HexagonCFGOptimizer.cpp
8.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//===- HexagonCFGOptimizer.cpp - CFG optimizations ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Hexagon.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "hexagon_cfg"
namespace llvm {
FunctionPass *createHexagonCFGOptimizer();
void initializeHexagonCFGOptimizerPass(PassRegistry&);
} // end namespace llvm
namespace {
class HexagonCFGOptimizer : public MachineFunctionPass {
private:
void InvertAndChangeJumpTarget(MachineInstr &, MachineBasicBlock *);
bool isOnFallThroughPath(MachineBasicBlock *MBB);
public:
static char ID;
HexagonCFGOptimizer() : MachineFunctionPass(ID) {
initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override { return "Hexagon CFG Optimizer"; }
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
};
} // end anonymous namespace
char HexagonCFGOptimizer::ID = 0;
static bool IsConditionalBranch(int Opc) {
switch (Opc) {
case Hexagon::J2_jumpt:
case Hexagon::J2_jumptpt:
case Hexagon::J2_jumpf:
case Hexagon::J2_jumpfpt:
case Hexagon::J2_jumptnew:
case Hexagon::J2_jumpfnew:
case Hexagon::J2_jumptnewpt:
case Hexagon::J2_jumpfnewpt:
return true;
}
return false;
}
static bool IsUnconditionalJump(int Opc) {
return (Opc == Hexagon::J2_jump);
}
void HexagonCFGOptimizer::InvertAndChangeJumpTarget(
MachineInstr &MI, MachineBasicBlock *NewTarget) {
const TargetInstrInfo *TII =
MI.getParent()->getParent()->getSubtarget().getInstrInfo();
int NewOpcode = 0;
switch (MI.getOpcode()) {
case Hexagon::J2_jumpt:
NewOpcode = Hexagon::J2_jumpf;
break;
case Hexagon::J2_jumpf:
NewOpcode = Hexagon::J2_jumpt;
break;
case Hexagon::J2_jumptnewpt:
NewOpcode = Hexagon::J2_jumpfnewpt;
break;
case Hexagon::J2_jumpfnewpt:
NewOpcode = Hexagon::J2_jumptnewpt;
break;
default:
llvm_unreachable("Cannot handle this case");
}
MI.setDesc(TII->get(NewOpcode));
MI.getOperand(1).setMBB(NewTarget);
}
bool HexagonCFGOptimizer::isOnFallThroughPath(MachineBasicBlock *MBB) {
if (MBB->canFallThrough())
return true;
for (MachineBasicBlock *PB : MBB->predecessors())
if (PB->isLayoutSuccessor(MBB) && PB->canFallThrough())
return true;
return false;
}
bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
if (skipFunction(Fn.getFunction()))
return false;
// Loop over all of the basic blocks.
for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
MBBb != MBBe; ++MBBb) {
MachineBasicBlock *MBB = &*MBBb;
// Traverse the basic block.
MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
if (MII != MBB->end()) {
MachineInstr &MI = *MII;
int Opc = MI.getOpcode();
if (IsConditionalBranch(Opc)) {
// (Case 1) Transform the code if the following condition occurs:
// BB1: if (p0) jump BB3
// ...falls-through to BB2 ...
// BB2: jump BB4
// ...next block in layout is BB3...
// BB3: ...
//
// Transform this to:
// BB1: if (!p0) jump BB4
// Remove BB2
// BB3: ...
//
// (Case 2) A variation occurs when BB3 contains a JMP to BB4:
// BB1: if (p0) jump BB3
// ...falls-through to BB2 ...
// BB2: jump BB4
// ...other basic blocks ...
// BB4:
// ...not a fall-thru
// BB3: ...
// jump BB4
//
// Transform this to:
// BB1: if (!p0) jump BB4
// Remove BB2
// BB3: ...
// BB4: ...
unsigned NumSuccs = MBB->succ_size();
MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
MachineBasicBlock* FirstSucc = *SI;
MachineBasicBlock* SecondSucc = *(++SI);
MachineBasicBlock* LayoutSucc = nullptr;
MachineBasicBlock* JumpAroundTarget = nullptr;
if (MBB->isLayoutSuccessor(FirstSucc)) {
LayoutSucc = FirstSucc;
JumpAroundTarget = SecondSucc;
} else if (MBB->isLayoutSuccessor(SecondSucc)) {
LayoutSucc = SecondSucc;
JumpAroundTarget = FirstSucc;
} else {
// Odd case...cannot handle.
}
// The target of the unconditional branch must be JumpAroundTarget.
// TODO: If not, we should not invert the unconditional branch.
MachineBasicBlock* CondBranchTarget = nullptr;
if (MI.getOpcode() == Hexagon::J2_jumpt ||
MI.getOpcode() == Hexagon::J2_jumpf) {
CondBranchTarget = MI.getOperand(1).getMBB();
}
if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
continue;
}
if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
// Ensure that BB2 has one instruction -- an unconditional jump.
if ((LayoutSucc->size() == 1) &&
IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
assert(JumpAroundTarget && "jump target is needed to process second basic block");
MachineBasicBlock* UncondTarget =
LayoutSucc->front().getOperand(0).getMBB();
// Check if the layout successor of BB2 is BB3.
bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
!JumpAroundTarget->empty() &&
IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
JumpAroundTarget->pred_size() == 1 &&
JumpAroundTarget->succ_size() == 1;
if (case1 || case2) {
InvertAndChangeJumpTarget(MI, UncondTarget);
MBB->replaceSuccessor(JumpAroundTarget, UncondTarget);
// Remove the unconditional branch in LayoutSucc.
LayoutSucc->erase(LayoutSucc->begin());
LayoutSucc->replaceSuccessor(UncondTarget, JumpAroundTarget);
// This code performs the conversion for case 2, which moves
// the block to the fall-thru case (BB3 in the code above).
if (case2 && !case1) {
JumpAroundTarget->moveAfter(LayoutSucc);
// only move a block if it doesn't have a fall-thru. otherwise
// the CFG will be incorrect.
if (!isOnFallThroughPath(UncondTarget))
UncondTarget->moveAfter(JumpAroundTarget);
}
// Correct live-in information. Is used by post-RA scheduler
// The live-in to LayoutSucc is now all values live-in to
// JumpAroundTarget.
std::vector<MachineBasicBlock::RegisterMaskPair> OrigLiveIn(
LayoutSucc->livein_begin(), LayoutSucc->livein_end());
std::vector<MachineBasicBlock::RegisterMaskPair> NewLiveIn(
JumpAroundTarget->livein_begin(),
JumpAroundTarget->livein_end());
for (const auto &OrigLI : OrigLiveIn)
LayoutSucc->removeLiveIn(OrigLI.PhysReg);
for (const auto &NewLI : NewLiveIn)
LayoutSucc->addLiveIn(NewLI);
}
}
}
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// Public Constructor Functions
//===----------------------------------------------------------------------===//
INITIALIZE_PASS(HexagonCFGOptimizer, "hexagon-cfg", "Hexagon CFG Optimizer",
false, false)
FunctionPass *llvm::createHexagonCFGOptimizer() {
return new HexagonCFGOptimizer();
}