HexagonAsmPrinter.cpp 26.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
//===- HexagonAsmPrinter.cpp - Print machine instrs to Hexagon assembly ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to Hexagon assembly language. This printer is
// the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//

#include "HexagonAsmPrinter.h"
#include "Hexagon.h"
#include "HexagonInstrInfo.h"
#include "HexagonRegisterInfo.h"
#include "HexagonSubtarget.h"
#include "MCTargetDesc/HexagonInstPrinter.h"
#include "MCTargetDesc/HexagonMCExpr.h"
#include "MCTargetDesc/HexagonMCInstrInfo.h"
#include "MCTargetDesc/HexagonMCTargetDesc.h"
#include "TargetInfo/HexagonTargetInfo.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <string>

using namespace llvm;

namespace llvm {

void HexagonLowerToMC(const MCInstrInfo &MCII, const MachineInstr *MI,
                      MCInst &MCB, HexagonAsmPrinter &AP);

} // end namespace llvm

#define DEBUG_TYPE "asm-printer"

// Given a scalar register return its pair.
inline static unsigned getHexagonRegisterPair(unsigned Reg,
      const MCRegisterInfo *RI) {
  assert(Hexagon::IntRegsRegClass.contains(Reg));
  MCSuperRegIterator SR(Reg, RI, false);
  unsigned Pair = *SR;
  assert(Hexagon::DoubleRegsRegClass.contains(Pair));
  return Pair;
}

void HexagonAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
                                     raw_ostream &O) {
  const MachineOperand &MO = MI->getOperand(OpNo);

  switch (MO.getType()) {
  default:
    llvm_unreachable ("<unknown operand type>");
  case MachineOperand::MO_Register:
    O << HexagonInstPrinter::getRegisterName(MO.getReg());
    return;
  case MachineOperand::MO_Immediate:
    O << MO.getImm();
    return;
  case MachineOperand::MO_MachineBasicBlock:
    MO.getMBB()->getSymbol()->print(O, MAI);
    return;
  case MachineOperand::MO_ConstantPoolIndex:
    GetCPISymbol(MO.getIndex())->print(O, MAI);
    return;
  case MachineOperand::MO_GlobalAddress:
    PrintSymbolOperand(MO, O);
    return;
  }
}

// isBlockOnlyReachableByFallthrough - We need to override this since the
// default AsmPrinter does not print labels for any basic block that
// is only reachable by a fall through. That works for all cases except
// for the case in which the basic block is reachable by a fall through but
// through an indirect from a jump table. In this case, the jump table
// will contain a label not defined by AsmPrinter.
bool HexagonAsmPrinter::isBlockOnlyReachableByFallthrough(
      const MachineBasicBlock *MBB) const {
  if (MBB->hasAddressTaken())
    return false;
  return AsmPrinter::isBlockOnlyReachableByFallthrough(MBB);
}

/// PrintAsmOperand - Print out an operand for an inline asm expression.
bool HexagonAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
                                        const char *ExtraCode,
                                        raw_ostream &OS) {
  // Does this asm operand have a single letter operand modifier?
  if (ExtraCode && ExtraCode[0]) {
    if (ExtraCode[1] != 0)
      return true; // Unknown modifier.

    switch (ExtraCode[0]) {
    default:
      // See if this is a generic print operand
      return AsmPrinter::PrintAsmOperand(MI, OpNo, ExtraCode, OS);
    case 'L':
    case 'H': { // The highest-numbered register of a pair.
      const MachineOperand &MO = MI->getOperand(OpNo);
      const MachineFunction &MF = *MI->getParent()->getParent();
      const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
      if (!MO.isReg())
        return true;
      Register RegNumber = MO.getReg();
      // This should be an assert in the frontend.
      if (Hexagon::DoubleRegsRegClass.contains(RegNumber))
        RegNumber = TRI->getSubReg(RegNumber, ExtraCode[0] == 'L' ?
                                              Hexagon::isub_lo :
                                              Hexagon::isub_hi);
      OS << HexagonInstPrinter::getRegisterName(RegNumber);
      return false;
    }
    case 'I':
      // Write 'i' if an integer constant, otherwise nothing.  Used to print
      // addi vs add, etc.
      if (MI->getOperand(OpNo).isImm())
        OS << "i";
      return false;
    }
  }

  printOperand(MI, OpNo, OS);
  return false;
}

bool HexagonAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
                                              unsigned OpNo,
                                              const char *ExtraCode,
                                              raw_ostream &O) {
  if (ExtraCode && ExtraCode[0])
    return true; // Unknown modifier.

  const MachineOperand &Base  = MI->getOperand(OpNo);
  const MachineOperand &Offset = MI->getOperand(OpNo+1);

  if (Base.isReg())
    printOperand(MI, OpNo, O);
  else
    llvm_unreachable("Unimplemented");

  if (Offset.isImm()) {
    if (Offset.getImm())
      O << "+#" << Offset.getImm();
  } else {
    llvm_unreachable("Unimplemented");
  }

  return false;
}

static MCSymbol *smallData(AsmPrinter &AP, const MachineInstr &MI,
                           MCStreamer &OutStreamer, const MCOperand &Imm,
                           int AlignSize) {
  MCSymbol *Sym;
  int64_t Value;
  if (Imm.getExpr()->evaluateAsAbsolute(Value)) {
    StringRef sectionPrefix;
    std::string ImmString;
    StringRef Name;
    if (AlignSize == 8) {
       Name = ".CONST_0000000000000000";
       sectionPrefix = ".gnu.linkonce.l8";
       ImmString = utohexstr(Value);
    } else {
       Name = ".CONST_00000000";
       sectionPrefix = ".gnu.linkonce.l4";
       ImmString = utohexstr(static_cast<uint32_t>(Value));
    }

    std::string symbolName =   // Yes, leading zeros are kept.
      Name.drop_back(ImmString.size()).str() + ImmString;
    std::string sectionName = sectionPrefix.str() + symbolName;

    MCSectionELF *Section = OutStreamer.getContext().getELFSection(
        sectionName, ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);
    OutStreamer.SwitchSection(Section);

    Sym = AP.OutContext.getOrCreateSymbol(Twine(symbolName));
    if (Sym->isUndefined()) {
      OutStreamer.emitLabel(Sym);
      OutStreamer.emitSymbolAttribute(Sym, MCSA_Global);
      OutStreamer.emitIntValue(Value, AlignSize);
      OutStreamer.emitCodeAlignment(AlignSize);
    }
  } else {
    assert(Imm.isExpr() && "Expected expression and found none");
    const MachineOperand &MO = MI.getOperand(1);
    assert(MO.isGlobal() || MO.isCPI() || MO.isJTI());
    MCSymbol *MOSymbol = nullptr;
    if (MO.isGlobal())
      MOSymbol = AP.getSymbol(MO.getGlobal());
    else if (MO.isCPI())
      MOSymbol = AP.GetCPISymbol(MO.getIndex());
    else if (MO.isJTI())
      MOSymbol = AP.GetJTISymbol(MO.getIndex());
    else
      llvm_unreachable("Unknown operand type!");

    StringRef SymbolName = MOSymbol->getName();
    std::string LitaName = ".CONST_" + SymbolName.str();

    MCSectionELF *Section = OutStreamer.getContext().getELFSection(
        ".lita", ELF::SHT_PROGBITS, ELF::SHF_WRITE | ELF::SHF_ALLOC);

    OutStreamer.SwitchSection(Section);
    Sym = AP.OutContext.getOrCreateSymbol(Twine(LitaName));
    if (Sym->isUndefined()) {
      OutStreamer.emitLabel(Sym);
      OutStreamer.emitSymbolAttribute(Sym, MCSA_Local);
      OutStreamer.emitValue(Imm.getExpr(), AlignSize);
      OutStreamer.emitCodeAlignment(AlignSize);
    }
  }
  return Sym;
}

static MCInst ScaleVectorOffset(MCInst &Inst, unsigned OpNo,
                                unsigned VectorSize, MCContext &Ctx) {
  MCInst T;
  T.setOpcode(Inst.getOpcode());
  for (unsigned i = 0, n = Inst.getNumOperands(); i != n; ++i) {
    if (i != OpNo) {
      T.addOperand(Inst.getOperand(i));
      continue;
    }
    MCOperand &ImmOp = Inst.getOperand(i);
    const auto *HE = static_cast<const HexagonMCExpr*>(ImmOp.getExpr());
    int32_t V = cast<MCConstantExpr>(HE->getExpr())->getValue();
    auto *NewCE = MCConstantExpr::create(V / int32_t(VectorSize), Ctx);
    auto *NewHE = HexagonMCExpr::create(NewCE, Ctx);
    T.addOperand(MCOperand::createExpr(NewHE));
  }
  return T;
}

void HexagonAsmPrinter::HexagonProcessInstruction(MCInst &Inst,
                                                  const MachineInstr &MI) {
  MCInst &MappedInst = static_cast <MCInst &>(Inst);
  const MCRegisterInfo *RI = OutStreamer->getContext().getRegisterInfo();
  const MachineFunction &MF = *MI.getParent()->getParent();
  auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
  unsigned VectorSize = HRI.getRegSizeInBits(Hexagon::HvxVRRegClass) / 8;

  switch (Inst.getOpcode()) {
  default:
    return;

  case Hexagon::A2_iconst: {
    Inst.setOpcode(Hexagon::A2_addi);
    MCOperand Reg = Inst.getOperand(0);
    MCOperand S16 = Inst.getOperand(1);
    HexagonMCInstrInfo::setMustNotExtend(*S16.getExpr());
    HexagonMCInstrInfo::setS27_2_reloc(*S16.getExpr());
    Inst.clear();
    Inst.addOperand(Reg);
    Inst.addOperand(MCOperand::createReg(Hexagon::R0));
    Inst.addOperand(S16);
    break;
  }

  case Hexagon::A2_tfrf: {
    const MCConstantExpr *Zero = MCConstantExpr::create(0, OutContext);
    Inst.setOpcode(Hexagon::A2_paddif);
    Inst.addOperand(MCOperand::createExpr(Zero));
    break;
  }

  case Hexagon::A2_tfrt: {
    const MCConstantExpr *Zero = MCConstantExpr::create(0, OutContext);
    Inst.setOpcode(Hexagon::A2_paddit);
    Inst.addOperand(MCOperand::createExpr(Zero));
    break;
  }

  case Hexagon::A2_tfrfnew: {
    const MCConstantExpr *Zero = MCConstantExpr::create(0, OutContext);
    Inst.setOpcode(Hexagon::A2_paddifnew);
    Inst.addOperand(MCOperand::createExpr(Zero));
    break;
  }

  case Hexagon::A2_tfrtnew: {
    const MCConstantExpr *Zero = MCConstantExpr::create(0, OutContext);
    Inst.setOpcode(Hexagon::A2_padditnew);
    Inst.addOperand(MCOperand::createExpr(Zero));
    break;
  }

  case Hexagon::A2_zxtb: {
    const MCConstantExpr *C255 = MCConstantExpr::create(255, OutContext);
    Inst.setOpcode(Hexagon::A2_andir);
    Inst.addOperand(MCOperand::createExpr(C255));
    break;
  }

  // "$dst = CONST64(#$src1)",
  case Hexagon::CONST64:
    if (!OutStreamer->hasRawTextSupport()) {
      const MCOperand &Imm = MappedInst.getOperand(1);
      MCSectionSubPair Current = OutStreamer->getCurrentSection();

      MCSymbol *Sym = smallData(*this, MI, *OutStreamer, Imm, 8);

      OutStreamer->SwitchSection(Current.first, Current.second);
      MCInst TmpInst;
      MCOperand &Reg = MappedInst.getOperand(0);
      TmpInst.setOpcode(Hexagon::L2_loadrdgp);
      TmpInst.addOperand(Reg);
      TmpInst.addOperand(MCOperand::createExpr(
                         MCSymbolRefExpr::create(Sym, OutContext)));
      MappedInst = TmpInst;

    }
    break;
  case Hexagon::CONST32:
    if (!OutStreamer->hasRawTextSupport()) {
      MCOperand &Imm = MappedInst.getOperand(1);
      MCSectionSubPair Current = OutStreamer->getCurrentSection();
      MCSymbol *Sym = smallData(*this, MI, *OutStreamer, Imm, 4);
      OutStreamer->SwitchSection(Current.first, Current.second);
      MCInst TmpInst;
      MCOperand &Reg = MappedInst.getOperand(0);
      TmpInst.setOpcode(Hexagon::L2_loadrigp);
      TmpInst.addOperand(Reg);
      TmpInst.addOperand(MCOperand::createExpr(HexagonMCExpr::create(
          MCSymbolRefExpr::create(Sym, OutContext), OutContext)));
      MappedInst = TmpInst;
    }
    break;

  // C2_pxfer_map maps to C2_or instruction. Though, it's possible to use
  // C2_or during instruction selection itself but it results
  // into suboptimal code.
  case Hexagon::C2_pxfer_map: {
    MCOperand &Ps = Inst.getOperand(1);
    MappedInst.setOpcode(Hexagon::C2_or);
    MappedInst.addOperand(Ps);
    return;
  }

  // Vector reduce complex multiply by scalar, Rt & 1 map to :hi else :lo
  // The insn is mapped from the 4 operand to the 3 operand raw form taking
  // 3 register pairs.
  case Hexagon::M2_vrcmpys_acc_s1: {
    MCOperand &Rt = Inst.getOperand(3);
    assert(Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_h);
    else
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_acc_s1_l);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }
  case Hexagon::M2_vrcmpys_s1: {
    MCOperand &Rt = Inst.getOperand(2);
    assert(Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_h);
    else
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1_l);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }

  case Hexagon::M2_vrcmpys_s1rp: {
    MCOperand &Rt = Inst.getOperand(2);
    assert(Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_h);
    else
      MappedInst.setOpcode(Hexagon::M2_vrcmpys_s1rp_l);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }

  case Hexagon::A4_boundscheck: {
    MCOperand &Rs = Inst.getOperand(1);
    assert(Rs.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rs.getReg());
    if (Reg & 1) // Odd mapped to raw:hi, regpair is rodd:odd-1, like r3:2
      MappedInst.setOpcode(Hexagon::A4_boundscheck_hi);
    else         // raw:lo
      MappedInst.setOpcode(Hexagon::A4_boundscheck_lo);
    Rs.setReg(getHexagonRegisterPair(Rs.getReg(), RI));
    return;
  }

  case Hexagon::PS_call_nr:
    Inst.setOpcode(Hexagon::J2_call);
    break;

  case Hexagon::S5_asrhub_rnd_sat_goodsyntax: {
    MCOperand &MO = MappedInst.getOperand(2);
    int64_t Imm;
    MCExpr const *Expr = MO.getExpr();
    bool Success = Expr->evaluateAsAbsolute(Imm);
    assert(Success && "Expected immediate and none was found");
    (void)Success;
    MCInst TmpInst;
    if (Imm == 0) {
      TmpInst.setOpcode(Hexagon::S2_vsathub);
      TmpInst.addOperand(MappedInst.getOperand(0));
      TmpInst.addOperand(MappedInst.getOperand(1));
      MappedInst = TmpInst;
      return;
    }
    TmpInst.setOpcode(Hexagon::S5_asrhub_rnd_sat);
    TmpInst.addOperand(MappedInst.getOperand(0));
    TmpInst.addOperand(MappedInst.getOperand(1));
    const MCExpr *One = MCConstantExpr::create(1, OutContext);
    const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
    TmpInst.addOperand(
        MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
    MappedInst = TmpInst;
    return;
  }

  case Hexagon::S5_vasrhrnd_goodsyntax:
  case Hexagon::S2_asr_i_p_rnd_goodsyntax: {
    MCOperand &MO2 = MappedInst.getOperand(2);
    MCExpr const *Expr = MO2.getExpr();
    int64_t Imm;
    bool Success = Expr->evaluateAsAbsolute(Imm);
    assert(Success && "Expected immediate and none was found");
    (void)Success;
    MCInst TmpInst;
    if (Imm == 0) {
      TmpInst.setOpcode(Hexagon::A2_combinew);
      TmpInst.addOperand(MappedInst.getOperand(0));
      MCOperand &MO1 = MappedInst.getOperand(1);
      unsigned High = RI->getSubReg(MO1.getReg(), Hexagon::isub_hi);
      unsigned Low = RI->getSubReg(MO1.getReg(), Hexagon::isub_lo);
      // Add a new operand for the second register in the pair.
      TmpInst.addOperand(MCOperand::createReg(High));
      TmpInst.addOperand(MCOperand::createReg(Low));
      MappedInst = TmpInst;
      return;
    }

    if (Inst.getOpcode() == Hexagon::S2_asr_i_p_rnd_goodsyntax)
      TmpInst.setOpcode(Hexagon::S2_asr_i_p_rnd);
    else
      TmpInst.setOpcode(Hexagon::S5_vasrhrnd);
    TmpInst.addOperand(MappedInst.getOperand(0));
    TmpInst.addOperand(MappedInst.getOperand(1));
    const MCExpr *One = MCConstantExpr::create(1, OutContext);
    const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
    TmpInst.addOperand(
        MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
    MappedInst = TmpInst;
    return;
  }

  // if ("#u5==0") Assembler mapped to: "Rd=Rs"; else Rd=asr(Rs,#u5-1):rnd
  case Hexagon::S2_asr_i_r_rnd_goodsyntax: {
    MCOperand &MO = Inst.getOperand(2);
    MCExpr const *Expr = MO.getExpr();
    int64_t Imm;
    bool Success = Expr->evaluateAsAbsolute(Imm);
    assert(Success && "Expected immediate and none was found");
    (void)Success;
    MCInst TmpInst;
    if (Imm == 0) {
      TmpInst.setOpcode(Hexagon::A2_tfr);
      TmpInst.addOperand(MappedInst.getOperand(0));
      TmpInst.addOperand(MappedInst.getOperand(1));
      MappedInst = TmpInst;
      return;
    }
    TmpInst.setOpcode(Hexagon::S2_asr_i_r_rnd);
    TmpInst.addOperand(MappedInst.getOperand(0));
    TmpInst.addOperand(MappedInst.getOperand(1));
    const MCExpr *One = MCConstantExpr::create(1, OutContext);
    const MCExpr *Sub = MCBinaryExpr::createSub(Expr, One, OutContext);
    TmpInst.addOperand(
        MCOperand::createExpr(HexagonMCExpr::create(Sub, OutContext)));
    MappedInst = TmpInst;
    return;
  }

  // Translate a "$Rdd = #imm" to "$Rdd = combine(#[-1,0], #imm)"
  case Hexagon::A2_tfrpi: {
    MCInst TmpInst;
    MCOperand &Rdd = MappedInst.getOperand(0);
    MCOperand &MO = MappedInst.getOperand(1);

    TmpInst.setOpcode(Hexagon::A2_combineii);
    TmpInst.addOperand(Rdd);
    int64_t Imm;
    bool Success = MO.getExpr()->evaluateAsAbsolute(Imm);
    if (Success && Imm < 0) {
      const MCExpr *MOne = MCConstantExpr::create(-1, OutContext);
      const HexagonMCExpr *E = HexagonMCExpr::create(MOne, OutContext);
      TmpInst.addOperand(MCOperand::createExpr(E));
    } else {
      const MCExpr *Zero = MCConstantExpr::create(0, OutContext);
      const HexagonMCExpr *E = HexagonMCExpr::create(Zero, OutContext);
      TmpInst.addOperand(MCOperand::createExpr(E));
    }
    TmpInst.addOperand(MO);
    MappedInst = TmpInst;
    return;
  }

  // Translate a "$Rdd = $Rss" to "$Rdd = combine($Rs, $Rt)"
  case Hexagon::A2_tfrp: {
    MCOperand &MO = MappedInst.getOperand(1);
    unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
    unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
    MO.setReg(High);
    // Add a new operand for the second register in the pair.
    MappedInst.addOperand(MCOperand::createReg(Low));
    MappedInst.setOpcode(Hexagon::A2_combinew);
    return;
  }

  case Hexagon::A2_tfrpt:
  case Hexagon::A2_tfrpf: {
    MCOperand &MO = MappedInst.getOperand(2);
    unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
    unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
    MO.setReg(High);
    // Add a new operand for the second register in the pair.
    MappedInst.addOperand(MCOperand::createReg(Low));
    MappedInst.setOpcode((Inst.getOpcode() == Hexagon::A2_tfrpt)
                          ? Hexagon::C2_ccombinewt
                          : Hexagon::C2_ccombinewf);
    return;
  }

  case Hexagon::A2_tfrptnew:
  case Hexagon::A2_tfrpfnew: {
    MCOperand &MO = MappedInst.getOperand(2);
    unsigned High = RI->getSubReg(MO.getReg(), Hexagon::isub_hi);
    unsigned Low = RI->getSubReg(MO.getReg(), Hexagon::isub_lo);
    MO.setReg(High);
    // Add a new operand for the second register in the pair.
    MappedInst.addOperand(MCOperand::createReg(Low));
    MappedInst.setOpcode(Inst.getOpcode() == Hexagon::A2_tfrptnew
                            ? Hexagon::C2_ccombinewnewt
                            : Hexagon::C2_ccombinewnewf);
    return;
  }

  case Hexagon::M2_mpysmi: {
    MCOperand &Imm = MappedInst.getOperand(2);
    MCExpr const *Expr = Imm.getExpr();
    int64_t Value;
    bool Success = Expr->evaluateAsAbsolute(Value);
    assert(Success);
    (void)Success;
    if (Value < 0 && Value > -256) {
      MappedInst.setOpcode(Hexagon::M2_mpysin);
      Imm.setExpr(HexagonMCExpr::create(
          MCUnaryExpr::createMinus(Expr, OutContext), OutContext));
    } else
      MappedInst.setOpcode(Hexagon::M2_mpysip);
    return;
  }

  case Hexagon::A2_addsp: {
    MCOperand &Rt = Inst.getOperand(1);
    assert(Rt.isReg() && "Expected register and none was found");
    unsigned Reg = RI->getEncodingValue(Rt.getReg());
    if (Reg & 1)
      MappedInst.setOpcode(Hexagon::A2_addsph);
    else
      MappedInst.setOpcode(Hexagon::A2_addspl);
    Rt.setReg(getHexagonRegisterPair(Rt.getReg(), RI));
    return;
  }

  case Hexagon::V6_vd0: {
    MCInst TmpInst;
    assert(Inst.getOperand(0).isReg() &&
           "Expected register and none was found");

    TmpInst.setOpcode(Hexagon::V6_vxor);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    MappedInst = TmpInst;
    return;
  }

  case Hexagon::V6_vdd0: {
    MCInst TmpInst;
    assert (Inst.getOperand(0).isReg() &&
            "Expected register and none was found");

    TmpInst.setOpcode(Hexagon::V6_vsubw_dv);
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    TmpInst.addOperand(Inst.getOperand(0));
    MappedInst = TmpInst;
    return;
  }

  case Hexagon::V6_vL32Ub_pi:
  case Hexagon::V6_vL32b_cur_pi:
  case Hexagon::V6_vL32b_nt_cur_pi:
  case Hexagon::V6_vL32b_pi:
  case Hexagon::V6_vL32b_nt_pi:
  case Hexagon::V6_vL32b_nt_tmp_pi:
  case Hexagon::V6_vL32b_tmp_pi:
    MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
    return;

  case Hexagon::V6_vL32Ub_ai:
  case Hexagon::V6_vL32b_ai:
  case Hexagon::V6_vL32b_cur_ai:
  case Hexagon::V6_vL32b_nt_ai:
  case Hexagon::V6_vL32b_nt_cur_ai:
  case Hexagon::V6_vL32b_nt_tmp_ai:
  case Hexagon::V6_vL32b_tmp_ai:
    MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
    return;

  case Hexagon::V6_vS32Ub_pi:
  case Hexagon::V6_vS32b_new_pi:
  case Hexagon::V6_vS32b_nt_new_pi:
  case Hexagon::V6_vS32b_nt_pi:
  case Hexagon::V6_vS32b_pi:
    MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
    return;

  case Hexagon::V6_vS32Ub_ai:
  case Hexagon::V6_vS32b_ai:
  case Hexagon::V6_vS32b_new_ai:
  case Hexagon::V6_vS32b_nt_ai:
  case Hexagon::V6_vS32b_nt_new_ai:
    MappedInst = ScaleVectorOffset(Inst, 1, VectorSize, OutContext);
    return;

  case Hexagon::V6_vL32b_cur_npred_pi:
  case Hexagon::V6_vL32b_cur_pred_pi:
  case Hexagon::V6_vL32b_npred_pi:
  case Hexagon::V6_vL32b_nt_cur_npred_pi:
  case Hexagon::V6_vL32b_nt_cur_pred_pi:
  case Hexagon::V6_vL32b_nt_npred_pi:
  case Hexagon::V6_vL32b_nt_pred_pi:
  case Hexagon::V6_vL32b_nt_tmp_npred_pi:
  case Hexagon::V6_vL32b_nt_tmp_pred_pi:
  case Hexagon::V6_vL32b_pred_pi:
  case Hexagon::V6_vL32b_tmp_npred_pi:
  case Hexagon::V6_vL32b_tmp_pred_pi:
    MappedInst = ScaleVectorOffset(Inst, 4, VectorSize, OutContext);
    return;

  case Hexagon::V6_vL32b_cur_npred_ai:
  case Hexagon::V6_vL32b_cur_pred_ai:
  case Hexagon::V6_vL32b_npred_ai:
  case Hexagon::V6_vL32b_nt_cur_npred_ai:
  case Hexagon::V6_vL32b_nt_cur_pred_ai:
  case Hexagon::V6_vL32b_nt_npred_ai:
  case Hexagon::V6_vL32b_nt_pred_ai:
  case Hexagon::V6_vL32b_nt_tmp_npred_ai:
  case Hexagon::V6_vL32b_nt_tmp_pred_ai:
  case Hexagon::V6_vL32b_pred_ai:
  case Hexagon::V6_vL32b_tmp_npred_ai:
  case Hexagon::V6_vL32b_tmp_pred_ai:
    MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
    return;

  case Hexagon::V6_vS32Ub_npred_pi:
  case Hexagon::V6_vS32Ub_pred_pi:
  case Hexagon::V6_vS32b_new_npred_pi:
  case Hexagon::V6_vS32b_new_pred_pi:
  case Hexagon::V6_vS32b_npred_pi:
  case Hexagon::V6_vS32b_nqpred_pi:
  case Hexagon::V6_vS32b_nt_new_npred_pi:
  case Hexagon::V6_vS32b_nt_new_pred_pi:
  case Hexagon::V6_vS32b_nt_npred_pi:
  case Hexagon::V6_vS32b_nt_nqpred_pi:
  case Hexagon::V6_vS32b_nt_pred_pi:
  case Hexagon::V6_vS32b_nt_qpred_pi:
  case Hexagon::V6_vS32b_pred_pi:
  case Hexagon::V6_vS32b_qpred_pi:
    MappedInst = ScaleVectorOffset(Inst, 3, VectorSize, OutContext);
    return;

  case Hexagon::V6_vS32Ub_npred_ai:
  case Hexagon::V6_vS32Ub_pred_ai:
  case Hexagon::V6_vS32b_new_npred_ai:
  case Hexagon::V6_vS32b_new_pred_ai:
  case Hexagon::V6_vS32b_npred_ai:
  case Hexagon::V6_vS32b_nqpred_ai:
  case Hexagon::V6_vS32b_nt_new_npred_ai:
  case Hexagon::V6_vS32b_nt_new_pred_ai:
  case Hexagon::V6_vS32b_nt_npred_ai:
  case Hexagon::V6_vS32b_nt_nqpred_ai:
  case Hexagon::V6_vS32b_nt_pred_ai:
  case Hexagon::V6_vS32b_nt_qpred_ai:
  case Hexagon::V6_vS32b_pred_ai:
  case Hexagon::V6_vS32b_qpred_ai:
    MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
    return;

  // V65+
  case Hexagon::V6_vS32b_srls_ai:
    MappedInst = ScaleVectorOffset(Inst, 1, VectorSize, OutContext);
    return;

  case Hexagon::V6_vS32b_srls_pi:
    MappedInst = ScaleVectorOffset(Inst, 2, VectorSize, OutContext);
    return;
  }
}

/// Print out a single Hexagon MI to the current output stream.
void HexagonAsmPrinter::emitInstruction(const MachineInstr *MI) {
  MCInst MCB;
  MCB.setOpcode(Hexagon::BUNDLE);
  MCB.addOperand(MCOperand::createImm(0));
  const MCInstrInfo &MCII = *Subtarget->getInstrInfo();

  if (MI->isBundle()) {
    const MachineBasicBlock* MBB = MI->getParent();
    MachineBasicBlock::const_instr_iterator MII = MI->getIterator();

    for (++MII; MII != MBB->instr_end() && MII->isInsideBundle(); ++MII)
      if (!MII->isDebugInstr() && !MII->isImplicitDef())
        HexagonLowerToMC(MCII, &*MII, MCB, *this);
  } else {
    HexagonLowerToMC(MCII, MI, MCB, *this);
  }

  const MachineFunction &MF = *MI->getParent()->getParent();
  const auto &HII = *MF.getSubtarget<HexagonSubtarget>().getInstrInfo();
  if (MI->isBundle() && HII.getBundleNoShuf(*MI))
    HexagonMCInstrInfo::setMemReorderDisabled(MCB);

  MCContext &Ctx = OutStreamer->getContext();
  bool Ok = HexagonMCInstrInfo::canonicalizePacket(MCII, *Subtarget, Ctx,
                                                   MCB, nullptr);
  assert(Ok); (void)Ok;
  if (HexagonMCInstrInfo::bundleSize(MCB) == 0)
    return;
  OutStreamer->emitInstruction(MCB, getSubtargetInfo());
}

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeHexagonAsmPrinter() {
  RegisterAsmPrinter<HexagonAsmPrinter> X(getTheHexagonTarget());
}