BitTracker.cpp
35.4 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
//===- BitTracker.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// SSA-based bit propagation.
//
// The purpose of this code is, for a given virtual register, to provide
// information about the value of each bit in the register. The values
// of bits are represented by the class BitValue, and take one of four
// cases: 0, 1, "ref" and "bottom". The 0 and 1 are rather clear, the
// "ref" value means that the bit is a copy of another bit (which itself
// cannot be a copy of yet another bit---such chains are not allowed).
// A "ref" value is associated with a BitRef structure, which indicates
// which virtual register, and which bit in that register is the origin
// of the value. For example, given an instruction
// %2 = ASL %1, 1
// assuming that nothing is known about bits of %1, bit 1 of %2
// will be a "ref" to (%1, 0). If there is a subsequent instruction
// %3 = ASL %2, 2
// then bit 3 of %3 will be a "ref" to (%1, 0) as well.
// The "bottom" case means that the bit's value cannot be determined,
// and that this virtual register actually defines it. The "bottom" case
// is discussed in detail in BitTracker.h. In fact, "bottom" is a "ref
// to self", so for the %1 above, the bit 0 of it will be a "ref" to
// (%1, 0), bit 1 will be a "ref" to (%1, 1), etc.
//
// The tracker implements the Wegman-Zadeck algorithm, originally developed
// for SSA-based constant propagation. Each register is represented as
// a sequence of bits, with the convention that bit 0 is the least signi-
// ficant bit. Each bit is propagated individually. The class RegisterCell
// implements the register's representation, and is also the subject of
// the lattice operations in the tracker.
//
// The intended usage of the bit tracker is to create a target-specific
// machine instruction evaluator, pass the evaluator to the BitTracker
// object, and run the tracker. The tracker will then collect the bit
// value information for a given machine function. After that, it can be
// queried for the cells for each virtual register.
// Sample code:
// const TargetSpecificEvaluator TSE(TRI, MRI);
// BitTracker BT(TSE, MF);
// BT.run();
// ...
// unsigned Reg = interestingRegister();
// RegisterCell RC = BT.get(Reg);
// if (RC[3].is(1))
// Reg0bit3 = 1;
//
// The code below is intended to be fully target-independent.
#include "BitTracker.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
using namespace llvm;
using BT = BitTracker;
namespace {
// Local trickery to pretty print a register (without the whole "%number"
// business).
struct printv {
printv(unsigned r) : R(r) {}
unsigned R;
};
raw_ostream &operator<< (raw_ostream &OS, const printv &PV) {
if (PV.R)
OS << 'v' << Register::virtReg2Index(PV.R);
else
OS << 's';
return OS;
}
} // end anonymous namespace
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const BT::BitValue &BV) {
switch (BV.Type) {
case BT::BitValue::Top:
OS << 'T';
break;
case BT::BitValue::Zero:
OS << '0';
break;
case BT::BitValue::One:
OS << '1';
break;
case BT::BitValue::Ref:
OS << printv(BV.RefI.Reg) << '[' << BV.RefI.Pos << ']';
break;
}
return OS;
}
raw_ostream &operator<<(raw_ostream &OS, const BT::RegisterCell &RC) {
unsigned n = RC.Bits.size();
OS << "{ w:" << n;
// Instead of printing each bit value individually, try to group them
// into logical segments, such as sequences of 0 or 1 bits or references
// to consecutive bits (e.g. "bits 3-5 are same as bits 7-9 of reg xyz").
// "Start" will be the index of the beginning of the most recent segment.
unsigned Start = 0;
bool SeqRef = false; // A sequence of refs to consecutive bits.
bool ConstRef = false; // A sequence of refs to the same bit.
for (unsigned i = 1, n = RC.Bits.size(); i < n; ++i) {
const BT::BitValue &V = RC[i];
const BT::BitValue &SV = RC[Start];
bool IsRef = (V.Type == BT::BitValue::Ref);
// If the current value is the same as Start, skip to the next one.
if (!IsRef && V == SV)
continue;
if (IsRef && SV.Type == BT::BitValue::Ref && V.RefI.Reg == SV.RefI.Reg) {
if (Start+1 == i) {
SeqRef = (V.RefI.Pos == SV.RefI.Pos+1);
ConstRef = (V.RefI.Pos == SV.RefI.Pos);
}
if (SeqRef && V.RefI.Pos == SV.RefI.Pos+(i-Start))
continue;
if (ConstRef && V.RefI.Pos == SV.RefI.Pos)
continue;
}
// The current value is different. Print the previous one and reset
// the Start.
OS << " [" << Start;
unsigned Count = i - Start;
if (Count == 1) {
OS << "]:" << SV;
} else {
OS << '-' << i-1 << "]:";
if (SV.Type == BT::BitValue::Ref && SeqRef)
OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
<< SV.RefI.Pos+(Count-1) << ']';
else
OS << SV;
}
Start = i;
SeqRef = ConstRef = false;
}
OS << " [" << Start;
unsigned Count = n - Start;
if (n-Start == 1) {
OS << "]:" << RC[Start];
} else {
OS << '-' << n-1 << "]:";
const BT::BitValue &SV = RC[Start];
if (SV.Type == BT::BitValue::Ref && SeqRef)
OS << printv(SV.RefI.Reg) << '[' << SV.RefI.Pos << '-'
<< SV.RefI.Pos+(Count-1) << ']';
else
OS << SV;
}
OS << " }";
return OS;
}
} // end namespace llvm
void BitTracker::print_cells(raw_ostream &OS) const {
for (const std::pair<unsigned, RegisterCell> P : Map)
dbgs() << printReg(P.first, &ME.TRI) << " -> " << P.second << "\n";
}
BitTracker::BitTracker(const MachineEvaluator &E, MachineFunction &F)
: ME(E), MF(F), MRI(F.getRegInfo()), Map(*new CellMapType), Trace(false) {
}
BitTracker::~BitTracker() {
delete ⤅
}
// If we were allowed to update a cell for a part of a register, the meet
// operation would need to be parametrized by the register number and the
// exact part of the register, so that the computer BitRefs correspond to
// the actual bits of the "self" register.
// While this cannot happen in the current implementation, I'm not sure
// if this should be ruled out in the future.
bool BT::RegisterCell::meet(const RegisterCell &RC, unsigned SelfR) {
// An example when "meet" can be invoked with SelfR == 0 is a phi node
// with a physical register as an operand.
assert(SelfR == 0 || Register::isVirtualRegister(SelfR));
bool Changed = false;
for (uint16_t i = 0, n = Bits.size(); i < n; ++i) {
const BitValue &RCV = RC[i];
Changed |= Bits[i].meet(RCV, BitRef(SelfR, i));
}
return Changed;
}
// Insert the entire cell RC into the current cell at position given by M.
BT::RegisterCell &BT::RegisterCell::insert(const BT::RegisterCell &RC,
const BitMask &M) {
uint16_t B = M.first(), E = M.last(), W = width();
// Sanity: M must be a valid mask for *this.
assert(B < W && E < W);
// Sanity: the masked part of *this must have the same number of bits
// as the source.
assert(B > E || E-B+1 == RC.width()); // B <= E => E-B+1 = |RC|.
assert(B <= E || E+(W-B)+1 == RC.width()); // E < B => E+(W-B)+1 = |RC|.
if (B <= E) {
for (uint16_t i = 0; i <= E-B; ++i)
Bits[i+B] = RC[i];
} else {
for (uint16_t i = 0; i < W-B; ++i)
Bits[i+B] = RC[i];
for (uint16_t i = 0; i <= E; ++i)
Bits[i] = RC[i+(W-B)];
}
return *this;
}
BT::RegisterCell BT::RegisterCell::extract(const BitMask &M) const {
uint16_t B = M.first(), E = M.last(), W = width();
assert(B < W && E < W);
if (B <= E) {
RegisterCell RC(E-B+1);
for (uint16_t i = B; i <= E; ++i)
RC.Bits[i-B] = Bits[i];
return RC;
}
RegisterCell RC(E+(W-B)+1);
for (uint16_t i = 0; i < W-B; ++i)
RC.Bits[i] = Bits[i+B];
for (uint16_t i = 0; i <= E; ++i)
RC.Bits[i+(W-B)] = Bits[i];
return RC;
}
BT::RegisterCell &BT::RegisterCell::rol(uint16_t Sh) {
// Rotate left (i.e. towards increasing bit indices).
// Swap the two parts: [0..W-Sh-1] [W-Sh..W-1]
uint16_t W = width();
Sh = Sh % W;
if (Sh == 0)
return *this;
RegisterCell Tmp(W-Sh);
// Tmp = [0..W-Sh-1].
for (uint16_t i = 0; i < W-Sh; ++i)
Tmp[i] = Bits[i];
// Shift [W-Sh..W-1] to [0..Sh-1].
for (uint16_t i = 0; i < Sh; ++i)
Bits[i] = Bits[W-Sh+i];
// Copy Tmp to [Sh..W-1].
for (uint16_t i = 0; i < W-Sh; ++i)
Bits[i+Sh] = Tmp.Bits[i];
return *this;
}
BT::RegisterCell &BT::RegisterCell::fill(uint16_t B, uint16_t E,
const BitValue &V) {
assert(B <= E);
while (B < E)
Bits[B++] = V;
return *this;
}
BT::RegisterCell &BT::RegisterCell::cat(const RegisterCell &RC) {
// Append the cell given as the argument to the "this" cell.
// Bit 0 of RC becomes bit W of the result, where W is this->width().
uint16_t W = width(), WRC = RC.width();
Bits.resize(W+WRC);
for (uint16_t i = 0; i < WRC; ++i)
Bits[i+W] = RC.Bits[i];
return *this;
}
uint16_t BT::RegisterCell::ct(bool B) const {
uint16_t W = width();
uint16_t C = 0;
BitValue V = B;
while (C < W && Bits[C] == V)
C++;
return C;
}
uint16_t BT::RegisterCell::cl(bool B) const {
uint16_t W = width();
uint16_t C = 0;
BitValue V = B;
while (C < W && Bits[W-(C+1)] == V)
C++;
return C;
}
bool BT::RegisterCell::operator== (const RegisterCell &RC) const {
uint16_t W = Bits.size();
if (RC.Bits.size() != W)
return false;
for (uint16_t i = 0; i < W; ++i)
if (Bits[i] != RC[i])
return false;
return true;
}
BT::RegisterCell &BT::RegisterCell::regify(unsigned R) {
for (unsigned i = 0, n = width(); i < n; ++i) {
const BitValue &V = Bits[i];
if (V.Type == BitValue::Ref && V.RefI.Reg == 0)
Bits[i].RefI = BitRef(R, i);
}
return *this;
}
uint16_t BT::MachineEvaluator::getRegBitWidth(const RegisterRef &RR) const {
// The general problem is with finding a register class that corresponds
// to a given reference reg:sub. There can be several such classes, and
// since we only care about the register size, it does not matter which
// such class we would find.
// The easiest way to accomplish what we want is to
// 1. find a physical register PhysR from the same class as RR.Reg,
// 2. find a physical register PhysS that corresponds to PhysR:RR.Sub,
// 3. find a register class that contains PhysS.
if (Register::isVirtualRegister(RR.Reg)) {
const auto &VC = composeWithSubRegIndex(*MRI.getRegClass(RR.Reg), RR.Sub);
return TRI.getRegSizeInBits(VC);
}
assert(Register::isPhysicalRegister(RR.Reg));
Register PhysR =
(RR.Sub == 0) ? Register(RR.Reg) : TRI.getSubReg(RR.Reg, RR.Sub);
return getPhysRegBitWidth(PhysR);
}
BT::RegisterCell BT::MachineEvaluator::getCell(const RegisterRef &RR,
const CellMapType &M) const {
uint16_t BW = getRegBitWidth(RR);
// Physical registers are assumed to be present in the map with an unknown
// value. Don't actually insert anything in the map, just return the cell.
if (Register::isPhysicalRegister(RR.Reg))
return RegisterCell::self(0, BW);
assert(Register::isVirtualRegister(RR.Reg));
// For virtual registers that belong to a class that is not tracked,
// generate an "unknown" value as well.
const TargetRegisterClass *C = MRI.getRegClass(RR.Reg);
if (!track(C))
return RegisterCell::self(0, BW);
CellMapType::const_iterator F = M.find(RR.Reg);
if (F != M.end()) {
if (!RR.Sub)
return F->second;
BitMask M = mask(RR.Reg, RR.Sub);
return F->second.extract(M);
}
// If not found, create a "top" entry, but do not insert it in the map.
return RegisterCell::top(BW);
}
void BT::MachineEvaluator::putCell(const RegisterRef &RR, RegisterCell RC,
CellMapType &M) const {
// While updating the cell map can be done in a meaningful way for
// a part of a register, it makes little sense to implement it as the
// SSA representation would never contain such "partial definitions".
if (!Register::isVirtualRegister(RR.Reg))
return;
assert(RR.Sub == 0 && "Unexpected sub-register in definition");
// Eliminate all ref-to-reg-0 bit values: replace them with "self".
M[RR.Reg] = RC.regify(RR.Reg);
}
// Check if the cell represents a compile-time integer value.
bool BT::MachineEvaluator::isInt(const RegisterCell &A) const {
uint16_t W = A.width();
for (uint16_t i = 0; i < W; ++i)
if (!A[i].is(0) && !A[i].is(1))
return false;
return true;
}
// Convert a cell to the integer value. The result must fit in uint64_t.
uint64_t BT::MachineEvaluator::toInt(const RegisterCell &A) const {
assert(isInt(A));
uint64_t Val = 0;
uint16_t W = A.width();
for (uint16_t i = 0; i < W; ++i) {
Val <<= 1;
Val |= A[i].is(1);
}
return Val;
}
// Evaluator helper functions. These implement some common operation on
// register cells that can be used to implement target-specific instructions
// in a target-specific evaluator.
BT::RegisterCell BT::MachineEvaluator::eIMM(int64_t V, uint16_t W) const {
RegisterCell Res(W);
// For bits beyond the 63rd, this will generate the sign bit of V.
for (uint16_t i = 0; i < W; ++i) {
Res[i] = BitValue(V & 1);
V >>= 1;
}
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eIMM(const ConstantInt *CI) const {
const APInt &A = CI->getValue();
uint16_t BW = A.getBitWidth();
assert((unsigned)BW == A.getBitWidth() && "BitWidth overflow");
RegisterCell Res(BW);
for (uint16_t i = 0; i < BW; ++i)
Res[i] = A[i];
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eADD(const RegisterCell &A1,
const RegisterCell &A2) const {
uint16_t W = A1.width();
assert(W == A2.width());
RegisterCell Res(W);
bool Carry = false;
uint16_t I;
for (I = 0; I < W; ++I) {
const BitValue &V1 = A1[I];
const BitValue &V2 = A2[I];
if (!V1.num() || !V2.num())
break;
unsigned S = bool(V1) + bool(V2) + Carry;
Res[I] = BitValue(S & 1);
Carry = (S > 1);
}
for (; I < W; ++I) {
const BitValue &V1 = A1[I];
const BitValue &V2 = A2[I];
// If the next bit is same as Carry, the result will be 0 plus the
// other bit. The Carry bit will remain unchanged.
if (V1.is(Carry))
Res[I] = BitValue::ref(V2);
else if (V2.is(Carry))
Res[I] = BitValue::ref(V1);
else
break;
}
for (; I < W; ++I)
Res[I] = BitValue::self();
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eSUB(const RegisterCell &A1,
const RegisterCell &A2) const {
uint16_t W = A1.width();
assert(W == A2.width());
RegisterCell Res(W);
bool Borrow = false;
uint16_t I;
for (I = 0; I < W; ++I) {
const BitValue &V1 = A1[I];
const BitValue &V2 = A2[I];
if (!V1.num() || !V2.num())
break;
unsigned S = bool(V1) - bool(V2) - Borrow;
Res[I] = BitValue(S & 1);
Borrow = (S > 1);
}
for (; I < W; ++I) {
const BitValue &V1 = A1[I];
const BitValue &V2 = A2[I];
if (V1.is(Borrow)) {
Res[I] = BitValue::ref(V2);
break;
}
if (V2.is(Borrow))
Res[I] = BitValue::ref(V1);
else
break;
}
for (; I < W; ++I)
Res[I] = BitValue::self();
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eMLS(const RegisterCell &A1,
const RegisterCell &A2) const {
uint16_t W = A1.width() + A2.width();
uint16_t Z = A1.ct(false) + A2.ct(false);
RegisterCell Res(W);
Res.fill(0, Z, BitValue::Zero);
Res.fill(Z, W, BitValue::self());
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eMLU(const RegisterCell &A1,
const RegisterCell &A2) const {
uint16_t W = A1.width() + A2.width();
uint16_t Z = A1.ct(false) + A2.ct(false);
RegisterCell Res(W);
Res.fill(0, Z, BitValue::Zero);
Res.fill(Z, W, BitValue::self());
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eASL(const RegisterCell &A1,
uint16_t Sh) const {
assert(Sh <= A1.width());
RegisterCell Res = RegisterCell::ref(A1);
Res.rol(Sh);
Res.fill(0, Sh, BitValue::Zero);
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eLSR(const RegisterCell &A1,
uint16_t Sh) const {
uint16_t W = A1.width();
assert(Sh <= W);
RegisterCell Res = RegisterCell::ref(A1);
Res.rol(W-Sh);
Res.fill(W-Sh, W, BitValue::Zero);
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eASR(const RegisterCell &A1,
uint16_t Sh) const {
uint16_t W = A1.width();
assert(Sh <= W);
RegisterCell Res = RegisterCell::ref(A1);
BitValue Sign = Res[W-1];
Res.rol(W-Sh);
Res.fill(W-Sh, W, Sign);
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eAND(const RegisterCell &A1,
const RegisterCell &A2) const {
uint16_t W = A1.width();
assert(W == A2.width());
RegisterCell Res(W);
for (uint16_t i = 0; i < W; ++i) {
const BitValue &V1 = A1[i];
const BitValue &V2 = A2[i];
if (V1.is(1))
Res[i] = BitValue::ref(V2);
else if (V2.is(1))
Res[i] = BitValue::ref(V1);
else if (V1.is(0) || V2.is(0))
Res[i] = BitValue::Zero;
else if (V1 == V2)
Res[i] = V1;
else
Res[i] = BitValue::self();
}
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eORL(const RegisterCell &A1,
const RegisterCell &A2) const {
uint16_t W = A1.width();
assert(W == A2.width());
RegisterCell Res(W);
for (uint16_t i = 0; i < W; ++i) {
const BitValue &V1 = A1[i];
const BitValue &V2 = A2[i];
if (V1.is(1) || V2.is(1))
Res[i] = BitValue::One;
else if (V1.is(0))
Res[i] = BitValue::ref(V2);
else if (V2.is(0))
Res[i] = BitValue::ref(V1);
else if (V1 == V2)
Res[i] = V1;
else
Res[i] = BitValue::self();
}
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eXOR(const RegisterCell &A1,
const RegisterCell &A2) const {
uint16_t W = A1.width();
assert(W == A2.width());
RegisterCell Res(W);
for (uint16_t i = 0; i < W; ++i) {
const BitValue &V1 = A1[i];
const BitValue &V2 = A2[i];
if (V1.is(0))
Res[i] = BitValue::ref(V2);
else if (V2.is(0))
Res[i] = BitValue::ref(V1);
else if (V1 == V2)
Res[i] = BitValue::Zero;
else
Res[i] = BitValue::self();
}
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eNOT(const RegisterCell &A1) const {
uint16_t W = A1.width();
RegisterCell Res(W);
for (uint16_t i = 0; i < W; ++i) {
const BitValue &V = A1[i];
if (V.is(0))
Res[i] = BitValue::One;
else if (V.is(1))
Res[i] = BitValue::Zero;
else
Res[i] = BitValue::self();
}
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eSET(const RegisterCell &A1,
uint16_t BitN) const {
assert(BitN < A1.width());
RegisterCell Res = RegisterCell::ref(A1);
Res[BitN] = BitValue::One;
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eCLR(const RegisterCell &A1,
uint16_t BitN) const {
assert(BitN < A1.width());
RegisterCell Res = RegisterCell::ref(A1);
Res[BitN] = BitValue::Zero;
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eCLB(const RegisterCell &A1, bool B,
uint16_t W) const {
uint16_t C = A1.cl(B), AW = A1.width();
// If the last leading non-B bit is not a constant, then we don't know
// the real count.
if ((C < AW && A1[AW-1-C].num()) || C == AW)
return eIMM(C, W);
return RegisterCell::self(0, W);
}
BT::RegisterCell BT::MachineEvaluator::eCTB(const RegisterCell &A1, bool B,
uint16_t W) const {
uint16_t C = A1.ct(B), AW = A1.width();
// If the last trailing non-B bit is not a constant, then we don't know
// the real count.
if ((C < AW && A1[C].num()) || C == AW)
return eIMM(C, W);
return RegisterCell::self(0, W);
}
BT::RegisterCell BT::MachineEvaluator::eSXT(const RegisterCell &A1,
uint16_t FromN) const {
uint16_t W = A1.width();
assert(FromN <= W);
RegisterCell Res = RegisterCell::ref(A1);
BitValue Sign = Res[FromN-1];
// Sign-extend "inreg".
Res.fill(FromN, W, Sign);
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eZXT(const RegisterCell &A1,
uint16_t FromN) const {
uint16_t W = A1.width();
assert(FromN <= W);
RegisterCell Res = RegisterCell::ref(A1);
Res.fill(FromN, W, BitValue::Zero);
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eXTR(const RegisterCell &A1,
uint16_t B, uint16_t E) const {
uint16_t W = A1.width();
assert(B < W && E <= W);
if (B == E)
return RegisterCell(0);
uint16_t Last = (E > 0) ? E-1 : W-1;
RegisterCell Res = RegisterCell::ref(A1).extract(BT::BitMask(B, Last));
// Return shorter cell.
return Res;
}
BT::RegisterCell BT::MachineEvaluator::eINS(const RegisterCell &A1,
const RegisterCell &A2, uint16_t AtN) const {
uint16_t W1 = A1.width(), W2 = A2.width();
(void)W1;
assert(AtN < W1 && AtN+W2 <= W1);
// Copy bits from A1, insert A2 at position AtN.
RegisterCell Res = RegisterCell::ref(A1);
if (W2 > 0)
Res.insert(RegisterCell::ref(A2), BT::BitMask(AtN, AtN+W2-1));
return Res;
}
BT::BitMask BT::MachineEvaluator::mask(unsigned Reg, unsigned Sub) const {
assert(Sub == 0 && "Generic BitTracker::mask called for Sub != 0");
uint16_t W = getRegBitWidth(Reg);
assert(W > 0 && "Cannot generate mask for empty register");
return BitMask(0, W-1);
}
uint16_t BT::MachineEvaluator::getPhysRegBitWidth(unsigned Reg) const {
assert(Register::isPhysicalRegister(Reg));
const TargetRegisterClass &PC = *TRI.getMinimalPhysRegClass(Reg);
return TRI.getRegSizeInBits(PC);
}
bool BT::MachineEvaluator::evaluate(const MachineInstr &MI,
const CellMapType &Inputs,
CellMapType &Outputs) const {
unsigned Opc = MI.getOpcode();
switch (Opc) {
case TargetOpcode::REG_SEQUENCE: {
RegisterRef RD = MI.getOperand(0);
assert(RD.Sub == 0);
RegisterRef RS = MI.getOperand(1);
unsigned SS = MI.getOperand(2).getImm();
RegisterRef RT = MI.getOperand(3);
unsigned ST = MI.getOperand(4).getImm();
assert(SS != ST);
uint16_t W = getRegBitWidth(RD);
RegisterCell Res(W);
Res.insert(RegisterCell::ref(getCell(RS, Inputs)), mask(RD.Reg, SS));
Res.insert(RegisterCell::ref(getCell(RT, Inputs)), mask(RD.Reg, ST));
putCell(RD, Res, Outputs);
break;
}
case TargetOpcode::COPY: {
// COPY can transfer a smaller register into a wider one.
// If that is the case, fill the remaining high bits with 0.
RegisterRef RD = MI.getOperand(0);
RegisterRef RS = MI.getOperand(1);
assert(RD.Sub == 0);
uint16_t WD = getRegBitWidth(RD);
uint16_t WS = getRegBitWidth(RS);
assert(WD >= WS);
RegisterCell Src = getCell(RS, Inputs);
RegisterCell Res(WD);
Res.insert(Src, BitMask(0, WS-1));
Res.fill(WS, WD, BitValue::Zero);
putCell(RD, Res, Outputs);
break;
}
default:
return false;
}
return true;
}
bool BT::UseQueueType::Cmp::operator()(const MachineInstr *InstA,
const MachineInstr *InstB) const {
// This is a comparison function for a priority queue: give higher priority
// to earlier instructions.
// This operator is used as "less", so returning "true" gives InstB higher
// priority (because then InstA < InstB).
if (InstA == InstB)
return false;
const MachineBasicBlock *BA = InstA->getParent();
const MachineBasicBlock *BB = InstB->getParent();
if (BA != BB) {
// If the blocks are different, ideally the dominating block would
// have a higher priority, but it may be too expensive to check.
return BA->getNumber() > BB->getNumber();
}
auto getDist = [this] (const MachineInstr *MI) {
auto F = Dist.find(MI);
if (F != Dist.end())
return F->second;
MachineBasicBlock::const_iterator I = MI->getParent()->begin();
MachineBasicBlock::const_iterator E = MI->getIterator();
unsigned D = std::distance(I, E);
Dist.insert(std::make_pair(MI, D));
return D;
};
return getDist(InstA) > getDist(InstB);
}
// Main W-Z implementation.
void BT::visitPHI(const MachineInstr &PI) {
int ThisN = PI.getParent()->getNumber();
if (Trace)
dbgs() << "Visit FI(" << printMBBReference(*PI.getParent()) << "): " << PI;
const MachineOperand &MD = PI.getOperand(0);
assert(MD.getSubReg() == 0 && "Unexpected sub-register in definition");
RegisterRef DefRR(MD);
uint16_t DefBW = ME.getRegBitWidth(DefRR);
RegisterCell DefC = ME.getCell(DefRR, Map);
if (DefC == RegisterCell::self(DefRR.Reg, DefBW)) // XXX slow
return;
bool Changed = false;
for (unsigned i = 1, n = PI.getNumOperands(); i < n; i += 2) {
const MachineBasicBlock *PB = PI.getOperand(i + 1).getMBB();
int PredN = PB->getNumber();
if (Trace)
dbgs() << " edge " << printMBBReference(*PB) << "->"
<< printMBBReference(*PI.getParent());
if (!EdgeExec.count(CFGEdge(PredN, ThisN))) {
if (Trace)
dbgs() << " not executable\n";
continue;
}
RegisterRef RU = PI.getOperand(i);
RegisterCell ResC = ME.getCell(RU, Map);
if (Trace)
dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
<< " cell: " << ResC << "\n";
Changed |= DefC.meet(ResC, DefRR.Reg);
}
if (Changed) {
if (Trace)
dbgs() << "Output: " << printReg(DefRR.Reg, &ME.TRI, DefRR.Sub)
<< " cell: " << DefC << "\n";
ME.putCell(DefRR, DefC, Map);
visitUsesOf(DefRR.Reg);
}
}
void BT::visitNonBranch(const MachineInstr &MI) {
if (Trace)
dbgs() << "Visit MI(" << printMBBReference(*MI.getParent()) << "): " << MI;
if (MI.isDebugInstr())
return;
assert(!MI.isBranch() && "Unexpected branch instruction");
CellMapType ResMap;
bool Eval = ME.evaluate(MI, Map, ResMap);
if (Trace && Eval) {
for (unsigned i = 0, n = MI.getNumOperands(); i < n; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isUse())
continue;
RegisterRef RU(MO);
dbgs() << " input reg: " << printReg(RU.Reg, &ME.TRI, RU.Sub)
<< " cell: " << ME.getCell(RU, Map) << "\n";
}
dbgs() << "Outputs:\n";
for (const std::pair<const unsigned, RegisterCell> &P : ResMap) {
RegisterRef RD(P.first);
dbgs() << " " << printReg(P.first, &ME.TRI) << " cell: "
<< ME.getCell(RD, ResMap) << "\n";
}
}
// Iterate over all definitions of the instruction, and update the
// cells accordingly.
for (const MachineOperand &MO : MI.operands()) {
// Visit register defs only.
if (!MO.isReg() || !MO.isDef())
continue;
RegisterRef RD(MO);
assert(RD.Sub == 0 && "Unexpected sub-register in definition");
if (!Register::isVirtualRegister(RD.Reg))
continue;
bool Changed = false;
if (!Eval || ResMap.count(RD.Reg) == 0) {
// Set to "ref" (aka "bottom").
uint16_t DefBW = ME.getRegBitWidth(RD);
RegisterCell RefC = RegisterCell::self(RD.Reg, DefBW);
if (RefC != ME.getCell(RD, Map)) {
ME.putCell(RD, RefC, Map);
Changed = true;
}
} else {
RegisterCell DefC = ME.getCell(RD, Map);
RegisterCell ResC = ME.getCell(RD, ResMap);
// This is a non-phi instruction, so the values of the inputs come
// from the same registers each time this instruction is evaluated.
// During the propagation, the values of the inputs can become lowered
// in the sense of the lattice operation, which may cause different
// results to be calculated in subsequent evaluations. This should
// not cause the bottoming of the result in the map, since the new
// result is already reflecting the lowered inputs.
for (uint16_t i = 0, w = DefC.width(); i < w; ++i) {
BitValue &V = DefC[i];
// Bits that are already "bottom" should not be updated.
if (V.Type == BitValue::Ref && V.RefI.Reg == RD.Reg)
continue;
// Same for those that are identical in DefC and ResC.
if (V == ResC[i])
continue;
V = ResC[i];
Changed = true;
}
if (Changed)
ME.putCell(RD, DefC, Map);
}
if (Changed)
visitUsesOf(RD.Reg);
}
}
void BT::visitBranchesFrom(const MachineInstr &BI) {
const MachineBasicBlock &B = *BI.getParent();
MachineBasicBlock::const_iterator It = BI, End = B.end();
BranchTargetList Targets, BTs;
bool FallsThrough = true, DefaultToAll = false;
int ThisN = B.getNumber();
do {
BTs.clear();
const MachineInstr &MI = *It;
if (Trace)
dbgs() << "Visit BR(" << printMBBReference(B) << "): " << MI;
assert(MI.isBranch() && "Expecting branch instruction");
InstrExec.insert(&MI);
bool Eval = ME.evaluate(MI, Map, BTs, FallsThrough);
if (!Eval) {
// If the evaluation failed, we will add all targets. Keep going in
// the loop to mark all executable branches as such.
DefaultToAll = true;
FallsThrough = true;
if (Trace)
dbgs() << " failed to evaluate: will add all CFG successors\n";
} else if (!DefaultToAll) {
// If evaluated successfully add the targets to the cumulative list.
if (Trace) {
dbgs() << " adding targets:";
for (unsigned i = 0, n = BTs.size(); i < n; ++i)
dbgs() << " " << printMBBReference(*BTs[i]);
if (FallsThrough)
dbgs() << "\n falls through\n";
else
dbgs() << "\n does not fall through\n";
}
Targets.insert(BTs.begin(), BTs.end());
}
++It;
} while (FallsThrough && It != End);
if (B.mayHaveInlineAsmBr())
DefaultToAll = true;
if (!DefaultToAll) {
// Need to add all CFG successors that lead to EH landing pads.
// There won't be explicit branches to these blocks, but they must
// be processed.
for (const MachineBasicBlock *SB : B.successors()) {
if (SB->isEHPad())
Targets.insert(SB);
}
if (FallsThrough) {
MachineFunction::const_iterator BIt = B.getIterator();
MachineFunction::const_iterator Next = std::next(BIt);
if (Next != MF.end())
Targets.insert(&*Next);
}
} else {
for (const MachineBasicBlock *SB : B.successors())
Targets.insert(SB);
}
for (const MachineBasicBlock *TB : Targets)
FlowQ.push(CFGEdge(ThisN, TB->getNumber()));
}
void BT::visitUsesOf(unsigned Reg) {
if (Trace)
dbgs() << "queuing uses of modified reg " << printReg(Reg, &ME.TRI)
<< " cell: " << ME.getCell(Reg, Map) << '\n';
for (MachineInstr &UseI : MRI.use_nodbg_instructions(Reg))
UseQ.push(&UseI);
}
BT::RegisterCell BT::get(RegisterRef RR) const {
return ME.getCell(RR, Map);
}
void BT::put(RegisterRef RR, const RegisterCell &RC) {
ME.putCell(RR, RC, Map);
}
// Replace all references to bits from OldRR with the corresponding bits
// in NewRR.
void BT::subst(RegisterRef OldRR, RegisterRef NewRR) {
assert(Map.count(OldRR.Reg) > 0 && "OldRR not present in map");
BitMask OM = ME.mask(OldRR.Reg, OldRR.Sub);
BitMask NM = ME.mask(NewRR.Reg, NewRR.Sub);
uint16_t OMB = OM.first(), OME = OM.last();
uint16_t NMB = NM.first(), NME = NM.last();
(void)NME;
assert((OME-OMB == NME-NMB) &&
"Substituting registers of different lengths");
for (std::pair<const unsigned, RegisterCell> &P : Map) {
RegisterCell &RC = P.second;
for (uint16_t i = 0, w = RC.width(); i < w; ++i) {
BitValue &V = RC[i];
if (V.Type != BitValue::Ref || V.RefI.Reg != OldRR.Reg)
continue;
if (V.RefI.Pos < OMB || V.RefI.Pos > OME)
continue;
V.RefI.Reg = NewRR.Reg;
V.RefI.Pos += NMB-OMB;
}
}
}
// Check if the block has been "executed" during propagation. (If not, the
// block is dead, but it may still appear to be reachable.)
bool BT::reached(const MachineBasicBlock *B) const {
int BN = B->getNumber();
assert(BN >= 0);
return ReachedBB.count(BN);
}
// Visit an individual instruction. This could be a newly added instruction,
// or one that has been modified by an optimization.
void BT::visit(const MachineInstr &MI) {
assert(!MI.isBranch() && "Only non-branches are allowed");
InstrExec.insert(&MI);
visitNonBranch(MI);
// Make sure to flush all the pending use updates.
runUseQueue();
// The call to visitNonBranch could propagate the changes until a branch
// is actually visited. This could result in adding CFG edges to the flow
// queue. Since the queue won't be processed, clear it.
while (!FlowQ.empty())
FlowQ.pop();
}
void BT::reset() {
EdgeExec.clear();
InstrExec.clear();
Map.clear();
ReachedBB.clear();
ReachedBB.reserve(MF.size());
}
void BT::runEdgeQueue(BitVector &BlockScanned) {
while (!FlowQ.empty()) {
CFGEdge Edge = FlowQ.front();
FlowQ.pop();
if (EdgeExec.count(Edge))
return;
EdgeExec.insert(Edge);
ReachedBB.insert(Edge.second);
const MachineBasicBlock &B = *MF.getBlockNumbered(Edge.second);
MachineBasicBlock::const_iterator It = B.begin(), End = B.end();
// Visit PHI nodes first.
while (It != End && It->isPHI()) {
const MachineInstr &PI = *It++;
InstrExec.insert(&PI);
visitPHI(PI);
}
// If this block has already been visited through a flow graph edge,
// then the instructions have already been processed. Any updates to
// the cells would now only happen through visitUsesOf...
if (BlockScanned[Edge.second])
return;
BlockScanned[Edge.second] = true;
// Visit non-branch instructions.
while (It != End && !It->isBranch()) {
const MachineInstr &MI = *It++;
InstrExec.insert(&MI);
visitNonBranch(MI);
}
// If block end has been reached, add the fall-through edge to the queue.
if (It == End) {
MachineFunction::const_iterator BIt = B.getIterator();
MachineFunction::const_iterator Next = std::next(BIt);
if (Next != MF.end() && B.isSuccessor(&*Next)) {
int ThisN = B.getNumber();
int NextN = Next->getNumber();
FlowQ.push(CFGEdge(ThisN, NextN));
}
} else {
// Handle the remaining sequence of branches. This function will update
// the work queue.
visitBranchesFrom(*It);
}
} // while (!FlowQ->empty())
}
void BT::runUseQueue() {
while (!UseQ.empty()) {
MachineInstr &UseI = *UseQ.front();
UseQ.pop();
if (!InstrExec.count(&UseI))
continue;
if (UseI.isPHI())
visitPHI(UseI);
else if (!UseI.isBranch())
visitNonBranch(UseI);
else
visitBranchesFrom(UseI);
}
}
void BT::run() {
reset();
assert(FlowQ.empty());
using MachineFlowGraphTraits = GraphTraits<const MachineFunction*>;
const MachineBasicBlock *Entry = MachineFlowGraphTraits::getEntryNode(&MF);
unsigned MaxBN = 0;
for (const MachineBasicBlock &B : MF) {
assert(B.getNumber() >= 0 && "Disconnected block");
unsigned BN = B.getNumber();
if (BN > MaxBN)
MaxBN = BN;
}
// Keep track of visited blocks.
BitVector BlockScanned(MaxBN+1);
int EntryN = Entry->getNumber();
// Generate a fake edge to get something to start with.
FlowQ.push(CFGEdge(-1, EntryN));
while (!FlowQ.empty() || !UseQ.empty()) {
runEdgeQueue(BlockScanned);
runUseQueue();
}
UseQ.reset();
if (Trace)
print_cells(dbgs() << "Cells after propagation:\n");
}