BTFDebug.cpp 41.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300
//===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing BTF debug info.
//
//===----------------------------------------------------------------------===//

#include "BTFDebug.h"
#include "BPF.h"
#include "BPFCORE.h"
#include "MCTargetDesc/BPFMCTargetDesc.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/LineIterator.h"

using namespace llvm;

static const char *BTFKindStr[] = {
#define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
#include "BTF.def"
};

/// Emit a BTF common type.
void BTFTypeBase::emitType(MCStreamer &OS) {
  OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
                ")");
  OS.emitInt32(BTFType.NameOff);
  OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
  OS.emitInt32(BTFType.Info);
  OS.emitInt32(BTFType.Size);
}

BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
                               bool NeedsFixup)
    : DTy(DTy), NeedsFixup(NeedsFixup) {
  switch (Tag) {
  case dwarf::DW_TAG_pointer_type:
    Kind = BTF::BTF_KIND_PTR;
    break;
  case dwarf::DW_TAG_const_type:
    Kind = BTF::BTF_KIND_CONST;
    break;
  case dwarf::DW_TAG_volatile_type:
    Kind = BTF::BTF_KIND_VOLATILE;
    break;
  case dwarf::DW_TAG_typedef:
    Kind = BTF::BTF_KIND_TYPEDEF;
    break;
  case dwarf::DW_TAG_restrict_type:
    Kind = BTF::BTF_KIND_RESTRICT;
    break;
  default:
    llvm_unreachable("Unknown DIDerivedType Tag");
  }
  BTFType.Info = Kind << 24;
}

void BTFTypeDerived::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(DTy->getName());

  if (NeedsFixup)
    return;

  // The base type for PTR/CONST/VOLATILE could be void.
  const DIType *ResolvedType = DTy->getBaseType();
  if (!ResolvedType) {
    assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
            Kind == BTF::BTF_KIND_VOLATILE) &&
           "Invalid null basetype");
    BTFType.Type = 0;
  } else {
    BTFType.Type = BDebug.getTypeId(ResolvedType);
  }
}

void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }

void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
  BTFType.Type = PointeeType;
}

/// Represent a struct/union forward declaration.
BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
  Kind = BTF::BTF_KIND_FWD;
  BTFType.Info = IsUnion << 31 | Kind << 24;
  BTFType.Type = 0;
}

void BTFTypeFwd::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(Name);
}

void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }

BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
                       uint32_t OffsetInBits, StringRef TypeName)
    : Name(TypeName) {
  // Translate IR int encoding to BTF int encoding.
  uint8_t BTFEncoding;
  switch (Encoding) {
  case dwarf::DW_ATE_boolean:
    BTFEncoding = BTF::INT_BOOL;
    break;
  case dwarf::DW_ATE_signed:
  case dwarf::DW_ATE_signed_char:
    BTFEncoding = BTF::INT_SIGNED;
    break;
  case dwarf::DW_ATE_unsigned:
  case dwarf::DW_ATE_unsigned_char:
    BTFEncoding = 0;
    break;
  default:
    llvm_unreachable("Unknown BTFTypeInt Encoding");
  }

  Kind = BTF::BTF_KIND_INT;
  BTFType.Info = Kind << 24;
  BTFType.Size = roundupToBytes(SizeInBits);
  IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
}

void BTFTypeInt::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(Name);
}

void BTFTypeInt::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  OS.AddComment("0x" + Twine::utohexstr(IntVal));
  OS.emitInt32(IntVal);
}

BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
  Kind = BTF::BTF_KIND_ENUM;
  BTFType.Info = Kind << 24 | VLen;
  BTFType.Size = roundupToBytes(ETy->getSizeInBits());
}

void BTFTypeEnum::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(ETy->getName());

  DINodeArray Elements = ETy->getElements();
  for (const auto Element : Elements) {
    const auto *Enum = cast<DIEnumerator>(Element);

    struct BTF::BTFEnum BTFEnum;
    BTFEnum.NameOff = BDebug.addString(Enum->getName());
    // BTF enum value is 32bit, enforce it.
    uint32_t Value;
    if (Enum->isUnsigned())
      Value = static_cast<uint32_t>(Enum->getValue().getZExtValue());
    else
      Value = static_cast<uint32_t>(Enum->getValue().getSExtValue());
    BTFEnum.Val = Value;
    EnumValues.push_back(BTFEnum);
  }
}

void BTFTypeEnum::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  for (const auto &Enum : EnumValues) {
    OS.emitInt32(Enum.NameOff);
    OS.emitInt32(Enum.Val);
  }
}

BTFTypeArray::BTFTypeArray(uint32_t ElemTypeId, uint32_t NumElems) {
  Kind = BTF::BTF_KIND_ARRAY;
  BTFType.NameOff = 0;
  BTFType.Info = Kind << 24;
  BTFType.Size = 0;

  ArrayInfo.ElemType = ElemTypeId;
  ArrayInfo.Nelems = NumElems;
}

/// Represent a BTF array.
void BTFTypeArray::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  // The IR does not really have a type for the index.
  // A special type for array index should have been
  // created during initial type traversal. Just
  // retrieve that type id.
  ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
}

void BTFTypeArray::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  OS.emitInt32(ArrayInfo.ElemType);
  OS.emitInt32(ArrayInfo.IndexType);
  OS.emitInt32(ArrayInfo.Nelems);
}

/// Represent either a struct or a union.
BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
                             bool HasBitField, uint32_t Vlen)
    : STy(STy), HasBitField(HasBitField) {
  Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
  BTFType.Size = roundupToBytes(STy->getSizeInBits());
  BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
}

void BTFTypeStruct::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(STy->getName());

  // Add struct/union members.
  const DINodeArray Elements = STy->getElements();
  for (const auto *Element : Elements) {
    struct BTF::BTFMember BTFMember;
    const auto *DDTy = cast<DIDerivedType>(Element);

    BTFMember.NameOff = BDebug.addString(DDTy->getName());
    if (HasBitField) {
      uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
      BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
    } else {
      BTFMember.Offset = DDTy->getOffsetInBits();
    }
    const auto *BaseTy = DDTy->getBaseType();
    BTFMember.Type = BDebug.getTypeId(BaseTy);
    Members.push_back(BTFMember);
  }
}

void BTFTypeStruct::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  for (const auto &Member : Members) {
    OS.emitInt32(Member.NameOff);
    OS.emitInt32(Member.Type);
    OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
    OS.emitInt32(Member.Offset);
  }
}

std::string BTFTypeStruct::getName() { return std::string(STy->getName()); }

/// The Func kind represents both subprogram and pointee of function
/// pointers. If the FuncName is empty, it represents a pointee of function
/// pointer. Otherwise, it represents a subprogram. The func arg names
/// are empty for pointee of function pointer case, and are valid names
/// for subprogram.
BTFTypeFuncProto::BTFTypeFuncProto(
    const DISubroutineType *STy, uint32_t VLen,
    const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
    : STy(STy), FuncArgNames(FuncArgNames) {
  Kind = BTF::BTF_KIND_FUNC_PROTO;
  BTFType.Info = (Kind << 24) | VLen;
}

void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  DITypeRefArray Elements = STy->getTypeArray();
  auto RetType = Elements[0];
  BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
  BTFType.NameOff = 0;

  // For null parameter which is typically the last one
  // to represent the vararg, encode the NameOff/Type to be 0.
  for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
    struct BTF::BTFParam Param;
    auto Element = Elements[I];
    if (Element) {
      Param.NameOff = BDebug.addString(FuncArgNames[I]);
      Param.Type = BDebug.getTypeId(Element);
    } else {
      Param.NameOff = 0;
      Param.Type = 0;
    }
    Parameters.push_back(Param);
  }
}

void BTFTypeFuncProto::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  for (const auto &Param : Parameters) {
    OS.emitInt32(Param.NameOff);
    OS.emitInt32(Param.Type);
  }
}

BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId,
    uint32_t Scope)
    : Name(FuncName) {
  Kind = BTF::BTF_KIND_FUNC;
  BTFType.Info = (Kind << 24) | Scope;
  BTFType.Type = ProtoTypeId;
}

void BTFTypeFunc::completeType(BTFDebug &BDebug) {
  if (IsCompleted)
    return;
  IsCompleted = true;

  BTFType.NameOff = BDebug.addString(Name);
}

void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }

BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
    : Name(VarName) {
  Kind = BTF::BTF_KIND_VAR;
  BTFType.Info = Kind << 24;
  BTFType.Type = TypeId;
  Info = VarInfo;
}

void BTFKindVar::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(Name);
}

void BTFKindVar::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  OS.emitInt32(Info);
}

BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
    : Asm(AsmPrt), Name(SecName) {
  Kind = BTF::BTF_KIND_DATASEC;
  BTFType.Info = Kind << 24;
  BTFType.Size = 0;
}

void BTFKindDataSec::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(Name);
  BTFType.Info |= Vars.size();
}

void BTFKindDataSec::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);

  for (const auto &V : Vars) {
    OS.emitInt32(std::get<0>(V));
    Asm->emitLabelReference(std::get<1>(V), 4);
    OS.emitInt32(std::get<2>(V));
  }
}

uint32_t BTFStringTable::addString(StringRef S) {
  // Check whether the string already exists.
  for (auto &OffsetM : OffsetToIdMap) {
    if (Table[OffsetM.second] == S)
      return OffsetM.first;
  }
  // Not find, add to the string table.
  uint32_t Offset = Size;
  OffsetToIdMap[Offset] = Table.size();
  Table.push_back(std::string(S));
  Size += S.size() + 1;
  return Offset;
}

BTFDebug::BTFDebug(AsmPrinter *AP)
    : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
      LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
      MapDefNotCollected(true) {
  addString("\0");
}

uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
                           const DIType *Ty) {
  TypeEntry->setId(TypeEntries.size() + 1);
  uint32_t Id = TypeEntry->getId();
  DIToIdMap[Ty] = Id;
  TypeEntries.push_back(std::move(TypeEntry));
  return Id;
}

uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
  TypeEntry->setId(TypeEntries.size() + 1);
  uint32_t Id = TypeEntry->getId();
  TypeEntries.push_back(std::move(TypeEntry));
  return Id;
}

void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
  // Only int types are supported in BTF.
  uint32_t Encoding = BTy->getEncoding();
  if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed &&
      Encoding != dwarf::DW_ATE_signed_char &&
      Encoding != dwarf::DW_ATE_unsigned &&
      Encoding != dwarf::DW_ATE_unsigned_char)
    return;

  // Create a BTF type instance for this DIBasicType and put it into
  // DIToIdMap for cross-type reference check.
  auto TypeEntry = std::make_unique<BTFTypeInt>(
      Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
  TypeId = addType(std::move(TypeEntry), BTy);
}

/// Handle subprogram or subroutine types.
void BTFDebug::visitSubroutineType(
    const DISubroutineType *STy, bool ForSubprog,
    const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
    uint32_t &TypeId) {
  DITypeRefArray Elements = STy->getTypeArray();
  uint32_t VLen = Elements.size() - 1;
  if (VLen > BTF::MAX_VLEN)
    return;

  // Subprogram has a valid non-zero-length name, and the pointee of
  // a function pointer has an empty name. The subprogram type will
  // not be added to DIToIdMap as it should not be referenced by
  // any other types.
  auto TypeEntry = std::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
  if (ForSubprog)
    TypeId = addType(std::move(TypeEntry)); // For subprogram
  else
    TypeId = addType(std::move(TypeEntry), STy); // For func ptr

  // Visit return type and func arg types.
  for (const auto Element : Elements) {
    visitTypeEntry(Element);
  }
}

/// Handle structure/union types.
void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
                               uint32_t &TypeId) {
  const DINodeArray Elements = CTy->getElements();
  uint32_t VLen = Elements.size();
  if (VLen > BTF::MAX_VLEN)
    return;

  // Check whether we have any bitfield members or not
  bool HasBitField = false;
  for (const auto *Element : Elements) {
    auto E = cast<DIDerivedType>(Element);
    if (E->isBitField()) {
      HasBitField = true;
      break;
    }
  }

  auto TypeEntry =
      std::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
  StructTypes.push_back(TypeEntry.get());
  TypeId = addType(std::move(TypeEntry), CTy);

  // Visit all struct members.
  for (const auto *Element : Elements)
    visitTypeEntry(cast<DIDerivedType>(Element));
}

void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
  // Visit array element type.
  uint32_t ElemTypeId;
  const DIType *ElemType = CTy->getBaseType();
  visitTypeEntry(ElemType, ElemTypeId, false, false);

  // Visit array dimensions.
  DINodeArray Elements = CTy->getElements();
  for (int I = Elements.size() - 1; I >= 0; --I) {
    if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
      if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
        const DISubrange *SR = cast<DISubrange>(Element);
        auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
        int64_t Count = CI->getSExtValue();

        // For struct s { int b; char c[]; }, the c[] will be represented
        // as an array with Count = -1.
        auto TypeEntry =
            std::make_unique<BTFTypeArray>(ElemTypeId,
                Count >= 0 ? Count : 0);
        if (I == 0)
          ElemTypeId = addType(std::move(TypeEntry), CTy);
        else
          ElemTypeId = addType(std::move(TypeEntry));
      }
  }

  // The array TypeId is the type id of the outermost dimension.
  TypeId = ElemTypeId;

  // The IR does not have a type for array index while BTF wants one.
  // So create an array index type if there is none.
  if (!ArrayIndexTypeId) {
    auto TypeEntry = std::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
                                                   0, "__ARRAY_SIZE_TYPE__");
    ArrayIndexTypeId = addType(std::move(TypeEntry));
  }
}

void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
  DINodeArray Elements = CTy->getElements();
  uint32_t VLen = Elements.size();
  if (VLen > BTF::MAX_VLEN)
    return;

  auto TypeEntry = std::make_unique<BTFTypeEnum>(CTy, VLen);
  TypeId = addType(std::move(TypeEntry), CTy);
  // No need to visit base type as BTF does not encode it.
}

/// Handle structure/union forward declarations.
void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
                                uint32_t &TypeId) {
  auto TypeEntry = std::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
  TypeId = addType(std::move(TypeEntry), CTy);
}

/// Handle structure, union, array and enumeration types.
void BTFDebug::visitCompositeType(const DICompositeType *CTy,
                                  uint32_t &TypeId) {
  auto Tag = CTy->getTag();
  if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
    // Handle forward declaration differently as it does not have members.
    if (CTy->isForwardDecl())
      visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
    else
      visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
  } else if (Tag == dwarf::DW_TAG_array_type)
    visitArrayType(CTy, TypeId);
  else if (Tag == dwarf::DW_TAG_enumeration_type)
    visitEnumType(CTy, TypeId);
}

/// Handle pointer, typedef, const, volatile, restrict and member types.
void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
                                bool CheckPointer, bool SeenPointer) {
  unsigned Tag = DTy->getTag();

  /// Try to avoid chasing pointees, esp. structure pointees which may
  /// unnecessary bring in a lot of types.
  if (CheckPointer && !SeenPointer) {
    SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
  }

  if (CheckPointer && SeenPointer) {
    const DIType *Base = DTy->getBaseType();
    if (Base) {
      if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
        auto CTag = CTy->getTag();
        if ((CTag == dwarf::DW_TAG_structure_type ||
             CTag == dwarf::DW_TAG_union_type) &&
            !CTy->getName().empty() && !CTy->isForwardDecl()) {
          /// Find a candidate, generate a fixup. Later on the struct/union
          /// pointee type will be replaced with either a real type or
          /// a forward declaration.
          auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, true);
          auto &Fixup = FixupDerivedTypes[CTy->getName()];
          Fixup.first = CTag == dwarf::DW_TAG_union_type;
          Fixup.second.push_back(TypeEntry.get());
          TypeId = addType(std::move(TypeEntry), DTy);
          return;
        }
      }
    }
  }

  if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
      Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
      Tag == dwarf::DW_TAG_restrict_type) {
    auto TypeEntry = std::make_unique<BTFTypeDerived>(DTy, Tag, false);
    TypeId = addType(std::move(TypeEntry), DTy);
  } else if (Tag != dwarf::DW_TAG_member) {
    return;
  }

  // Visit base type of pointer, typedef, const, volatile, restrict or
  // struct/union member.
  uint32_t TempTypeId = 0;
  if (Tag == dwarf::DW_TAG_member)
    visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
  else
    visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
}

void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
                              bool CheckPointer, bool SeenPointer) {
  if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
    TypeId = DIToIdMap[Ty];

    // To handle the case like the following:
    //    struct t;
    //    typedef struct t _t;
    //    struct s1 { _t *c; };
    //    int test1(struct s1 *arg) { ... }
    //
    //    struct t { int a; int b; };
    //    struct s2 { _t c; }
    //    int test2(struct s2 *arg) { ... }
    //
    // During traversing test1() argument, "_t" is recorded
    // in DIToIdMap and a forward declaration fixup is created
    // for "struct t" to avoid pointee type traversal.
    //
    // During traversing test2() argument, even if we see "_t" is
    // already defined, we should keep moving to eventually
    // bring in types for "struct t". Otherwise, the "struct s2"
    // definition won't be correct.
    if (Ty && (!CheckPointer || !SeenPointer)) {
      if (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
        unsigned Tag = DTy->getTag();
        if (Tag == dwarf::DW_TAG_typedef || Tag == dwarf::DW_TAG_const_type ||
            Tag == dwarf::DW_TAG_volatile_type ||
            Tag == dwarf::DW_TAG_restrict_type) {
          uint32_t TmpTypeId;
          visitTypeEntry(DTy->getBaseType(), TmpTypeId, CheckPointer,
                         SeenPointer);
        }
      }
    }

    return;
  }

  if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
    visitBasicType(BTy, TypeId);
  else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
    visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
                        TypeId);
  else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
    visitCompositeType(CTy, TypeId);
  else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
    visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
  else
    llvm_unreachable("Unknown DIType");
}

void BTFDebug::visitTypeEntry(const DIType *Ty) {
  uint32_t TypeId;
  visitTypeEntry(Ty, TypeId, false, false);
}

void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
  if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
    TypeId = DIToIdMap[Ty];
    return;
  }

  // MapDef type may be a struct type or a non-pointer derived type
  const DIType *OrigTy = Ty;
  while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
    auto Tag = DTy->getTag();
    if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
        Tag != dwarf::DW_TAG_volatile_type &&
        Tag != dwarf::DW_TAG_restrict_type)
      break;
    Ty = DTy->getBaseType();
  }

  const auto *CTy = dyn_cast<DICompositeType>(Ty);
  if (!CTy)
    return;

  auto Tag = CTy->getTag();
  if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
    return;

  // Visit all struct members to ensure pointee type is visited
  const DINodeArray Elements = CTy->getElements();
  for (const auto *Element : Elements) {
    const auto *MemberType = cast<DIDerivedType>(Element);
    visitTypeEntry(MemberType->getBaseType());
  }

  // Visit this type, struct or a const/typedef/volatile/restrict type
  visitTypeEntry(OrigTy, TypeId, false, false);
}

/// Read file contents from the actual file or from the source
std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
  auto File = SP->getFile();
  std::string FileName;

  if (!File->getFilename().startswith("/") && File->getDirectory().size())
    FileName = File->getDirectory().str() + "/" + File->getFilename().str();
  else
    FileName = std::string(File->getFilename());

  // No need to populate the contends if it has been populated!
  if (FileContent.find(FileName) != FileContent.end())
    return FileName;

  std::vector<std::string> Content;
  std::string Line;
  Content.push_back(Line); // Line 0 for empty string

  std::unique_ptr<MemoryBuffer> Buf;
  auto Source = File->getSource();
  if (Source)
    Buf = MemoryBuffer::getMemBufferCopy(*Source);
  else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
               MemoryBuffer::getFile(FileName))
    Buf = std::move(*BufOrErr);
  if (Buf)
    for (line_iterator I(*Buf, false), E; I != E; ++I)
      Content.push_back(std::string(*I));

  FileContent[FileName] = Content;
  return FileName;
}

void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
                                 uint32_t Line, uint32_t Column) {
  std::string FileName = populateFileContent(SP);
  BTFLineInfo LineInfo;

  LineInfo.Label = Label;
  LineInfo.FileNameOff = addString(FileName);
  // If file content is not available, let LineOff = 0.
  if (Line < FileContent[FileName].size())
    LineInfo.LineOff = addString(FileContent[FileName][Line]);
  else
    LineInfo.LineOff = 0;
  LineInfo.LineNum = Line;
  LineInfo.ColumnNum = Column;
  LineInfoTable[SecNameOff].push_back(LineInfo);
}

void BTFDebug::emitCommonHeader() {
  OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
  OS.emitIntValue(BTF::MAGIC, 2);
  OS.emitInt8(BTF::VERSION);
  OS.emitInt8(0);
}

void BTFDebug::emitBTFSection() {
  // Do not emit section if no types and only "" string.
  if (!TypeEntries.size() && StringTable.getSize() == 1)
    return;

  MCContext &Ctx = OS.getContext();
  OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));

  // Emit header.
  emitCommonHeader();
  OS.emitInt32(BTF::HeaderSize);

  uint32_t TypeLen = 0, StrLen;
  for (const auto &TypeEntry : TypeEntries)
    TypeLen += TypeEntry->getSize();
  StrLen = StringTable.getSize();

  OS.emitInt32(0);
  OS.emitInt32(TypeLen);
  OS.emitInt32(TypeLen);
  OS.emitInt32(StrLen);

  // Emit type table.
  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->emitType(OS);

  // Emit string table.
  uint32_t StringOffset = 0;
  for (const auto &S : StringTable.getTable()) {
    OS.AddComment("string offset=" + std::to_string(StringOffset));
    OS.emitBytes(S);
    OS.emitBytes(StringRef("\0", 1));
    StringOffset += S.size() + 1;
  }
}

void BTFDebug::emitBTFExtSection() {
  // Do not emit section if empty FuncInfoTable and LineInfoTable
  // and FieldRelocTable.
  if (!FuncInfoTable.size() && !LineInfoTable.size() &&
      !FieldRelocTable.size())
    return;

  MCContext &Ctx = OS.getContext();
  OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));

  // Emit header.
  emitCommonHeader();
  OS.emitInt32(BTF::ExtHeaderSize);

  // Account for FuncInfo/LineInfo record size as well.
  uint32_t FuncLen = 4, LineLen = 4;
  // Do not account for optional FieldReloc.
  uint32_t FieldRelocLen = 0;
  for (const auto &FuncSec : FuncInfoTable) {
    FuncLen += BTF::SecFuncInfoSize;
    FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
  }
  for (const auto &LineSec : LineInfoTable) {
    LineLen += BTF::SecLineInfoSize;
    LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
  }
  for (const auto &FieldRelocSec : FieldRelocTable) {
    FieldRelocLen += BTF::SecFieldRelocSize;
    FieldRelocLen += FieldRelocSec.second.size() * BTF::BPFFieldRelocSize;
  }

  if (FieldRelocLen)
    FieldRelocLen += 4;

  OS.emitInt32(0);
  OS.emitInt32(FuncLen);
  OS.emitInt32(FuncLen);
  OS.emitInt32(LineLen);
  OS.emitInt32(FuncLen + LineLen);
  OS.emitInt32(FieldRelocLen);

  // Emit func_info table.
  OS.AddComment("FuncInfo");
  OS.emitInt32(BTF::BPFFuncInfoSize);
  for (const auto &FuncSec : FuncInfoTable) {
    OS.AddComment("FuncInfo section string offset=" +
                  std::to_string(FuncSec.first));
    OS.emitInt32(FuncSec.first);
    OS.emitInt32(FuncSec.second.size());
    for (const auto &FuncInfo : FuncSec.second) {
      Asm->emitLabelReference(FuncInfo.Label, 4);
      OS.emitInt32(FuncInfo.TypeId);
    }
  }

  // Emit line_info table.
  OS.AddComment("LineInfo");
  OS.emitInt32(BTF::BPFLineInfoSize);
  for (const auto &LineSec : LineInfoTable) {
    OS.AddComment("LineInfo section string offset=" +
                  std::to_string(LineSec.first));
    OS.emitInt32(LineSec.first);
    OS.emitInt32(LineSec.second.size());
    for (const auto &LineInfo : LineSec.second) {
      Asm->emitLabelReference(LineInfo.Label, 4);
      OS.emitInt32(LineInfo.FileNameOff);
      OS.emitInt32(LineInfo.LineOff);
      OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
                    std::to_string(LineInfo.ColumnNum));
      OS.emitInt32(LineInfo.LineNum << 10 | LineInfo.ColumnNum);
    }
  }

  // Emit field reloc table.
  if (FieldRelocLen) {
    OS.AddComment("FieldReloc");
    OS.emitInt32(BTF::BPFFieldRelocSize);
    for (const auto &FieldRelocSec : FieldRelocTable) {
      OS.AddComment("Field reloc section string offset=" +
                    std::to_string(FieldRelocSec.first));
      OS.emitInt32(FieldRelocSec.first);
      OS.emitInt32(FieldRelocSec.second.size());
      for (const auto &FieldRelocInfo : FieldRelocSec.second) {
        Asm->emitLabelReference(FieldRelocInfo.Label, 4);
        OS.emitInt32(FieldRelocInfo.TypeID);
        OS.emitInt32(FieldRelocInfo.OffsetNameOff);
        OS.emitInt32(FieldRelocInfo.RelocKind);
      }
    }
  }
}

void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
  auto *SP = MF->getFunction().getSubprogram();
  auto *Unit = SP->getUnit();

  if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
    SkipInstruction = true;
    return;
  }
  SkipInstruction = false;

  // Collect MapDef types. Map definition needs to collect
  // pointee types. Do it first. Otherwise, for the following
  // case:
  //    struct m { ...};
  //    struct t {
  //      struct m *key;
  //    };
  //    foo(struct t *arg);
  //
  //    struct mapdef {
  //      ...
  //      struct m *key;
  //      ...
  //    } __attribute__((section(".maps"))) hash_map;
  //
  // If subroutine foo is traversed first, a type chain
  // "ptr->struct m(fwd)" will be created and later on
  // when traversing mapdef, since "ptr->struct m" exists,
  // the traversal of "struct m" will be omitted.
  if (MapDefNotCollected) {
    processGlobals(true);
    MapDefNotCollected = false;
  }

  // Collect all types locally referenced in this function.
  // Use RetainedNodes so we can collect all argument names
  // even if the argument is not used.
  std::unordered_map<uint32_t, StringRef> FuncArgNames;
  for (const DINode *DN : SP->getRetainedNodes()) {
    if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
      // Collect function arguments for subprogram func type.
      uint32_t Arg = DV->getArg();
      if (Arg) {
        visitTypeEntry(DV->getType());
        FuncArgNames[Arg] = DV->getName();
      }
    }
  }

  // Construct subprogram func proto type.
  uint32_t ProtoTypeId;
  visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);

  // Construct subprogram func type
  uint8_t Scope = SP->isLocalToUnit() ? BTF::FUNC_STATIC : BTF::FUNC_GLOBAL;
  auto FuncTypeEntry =
      std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
  uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));

  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->completeType(*this);

  // Construct funcinfo and the first lineinfo for the function.
  MCSymbol *FuncLabel = Asm->getFunctionBegin();
  BTFFuncInfo FuncInfo;
  FuncInfo.Label = FuncLabel;
  FuncInfo.TypeId = FuncTypeId;
  if (FuncLabel->isInSection()) {
    MCSection &Section = FuncLabel->getSection();
    const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
    assert(SectionELF && "Null section for Function Label");
    SecNameOff = addString(SectionELF->getName());
  } else {
    SecNameOff = addString(".text");
  }
  FuncInfoTable[SecNameOff].push_back(FuncInfo);
}

void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
  SkipInstruction = false;
  LineInfoGenerated = false;
  SecNameOff = 0;
}

/// On-demand populate types as requested from abstract member
/// accessing or preserve debuginfo type.
unsigned BTFDebug::populateType(const DIType *Ty) {
  unsigned Id;
  visitTypeEntry(Ty, Id, false, false);
  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->completeType(*this);
  return Id;
}

/// Generate a struct member field relocation.
void BTFDebug::generatePatchImmReloc(const MCSymbol *ORSym, uint32_t RootId,
                                     const GlobalVariable *GVar, bool IsAma) {
  BTFFieldReloc FieldReloc;
  FieldReloc.Label = ORSym;
  FieldReloc.TypeID = RootId;

  StringRef AccessPattern = GVar->getName();
  size_t FirstDollar = AccessPattern.find_first_of('$');
  if (IsAma) {
    size_t FirstColon = AccessPattern.find_first_of(':');
    size_t SecondColon = AccessPattern.find_first_of(':', FirstColon + 1);
    StringRef IndexPattern = AccessPattern.substr(FirstDollar + 1);
    StringRef RelocKindStr = AccessPattern.substr(FirstColon + 1,
        SecondColon - FirstColon);
    StringRef PatchImmStr = AccessPattern.substr(SecondColon + 1,
        FirstDollar - SecondColon);

    FieldReloc.OffsetNameOff = addString(IndexPattern);
    FieldReloc.RelocKind = std::stoull(std::string(RelocKindStr));
    PatchImms[GVar] = std::stoul(std::string(PatchImmStr));
  } else {
    StringRef RelocStr = AccessPattern.substr(FirstDollar + 1);
    FieldReloc.OffsetNameOff = addString("0");
    FieldReloc.RelocKind = std::stoull(std::string(RelocStr));
    PatchImms[GVar] = RootId;
  }
  FieldRelocTable[SecNameOff].push_back(FieldReloc);
}

void BTFDebug::processReloc(const MachineOperand &MO) {
  // check whether this is a candidate or not
  if (MO.isGlobal()) {
    const GlobalValue *GVal = MO.getGlobal();
    auto *GVar = dyn_cast<GlobalVariable>(GVal);
    if (!GVar)
      return;

    if (!GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) &&
        !GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr))
      return;

    MCSymbol *ORSym = OS.getContext().createTempSymbol();
    OS.emitLabel(ORSym);

    MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
    uint32_t RootId = populateType(dyn_cast<DIType>(MDN));
    generatePatchImmReloc(ORSym, RootId, GVar,
                          GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr));
  }
}

void BTFDebug::beginInstruction(const MachineInstr *MI) {
  DebugHandlerBase::beginInstruction(MI);

  if (SkipInstruction || MI->isMetaInstruction() ||
      MI->getFlag(MachineInstr::FrameSetup))
    return;

  if (MI->isInlineAsm()) {
    // Count the number of register definitions to find the asm string.
    unsigned NumDefs = 0;
    for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
         ++NumDefs)
      ;

    // Skip this inline asm instruction if the asmstr is empty.
    const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
    if (AsmStr[0] == 0)
      return;
  }

  if (MI->getOpcode() == BPF::LD_imm64) {
    // If the insn is "r2 = LD_imm64 @<an AmaAttr global>",
    // add this insn into the .BTF.ext FieldReloc subsection.
    // Relocation looks like:
    //  . SecName:
    //    . InstOffset
    //    . TypeID
    //    . OffSetNameOff
    //    . RelocType
    // Later, the insn is replaced with "r2 = <offset>"
    // where "<offset>" equals to the offset based on current
    // type definitions.
    //
    // If the insn is "r2 = LD_imm64 @<an TypeIdAttr global>",
    // The LD_imm64 result will be replaced with a btf type id.
    processReloc(MI->getOperand(1));
  } else if (MI->getOpcode() == BPF::CORE_MEM ||
             MI->getOpcode() == BPF::CORE_ALU32_MEM ||
             MI->getOpcode() == BPF::CORE_SHIFT) {
    // relocation insn is a load, store or shift insn.
    processReloc(MI->getOperand(3));
  } else if (MI->getOpcode() == BPF::JAL) {
    // check extern function references
    const MachineOperand &MO = MI->getOperand(0);
    if (MO.isGlobal()) {
      processFuncPrototypes(dyn_cast<Function>(MO.getGlobal()));
    }
  }

  // Skip this instruction if no DebugLoc or the DebugLoc
  // is the same as the previous instruction.
  const DebugLoc &DL = MI->getDebugLoc();
  if (!DL || PrevInstLoc == DL) {
    // This instruction will be skipped, no LineInfo has
    // been generated, construct one based on function signature.
    if (LineInfoGenerated == false) {
      auto *S = MI->getMF()->getFunction().getSubprogram();
      MCSymbol *FuncLabel = Asm->getFunctionBegin();
      constructLineInfo(S, FuncLabel, S->getLine(), 0);
      LineInfoGenerated = true;
    }

    return;
  }

  // Create a temporary label to remember the insn for lineinfo.
  MCSymbol *LineSym = OS.getContext().createTempSymbol();
  OS.emitLabel(LineSym);

  // Construct the lineinfo.
  auto SP = DL.get()->getScope()->getSubprogram();
  constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());

  LineInfoGenerated = true;
  PrevInstLoc = DL;
}

void BTFDebug::processGlobals(bool ProcessingMapDef) {
  // Collect all types referenced by globals.
  const Module *M = MMI->getModule();
  for (const GlobalVariable &Global : M->globals()) {
    // Decide the section name.
    StringRef SecName;
    if (Global.hasSection()) {
      SecName = Global.getSection();
    } else if (Global.hasInitializer()) {
      // data, bss, or readonly sections
      if (Global.isConstant())
        SecName = ".rodata";
      else
        SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data";
    } else {
      // extern variables without explicit section,
      // put them into ".extern" section.
      SecName = ".extern";
    }

    if (ProcessingMapDef != SecName.startswith(".maps"))
      continue;

    SmallVector<DIGlobalVariableExpression *, 1> GVs;
    Global.getDebugInfo(GVs);

    // No type information, mostly internal, skip it.
    if (GVs.size() == 0)
      continue;

    uint32_t GVTypeId = 0;
    for (auto *GVE : GVs) {
      if (SecName.startswith(".maps"))
        visitMapDefType(GVE->getVariable()->getType(), GVTypeId);
      else
        visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false);
      break;
    }

    // Only support the following globals:
    //  . static variables
    //  . non-static weak or non-weak global variables
    //  . weak or non-weak extern global variables
    // Whether DataSec is readonly or not can be found from corresponding ELF
    // section flags. Whether a BTF_KIND_VAR is a weak symbol or not
    // can be found from the corresponding ELF symbol table.
    auto Linkage = Global.getLinkage();
    if (Linkage != GlobalValue::InternalLinkage &&
        Linkage != GlobalValue::ExternalLinkage &&
        Linkage != GlobalValue::WeakAnyLinkage &&
        Linkage != GlobalValue::ExternalWeakLinkage)
      continue;

    uint32_t GVarInfo;
    if (Linkage == GlobalValue::InternalLinkage) {
      GVarInfo = BTF::VAR_STATIC;
    } else if (Global.hasInitializer()) {
      GVarInfo = BTF::VAR_GLOBAL_ALLOCATED;
    } else {
      GVarInfo = BTF::VAR_GLOBAL_EXTERNAL;
    }

    auto VarEntry =
        std::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
    uint32_t VarId = addType(std::move(VarEntry));

    assert(!SecName.empty());

    // Find or create a DataSec
    if (DataSecEntries.find(std::string(SecName)) == DataSecEntries.end()) {
      DataSecEntries[std::string(SecName)] =
          std::make_unique<BTFKindDataSec>(Asm, std::string(SecName));
    }

    // Calculate symbol size
    const DataLayout &DL = Global.getParent()->getDataLayout();
    uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType());

    DataSecEntries[std::string(SecName)]->addVar(VarId, Asm->getSymbol(&Global),
                                                 Size);
  }
}

/// Emit proper patchable instructions.
bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
  if (MI->getOpcode() == BPF::LD_imm64) {
    const MachineOperand &MO = MI->getOperand(1);
    if (MO.isGlobal()) {
      const GlobalValue *GVal = MO.getGlobal();
      auto *GVar = dyn_cast<GlobalVariable>(GVal);
      if (GVar) {
        // Emit "mov ri, <imm>"
        uint32_t Imm;
        if (GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr) ||
            GVar->hasAttribute(BPFCoreSharedInfo::TypeIdAttr))
          Imm = PatchImms[GVar];
        else
          return false;

        OutMI.setOpcode(BPF::MOV_ri);
        OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
        OutMI.addOperand(MCOperand::createImm(Imm));
        return true;
      }
    }
  } else if (MI->getOpcode() == BPF::CORE_MEM ||
             MI->getOpcode() == BPF::CORE_ALU32_MEM ||
             MI->getOpcode() == BPF::CORE_SHIFT) {
    const MachineOperand &MO = MI->getOperand(3);
    if (MO.isGlobal()) {
      const GlobalValue *GVal = MO.getGlobal();
      auto *GVar = dyn_cast<GlobalVariable>(GVal);
      if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
        uint32_t Imm = PatchImms[GVar];
        OutMI.setOpcode(MI->getOperand(1).getImm());
        if (MI->getOperand(0).isImm())
          OutMI.addOperand(MCOperand::createImm(MI->getOperand(0).getImm()));
        else
          OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
        OutMI.addOperand(MCOperand::createReg(MI->getOperand(2).getReg()));
        OutMI.addOperand(MCOperand::createImm(Imm));
        return true;
      }
    }
  }
  return false;
}

void BTFDebug::processFuncPrototypes(const Function *F) {
  if (!F)
    return;

  const DISubprogram *SP = F->getSubprogram();
  if (!SP || SP->isDefinition())
    return;

  // Do not emit again if already emitted.
  if (ProtoFunctions.find(F) != ProtoFunctions.end())
    return;
  ProtoFunctions.insert(F);

  uint32_t ProtoTypeId;
  const std::unordered_map<uint32_t, StringRef> FuncArgNames;
  visitSubroutineType(SP->getType(), false, FuncArgNames, ProtoTypeId);

  uint8_t Scope = BTF::FUNC_EXTERN;
  auto FuncTypeEntry =
      std::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId, Scope);
  addType(std::move(FuncTypeEntry));
}

void BTFDebug::endModule() {
  // Collect MapDef globals if not collected yet.
  if (MapDefNotCollected) {
    processGlobals(true);
    MapDefNotCollected = false;
  }

  // Collect global types/variables except MapDef globals.
  processGlobals(false);

  for (auto &DataSec : DataSecEntries)
    addType(std::move(DataSec.second));

  // Fixups
  for (auto &Fixup : FixupDerivedTypes) {
    StringRef TypeName = Fixup.first;
    bool IsUnion = Fixup.second.first;

    // Search through struct types
    uint32_t StructTypeId = 0;
    for (const auto &StructType : StructTypes) {
      if (StructType->getName() == TypeName) {
        StructTypeId = StructType->getId();
        break;
      }
    }

    if (StructTypeId == 0) {
      auto FwdTypeEntry = std::make_unique<BTFTypeFwd>(TypeName, IsUnion);
      StructTypeId = addType(std::move(FwdTypeEntry));
    }

    for (auto &DType : Fixup.second.second) {
      DType->setPointeeType(StructTypeId);
    }
  }

  // Complete BTF type cross refereences.
  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->completeType(*this);

  // Emit BTF sections.
  emitBTFSection();
  emitBTFExtSection();
}