BPFAbstractMemberAccess.cpp 33.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935
//===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass abstracted struct/union member accesses in order to support
// compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
// which can run on different kernels. In particular, if bpf program tries to
// access a particular kernel data structure member, the details of the
// intermediate member access will be remembered so bpf loader can do
// necessary adjustment right before program loading.
//
// For example,
//
//   struct s {
//     int a;
//     int b;
//   };
//   struct t {
//     struct s c;
//     int d;
//   };
//   struct t e;
//
// For the member access e.c.b, the compiler will generate code
//   &e + 4
//
// The compile-once run-everywhere instead generates the following code
//   r = 4
//   &e + r
// The "4" in "r = 4" can be changed based on a particular kernel version.
// For example, on a particular kernel version, if struct s is changed to
//
//   struct s {
//     int new_field;
//     int a;
//     int b;
//   }
//
// By repeating the member access on the host, the bpf loader can
// adjust "r = 4" as "r = 8".
//
// This feature relies on the following three intrinsic calls:
//   addr = preserve_array_access_index(base, dimension, index)
//   addr = preserve_union_access_index(base, di_index)
//          !llvm.preserve.access.index <union_ditype>
//   addr = preserve_struct_access_index(base, gep_index, di_index)
//          !llvm.preserve.access.index <struct_ditype>
//
// Bitfield member access needs special attention. User cannot take the
// address of a bitfield acceess. To facilitate kernel verifier
// for easy bitfield code optimization, a new clang intrinsic is introduced:
//   uint32_t __builtin_preserve_field_info(member_access, info_kind)
// In IR, a chain with two (or more) intrinsic calls will be generated:
//   ...
//   addr = preserve_struct_access_index(base, 1, 1) !struct s
//   uint32_t result = bpf_preserve_field_info(addr, info_kind)
//
// Suppose the info_kind is FIELD_SIGNEDNESS,
// The above two IR intrinsics will be replaced with
// a relocatable insn:
//   signness = /* signness of member_access */
// and signness can be changed by bpf loader based on the
// types on the host.
//
// User can also test whether a field exists or not with
//   uint32_t result = bpf_preserve_field_info(member_access, FIELD_EXISTENCE)
// The field will be always available (result = 1) during initial
// compilation, but bpf loader can patch with the correct value
// on the target host where the member_access may or may not be available
//
//===----------------------------------------------------------------------===//

#include "BPF.h"
#include "BPFCORE.h"
#include "BPFTargetMachine.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <stack>

#define DEBUG_TYPE "bpf-abstract-member-access"

namespace llvm {
constexpr StringRef BPFCoreSharedInfo::AmaAttr;
} // namespace llvm

using namespace llvm;

namespace {

class BPFAbstractMemberAccess final : public ModulePass {
  StringRef getPassName() const override {
    return "BPF Abstract Member Access";
  }

  bool runOnModule(Module &M) override;

public:
  static char ID;
  TargetMachine *TM;
  // Add optional BPFTargetMachine parameter so that BPF backend can add the phase
  // with target machine to find out the endianness. The default constructor (without
  // parameters) is used by the pass manager for managing purposes.
  BPFAbstractMemberAccess(BPFTargetMachine *TM = nullptr) : ModulePass(ID), TM(TM) {}

  struct CallInfo {
    uint32_t Kind;
    uint32_t AccessIndex;
    Align RecordAlignment;
    MDNode *Metadata;
    Value *Base;
  };
  typedef std::stack<std::pair<CallInst *, CallInfo>> CallInfoStack;

private:
  enum : uint32_t {
    BPFPreserveArrayAI = 1,
    BPFPreserveUnionAI = 2,
    BPFPreserveStructAI = 3,
    BPFPreserveFieldInfoAI = 4,
  };

  const DataLayout *DL = nullptr;

  std::map<std::string, GlobalVariable *> GEPGlobals;
  // A map to link preserve_*_access_index instrinsic calls.
  std::map<CallInst *, std::pair<CallInst *, CallInfo>> AIChain;
  // A map to hold all the base preserve_*_access_index instrinsic calls.
  // The base call is not an input of any other preserve_*
  // intrinsics.
  std::map<CallInst *, CallInfo> BaseAICalls;

  bool doTransformation(Module &M);

  void traceAICall(CallInst *Call, CallInfo &ParentInfo);
  void traceBitCast(BitCastInst *BitCast, CallInst *Parent,
                    CallInfo &ParentInfo);
  void traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
                CallInfo &ParentInfo);
  void collectAICallChains(Module &M, Function &F);

  bool IsPreserveDIAccessIndexCall(const CallInst *Call, CallInfo &Cinfo);
  bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
                      const MDNode *ChildMeta);
  bool removePreserveAccessIndexIntrinsic(Module &M);
  void replaceWithGEP(std::vector<CallInst *> &CallList,
                      uint32_t NumOfZerosIndex, uint32_t DIIndex);
  bool HasPreserveFieldInfoCall(CallInfoStack &CallStack);
  void GetStorageBitRange(DIDerivedType *MemberTy, Align RecordAlignment,
                          uint32_t &StartBitOffset, uint32_t &EndBitOffset);
  uint32_t GetFieldInfo(uint32_t InfoKind, DICompositeType *CTy,
                        uint32_t AccessIndex, uint32_t PatchImm,
                        Align RecordAlignment);

  Value *computeBaseAndAccessKey(CallInst *Call, CallInfo &CInfo,
                                 std::string &AccessKey, MDNode *&BaseMeta);
  uint64_t getConstant(const Value *IndexValue);
  bool transformGEPChain(Module &M, CallInst *Call, CallInfo &CInfo);
};
} // End anonymous namespace

char BPFAbstractMemberAccess::ID = 0;
INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE,
                "abstracting struct/union member accessees", false, false)

ModulePass *llvm::createBPFAbstractMemberAccess(BPFTargetMachine *TM) {
  return new BPFAbstractMemberAccess(TM);
}

bool BPFAbstractMemberAccess::runOnModule(Module &M) {
  LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");

  // Bail out if no debug info.
  if (M.debug_compile_units().empty())
    return false;

  DL = &M.getDataLayout();
  return doTransformation(M);
}

static bool SkipDIDerivedTag(unsigned Tag, bool skipTypedef) {
  if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
      Tag != dwarf::DW_TAG_volatile_type &&
      Tag != dwarf::DW_TAG_restrict_type &&
      Tag != dwarf::DW_TAG_member)
    return false;
  if (Tag == dwarf::DW_TAG_typedef && !skipTypedef)
    return false;
  return true;
}

static DIType * stripQualifiers(DIType *Ty, bool skipTypedef = true) {
  while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
    if (!SkipDIDerivedTag(DTy->getTag(), skipTypedef))
      break;
    Ty = DTy->getBaseType();
  }
  return Ty;
}

static const DIType * stripQualifiers(const DIType *Ty) {
  while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
    if (!SkipDIDerivedTag(DTy->getTag(), true))
      break;
    Ty = DTy->getBaseType();
  }
  return Ty;
}

static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
  DINodeArray Elements = CTy->getElements();
  uint32_t DimSize = 1;
  for (uint32_t I = StartDim; I < Elements.size(); ++I) {
    if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
      if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
        const DISubrange *SR = cast<DISubrange>(Element);
        auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
        DimSize *= CI->getSExtValue();
      }
  }

  return DimSize;
}

/// Check whether a call is a preserve_*_access_index intrinsic call or not.
bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
                                                          CallInfo &CInfo) {
  if (!Call)
    return false;

  const auto *GV = dyn_cast<GlobalValue>(Call->getCalledOperand());
  if (!GV)
    return false;
  if (GV->getName().startswith("llvm.preserve.array.access.index")) {
    CInfo.Kind = BPFPreserveArrayAI;
    CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
    if (!CInfo.Metadata)
      report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
    CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
    CInfo.Base = Call->getArgOperand(0);
    CInfo.RecordAlignment =
        DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
    return true;
  }
  if (GV->getName().startswith("llvm.preserve.union.access.index")) {
    CInfo.Kind = BPFPreserveUnionAI;
    CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
    if (!CInfo.Metadata)
      report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
    CInfo.AccessIndex = getConstant(Call->getArgOperand(1));
    CInfo.Base = Call->getArgOperand(0);
    CInfo.RecordAlignment =
        DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
    return true;
  }
  if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
    CInfo.Kind = BPFPreserveStructAI;
    CInfo.Metadata = Call->getMetadata(LLVMContext::MD_preserve_access_index);
    if (!CInfo.Metadata)
      report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
    CInfo.AccessIndex = getConstant(Call->getArgOperand(2));
    CInfo.Base = Call->getArgOperand(0);
    CInfo.RecordAlignment =
        DL->getABITypeAlign(CInfo.Base->getType()->getPointerElementType());
    return true;
  }
  if (GV->getName().startswith("llvm.bpf.preserve.field.info")) {
    CInfo.Kind = BPFPreserveFieldInfoAI;
    CInfo.Metadata = nullptr;
    // Check validity of info_kind as clang did not check this.
    uint64_t InfoKind = getConstant(Call->getArgOperand(1));
    if (InfoKind >= BPFCoreSharedInfo::MAX_FIELD_RELOC_KIND)
      report_fatal_error("Incorrect info_kind for llvm.bpf.preserve.field.info intrinsic");
    CInfo.AccessIndex = InfoKind;
    return true;
  }

  return false;
}

void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
                                             uint32_t DimensionIndex,
                                             uint32_t GEPIndex) {
  for (auto Call : CallList) {
    uint32_t Dimension = 1;
    if (DimensionIndex > 0)
      Dimension = getConstant(Call->getArgOperand(DimensionIndex));

    Constant *Zero =
        ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
    SmallVector<Value *, 4> IdxList;
    for (unsigned I = 0; I < Dimension; ++I)
      IdxList.push_back(Zero);
    IdxList.push_back(Call->getArgOperand(GEPIndex));

    auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0),
                                                  IdxList, "", Call);
    Call->replaceAllUsesWith(GEP);
    Call->eraseFromParent();
  }
}

bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Module &M) {
  std::vector<CallInst *> PreserveArrayIndexCalls;
  std::vector<CallInst *> PreserveUnionIndexCalls;
  std::vector<CallInst *> PreserveStructIndexCalls;
  bool Found = false;

  for (Function &F : M)
    for (auto &BB : F)
      for (auto &I : BB) {
        auto *Call = dyn_cast<CallInst>(&I);
        CallInfo CInfo;
        if (!IsPreserveDIAccessIndexCall(Call, CInfo))
          continue;

        Found = true;
        if (CInfo.Kind == BPFPreserveArrayAI)
          PreserveArrayIndexCalls.push_back(Call);
        else if (CInfo.Kind == BPFPreserveUnionAI)
          PreserveUnionIndexCalls.push_back(Call);
        else
          PreserveStructIndexCalls.push_back(Call);
      }

  // do the following transformation:
  // . addr = preserve_array_access_index(base, dimension, index)
  //   is transformed to
  //     addr = GEP(base, dimenion's zero's, index)
  // . addr = preserve_union_access_index(base, di_index)
  //   is transformed to
  //     addr = base, i.e., all usages of "addr" are replaced by "base".
  // . addr = preserve_struct_access_index(base, gep_index, di_index)
  //   is transformed to
  //     addr = GEP(base, 0, gep_index)
  replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
  replaceWithGEP(PreserveStructIndexCalls, 0, 1);
  for (auto Call : PreserveUnionIndexCalls) {
    Call->replaceAllUsesWith(Call->getArgOperand(0));
    Call->eraseFromParent();
  }

  return Found;
}

/// Check whether the access index chain is valid. We check
/// here because there may be type casts between two
/// access indexes. We want to ensure memory access still valid.
bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
                                             uint32_t ParentAI,
                                             const MDNode *ChildType) {
  if (!ChildType)
    return true; // preserve_field_info, no type comparison needed.

  const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
  const DIType *CType = stripQualifiers(cast<DIType>(ChildType));

  // Child is a derived/pointer type, which is due to type casting.
  // Pointer type cannot be in the middle of chain.
  if (isa<DIDerivedType>(CType))
    return false;

  // Parent is a pointer type.
  if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
    if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
      return false;
    return stripQualifiers(PtrTy->getBaseType()) == CType;
  }

  // Otherwise, struct/union/array types
  const auto *PTy = dyn_cast<DICompositeType>(PType);
  const auto *CTy = dyn_cast<DICompositeType>(CType);
  assert(PTy && CTy && "ParentType or ChildType is null or not composite");

  uint32_t PTyTag = PTy->getTag();
  assert(PTyTag == dwarf::DW_TAG_array_type ||
         PTyTag == dwarf::DW_TAG_structure_type ||
         PTyTag == dwarf::DW_TAG_union_type);

  uint32_t CTyTag = CTy->getTag();
  assert(CTyTag == dwarf::DW_TAG_array_type ||
         CTyTag == dwarf::DW_TAG_structure_type ||
         CTyTag == dwarf::DW_TAG_union_type);

  // Multi dimensional arrays, base element should be the same
  if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
    return PTy->getBaseType() == CTy->getBaseType();

  DIType *Ty;
  if (PTyTag == dwarf::DW_TAG_array_type)
    Ty = PTy->getBaseType();
  else
    Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);

  return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
}

void BPFAbstractMemberAccess::traceAICall(CallInst *Call,
                                          CallInfo &ParentInfo) {
  for (User *U : Call->users()) {
    Instruction *Inst = dyn_cast<Instruction>(U);
    if (!Inst)
      continue;

    if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
      traceBitCast(BI, Call, ParentInfo);
    } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
      CallInfo ChildInfo;

      if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
          IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
                         ChildInfo.Metadata)) {
        AIChain[CI] = std::make_pair(Call, ParentInfo);
        traceAICall(CI, ChildInfo);
      } else {
        BaseAICalls[Call] = ParentInfo;
      }
    } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
      if (GI->hasAllZeroIndices())
        traceGEP(GI, Call, ParentInfo);
      else
        BaseAICalls[Call] = ParentInfo;
    } else {
      BaseAICalls[Call] = ParentInfo;
    }
  }
}

void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
                                           CallInst *Parent,
                                           CallInfo &ParentInfo) {
  for (User *U : BitCast->users()) {
    Instruction *Inst = dyn_cast<Instruction>(U);
    if (!Inst)
      continue;

    if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
      traceBitCast(BI, Parent, ParentInfo);
    } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
      CallInfo ChildInfo;
      if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
          IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
                         ChildInfo.Metadata)) {
        AIChain[CI] = std::make_pair(Parent, ParentInfo);
        traceAICall(CI, ChildInfo);
      } else {
        BaseAICalls[Parent] = ParentInfo;
      }
    } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
      if (GI->hasAllZeroIndices())
        traceGEP(GI, Parent, ParentInfo);
      else
        BaseAICalls[Parent] = ParentInfo;
    } else {
      BaseAICalls[Parent] = ParentInfo;
    }
  }
}

void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
                                       CallInfo &ParentInfo) {
  for (User *U : GEP->users()) {
    Instruction *Inst = dyn_cast<Instruction>(U);
    if (!Inst)
      continue;

    if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
      traceBitCast(BI, Parent, ParentInfo);
    } else if (auto *CI = dyn_cast<CallInst>(Inst)) {
      CallInfo ChildInfo;
      if (IsPreserveDIAccessIndexCall(CI, ChildInfo) &&
          IsValidAIChain(ParentInfo.Metadata, ParentInfo.AccessIndex,
                         ChildInfo.Metadata)) {
        AIChain[CI] = std::make_pair(Parent, ParentInfo);
        traceAICall(CI, ChildInfo);
      } else {
        BaseAICalls[Parent] = ParentInfo;
      }
    } else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
      if (GI->hasAllZeroIndices())
        traceGEP(GI, Parent, ParentInfo);
      else
        BaseAICalls[Parent] = ParentInfo;
    } else {
      BaseAICalls[Parent] = ParentInfo;
    }
  }
}

void BPFAbstractMemberAccess::collectAICallChains(Module &M, Function &F) {
  AIChain.clear();
  BaseAICalls.clear();

  for (auto &BB : F)
    for (auto &I : BB) {
      CallInfo CInfo;
      auto *Call = dyn_cast<CallInst>(&I);
      if (!IsPreserveDIAccessIndexCall(Call, CInfo) ||
          AIChain.find(Call) != AIChain.end())
        continue;

      traceAICall(Call, CInfo);
    }
}

uint64_t BPFAbstractMemberAccess::getConstant(const Value *IndexValue) {
  const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
  assert(CV);
  return CV->getValue().getZExtValue();
}

/// Get the start and the end of storage offset for \p MemberTy.
void BPFAbstractMemberAccess::GetStorageBitRange(DIDerivedType *MemberTy,
                                                 Align RecordAlignment,
                                                 uint32_t &StartBitOffset,
                                                 uint32_t &EndBitOffset) {
  uint32_t MemberBitSize = MemberTy->getSizeInBits();
  uint32_t MemberBitOffset = MemberTy->getOffsetInBits();
  uint32_t AlignBits = RecordAlignment.value() * 8;
  if (RecordAlignment > 8 || MemberBitSize > AlignBits)
    report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
                       "requiring too big alignment");

  StartBitOffset = MemberBitOffset & ~(AlignBits - 1);
  if ((StartBitOffset + AlignBits) < (MemberBitOffset + MemberBitSize))
    report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info, "
                       "cross alignment boundary");
  EndBitOffset = StartBitOffset + AlignBits;
}

uint32_t BPFAbstractMemberAccess::GetFieldInfo(uint32_t InfoKind,
                                               DICompositeType *CTy,
                                               uint32_t AccessIndex,
                                               uint32_t PatchImm,
                                               Align RecordAlignment) {
  if (InfoKind == BPFCoreSharedInfo::FIELD_EXISTENCE)
      return 1;

  uint32_t Tag = CTy->getTag();
  if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_OFFSET) {
    if (Tag == dwarf::DW_TAG_array_type) {
      auto *EltTy = stripQualifiers(CTy->getBaseType());
      PatchImm += AccessIndex * calcArraySize(CTy, 1) *
                  (EltTy->getSizeInBits() >> 3);
    } else if (Tag == dwarf::DW_TAG_structure_type) {
      auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
      if (!MemberTy->isBitField()) {
        PatchImm += MemberTy->getOffsetInBits() >> 3;
      } else {
        unsigned SBitOffset, NextSBitOffset;
        GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset,
                           NextSBitOffset);
        PatchImm += SBitOffset >> 3;
      }
    }
    return PatchImm;
  }

  if (InfoKind == BPFCoreSharedInfo::FIELD_BYTE_SIZE) {
    if (Tag == dwarf::DW_TAG_array_type) {
      auto *EltTy = stripQualifiers(CTy->getBaseType());
      return calcArraySize(CTy, 1) * (EltTy->getSizeInBits() >> 3);
    } else {
      auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
      uint32_t SizeInBits = MemberTy->getSizeInBits();
      if (!MemberTy->isBitField())
        return SizeInBits >> 3;

      unsigned SBitOffset, NextSBitOffset;
      GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
      SizeInBits = NextSBitOffset - SBitOffset;
      if (SizeInBits & (SizeInBits - 1))
        report_fatal_error("Unsupported field expression for llvm.bpf.preserve.field.info");
      return SizeInBits >> 3;
    }
  }

  if (InfoKind == BPFCoreSharedInfo::FIELD_SIGNEDNESS) {
    const DIType *BaseTy;
    if (Tag == dwarf::DW_TAG_array_type) {
      // Signedness only checked when final array elements are accessed.
      if (CTy->getElements().size() != 1)
        report_fatal_error("Invalid array expression for llvm.bpf.preserve.field.info");
      BaseTy = stripQualifiers(CTy->getBaseType());
    } else {
      auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
      BaseTy = stripQualifiers(MemberTy->getBaseType());
    }

    // Only basic types and enum types have signedness.
    const auto *BTy = dyn_cast<DIBasicType>(BaseTy);
    while (!BTy) {
      const auto *CompTy = dyn_cast<DICompositeType>(BaseTy);
      // Report an error if the field expression does not have signedness.
      if (!CompTy || CompTy->getTag() != dwarf::DW_TAG_enumeration_type)
        report_fatal_error("Invalid field expression for llvm.bpf.preserve.field.info");
      BaseTy = stripQualifiers(CompTy->getBaseType());
      BTy = dyn_cast<DIBasicType>(BaseTy);
    }
    uint32_t Encoding = BTy->getEncoding();
    return (Encoding == dwarf::DW_ATE_signed || Encoding == dwarf::DW_ATE_signed_char);
  }

  if (InfoKind == BPFCoreSharedInfo::FIELD_LSHIFT_U64) {
    // The value is loaded into a value with FIELD_BYTE_SIZE size,
    // and then zero or sign extended to U64.
    // FIELD_LSHIFT_U64 and FIELD_RSHIFT_U64 are operations
    // to extract the original value.
    const Triple &Triple = TM->getTargetTriple();
    DIDerivedType *MemberTy = nullptr;
    bool IsBitField = false;
    uint32_t SizeInBits;

    if (Tag == dwarf::DW_TAG_array_type) {
      auto *EltTy = stripQualifiers(CTy->getBaseType());
      SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
    } else {
      MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
      SizeInBits = MemberTy->getSizeInBits();
      IsBitField = MemberTy->isBitField();
    }

    if (!IsBitField) {
      if (SizeInBits > 64)
        report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
      return 64 - SizeInBits;
    }

    unsigned SBitOffset, NextSBitOffset;
    GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
    if (NextSBitOffset - SBitOffset > 64)
      report_fatal_error("too big field size for llvm.bpf.preserve.field.info");

    unsigned OffsetInBits = MemberTy->getOffsetInBits();
    if (Triple.getArch() == Triple::bpfel)
      return SBitOffset + 64 - OffsetInBits - SizeInBits;
    else
      return OffsetInBits + 64 - NextSBitOffset;
  }

  if (InfoKind == BPFCoreSharedInfo::FIELD_RSHIFT_U64) {
    DIDerivedType *MemberTy = nullptr;
    bool IsBitField = false;
    uint32_t SizeInBits;
    if (Tag == dwarf::DW_TAG_array_type) {
      auto *EltTy = stripQualifiers(CTy->getBaseType());
      SizeInBits = calcArraySize(CTy, 1) * EltTy->getSizeInBits();
    } else {
      MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
      SizeInBits = MemberTy->getSizeInBits();
      IsBitField = MemberTy->isBitField();
    }

    if (!IsBitField) {
      if (SizeInBits > 64)
        report_fatal_error("too big field size for llvm.bpf.preserve.field.info");
      return 64 - SizeInBits;
    }

    unsigned SBitOffset, NextSBitOffset;
    GetStorageBitRange(MemberTy, RecordAlignment, SBitOffset, NextSBitOffset);
    if (NextSBitOffset - SBitOffset > 64)
      report_fatal_error("too big field size for llvm.bpf.preserve.field.info");

    return 64 - SizeInBits;
  }

  llvm_unreachable("Unknown llvm.bpf.preserve.field.info info kind");
}

bool BPFAbstractMemberAccess::HasPreserveFieldInfoCall(CallInfoStack &CallStack) {
  // This is called in error return path, no need to maintain CallStack.
  while (CallStack.size()) {
    auto StackElem = CallStack.top();
    if (StackElem.second.Kind == BPFPreserveFieldInfoAI)
      return true;
    CallStack.pop();
  }
  return false;
}

/// Compute the base of the whole preserve_* intrinsics chains, i.e., the base
/// pointer of the first preserve_*_access_index call, and construct the access
/// string, which will be the name of a global variable.
Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
                                                        CallInfo &CInfo,
                                                        std::string &AccessKey,
                                                        MDNode *&TypeMeta) {
  Value *Base = nullptr;
  std::string TypeName;
  CallInfoStack CallStack;

  // Put the access chain into a stack with the top as the head of the chain.
  while (Call) {
    CallStack.push(std::make_pair(Call, CInfo));
    CInfo = AIChain[Call].second;
    Call = AIChain[Call].first;
  }

  // The access offset from the base of the head of chain is also
  // calculated here as all debuginfo types are available.

  // Get type name and calculate the first index.
  // We only want to get type name from typedef, structure or union.
  // If user wants a relocation like
  //    int *p; ... __builtin_preserve_access_index(&p[4]) ...
  // or
  //    int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
  // we will skip them.
  uint32_t FirstIndex = 0;
  uint32_t PatchImm = 0; // AccessOffset or the requested field info
  uint32_t InfoKind = BPFCoreSharedInfo::FIELD_BYTE_OFFSET;
  while (CallStack.size()) {
    auto StackElem = CallStack.top();
    Call = StackElem.first;
    CInfo = StackElem.second;

    if (!Base)
      Base = CInfo.Base;

    DIType *PossibleTypeDef = stripQualifiers(cast<DIType>(CInfo.Metadata),
                                              false);
    DIType *Ty = stripQualifiers(PossibleTypeDef);
    if (CInfo.Kind == BPFPreserveUnionAI ||
        CInfo.Kind == BPFPreserveStructAI) {
      // struct or union type. If the typedef is in the metadata, always
      // use the typedef.
      TypeName = std::string(PossibleTypeDef->getName());
      TypeMeta = PossibleTypeDef;
      PatchImm += FirstIndex * (Ty->getSizeInBits() >> 3);
      break;
    }

    assert(CInfo.Kind == BPFPreserveArrayAI);

    // Array entries will always be consumed for accumulative initial index.
    CallStack.pop();

    // BPFPreserveArrayAI
    uint64_t AccessIndex = CInfo.AccessIndex;

    DIType *BaseTy = nullptr;
    bool CheckElemType = false;
    if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
      // array type
      assert(CTy->getTag() == dwarf::DW_TAG_array_type);


      FirstIndex += AccessIndex * calcArraySize(CTy, 1);
      BaseTy = stripQualifiers(CTy->getBaseType());
      CheckElemType = CTy->getElements().size() == 1;
    } else {
      // pointer type
      auto *DTy = cast<DIDerivedType>(Ty);
      assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);

      BaseTy = stripQualifiers(DTy->getBaseType());
      CTy = dyn_cast<DICompositeType>(BaseTy);
      if (!CTy) {
        CheckElemType = true;
      } else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
        FirstIndex += AccessIndex;
        CheckElemType = true;
      } else {
        FirstIndex += AccessIndex * calcArraySize(CTy, 0);
      }
    }

    if (CheckElemType) {
      auto *CTy = dyn_cast<DICompositeType>(BaseTy);
      if (!CTy) {
        if (HasPreserveFieldInfoCall(CallStack))
          report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
        return nullptr;
      }

      unsigned CTag = CTy->getTag();
      if (CTag == dwarf::DW_TAG_structure_type || CTag == dwarf::DW_TAG_union_type) {
        TypeName = std::string(CTy->getName());
      } else {
        if (HasPreserveFieldInfoCall(CallStack))
          report_fatal_error("Invalid field access for llvm.preserve.field.info intrinsic");
        return nullptr;
      }
      TypeMeta = CTy;
      PatchImm += FirstIndex * (CTy->getSizeInBits() >> 3);
      break;
    }
  }
  assert(TypeName.size());
  AccessKey += std::to_string(FirstIndex);

  // Traverse the rest of access chain to complete offset calculation
  // and access key construction.
  while (CallStack.size()) {
    auto StackElem = CallStack.top();
    CInfo = StackElem.second;
    CallStack.pop();

    if (CInfo.Kind == BPFPreserveFieldInfoAI) {
      InfoKind = CInfo.AccessIndex;
      break;
    }

    // If the next Call (the top of the stack) is a BPFPreserveFieldInfoAI,
    // the action will be extracting field info.
    if (CallStack.size()) {
      auto StackElem2 = CallStack.top();
      CallInfo CInfo2 = StackElem2.second;
      if (CInfo2.Kind == BPFPreserveFieldInfoAI) {
        InfoKind = CInfo2.AccessIndex;
        assert(CallStack.size() == 1);
      }
    }

    // Access Index
    uint64_t AccessIndex = CInfo.AccessIndex;
    AccessKey += ":" + std::to_string(AccessIndex);

    MDNode *MDN = CInfo.Metadata;
    // At this stage, it cannot be pointer type.
    auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
    PatchImm = GetFieldInfo(InfoKind, CTy, AccessIndex, PatchImm,
                            CInfo.RecordAlignment);
  }

  // Access key is the
  //   "llvm." + type name + ":" + reloc type + ":" + patched imm + "$" +
  //   access string,
  // uniquely identifying one relocation.
  // The prefix "llvm." indicates this is a temporary global, which should
  // not be emitted to ELF file.
  AccessKey = "llvm." + TypeName + ":" + std::to_string(InfoKind) + ":" +
              std::to_string(PatchImm) + "$" + AccessKey;

  return Base;
}

/// Call/Kind is the base preserve_*_access_index() call. Attempts to do
/// transformation to a chain of relocable GEPs.
bool BPFAbstractMemberAccess::transformGEPChain(Module &M, CallInst *Call,
                                                CallInfo &CInfo) {
  std::string AccessKey;
  MDNode *TypeMeta;
  Value *Base =
      computeBaseAndAccessKey(Call, CInfo, AccessKey, TypeMeta);
  if (!Base)
    return false;

  BasicBlock *BB = Call->getParent();
  GlobalVariable *GV;

  if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
    IntegerType *VarType;
    if (CInfo.Kind == BPFPreserveFieldInfoAI)
      VarType = Type::getInt32Ty(BB->getContext()); // 32bit return value
    else
      VarType = Type::getInt64Ty(BB->getContext()); // 64bit ptr arith

    GV = new GlobalVariable(M, VarType, false, GlobalVariable::ExternalLinkage,
                            NULL, AccessKey);
    GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
    GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
    GEPGlobals[AccessKey] = GV;
  } else {
    GV = GEPGlobals[AccessKey];
  }

  if (CInfo.Kind == BPFPreserveFieldInfoAI) {
    // Load the global variable which represents the returned field info.
    auto *LDInst = new LoadInst(Type::getInt32Ty(BB->getContext()), GV, "",
                                Call);
    Call->replaceAllUsesWith(LDInst);
    Call->eraseFromParent();
    return true;
  }

  // For any original GEP Call and Base %2 like
  //   %4 = bitcast %struct.net_device** %dev1 to i64*
  // it is transformed to:
  //   %6 = load sk_buff:50:$0:0:0:2:0
  //   %7 = bitcast %struct.sk_buff* %2 to i8*
  //   %8 = getelementptr i8, i8* %7, %6
  //   %9 = bitcast i8* %8 to i64*
  //   using %9 instead of %4
  // The original Call inst is removed.

  // Load the global variable.
  auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV, "", Call);

  // Generate a BitCast
  auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
  BB->getInstList().insert(Call->getIterator(), BCInst);

  // Generate a GetElementPtr
  auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
                                        BCInst, LDInst);
  BB->getInstList().insert(Call->getIterator(), GEP);

  // Generate a BitCast
  auto *BCInst2 = new BitCastInst(GEP, Call->getType());
  BB->getInstList().insert(Call->getIterator(), BCInst2);

  Call->replaceAllUsesWith(BCInst2);
  Call->eraseFromParent();

  return true;
}

bool BPFAbstractMemberAccess::doTransformation(Module &M) {
  bool Transformed = false;

  for (Function &F : M) {
    // Collect PreserveDIAccessIndex Intrinsic call chains.
    // The call chains will be used to generate the access
    // patterns similar to GEP.
    collectAICallChains(M, F);

    for (auto &C : BaseAICalls)
      Transformed = transformGEPChain(M, C.first, C.second) || Transformed;
  }

  return removePreserveAccessIndexIntrinsic(M) || Transformed;
}