MVETailPredication.cpp 23.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
//===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead
/// branches to help accelerate DSP applications. These two extensions,
/// combined with a new form of predication called tail-predication, can be used
/// to provide implicit vector predication within a low-overhead loop.
/// This is implicit because the predicate of active/inactive lanes is
/// calculated by hardware, and thus does not need to be explicitly passed
/// to vector instructions. The instructions responsible for this are the
/// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the
/// the total number of data elements processed by the loop. The loop-end
/// LETP instruction is responsible for decrementing and setting the remaining
/// elements to be processed and generating the mask of active lanes.
///
/// The HardwareLoops pass inserts intrinsics identifying loops that the
/// backend will attempt to convert into a low-overhead loop. The vectorizer is
/// responsible for generating a vectorized loop in which the lanes are
/// predicated upon the iteration counter. This pass looks at these predicated
/// vector loops, that are targets for low-overhead loops, and prepares it for
/// code generation. Once the vectorizer has produced a masked loop, there's a
/// couple of final forms:
/// - A tail-predicated loop, with implicit predication.
/// - A loop containing multiple VCPT instructions, predicating multiple VPT
///   blocks of instructions operating on different vector types.
///
/// This pass:
/// 1) Checks if the predicates of the masked load/store instructions are
///    generated by intrinsic @llvm.get.active.lanes(). This intrinsic consumes
///    the Backedge Taken Count (BTC) of the scalar loop as its second argument,
///    which we extract to set up the number of elements processed by the loop.
/// 2) Intrinsic @llvm.get.active.lanes() is then replaced by the MVE target
///    specific VCTP intrinsic to represent the effect of tail predication.
///    This will be picked up by the ARM Low-overhead loop pass, which performs
///    the final transformation to a DLSTP or WLSTP tail-predicated loop.

#include "ARM.h"
#include "ARMSubtarget.h"
#include "ARMTargetTransformInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"

using namespace llvm;

#define DEBUG_TYPE "mve-tail-predication"
#define DESC "Transform predicated vector loops to use MVE tail predication"

cl::opt<TailPredication::Mode> EnableTailPredication(
   "tail-predication", cl::desc("MVE tail-predication options"),
   cl::init(TailPredication::Disabled),
   cl::values(clEnumValN(TailPredication::Disabled, "disabled",
                         "Don't tail-predicate loops"),
              clEnumValN(TailPredication::EnabledNoReductions,
                         "enabled-no-reductions",
                         "Enable tail-predication, but not for reduction loops"),
              clEnumValN(TailPredication::Enabled,
                         "enabled",
                         "Enable tail-predication, including reduction loops"),
              clEnumValN(TailPredication::ForceEnabledNoReductions,
                         "force-enabled-no-reductions",
                         "Enable tail-predication, but not for reduction loops, "
                         "and force this which might be unsafe"),
              clEnumValN(TailPredication::ForceEnabled,
                         "force-enabled",
                         "Enable tail-predication, including reduction loops, "
                         "and force this which might be unsafe")));


namespace {

class MVETailPredication : public LoopPass {
  SmallVector<IntrinsicInst*, 4> MaskedInsts;
  Loop *L = nullptr;
  ScalarEvolution *SE = nullptr;
  TargetTransformInfo *TTI = nullptr;
  const ARMSubtarget *ST = nullptr;

public:
  static char ID;

  MVETailPredication() : LoopPass(ID) { }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<ScalarEvolutionWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
    AU.addRequired<TargetPassConfig>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    AU.addPreserved<LoopInfoWrapperPass>();
    AU.setPreservesCFG();
  }

  bool runOnLoop(Loop *L, LPPassManager&) override;

private:
  /// Perform the relevant checks on the loop and convert if possible.
  bool TryConvert(Value *TripCount);

  /// Return whether this is a vectorized loop, that contains masked
  /// load/stores.
  bool IsPredicatedVectorLoop();

  /// Perform checks on the arguments of @llvm.get.active.lane.mask
  /// intrinsic: check if the first is a loop induction variable, and for the
  /// the second check that no overflow can occur in the expression that use
  /// this backedge-taken count.
  bool IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount,
                        FixedVectorType *VecTy);

  /// Insert the intrinsic to represent the effect of tail predication.
  void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *TripCount,
                           FixedVectorType *VecTy);

  /// Rematerialize the iteration count in exit blocks, which enables
  /// ARMLowOverheadLoops to better optimise away loop update statements inside
  /// hardware-loops.
  void RematerializeIterCount();
};

} // end namespace

static bool IsDecrement(Instruction &I) {
  auto *Call = dyn_cast<IntrinsicInst>(&I);
  if (!Call)
    return false;

  Intrinsic::ID ID = Call->getIntrinsicID();
  return ID == Intrinsic::loop_decrement_reg;
}

static bool IsMasked(Instruction *I) {
  auto *Call = dyn_cast<IntrinsicInst>(I);
  if (!Call)
    return false;

  Intrinsic::ID ID = Call->getIntrinsicID();
  // TODO: Support gather/scatter expand/compress operations.
  return ID == Intrinsic::masked_store || ID == Intrinsic::masked_load;
}

bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) {
  if (skipLoop(L) || !EnableTailPredication)
    return false;

  MaskedInsts.clear();
  Function &F = *L->getHeader()->getParent();
  auto &TPC = getAnalysis<TargetPassConfig>();
  auto &TM = TPC.getTM<TargetMachine>();
  ST = &TM.getSubtarget<ARMSubtarget>(F);
  TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
  SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
  this->L = L;

  // The MVE and LOB extensions are combined to enable tail-predication, but
  // there's nothing preventing us from generating VCTP instructions for v8.1m.
  if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) {
    LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n");
    return false;
  }

  BasicBlock *Preheader = L->getLoopPreheader();
  if (!Preheader)
    return false;

  auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* {
    for (auto &I : *BB) {
      auto *Call = dyn_cast<IntrinsicInst>(&I);
      if (!Call)
        continue;

      Intrinsic::ID ID = Call->getIntrinsicID();
      if (ID == Intrinsic::set_loop_iterations ||
          ID == Intrinsic::test_set_loop_iterations)
        return cast<IntrinsicInst>(&I);
    }
    return nullptr;
  };

  // Look for the hardware loop intrinsic that sets the iteration count.
  IntrinsicInst *Setup = FindLoopIterations(Preheader);

  // The test.set iteration could live in the pre-preheader.
  if (!Setup) {
    if (!Preheader->getSinglePredecessor())
      return false;
    Setup = FindLoopIterations(Preheader->getSinglePredecessor());
    if (!Setup)
      return false;
  }

  // Search for the hardware loop intrinic that decrements the loop counter.
  IntrinsicInst *Decrement = nullptr;
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      if (IsDecrement(I)) {
        Decrement = cast<IntrinsicInst>(&I);
        break;
      }
    }
  }

  if (!Decrement)
    return false;

  LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"
             << *Decrement << "\n");

  if (!TryConvert(Setup->getArgOperand(0))) {
    LLVM_DEBUG(dbgs() << "ARM TP: Can't tail-predicate this loop.\n");
    return false;
  }

  return true;
}

static FixedVectorType *getVectorType(IntrinsicInst *I) {
  unsigned TypeOp = I->getIntrinsicID() == Intrinsic::masked_load ? 0 : 1;
  auto *PtrTy = cast<PointerType>(I->getOperand(TypeOp)->getType());
  auto *VecTy = cast<FixedVectorType>(PtrTy->getElementType());
  assert(VecTy && "No scalable vectors expected here");
  return VecTy;
}

bool MVETailPredication::IsPredicatedVectorLoop() {
  // Check that the loop contains at least one masked load/store intrinsic.
  // We only support 'normal' vector instructions - other than masked
  // load/stores.
  bool ActiveLaneMask = false;
  for (auto *BB : L->getBlocks()) {
    for (auto &I : *BB) {
      auto *Int = dyn_cast<IntrinsicInst>(&I);
      if (!Int)
        continue;

      switch (Int->getIntrinsicID()) {
      case Intrinsic::get_active_lane_mask:
        ActiveLaneMask = true;
        LLVM_FALLTHROUGH;
      case Intrinsic::sadd_sat:
      case Intrinsic::uadd_sat:
      case Intrinsic::ssub_sat:
      case Intrinsic::usub_sat:
        continue;
      case Intrinsic::fma:
      case Intrinsic::trunc:
      case Intrinsic::rint:
      case Intrinsic::round:
      case Intrinsic::floor:
      case Intrinsic::ceil:
      case Intrinsic::fabs:
        if (ST->hasMVEFloatOps())
          continue;
        LLVM_FALLTHROUGH;
      default:
        break;
      }

      if (IsMasked(&I)) {
        auto *VecTy = getVectorType(Int);
        unsigned Lanes = VecTy->getNumElements();
        unsigned ElementWidth = VecTy->getScalarSizeInBits();
        // MVE vectors are 128-bit, but don't support 128 x i1.
        // TODO: Can we support vectors larger than 128-bits?
        unsigned MaxWidth = TTI->getRegisterBitWidth(true);
        if (Lanes * ElementWidth > MaxWidth || Lanes == MaxWidth)
          return false;
        MaskedInsts.push_back(cast<IntrinsicInst>(&I));
        continue;
      }

      for (const Use &U : Int->args()) {
        if (isa<VectorType>(U->getType()))
          return false;
      }
    }
  }

  if (!ActiveLaneMask) {
    LLVM_DEBUG(dbgs() << "ARM TP: No get.active.lane.mask intrinsic found.\n");
    return false;
  }
  return !MaskedInsts.empty();
}

// Look through the exit block to see whether there's a duplicate predicate
// instruction. This can happen when we need to perform a select on values
// from the last and previous iteration. Instead of doing a straight
// replacement of that predicate with the vctp, clone the vctp and place it
// in the block. This means that the VPR doesn't have to be live into the
// exit block which should make it easier to convert this loop into a proper
// tail predicated loop.
static void Cleanup(SetVector<Instruction*> &MaybeDead, Loop *L) {
  BasicBlock *Exit = L->getUniqueExitBlock();
  if (!Exit) {
    LLVM_DEBUG(dbgs() << "ARM TP: can't find loop exit block\n");
    return;
  }

  // Drop references and add operands to check for dead.
  SmallPtrSet<Instruction*, 4> Dead;
  while (!MaybeDead.empty()) {
    auto *I = MaybeDead.front();
    MaybeDead.remove(I);
    if (I->hasNUsesOrMore(1))
      continue;

    for (auto &U : I->operands())
      if (auto *OpI = dyn_cast<Instruction>(U))
        MaybeDead.insert(OpI);

    Dead.insert(I);
  }

  for (auto *I : Dead) {
    LLVM_DEBUG(dbgs() << "ARM TP: removing dead insn: "; I->dump());
    I->eraseFromParent();
  }

  for (auto I : L->blocks())
    DeleteDeadPHIs(I);
}

// The active lane intrinsic has this form:
//
//    @llvm.get.active.lane.mask(IV, BTC)
//
// Here we perform checks that this intrinsic behaves as expected,
// which means:
//
// 1) The element count, which is calculated with BTC + 1, cannot overflow.
// 2) The element count needs to be sufficiently large that the decrement of
//    element counter doesn't overflow, which means that we need to prove:
//        ceil(ElementCount / VectorWidth) >= TripCount
//    by rounding up ElementCount up:
//        ((ElementCount + (VectorWidth - 1)) / VectorWidth
//    and evaluate if expression isKnownNonNegative:
//        (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
// 3) The IV must be an induction phi with an increment equal to the
//    vector width.
bool MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask,
    Value *TripCount, FixedVectorType *VecTy) {
  bool ForceTailPredication =
    EnableTailPredication == TailPredication::ForceEnabledNoReductions ||
    EnableTailPredication == TailPredication::ForceEnabled;
  // 1) Test whether entry to the loop is protected by a conditional
  // BTC + 1 < 0. In other words, if the scalar trip count overflows,
  // becomes negative, we shouldn't enter the loop and creating
  // tripcount expression BTC + 1 is not safe. So, check that BTC
  // isn't max. This is evaluated in unsigned, because the semantics
  // of @get.active.lane.mask is a ULE comparison.

  int VectorWidth = VecTy->getNumElements();
  auto *BackedgeTakenCount = ActiveLaneMask->getOperand(1);
  auto *BTC = SE->getSCEV(BackedgeTakenCount);

  if (!llvm::cannotBeMaxInLoop(BTC, L, *SE, false /*Signed*/) &&
      !ForceTailPredication) {
    LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible, BTC can be max: ";
               BTC->dump());
    return false;
  }

  // 2) Prove that the sub expression is non-negative, i.e. it doesn't overflow:
  //
  //      (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount
  //
  // 2.1) First prove overflow can't happen in:
  //
  //      ElementCount + (VectorWidth - 1)
  //
  // Because of a lack of context, it is difficult to get a useful bounds on
  // this expression. But since ElementCount uses the same variables as the
  // TripCount (TC), for which we can find meaningful value ranges, we use that
  // instead and assert that:
  //
  //     upperbound(TC) <= UINT_MAX - VectorWidth
  //
  auto *TC = SE->getSCEV(TripCount);
  unsigned SizeInBits = TripCount->getType()->getScalarSizeInBits();
  auto Diff =  APInt(SizeInBits, ~0) - APInt(SizeInBits, VectorWidth);
  uint64_t MaxMinusVW = Diff.getZExtValue();
  uint64_t UpperboundTC = SE->getSignedRange(TC).getUpper().getZExtValue();

  if (UpperboundTC > MaxMinusVW && !ForceTailPredication) {
    LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in tripcount rounding:\n";
               dbgs() << "upperbound(TC) <= UINT_MAX - VectorWidth\n";
               dbgs() << UpperboundTC << " <= " << MaxMinusVW << "== false\n";);
    return false;
  }

  // 2.2) Make sure overflow doesn't happen in final expression:
  //  (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount,
  // To do this, compare the full ranges of these subexpressions:
  //
  //     Range(Ceil) <= Range(TC)
  //
  // where Ceil = ElementCount + (VW-1) / VW. If Ceil and TC are runtime
  // values (and not constants), we have to compensate for the lowerbound value
  // range to be off by 1. The reason is that BTC lives in the preheader in
  // this form:
  //
  //     %trip.count.minus = add nsw nuw i32 %N, -1
  //
  // For the loop to be executed, %N has to be >= 1 and as a result the value
  // range of %trip.count.minus has a lower bound of 0. Value %TC has this form:
  //
  //     %5 = add nuw nsw i32 %4, 1
  //     call void @llvm.set.loop.iterations.i32(i32 %5)
  //
  // where %5 is some expression using %N, which needs to have a lower bound of
  // 1. Thus, if the ranges of Ceil and TC are not a single constant but a set,
  // we first add 0 to TC such that we can do the <= comparison on both sets.
  //
  auto *One = SE->getOne(TripCount->getType());
  // ElementCount = BTC + 1
  auto *ElementCount = SE->getAddExpr(BTC, One);
  // Tmp = ElementCount + (VW-1)
  auto *ECPlusVWMinus1 = SE->getAddExpr(ElementCount,
      SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1)));
  // Ceil = ElementCount + (VW-1) / VW
  auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1,
      SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)));

  ConstantRange RangeCeil = SE->getSignedRange(Ceil) ;
  ConstantRange RangeTC = SE->getSignedRange(TC) ;
  if (!RangeTC.isSingleElement()) {
    auto ZeroRange =
        ConstantRange(APInt(TripCount->getType()->getScalarSizeInBits(), 0));
    RangeTC = RangeTC.unionWith(ZeroRange);
  }
  if (!RangeTC.contains(RangeCeil) && !ForceTailPredication) {
    LLVM_DEBUG(dbgs() << "ARM TP: Overflow possible in sub\n");
    return false;
  }

  // 3) Find out if IV is an induction phi. Note that We can't use Loop
  // helpers here to get the induction variable, because the hardware loop is
  // no longer in loopsimplify form, and also the hwloop intrinsic use a
  // different counter.  Using SCEV, we check that the induction is of the
  // form i = i + 4, where the increment must be equal to the VectorWidth.
  auto *IV = ActiveLaneMask->getOperand(0);
  auto *IVExpr = SE->getSCEV(IV);
  auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr);
  if (!AddExpr) {
    LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump());
    return false;
  }
  // Check that this AddRec is associated with this loop.
  if (AddExpr->getLoop() != L) {
    LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n");
    return false;
  }
  auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1));
  if (!Step) {
    LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: ";
               AddExpr->getOperand(1)->dump());
    return false;
  }
  auto StepValue = Step->getValue()->getSExtValue();
  if (VectorWidth == StepValue)
    return true;

  LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue << " doesn't match "
             "vector width " << VectorWidth << "\n");

  return false;
}

// Materialize NumElements in the preheader block.
static Value *getNumElements(BasicBlock *Preheader, Value *BTC) {
  // First, check the preheader if it not already exist:
  //
  // preheader:
  //    %BTC = add i32 %N, -1
  //    ..
  // vector.body:
  //
  // if %BTC already exists. We don't need to emit %NumElems = %BTC + 1,
  // but instead can just return %N.
  for (auto &I : *Preheader) {
    if (I.getOpcode() != Instruction::Add || &I != BTC)
      continue;
    ConstantInt *MinusOne = nullptr;
    if (!(MinusOne = dyn_cast<ConstantInt>(I.getOperand(1))))
      continue;
    if (MinusOne->getSExtValue() == -1) {
      LLVM_DEBUG(dbgs() << "ARM TP: Found num elems: " << I << "\n");
      return I.getOperand(0);
    }
  }

  // But we do need to materialise BTC if it is not already there,
  // e.g. if it is a constant.
  IRBuilder<> Builder(Preheader->getTerminator());
  Value *NumElements = Builder.CreateAdd(BTC,
        ConstantInt::get(BTC->getType(), 1), "num.elements");
  LLVM_DEBUG(dbgs() << "ARM TP: Created num elems: " << *NumElements << "\n");
  return NumElements;
}

void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask,
    Value *TripCount, FixedVectorType *VecTy) {
  IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
  Module *M = L->getHeader()->getModule();
  Type *Ty = IntegerType::get(M->getContext(), 32);
  unsigned VectorWidth = VecTy->getNumElements();

  // The backedge-taken count in @llvm.get.active.lane.mask, its 2nd operand,
  // is one less than the trip count. So we need to find or create
  // %num.elements = %BTC + 1 in the preheader.
  Value *BTC = ActiveLaneMask->getOperand(1);
  Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
  Value *NumElements = getNumElements(L->getLoopPreheader(), BTC);

  // Insert a phi to count the number of elements processed by the loop.
  Builder.SetInsertPoint(L->getHeader()->getFirstNonPHI()  );
  PHINode *Processed = Builder.CreatePHI(Ty, 2);
  Processed->addIncoming(NumElements, L->getLoopPreheader());

  // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and thus
  // represent the effect of tail predication.
  Builder.SetInsertPoint(ActiveLaneMask);
  ConstantInt *Factor =
    ConstantInt::get(cast<IntegerType>(Ty), VectorWidth);

  Intrinsic::ID VCTPID;
  switch (VectorWidth) {
  default:
    llvm_unreachable("unexpected number of lanes");
  case 4:  VCTPID = Intrinsic::arm_mve_vctp32; break;
  case 8:  VCTPID = Intrinsic::arm_mve_vctp16; break;
  case 16: VCTPID = Intrinsic::arm_mve_vctp8; break;

    // FIXME: vctp64 currently not supported because the predicate
    // vector wants to be <2 x i1>, but v2i1 is not a legal MVE
    // type, so problems happen at isel time.
    // Intrinsic::arm_mve_vctp64 exists for ACLE intrinsics
    // purposes, but takes a v4i1 instead of a v2i1.
  }
  Function *VCTP = Intrinsic::getDeclaration(M, VCTPID);
  Value *VCTPCall = Builder.CreateCall(VCTP, Processed);
  ActiveLaneMask->replaceAllUsesWith(VCTPCall);

  // Add the incoming value to the new phi.
  // TODO: This add likely already exists in the loop.
  Value *Remaining = Builder.CreateSub(Processed, Factor);
  Processed->addIncoming(Remaining, L->getLoopLatch());
  LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: "
             << *Processed << "\n"
             << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n");
}

bool MVETailPredication::TryConvert(Value *TripCount) {
  if (!IsPredicatedVectorLoop()) {
    LLVM_DEBUG(dbgs() << "ARM TP: no masked instructions in loop.\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n");
  SetVector<Instruction*> Predicates;

  // Walk through the masked intrinsics and try to find whether the predicate
  // operand is generated by intrinsic @llvm.get.active.lane.mask().
  for (auto *I : MaskedInsts) {
    unsigned PredOp = I->getIntrinsicID() == Intrinsic::masked_load ? 2 : 3;
    auto *Predicate = dyn_cast<Instruction>(I->getArgOperand(PredOp));
    if (!Predicate || Predicates.count(Predicate))
      continue;

    auto *ActiveLaneMask = dyn_cast<IntrinsicInst>(Predicate);
    if (!ActiveLaneMask ||
        ActiveLaneMask->getIntrinsicID() != Intrinsic::get_active_lane_mask)
      continue;

    Predicates.insert(Predicate);
    LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: "
                      << *ActiveLaneMask << "\n");

    auto *VecTy = getVectorType(I);
    if (!IsSafeActiveMask(ActiveLaneMask, TripCount, VecTy)) {
      LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n");
      return false;
    }
    LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP.\n");
    InsertVCTPIntrinsic(ActiveLaneMask, TripCount, VecTy);
  }

  Cleanup(Predicates, L);
  return true;
}

Pass *llvm::createMVETailPredicationPass() {
  return new MVETailPredication();
}

char MVETailPredication::ID = 0;

INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false)
INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false)