BitTracker.h 17.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
//===- BitTracker.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H
#define LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H

#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include <cassert>
#include <cstdint>
#include <map>
#include <queue>
#include <set>
#include <utility>

namespace llvm {

class BitVector;
class ConstantInt;
class MachineRegisterInfo;
class MachineBasicBlock;
class MachineFunction;
class raw_ostream;
class TargetRegisterClass;
class TargetRegisterInfo;

struct BitTracker {
  struct BitRef;
  struct RegisterRef;
  struct BitValue;
  struct BitMask;
  struct RegisterCell;
  struct MachineEvaluator;

  using BranchTargetList = SetVector<const MachineBasicBlock *>;
  using CellMapType = std::map<unsigned, RegisterCell>;

  BitTracker(const MachineEvaluator &E, MachineFunction &F);
  ~BitTracker();

  void run();
  void trace(bool On = false) { Trace = On; }
  bool has(unsigned Reg) const;
  const RegisterCell &lookup(unsigned Reg) const;
  RegisterCell get(RegisterRef RR) const;
  void put(RegisterRef RR, const RegisterCell &RC);
  void subst(RegisterRef OldRR, RegisterRef NewRR);
  bool reached(const MachineBasicBlock *B) const;
  void visit(const MachineInstr &MI);

  void print_cells(raw_ostream &OS) const;

private:
  void visitPHI(const MachineInstr &PI);
  void visitNonBranch(const MachineInstr &MI);
  void visitBranchesFrom(const MachineInstr &BI);
  void visitUsesOf(unsigned Reg);

  using CFGEdge = std::pair<int, int>;
  using EdgeSetType = std::set<CFGEdge>;
  using InstrSetType = std::set<const MachineInstr *>;
  using EdgeQueueType = std::queue<CFGEdge>;

  // Priority queue of instructions using modified registers, ordered by
  // their relative position in a basic block.
  struct UseQueueType {
    UseQueueType() : Uses(Dist) {}

    unsigned size() const {
      return Uses.size();
    }
    bool empty() const {
      return size() == 0;
    }
    MachineInstr *front() const {
      return Uses.top();
    }
    void push(MachineInstr *MI) {
      if (Set.insert(MI).second)
        Uses.push(MI);
    }
    void pop() {
      Set.erase(front());
      Uses.pop();
    }
    void reset() {
      Dist.clear();
    }
  private:
    struct Cmp {
      Cmp(DenseMap<const MachineInstr*,unsigned> &Map) : Dist(Map) {}
      bool operator()(const MachineInstr *MI, const MachineInstr *MJ) const;
      DenseMap<const MachineInstr*,unsigned> &Dist;
    };
    std::priority_queue<MachineInstr*, std::vector<MachineInstr*>, Cmp> Uses;
    DenseSet<const MachineInstr*> Set; // Set to avoid adding duplicate entries.
    DenseMap<const MachineInstr*,unsigned> Dist;
  };

  void reset();
  void runEdgeQueue(BitVector &BlockScanned);
  void runUseQueue();

  const MachineEvaluator &ME;
  MachineFunction &MF;
  MachineRegisterInfo &MRI;
  CellMapType &Map;

  EdgeSetType EdgeExec;         // Executable flow graph edges.
  InstrSetType InstrExec;       // Executable instructions.
  UseQueueType UseQ;            // Work queue of register uses.
  EdgeQueueType FlowQ;          // Work queue of CFG edges.
  DenseSet<unsigned> ReachedBB; // Cache of reached blocks.
  bool Trace;                   // Enable tracing for debugging.
};

// Abstraction of a reference to bit at position Pos from a register Reg.
struct BitTracker::BitRef {
  BitRef(unsigned R = 0, uint16_t P = 0) : Reg(R), Pos(P) {}

  bool operator== (const BitRef &BR) const {
    // If Reg is 0, disregard Pos.
    return Reg == BR.Reg && (Reg == 0 || Pos == BR.Pos);
  }

  unsigned Reg;
  uint16_t Pos;
};

// Abstraction of a register reference in MachineOperand.  It contains the
// register number and the subregister index.
struct BitTracker::RegisterRef {
  RegisterRef(unsigned R = 0, unsigned S = 0)
    : Reg(R), Sub(S) {}
  RegisterRef(const MachineOperand &MO)
      : Reg(MO.getReg()), Sub(MO.getSubReg()) {}

  unsigned Reg, Sub;
};

// Value that a single bit can take.  This is outside of the context of
// any register, it is more of an abstraction of the two-element set of
// possible bit values.  One extension here is the "Ref" type, which
// indicates that this bit takes the same value as the bit described by
// RefInfo.
struct BitTracker::BitValue {
  enum ValueType {
    Top,    // Bit not yet defined.
    Zero,   // Bit = 0.
    One,    // Bit = 1.
    Ref     // Bit value same as the one described in RefI.
    // Conceptually, there is no explicit "bottom" value: the lattice's
    // bottom will be expressed as a "ref to itself", which, in the context
    // of registers, could be read as "this value of this bit is defined by
    // this bit".
    // The ordering is:
    //   x <= Top,
    //   Self <= x, where "Self" is "ref to itself".
    // This makes the value lattice different for each virtual register
    // (even for each bit in the same virtual register), since the "bottom"
    // for one register will be a simple "ref" for another register.
    // Since we do not store the "Self" bit and register number, the meet
    // operation will need to take it as a parameter.
    //
    // In practice there is a special case for values that are not associa-
    // ted with any specific virtual register. An example would be a value
    // corresponding to a bit of a physical register, or an intermediate
    // value obtained in some computation (such as instruction evaluation).
    // Such cases are identical to the usual Ref type, but the register
    // number is 0. In such case the Pos field of the reference is ignored.
    //
    // What is worthy of notice is that in value V (that is a "ref"), as long
    // as the RefI.Reg is not 0, it may actually be the same register as the
    // one in which V will be contained.  If the RefI.Pos refers to the posi-
    // tion of V, then V is assumed to be "bottom" (as a "ref to itself"),
    // otherwise V is taken to be identical to the referenced bit of the
    // same register.
    // If RefI.Reg is 0, however, such a reference to the same register is
    // not possible.  Any value V that is a "ref", and whose RefI.Reg is 0
    // is treated as "bottom".
  };
  ValueType Type;
  BitRef RefI;

  BitValue(ValueType T = Top) : Type(T) {}
  BitValue(bool B) : Type(B ? One : Zero) {}
  BitValue(unsigned Reg, uint16_t Pos) : Type(Ref), RefI(Reg, Pos) {}

  bool operator== (const BitValue &V) const {
    if (Type != V.Type)
      return false;
    if (Type == Ref && !(RefI == V.RefI))
      return false;
    return true;
  }
  bool operator!= (const BitValue &V) const {
    return !operator==(V);
  }

  bool is(unsigned T) const {
    assert(T == 0 || T == 1);
    return T == 0 ? Type == Zero
                  : (T == 1 ? Type == One : false);
  }

  // The "meet" operation is the "." operation in a semilattice (L, ., T, B):
  // (1)  x.x = x
  // (2)  x.y = y.x
  // (3)  x.(y.z) = (x.y).z
  // (4)  x.T = x  (i.e. T = "top")
  // (5)  x.B = B  (i.e. B = "bottom")
  //
  // This "meet" function will update the value of the "*this" object with
  // the newly calculated one, and return "true" if the value of *this has
  // changed, and "false" otherwise.
  // To prove that it satisfies the conditions (1)-(5), it is sufficient
  // to show that a relation
  //   x <= y  <=>  x.y = x
  // defines a partial order (i.e. that "meet" is same as "infimum").
  bool meet(const BitValue &V, const BitRef &Self) {
    // First, check the cases where there is nothing to be done.
    if (Type == Ref && RefI == Self)    // Bottom.meet(V) = Bottom (i.e. This)
      return false;
    if (V.Type == Top)                  // This.meet(Top) = This
      return false;
    if (*this == V)                     // This.meet(This) = This
      return false;

    // At this point, we know that the value of "this" will change.
    // If it is Top, it will become the same as V, otherwise it will
    // become "bottom" (i.e. Self).
    if (Type == Top) {
      Type = V.Type;
      RefI = V.RefI;  // This may be irrelevant, but copy anyway.
      return true;
    }
    // Become "bottom".
    Type = Ref;
    RefI = Self;
    return true;
  }

  // Create a reference to the bit value V.
  static BitValue ref(const BitValue &V);
  // Create a "self".
  static BitValue self(const BitRef &Self = BitRef());

  bool num() const {
    return Type == Zero || Type == One;
  }

  operator bool() const {
    assert(Type == Zero || Type == One);
    return Type == One;
  }

  friend raw_ostream &operator<<(raw_ostream &OS, const BitValue &BV);
};

// This operation must be idempotent, i.e. ref(ref(V)) == ref(V).
inline BitTracker::BitValue
BitTracker::BitValue::ref(const BitValue &V) {
  if (V.Type != Ref)
    return BitValue(V.Type);
  if (V.RefI.Reg != 0)
    return BitValue(V.RefI.Reg, V.RefI.Pos);
  return self();
}

inline BitTracker::BitValue
BitTracker::BitValue::self(const BitRef &Self) {
  return BitValue(Self.Reg, Self.Pos);
}

// A sequence of bits starting from index B up to and including index E.
// If E < B, the mask represents two sections: [0..E] and [B..W) where
// W is the width of the register.
struct BitTracker::BitMask {
  BitMask() = default;
  BitMask(uint16_t b, uint16_t e) : B(b), E(e) {}

  uint16_t first() const { return B; }
  uint16_t last() const { return E; }

private:
  uint16_t B = 0;
  uint16_t E = 0;
};

// Representation of a register: a list of BitValues.
struct BitTracker::RegisterCell {
  RegisterCell(uint16_t Width = DefaultBitN) : Bits(Width) {}

  uint16_t width() const {
    return Bits.size();
  }

  const BitValue &operator[](uint16_t BitN) const {
    assert(BitN < Bits.size());
    return Bits[BitN];
  }
  BitValue &operator[](uint16_t BitN) {
    assert(BitN < Bits.size());
    return Bits[BitN];
  }

  bool meet(const RegisterCell &RC, unsigned SelfR);
  RegisterCell &insert(const RegisterCell &RC, const BitMask &M);
  RegisterCell extract(const BitMask &M) const;  // Returns a new cell.
  RegisterCell &rol(uint16_t Sh);    // Rotate left.
  RegisterCell &fill(uint16_t B, uint16_t E, const BitValue &V);
  RegisterCell &cat(const RegisterCell &RC);  // Concatenate.
  uint16_t cl(bool B) const;
  uint16_t ct(bool B) const;

  bool operator== (const RegisterCell &RC) const;
  bool operator!= (const RegisterCell &RC) const {
    return !operator==(RC);
  }

  // Replace the ref-to-reg-0 bit values with the given register.
  RegisterCell &regify(unsigned R);

  // Generate a "ref" cell for the corresponding register. In the resulting
  // cell each bit will be described as being the same as the corresponding
  // bit in register Reg (i.e. the cell is "defined" by register Reg).
  static RegisterCell self(unsigned Reg, uint16_t Width);
  // Generate a "top" cell of given size.
  static RegisterCell top(uint16_t Width);
  // Generate a cell that is a "ref" to another cell.
  static RegisterCell ref(const RegisterCell &C);

private:
  // The DefaultBitN is here only to avoid frequent reallocation of the
  // memory in the vector.
  static const unsigned DefaultBitN = 32;
  using BitValueList = SmallVector<BitValue, DefaultBitN>;
  BitValueList Bits;

  friend raw_ostream &operator<<(raw_ostream &OS, const RegisterCell &RC);
};

inline bool BitTracker::has(unsigned Reg) const {
  return Map.find(Reg) != Map.end();
}

inline const BitTracker::RegisterCell&
BitTracker::lookup(unsigned Reg) const {
  CellMapType::const_iterator F = Map.find(Reg);
  assert(F != Map.end());
  return F->second;
}

inline BitTracker::RegisterCell
BitTracker::RegisterCell::self(unsigned Reg, uint16_t Width) {
  RegisterCell RC(Width);
  for (uint16_t i = 0; i < Width; ++i)
    RC.Bits[i] = BitValue::self(BitRef(Reg, i));
  return RC;
}

inline BitTracker::RegisterCell
BitTracker::RegisterCell::top(uint16_t Width) {
  RegisterCell RC(Width);
  for (uint16_t i = 0; i < Width; ++i)
    RC.Bits[i] = BitValue(BitValue::Top);
  return RC;
}

inline BitTracker::RegisterCell
BitTracker::RegisterCell::ref(const RegisterCell &C) {
  uint16_t W = C.width();
  RegisterCell RC(W);
  for (unsigned i = 0; i < W; ++i)
    RC[i] = BitValue::ref(C[i]);
  return RC;
}

// A class to evaluate target's instructions and update the cell maps.
// This is used internally by the bit tracker.  A target that wants to
// utilize this should implement the evaluation functions (noted below)
// in a subclass of this class.
struct BitTracker::MachineEvaluator {
  MachineEvaluator(const TargetRegisterInfo &T, MachineRegisterInfo &M)
      : TRI(T), MRI(M) {}
  virtual ~MachineEvaluator() = default;

  uint16_t getRegBitWidth(const RegisterRef &RR) const;

  RegisterCell getCell(const RegisterRef &RR, const CellMapType &M) const;
  void putCell(const RegisterRef &RR, RegisterCell RC, CellMapType &M) const;

  // A result of any operation should use refs to the source cells, not
  // the cells directly. This function is a convenience wrapper to quickly
  // generate a ref for a cell corresponding to a register reference.
  RegisterCell getRef(const RegisterRef &RR, const CellMapType &M) const {
    RegisterCell RC = getCell(RR, M);
    return RegisterCell::ref(RC);
  }

  // Helper functions.
  // Check if a cell is an immediate value (i.e. all bits are either 0 or 1).
  bool isInt(const RegisterCell &A) const;
  // Convert cell to an immediate value.
  uint64_t toInt(const RegisterCell &A) const;

  // Generate cell from an immediate value.
  RegisterCell eIMM(int64_t V, uint16_t W) const;
  RegisterCell eIMM(const ConstantInt *CI) const;

  // Arithmetic.
  RegisterCell eADD(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eSUB(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eMLS(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eMLU(const RegisterCell &A1, const RegisterCell &A2) const;

  // Shifts.
  RegisterCell eASL(const RegisterCell &A1, uint16_t Sh) const;
  RegisterCell eLSR(const RegisterCell &A1, uint16_t Sh) const;
  RegisterCell eASR(const RegisterCell &A1, uint16_t Sh) const;

  // Logical.
  RegisterCell eAND(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eORL(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eXOR(const RegisterCell &A1, const RegisterCell &A2) const;
  RegisterCell eNOT(const RegisterCell &A1) const;

  // Set bit, clear bit.
  RegisterCell eSET(const RegisterCell &A1, uint16_t BitN) const;
  RegisterCell eCLR(const RegisterCell &A1, uint16_t BitN) const;

  // Count leading/trailing bits (zeros/ones).
  RegisterCell eCLB(const RegisterCell &A1, bool B, uint16_t W) const;
  RegisterCell eCTB(const RegisterCell &A1, bool B, uint16_t W) const;

  // Sign/zero extension.
  RegisterCell eSXT(const RegisterCell &A1, uint16_t FromN) const;
  RegisterCell eZXT(const RegisterCell &A1, uint16_t FromN) const;

  // Extract/insert
  // XTR R,b,e:  extract bits from A1 starting at bit b, ending at e-1.
  // INS R,S,b:  take R and replace bits starting from b with S.
  RegisterCell eXTR(const RegisterCell &A1, uint16_t B, uint16_t E) const;
  RegisterCell eINS(const RegisterCell &A1, const RegisterCell &A2,
                    uint16_t AtN) const;

  // User-provided functions for individual targets:

  // Return a sub-register mask that indicates which bits in Reg belong
  // to the subregister Sub. These bits are assumed to be contiguous in
  // the super-register, and have the same ordering in the sub-register
  // as in the super-register. It is valid to call this function with
  // Sub == 0, in this case, the function should return a mask that spans
  // the entire register Reg (which is what the default implementation
  // does).
  virtual BitMask mask(unsigned Reg, unsigned Sub) const;
  // Indicate whether a given register class should be tracked.
  virtual bool track(const TargetRegisterClass *RC) const { return true; }
  // Evaluate a non-branching machine instruction, given the cell map with
  // the input values. Place the results in the Outputs map. Return "true"
  // if evaluation succeeded, "false" otherwise.
  virtual bool evaluate(const MachineInstr &MI, const CellMapType &Inputs,
                        CellMapType &Outputs) const;
  // Evaluate a branch, given the cell map with the input values. Fill out
  // a list of all possible branch targets and indicate (through a flag)
  // whether the branch could fall-through. Return "true" if this information
  // has been successfully computed, "false" otherwise.
  virtual bool evaluate(const MachineInstr &BI, const CellMapType &Inputs,
                        BranchTargetList &Targets, bool &FallsThru) const = 0;
  // Given a register class RC, return a register class that should be assumed
  // when a register from class RC is used with a subregister of index Idx.
  virtual const TargetRegisterClass&
  composeWithSubRegIndex(const TargetRegisterClass &RC, unsigned Idx) const {
    if (Idx == 0)
      return RC;
    llvm_unreachable("Unimplemented composeWithSubRegIndex");
  }
  // Return the size in bits of the physical register Reg.
  virtual uint16_t getPhysRegBitWidth(unsigned Reg) const;

  const TargetRegisterInfo &TRI;
  MachineRegisterInfo &MRI;
};

} // end namespace llvm

#endif // LLVM_LIB_TARGET_HEXAGON_BITTRACKER_H