReplaceCounter)
      return false;
    ++ReplaceCounter;
  }
  const ExtDesc &ED = Extenders[Idx];
  assert((!ED.IsDef || ED.Rd.Reg != 0) && "Missing Rd for def");
  const ExtValue &DefV = ExtI.first;
  assert(ExtRoot(ExtValue(ED)) == ExtRoot(DefV) && "Extender root mismatch");
  const ExtExpr &DefEx = ExtI.second;

  ExtValue EV(ED);
  int32_t Diff = EV.Offset - DefV.Offset;
  const MachineInstr &MI = *ED.UseMI;
  LLVM_DEBUG(dbgs() << __func__ << " Idx:" << Idx << " ExtR:"
                    << PrintRegister(ExtR, *HRI) << " Diff:" << Diff << '\n');

  // These two addressing modes must be converted into indexed forms
  // regardless of what the initializer looks like.
  bool IsAbs = false, IsAbsSet = false;
  if (MI.mayLoadOrStore()) {
    unsigned AM = HII->getAddrMode(MI);
    IsAbs = AM == HexagonII::Absolute;
    IsAbsSet = AM == HexagonII::AbsoluteSet;
  }

  // If it's a def, remember all operands that need to be updated.
  // If ED is a def, and Diff is not 0, then all uses of the register Rd
  // defined by ED must be in the form (Rd, imm), i.e. the immediate offset
  // must follow the Rd in the operand list.
  std::vector<std::pair<MachineInstr*,unsigned>> RegOps;
  if (ED.IsDef && Diff != 0) {
    for (MachineOperand &Op : MRI->use_operands(ED.Rd.Reg)) {
      MachineInstr &UI = *Op.getParent();
      RegOps.push_back({&UI, getOperandIndex(UI, Op)});
    }
  }

  // Replace the instruction.
  bool Replaced = false;
  if (Diff == 0 && DefEx.trivial() && !IsAbs && !IsAbsSet)
    Replaced = replaceInstrExact(ED, ExtR);
  else
    Replaced = replaceInstrExpr(ED, ExtI, ExtR, Diff);

  if (Diff != 0 && Replaced && ED.IsDef) {
    // Update offsets of the def's uses.
    for (std::pair<MachineInstr*,unsigned> P : RegOps) {
      unsigned J = P.second;
      assert(P.first->getNumOperands() > J+1 &&
             P.first->getOperand(J+1).isImm());
      MachineOperand &ImmOp = P.first->getOperand(J+1);
      ImmOp.setImm(ImmOp.getImm() + Diff);
    }
    // If it was an absolute-set instruction, the "set" part has been removed.
    // ExtR will now be the register with the extended value, and since all
    // users of Rd have been updated, all that needs to be done is to replace
    // Rd with ExtR.
    if (IsAbsSet) {
      assert(ED.Rd.Sub == 0 && ExtR.Sub == 0);
      MRI->replaceRegWith(ED.Rd.Reg, ExtR.Reg);
    }
  }

  return Replaced;
}

bool HCE::replaceExtenders(const AssignmentMap &IMap) {
  LocDefList Defs;
  bool Changed = false;

  for (const std::pair<const ExtenderInit, IndexList> &P : IMap) {
    const IndexList &Idxs = P.second;
    if (Idxs.size() < CountThreshold)
      continue;

    Defs.clear();
    calculatePlacement(P.first, Idxs, Defs);
    for (const std::pair<Loc,IndexList> &Q : Defs) {
      Register DefR = insertInitializer(Q.first, P.first);
      NewRegs.push_back(DefR.Reg);
      for (unsigned I : Q.second)
        Changed |= replaceInstr(I, DefR, P.first);
    }
  }
  return Changed;
}

unsigned HCE::getOperandIndex(const MachineInstr &MI,
      const MachineOperand &Op) const {
  for (unsigned i = 0, n = MI.getNumOperands(); i != n; ++i)
    if (&MI.getOperand(i) == &Op)
      return i;
  llvm_unreachable("Not an operand of MI");
}

const MachineOperand &HCE::getPredicateOp(const MachineInstr &MI) const {
  assert(HII->isPredicated(MI));
  for (const MachineOperand &Op : MI.operands()) {
    if (!Op.isReg() || !Op.isUse() ||
        MRI->getRegClass(Op.getReg()) != &Hexagon::PredRegsRegClass)
      continue;
    assert(Op.getSubReg() == 0 && "Predicate register with a subregister");
    return Op;
  }
  llvm_unreachable("Predicate operand not found");
}

const MachineOperand &HCE::getLoadResultOp(const MachineInstr &MI) const {
  assert(MI.mayLoad());
  return MI.getOperand(0);
}

const MachineOperand &HCE::getStoredValueOp(const MachineInstr &MI) const {
  assert(MI.mayStore());
  return MI.getOperand(MI.getNumExplicitOperands()-1);
}

bool HCE::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;
  if (MF.getFunction().hasPersonalityFn()) {
    LLVM_DEBUG(dbgs() << getPassName() << ": skipping " << MF.getName()
                      << " due to exception handling\n");
    return false;
  }
  LLVM_DEBUG(MF.print(dbgs() << "Before " << getPassName() << '\n', nullptr));

  HST = &MF.getSubtarget<HexagonSubtarget>();
  HII = HST->getInstrInfo();
  HRI = HST->getRegisterInfo();
  MDT = &getAnalysis<MachineDominatorTree>();
  MRI = &MF.getRegInfo();
  AssignmentMap IMap;

  collect(MF);
  llvm::sort(Extenders, [this](const ExtDesc &A, const ExtDesc &B) {
    ExtValue VA(A), VB(B);
    if (VA != VB)
      return VA < VB;
    const MachineInstr *MA = A.UseMI;
    const MachineInstr *MB = B.UseMI;
    if (MA == MB) {
      // If it's the same instruction, compare operand numbers.
      return A.OpNum < B.OpNum;
    }

    const MachineBasicBlock *BA = MA->getParent();
    const MachineBasicBlock *BB = MB->getParent();
    assert(BA->getNumber() != -1 && BB->getNumber() != -1);
    if (BA != BB)
      return BA->getNumber() < BB->getNumber();
    return MDT->dominates(MA, MB);
  });

  bool Changed = false;
  LLVM_DEBUG(dbgs() << "Collected " << Extenders.size() << " extenders\n");
  for (unsigned I = 0, E = Extenders.size(); I != E; ) {
    unsigned B = I;
    const ExtRoot &T = Extenders[B].getOp();
    while (I != E && ExtRoot(Extenders[I].getOp()) == T)
      ++I;

    IMap.clear();
    assignInits(T, B, I, IMap);
    Changed |= replaceExtenders(IMap);
  }

  LLVM_DEBUG({
    if (Changed)
      MF.print(dbgs() << "After " << getPassName() << '\n', nullptr);
    else
      dbgs() << "No changes\n";
  });
  return Changed;
}

FunctionPass *llvm::createHexagonConstExtenders() {
  return new HexagonConstExtenders();
}