ARMLowOverheadLoops.cpp 60.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
//===-- ARMLowOverheadLoops.cpp - CodeGen Low-overhead Loops ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// Finalize v8.1-m low-overhead loops by converting the associated pseudo
/// instructions into machine operations.
/// The expectation is that the loop contains three pseudo instructions:
/// - t2*LoopStart - placed in the preheader or pre-preheader. The do-loop
///   form should be in the preheader, whereas the while form should be in the
///   preheaders only predecessor.
/// - t2LoopDec - placed within in the loop body.
/// - t2LoopEnd - the loop latch terminator.
///
/// In addition to this, we also look for the presence of the VCTP instruction,
/// which determines whether we can generated the tail-predicated low-overhead
/// loop form.
///
/// Assumptions and Dependencies:
/// Low-overhead loops are constructed and executed using a setup instruction:
/// DLS, WLS, DLSTP or WLSTP and an instruction that loops back: LE or LETP.
/// WLS(TP) and LE(TP) are branching instructions with a (large) limited range
/// but fixed polarity: WLS can only branch forwards and LE can only branch
/// backwards. These restrictions mean that this pass is dependent upon block
/// layout and block sizes, which is why it's the last pass to run. The same is
/// true for ConstantIslands, but this pass does not increase the size of the
/// basic blocks, nor does it change the CFG. Instructions are mainly removed
/// during the transform and pseudo instructions are replaced by real ones. In
/// some cases, when we have to revert to a 'normal' loop, we have to introduce
/// multiple instructions for a single pseudo (see RevertWhile and
/// RevertLoopEnd). To handle this situation, t2WhileLoopStart and t2LoopEnd
/// are defined to be as large as this maximum sequence of replacement
/// instructions.
///
/// A note on VPR.P0 (the lane mask):
/// VPT, VCMP, VPNOT and VCTP won't overwrite VPR.P0 when they update it in a
/// "VPT Active" context (which includes low-overhead loops and vpt blocks).
/// They will simply "and" the result of their calculation with the current
/// value of VPR.P0. You can think of it like this:
/// \verbatim
/// if VPT active:    ; Between a DLSTP/LETP, or for predicated instrs
///   VPR.P0 &= Value
/// else
///   VPR.P0 = Value
/// \endverbatim
/// When we're inside the low-overhead loop (between DLSTP and LETP), we always
/// fall in the "VPT active" case, so we can consider that all VPR writes by
/// one of those instruction is actually a "and".
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMBasicBlockInfo.h"
#include "ARMSubtarget.h"
#include "Thumb2InstrInfo.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineLoopUtils.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ReachingDefAnalysis.h"
#include "llvm/MC/MCInstrDesc.h"

using namespace llvm;

#define DEBUG_TYPE "arm-low-overhead-loops"
#define ARM_LOW_OVERHEAD_LOOPS_NAME "ARM Low Overhead Loops pass"

namespace {

  using InstSet = SmallPtrSetImpl<MachineInstr *>;

  class PostOrderLoopTraversal {
    MachineLoop &ML;
    MachineLoopInfo &MLI;
    SmallPtrSet<MachineBasicBlock*, 4> Visited;
    SmallVector<MachineBasicBlock*, 4> Order;

  public:
    PostOrderLoopTraversal(MachineLoop &ML, MachineLoopInfo &MLI)
      : ML(ML), MLI(MLI) { }

    const SmallVectorImpl<MachineBasicBlock*> &getOrder() const {
      return Order;
    }

    // Visit all the blocks within the loop, as well as exit blocks and any
    // blocks properly dominating the header.
    void ProcessLoop() {
      std::function<void(MachineBasicBlock*)> Search = [this, &Search]
        (MachineBasicBlock *MBB) -> void {
        if (Visited.count(MBB))
          return;

        Visited.insert(MBB);
        for (auto *Succ : MBB->successors()) {
          if (!ML.contains(Succ))
            continue;
          Search(Succ);
        }
        Order.push_back(MBB);
      };

      // Insert exit blocks.
      SmallVector<MachineBasicBlock*, 2> ExitBlocks;
      ML.getExitBlocks(ExitBlocks);
      for (auto *MBB : ExitBlocks)
        Order.push_back(MBB);

      // Then add the loop body.
      Search(ML.getHeader());

      // Then try the preheader and its predecessors.
      std::function<void(MachineBasicBlock*)> GetPredecessor =
        [this, &GetPredecessor] (MachineBasicBlock *MBB) -> void {
        Order.push_back(MBB);
        if (MBB->pred_size() == 1)
          GetPredecessor(*MBB->pred_begin());
      };

      if (auto *Preheader = ML.getLoopPreheader())
        GetPredecessor(Preheader);
      else if (auto *Preheader = MLI.findLoopPreheader(&ML, true))
        GetPredecessor(Preheader);
    }
  };

  struct PredicatedMI {
    MachineInstr *MI = nullptr;
    SetVector<MachineInstr*> Predicates;

  public:
    PredicatedMI(MachineInstr *I, SetVector<MachineInstr *> &Preds) : MI(I) {
      assert(I && "Instruction must not be null!");
      Predicates.insert(Preds.begin(), Preds.end());
    }
  };

  // Represent a VPT block, a list of instructions that begins with a VPT/VPST
  // and has a maximum of four proceeding instructions. All instructions within
  // the block are predicated upon the vpr and we allow instructions to define
  // the vpr within in the block too.
  class VPTBlock {
    // The predicate then instruction, which is either a VPT, or a VPST
    // instruction.
    std::unique_ptr<PredicatedMI> PredicateThen;
    PredicatedMI *Divergent = nullptr;
    SmallVector<PredicatedMI, 4> Insts;

  public:
    VPTBlock(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
      PredicateThen = std::make_unique<PredicatedMI>(MI, Preds);
    }

    void addInst(MachineInstr *MI, SetVector<MachineInstr*> &Preds) {
      LLVM_DEBUG(dbgs() << "ARM Loops: Adding predicated MI: " << *MI);
      if (!Divergent && !set_difference(Preds, PredicateThen->Predicates).empty()) {
        Divergent = &Insts.back();
        LLVM_DEBUG(dbgs() << " - has divergent predicate: " << *Divergent->MI);
      }
      Insts.emplace_back(MI, Preds);
      assert(Insts.size() <= 4 && "Too many instructions in VPT block!");
    }

    // Have we found an instruction within the block which defines the vpr? If
    // so, not all the instructions in the block will have the same predicate.
    bool HasNonUniformPredicate() const {
      return Divergent != nullptr;
    }

    // Is the given instruction part of the predicate set controlling the entry
    // to the block.
    bool IsPredicatedOn(MachineInstr *MI) const {
      return PredicateThen->Predicates.count(MI);
    }

    // Returns true if this is a VPT instruction.
    bool isVPT() const { return !isVPST(); }

    // Returns true if this is a VPST instruction.
    bool isVPST() const {
      return PredicateThen->MI->getOpcode() == ARM::MVE_VPST;
    }

    // Is the given instruction the only predicate which controls the entry to
    // the block.
    bool IsOnlyPredicatedOn(MachineInstr *MI) const {
      return IsPredicatedOn(MI) && PredicateThen->Predicates.size() == 1;
    }

    unsigned size() const { return Insts.size(); }
    SmallVectorImpl<PredicatedMI> &getInsts() { return Insts; }
    MachineInstr *getPredicateThen() const { return PredicateThen->MI; }
    PredicatedMI *getDivergent() const { return Divergent; }
  };

  struct Reduction {
    MachineInstr *Init;
    MachineInstr &Copy;
    MachineInstr &Reduce;
    MachineInstr &VPSEL;

    Reduction(MachineInstr *Init, MachineInstr *Mov, MachineInstr *Add,
              MachineInstr *Sel)
      : Init(Init), Copy(*Mov), Reduce(*Add), VPSEL(*Sel) { }
  };

  struct LowOverheadLoop {

    MachineLoop &ML;
    MachineBasicBlock *Preheader = nullptr;
    MachineLoopInfo &MLI;
    ReachingDefAnalysis &RDA;
    const TargetRegisterInfo &TRI;
    const ARMBaseInstrInfo &TII;
    MachineFunction *MF = nullptr;
    MachineInstr *InsertPt = nullptr;
    MachineInstr *Start = nullptr;
    MachineInstr *Dec = nullptr;
    MachineInstr *End = nullptr;
    MachineInstr *VCTP = nullptr;
    SmallPtrSet<MachineInstr*, 4> SecondaryVCTPs;
    VPTBlock *CurrentBlock = nullptr;
    SetVector<MachineInstr*> CurrentPredicate;
    SmallVector<VPTBlock, 4> VPTBlocks;
    SmallPtrSet<MachineInstr*, 4> ToRemove;
    SmallVector<std::unique_ptr<Reduction>, 1> Reductions;
    SmallPtrSet<MachineInstr*, 4> BlockMasksToRecompute;
    bool Revert = false;
    bool CannotTailPredicate = false;

    LowOverheadLoop(MachineLoop &ML, MachineLoopInfo &MLI,
                    ReachingDefAnalysis &RDA, const TargetRegisterInfo &TRI,
                    const ARMBaseInstrInfo &TII)
      : ML(ML), MLI(MLI), RDA(RDA), TRI(TRI), TII(TII) {
      MF = ML.getHeader()->getParent();
      if (auto *MBB = ML.getLoopPreheader())
        Preheader = MBB;
      else if (auto *MBB = MLI.findLoopPreheader(&ML, true))
        Preheader = MBB;
    }

    // If this is an MVE instruction, check that we know how to use tail
    // predication with it. Record VPT blocks and return whether the
    // instruction is valid for tail predication.
    bool ValidateMVEInst(MachineInstr *MI);

    void AnalyseMVEInst(MachineInstr *MI) {
      CannotTailPredicate = !ValidateMVEInst(MI);
    }

    bool IsTailPredicationLegal() const {
      // For now, let's keep things really simple and only support a single
      // block for tail predication.
      return !Revert && FoundAllComponents() && VCTP &&
             !CannotTailPredicate && ML.getNumBlocks() == 1;
    }

    // Check that the predication in the loop will be equivalent once we
    // perform the conversion. Also ensure that we can provide the number
    // of elements to the loop start instruction.
    bool ValidateTailPredicate(MachineInstr *StartInsertPt);

    // See whether the live-out instructions are a reduction that we can fixup
    // later.
    bool FindValidReduction(InstSet &LiveMIs, InstSet &LiveOutUsers);

    // Check that any values available outside of the loop will be the same
    // after tail predication conversion.
    bool ValidateLiveOuts();

    // Is it safe to define LR with DLS/WLS?
    // LR can be defined if it is the operand to start, because it's the same
    // value, or if it's going to be equivalent to the operand to Start.
    MachineInstr *isSafeToDefineLR();

    // Check the branch targets are within range and we satisfy our
    // restrictions.
    void CheckLegality(ARMBasicBlockUtils *BBUtils);

    bool FoundAllComponents() const {
      return Start && Dec && End;
    }

    SmallVectorImpl<VPTBlock> &getVPTBlocks() { return VPTBlocks; }

    // Return the loop iteration count, or the number of elements if we're tail
    // predicating.
    MachineOperand &getCount() {
      return IsTailPredicationLegal() ?
        VCTP->getOperand(1) : Start->getOperand(0);
    }

    unsigned getStartOpcode() const {
      bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
      if (!IsTailPredicationLegal())
        return IsDo ? ARM::t2DLS : ARM::t2WLS;

      return VCTPOpcodeToLSTP(VCTP->getOpcode(), IsDo);
    }

    void dump() const {
      if (Start) dbgs() << "ARM Loops: Found Loop Start: " << *Start;
      if (Dec) dbgs() << "ARM Loops: Found Loop Dec: " << *Dec;
      if (End) dbgs() << "ARM Loops: Found Loop End: " << *End;
      if (VCTP) dbgs() << "ARM Loops: Found VCTP: " << *VCTP;
      if (!FoundAllComponents())
        dbgs() << "ARM Loops: Not a low-overhead loop.\n";
      else if (!(Start && Dec && End))
        dbgs() << "ARM Loops: Failed to find all loop components.\n";
    }
  };

  class ARMLowOverheadLoops : public MachineFunctionPass {
    MachineFunction           *MF = nullptr;
    MachineLoopInfo           *MLI = nullptr;
    ReachingDefAnalysis       *RDA = nullptr;
    const ARMBaseInstrInfo    *TII = nullptr;
    MachineRegisterInfo       *MRI = nullptr;
    const TargetRegisterInfo  *TRI = nullptr;
    std::unique_ptr<ARMBasicBlockUtils> BBUtils = nullptr;

  public:
    static char ID;

    ARMLowOverheadLoops() : MachineFunctionPass(ID) { }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesCFG();
      AU.addRequired<MachineLoopInfo>();
      AU.addRequired<ReachingDefAnalysis>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs).set(
          MachineFunctionProperties::Property::TracksLiveness);
    }

    StringRef getPassName() const override {
      return ARM_LOW_OVERHEAD_LOOPS_NAME;
    }

  private:
    bool ProcessLoop(MachineLoop *ML);

    bool RevertNonLoops();

    void RevertWhile(MachineInstr *MI) const;

    bool RevertLoopDec(MachineInstr *MI) const;

    void RevertLoopEnd(MachineInstr *MI, bool SkipCmp = false) const;

    void ConvertVPTBlocks(LowOverheadLoop &LoLoop);

    void FixupReductions(LowOverheadLoop &LoLoop) const;

    MachineInstr *ExpandLoopStart(LowOverheadLoop &LoLoop);

    void Expand(LowOverheadLoop &LoLoop);

    void IterationCountDCE(LowOverheadLoop &LoLoop);
  };
}

char ARMLowOverheadLoops::ID = 0;

INITIALIZE_PASS(ARMLowOverheadLoops, DEBUG_TYPE, ARM_LOW_OVERHEAD_LOOPS_NAME,
                false, false)

MachineInstr *LowOverheadLoop::isSafeToDefineLR() {
  // We can define LR because LR already contains the same value.
  if (Start->getOperand(0).getReg() == ARM::LR)
    return Start;

  unsigned CountReg = Start->getOperand(0).getReg();
  auto IsMoveLR = [&CountReg](MachineInstr *MI) {
    return MI->getOpcode() == ARM::tMOVr &&
           MI->getOperand(0).getReg() == ARM::LR &&
           MI->getOperand(1).getReg() == CountReg &&
           MI->getOperand(2).getImm() == ARMCC::AL;
   };

  MachineBasicBlock *MBB = Start->getParent();

  // Find an insertion point:
  // - Is there a (mov lr, Count) before Start? If so, and nothing else writes
  //   to Count before Start, we can insert at that mov.
  if (auto *LRDef = RDA.getUniqueReachingMIDef(Start, ARM::LR))
    if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg))
      return LRDef;

  // - Is there a (mov lr, Count) after Start? If so, and nothing else writes
  //   to Count after Start, we can insert at that mov.
  if (auto *LRDef = RDA.getLocalLiveOutMIDef(MBB, ARM::LR))
    if (IsMoveLR(LRDef) && RDA.hasSameReachingDef(Start, LRDef, CountReg))
      return LRDef;

  // We've found no suitable LR def and Start doesn't use LR directly. Can we
  // just define LR anyway?
  return RDA.isSafeToDefRegAt(Start, ARM::LR) ? Start : nullptr;
}

bool LowOverheadLoop::ValidateTailPredicate(MachineInstr *StartInsertPt) {
  assert(VCTP && "VCTP instruction expected but is not set");
  // All predication within the loop should be based on vctp. If the block
  // isn't predicated on entry, check whether the vctp is within the block
  // and that all other instructions are then predicated on it.
  for (auto &Block : VPTBlocks) {
    if (Block.IsPredicatedOn(VCTP))
      continue;
    if (Block.HasNonUniformPredicate() && !isVCTP(Block.getDivergent()->MI)) {
      LLVM_DEBUG(dbgs() << "ARM Loops: Found unsupported diverging predicate: "
                        << *Block.getDivergent()->MI);
      return false;
    }
    SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
    for (auto &PredMI : Insts) {
      // Check the instructions in the block and only allow:
      //   - VCTPs
      //   - Instructions predicated on the main VCTP
      //   - Any VCMP
      //      - VCMPs just "and" their result with VPR.P0. Whether they are
      //      located before/after the VCTP is irrelevant - the end result will
      //      be the same in both cases, so there's no point in requiring them
      //      to be located after the VCTP!
      if (PredMI.Predicates.count(VCTP) || isVCTP(PredMI.MI) ||
          VCMPOpcodeToVPT(PredMI.MI->getOpcode()) != 0)
        continue;
      LLVM_DEBUG(dbgs() << "ARM Loops: Can't convert: " << *PredMI.MI
                 << " - which is predicated on:\n";
                 for (auto *MI : PredMI.Predicates)
                   dbgs() << "   - " << *MI);
      return false;
    }
  }

  if (!ValidateLiveOuts())
    return false;

  // For tail predication, we need to provide the number of elements, instead
  // of the iteration count, to the loop start instruction. The number of
  // elements is provided to the vctp instruction, so we need to check that
  // we can use this register at InsertPt.
  Register NumElements = VCTP->getOperand(1).getReg();

  // If the register is defined within loop, then we can't perform TP.
  // TODO: Check whether this is just a mov of a register that would be
  // available.
  if (RDA.hasLocalDefBefore(VCTP, NumElements)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: VCTP operand is defined in the loop.\n");
    return false;
  }

  // The element count register maybe defined after InsertPt, in which case we
  // need to try to move either InsertPt or the def so that the [w|d]lstp can
  // use the value.
  // TODO: On failing to move an instruction, check if the count is provided by
  // a mov and whether we can use the mov operand directly.
  MachineBasicBlock *InsertBB = StartInsertPt->getParent();
  if (!RDA.isReachingDefLiveOut(StartInsertPt, NumElements)) {
    if (auto *ElemDef = RDA.getLocalLiveOutMIDef(InsertBB, NumElements)) {
      if (RDA.isSafeToMoveForwards(ElemDef, StartInsertPt)) {
        ElemDef->removeFromParent();
        InsertBB->insert(MachineBasicBlock::iterator(StartInsertPt), ElemDef);
        LLVM_DEBUG(dbgs() << "ARM Loops: Moved element count def: "
                   << *ElemDef);
      } else if (RDA.isSafeToMoveBackwards(StartInsertPt, ElemDef)) {
        StartInsertPt->removeFromParent();
        InsertBB->insertAfter(MachineBasicBlock::iterator(ElemDef),
                              StartInsertPt);
        LLVM_DEBUG(dbgs() << "ARM Loops: Moved start past: " << *ElemDef);
      } else {
        LLVM_DEBUG(dbgs() << "ARM Loops: Unable to move element count to loop "
                   << "start instruction.\n");
        return false;
      }
    }
  }

  // Especially in the case of while loops, InsertBB may not be the
  // preheader, so we need to check that the register isn't redefined
  // before entering the loop.
  auto CannotProvideElements = [this](MachineBasicBlock *MBB,
                                      Register NumElements) {
    // NumElements is redefined in this block.
    if (RDA.hasLocalDefBefore(&MBB->back(), NumElements))
      return true;

    // Don't continue searching up through multiple predecessors.
    if (MBB->pred_size() > 1)
      return true;

    return false;
  };

  // First, find the block that looks like the preheader.
  MachineBasicBlock *MBB = Preheader;
  if (!MBB) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find preheader.\n");
    return false;
  }

  // Then search backwards for a def, until we get to InsertBB.
  while (MBB != InsertBB) {
    if (CannotProvideElements(MBB, NumElements)) {
      LLVM_DEBUG(dbgs() << "ARM Loops: Unable to provide element count.\n");
      return false;
    }
    MBB = *MBB->pred_begin();
  }

  // Check that the value change of the element count is what we expect and
  // that the predication will be equivalent. For this we need:
  // NumElements = NumElements - VectorWidth. The sub will be a sub immediate
  // and we can also allow register copies within the chain too.
  auto IsValidSub = [](MachineInstr *MI, int ExpectedVecWidth) {
    return -getAddSubImmediate(*MI) == ExpectedVecWidth;
  };

  MBB = VCTP->getParent();
  if (auto *Def = RDA.getUniqueReachingMIDef(&MBB->back(), NumElements)) {
    SmallPtrSet<MachineInstr*, 2> ElementChain;
    SmallPtrSet<MachineInstr*, 2> Ignore = { VCTP };
    unsigned ExpectedVectorWidth = getTailPredVectorWidth(VCTP->getOpcode());

    Ignore.insert(SecondaryVCTPs.begin(), SecondaryVCTPs.end());

    if (RDA.isSafeToRemove(Def, ElementChain, Ignore)) {
      bool FoundSub = false;

      for (auto *MI : ElementChain) {
        if (isMovRegOpcode(MI->getOpcode()))
          continue;

        if (isSubImmOpcode(MI->getOpcode())) {
          if (FoundSub || !IsValidSub(MI, ExpectedVectorWidth))
            return false;
          FoundSub = true;
        } else
          return false;
      }

      LLVM_DEBUG(dbgs() << "ARM Loops: Will remove element count chain:\n";
                 for (auto *MI : ElementChain)
                   dbgs() << " - " << *MI);
      ToRemove.insert(ElementChain.begin(), ElementChain.end());
    }
  }
  return true;
}

static bool isVectorPredicated(MachineInstr *MI) {
  int PIdx = llvm::findFirstVPTPredOperandIdx(*MI);
  return PIdx != -1 && MI->getOperand(PIdx + 1).getReg() == ARM::VPR;
}

static bool isRegInClass(const MachineOperand &MO,
                         const TargetRegisterClass *Class) {
  return MO.isReg() && MO.getReg() && Class->contains(MO.getReg());
}

// MVE 'narrowing' operate on half a lane, reading from half and writing
// to half, which are referred to has the top and bottom half. The other
// half retains its previous value.
static bool retainsPreviousHalfElement(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();
  uint64_t Flags = MCID.TSFlags;
  return (Flags & ARMII::RetainsPreviousHalfElement) != 0;
}

// Some MVE instructions read from the top/bottom halves of their operand(s)
// and generate a vector result with result elements that are double the
// width of the input.
static bool producesDoubleWidthResult(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();
  uint64_t Flags = MCID.TSFlags;
  return (Flags & ARMII::DoubleWidthResult) != 0;
}

static bool isHorizontalReduction(const MachineInstr &MI) {
  const MCInstrDesc &MCID = MI.getDesc();
  uint64_t Flags = MCID.TSFlags;
  return (Flags & ARMII::HorizontalReduction) != 0;
}

// Can this instruction generate a non-zero result when given only zeroed
// operands? This allows us to know that, given operands with false bytes
// zeroed by masked loads, that the result will also contain zeros in those
// bytes.
static bool canGenerateNonZeros(const MachineInstr &MI) {

  // Check for instructions which can write into a larger element size,
  // possibly writing into a previous zero'd lane.
  if (producesDoubleWidthResult(MI))
    return true;

  switch (MI.getOpcode()) {
  default:
    break;
  // FIXME: VNEG FP and -0? I think we'll need to handle this once we allow
  // fp16 -> fp32 vector conversions.
  // Instructions that perform a NOT will generate 1s from 0s.
  case ARM::MVE_VMVN:
  case ARM::MVE_VORN:
  // Count leading zeros will do just that!
  case ARM::MVE_VCLZs8:
  case ARM::MVE_VCLZs16:
  case ARM::MVE_VCLZs32:
    return true;
  }
  return false;
}


// Look at its register uses to see if it only can only receive zeros
// into its false lanes which would then produce zeros. Also check that
// the output register is also defined by an FalseLanesZero instruction
// so that if tail-predication happens, the lanes that aren't updated will
// still be zeros.
static bool producesFalseLanesZero(MachineInstr &MI,
                                   const TargetRegisterClass *QPRs,
                                   const ReachingDefAnalysis &RDA,
                                   InstSet &FalseLanesZero) {
  if (canGenerateNonZeros(MI))
    return false;

  bool AllowScalars = isHorizontalReduction(MI);
  for (auto &MO : MI.operands()) {
    if (!MO.isReg() || !MO.getReg())
      continue;
    if (!isRegInClass(MO, QPRs) && AllowScalars)
      continue;
    if (auto *OpDef = RDA.getMIOperand(&MI, MO))
      if (FalseLanesZero.count(OpDef))
       continue;
    return false;
  }
  LLVM_DEBUG(dbgs() << "ARM Loops: Always False Zeros: " << MI);
  return true;
}

bool
LowOverheadLoop::FindValidReduction(InstSet &LiveMIs, InstSet &LiveOutUsers) {
  // Also check for reductions where the operation needs to be merging values
  // from the last and previous loop iterations. This means an instruction
  // producing a value and a vmov storing the value calculated in the previous
  // iteration. So we can have two live-out regs, one produced by a vmov and
  // both being consumed by a vpsel.
  LLVM_DEBUG(dbgs() << "ARM Loops: Looking for reduction live-outs:\n";
             for (auto *MI : LiveMIs)
               dbgs() << " - " << *MI);

  if (!Preheader)
    return false;

  // Expect a vmov, a vadd and a single vpsel user.
  // TODO: This means we can't currently support multiple reductions in the
  // loop.
  if (LiveMIs.size() != 2 || LiveOutUsers.size() != 1)
    return false;

  MachineInstr *VPSEL = *LiveOutUsers.begin();
  if (VPSEL->getOpcode() != ARM::MVE_VPSEL)
    return false;

  unsigned VPRIdx = llvm::findFirstVPTPredOperandIdx(*VPSEL) + 1;
  MachineInstr *Pred = RDA.getMIOperand(VPSEL, VPRIdx);
  if (!Pred || Pred != VCTP) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Not using equivalent predicate.\n");
    return false;
  }

  MachineInstr *Reduce = RDA.getMIOperand(VPSEL, 1);
  if (!Reduce)
    return false;

  assert(LiveMIs.count(Reduce) && "Expected MI to be live-out");

  // TODO: Support more operations than VADD.
  switch (VCTP->getOpcode()) {
  default:
    return false;
  case ARM::MVE_VCTP8:
    if (Reduce->getOpcode() != ARM::MVE_VADDi8)
      return false;
    break;
  case ARM::MVE_VCTP16:
    if (Reduce->getOpcode() != ARM::MVE_VADDi16)
      return false;
    break;
  case ARM::MVE_VCTP32:
    if (Reduce->getOpcode() != ARM::MVE_VADDi32)
      return false;
    break;
  }

  // Test that the reduce op is overwriting ones of its operands.
  if (Reduce->getOperand(0).getReg() != Reduce->getOperand(1).getReg() &&
      Reduce->getOperand(0).getReg() != Reduce->getOperand(2).getReg()) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Reducing op isn't overwriting itself.\n");
    return false;
  }

  // Check that the VORR is actually a VMOV.
  MachineInstr *Copy = RDA.getMIOperand(VPSEL, 2);
  if (!Copy || Copy->getOpcode() != ARM::MVE_VORR ||
      !Copy->getOperand(1).isReg() || !Copy->getOperand(2).isReg() ||
      Copy->getOperand(1).getReg() != Copy->getOperand(2).getReg())
    return false;

  assert(LiveMIs.count(Copy) && "Expected MI to be live-out");

  // Check that the vadd and vmov are only used by each other and the vpsel.
  SmallPtrSet<MachineInstr*, 2> CopyUsers;
  RDA.getGlobalUses(Copy, Copy->getOperand(0).getReg(), CopyUsers);
  if (CopyUsers.size() > 2 || !CopyUsers.count(Reduce)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Copy users unsupported.\n");
    return false;
  }

  SmallPtrSet<MachineInstr*, 2> ReduceUsers;
  RDA.getGlobalUses(Reduce, Reduce->getOperand(0).getReg(), ReduceUsers);
  if (ReduceUsers.size() > 2 || !ReduceUsers.count(Copy)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Reduce users unsupported.\n");
    return false;
  }

  // Then find whether there's an instruction initialising the register that
  // is storing the reduction.
  SmallPtrSet<MachineInstr*, 2> Incoming;
  RDA.getLiveOuts(Preheader, Copy->getOperand(1).getReg(), Incoming);
  if (Incoming.size() > 1)
    return false;

  MachineInstr *Init = Incoming.empty() ? nullptr : *Incoming.begin();
  LLVM_DEBUG(dbgs() << "ARM Loops: Found a reduction:\n"
             << " - " << *Copy
             << " - " << *Reduce
             << " - " << *VPSEL);
  Reductions.push_back(std::make_unique<Reduction>(Init, Copy, Reduce, VPSEL));
  return true;
}

bool LowOverheadLoop::ValidateLiveOuts() {
  // We want to find out if the tail-predicated version of this loop will
  // produce the same values as the loop in its original form. For this to
  // be true, the newly inserted implicit predication must not change the
  // the (observable) results.
  // We're doing this because many instructions in the loop will not be
  // predicated and so the conversion from VPT predication to tail-predication
  // can result in different values being produced; due to the tail-predication
  // preventing many instructions from updating their falsely predicated
  // lanes. This analysis assumes that all the instructions perform lane-wise
  // operations and don't perform any exchanges.
  // A masked load, whether through VPT or tail predication, will write zeros
  // to any of the falsely predicated bytes. So, from the loads, we know that
  // the false lanes are zeroed and here we're trying to track that those false
  // lanes remain zero, or where they change, the differences are masked away
  // by their user(s).
  // All MVE loads and stores have to be predicated, so we know that any load
  // operands, or stored results are equivalent already. Other explicitly
  // predicated instructions will perform the same operation in the original
  // loop and the tail-predicated form too. Because of this, we can insert
  // loads, stores and other predicated instructions into our Predicated
  // set and build from there.
  const TargetRegisterClass *QPRs = TRI.getRegClass(ARM::MQPRRegClassID);
  SetVector<MachineInstr *> FalseLanesUnknown;
  SmallPtrSet<MachineInstr *, 4> FalseLanesZero;
  SmallPtrSet<MachineInstr *, 4> Predicated;
  MachineBasicBlock *Header = ML.getHeader();

  for (auto &MI : *Header) {
    const MCInstrDesc &MCID = MI.getDesc();
    uint64_t Flags = MCID.TSFlags;
    if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE)
      continue;

    if (isVCTP(&MI) || isVPTOpcode(MI.getOpcode()))
      continue;

    // Predicated loads will write zeros to the falsely predicated bytes of the
    // destination register.
    if (isVectorPredicated(&MI)) {
      if (MI.mayLoad())
        FalseLanesZero.insert(&MI);
      Predicated.insert(&MI);
      continue;
    }

    if (MI.getNumDefs() == 0)
      continue;

    if (!producesFalseLanesZero(MI, QPRs, RDA, FalseLanesZero)) {
      // We require retaining and horizontal operations to operate upon zero'd
      // false lanes to ensure the conversion doesn't change the output.
      if (retainsPreviousHalfElement(MI) || isHorizontalReduction(MI))
        return false;
      // Otherwise we need to evaluate this instruction later to see whether
      // unknown false lanes will get masked away by their user(s).
      FalseLanesUnknown.insert(&MI);
    } else if (!isHorizontalReduction(MI))
      FalseLanesZero.insert(&MI);
  }

  auto HasPredicatedUsers = [this](MachineInstr *MI, const MachineOperand &MO,
                              SmallPtrSetImpl<MachineInstr *> &Predicated) {
    SmallPtrSet<MachineInstr *, 2> Uses;
    RDA.getGlobalUses(MI, MO.getReg(), Uses);
    for (auto *Use : Uses) {
      if (Use != MI && !Predicated.count(Use))
        return false;
    }
    return true;
  };

  // Visit the unknowns in reverse so that we can start at the values being
  // stored and then we can work towards the leaves, hopefully adding more
  // instructions to Predicated. Successfully terminating the loop means that
  // all the unknown values have to found to be masked by predicated user(s).
  // For any unpredicated values, we store them in NonPredicated so that we
  // can later check whether these form a reduction.
  SmallPtrSet<MachineInstr*, 2> NonPredicated;
  for (auto *MI : reverse(FalseLanesUnknown)) {
    for (auto &MO : MI->operands()) {
      if (!isRegInClass(MO, QPRs) || !MO.isDef())
        continue;
      if (!HasPredicatedUsers(MI, MO, Predicated)) {
        LLVM_DEBUG(dbgs() << "ARM Loops: Found an unknown def of : "
                          << TRI.getRegAsmName(MO.getReg()) << " at " << *MI);
        NonPredicated.insert(MI);
        continue;
      }
    }
    // Any unknown false lanes have been masked away by the user(s).
    Predicated.insert(MI);
  }

  SmallPtrSet<MachineInstr *, 2> LiveOutMIs;
  SmallPtrSet<MachineInstr*, 2> LiveOutUsers;
  SmallVector<MachineBasicBlock *, 2> ExitBlocks;
  ML.getExitBlocks(ExitBlocks);
  assert(ML.getNumBlocks() == 1 && "Expected single block loop!");
  assert(ExitBlocks.size() == 1 && "Expected a single exit block");
  MachineBasicBlock *ExitBB = ExitBlocks.front();
  for (const MachineBasicBlock::RegisterMaskPair &RegMask : ExitBB->liveins()) {
    // Check Q-regs that are live in the exit blocks. We don't collect scalars
    // because they won't be affected by lane predication.
    if (QPRs->contains(RegMask.PhysReg)) {
      if (auto *MI = RDA.getLocalLiveOutMIDef(Header, RegMask.PhysReg))
        LiveOutMIs.insert(MI);
      RDA.getLiveInUses(ExitBB, RegMask.PhysReg, LiveOutUsers);
    }
  }

  // If we have any non-predicated live-outs, they need to be part of a
  // reduction that we can fixup later. The reduction that the form of an
  // operation that uses its previous values through a vmov and then a vpsel
  // resides in the exit blocks to select the final bytes from n and n-1
  // iterations.
  if (!NonPredicated.empty() &&
      !FindValidReduction(NonPredicated, LiveOutUsers))
    return false;

  // We've already validated that any VPT predication within the loop will be
  // equivalent when we perform the predication transformation; so we know that
  // any VPT predicated instruction is predicated upon VCTP. Any live-out
  // instruction needs to be predicated, so check this here. The instructions
  // in NonPredicated have been found to be a reduction that we can ensure its
  // legality.
  for (auto *MI : LiveOutMIs)
    if (!isVectorPredicated(MI) && !NonPredicated.count(MI))
      return false;

  return true;
}

void LowOverheadLoop::CheckLegality(ARMBasicBlockUtils *BBUtils) {
  if (Revert)
    return;

  if (!End->getOperand(1).isMBB())
    report_fatal_error("Expected LoopEnd to target basic block");

  // TODO Maybe there's cases where the target doesn't have to be the header,
  // but for now be safe and revert.
  if (End->getOperand(1).getMBB() != ML.getHeader()) {
    LLVM_DEBUG(dbgs() << "ARM Loops: LoopEnd is not targetting header.\n");
    Revert = true;
    return;
  }

  // The WLS and LE instructions have 12-bits for the label offset. WLS
  // requires a positive offset, while LE uses negative.
  if (BBUtils->getOffsetOf(End) < BBUtils->getOffsetOf(ML.getHeader()) ||
      !BBUtils->isBBInRange(End, ML.getHeader(), 4094)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: LE offset is out-of-range\n");
    Revert = true;
    return;
  }

  if (Start->getOpcode() == ARM::t2WhileLoopStart &&
      (BBUtils->getOffsetOf(Start) >
       BBUtils->getOffsetOf(Start->getOperand(1).getMBB()) ||
       !BBUtils->isBBInRange(Start, Start->getOperand(1).getMBB(), 4094))) {
    LLVM_DEBUG(dbgs() << "ARM Loops: WLS offset is out-of-range!\n");
    Revert = true;
    return;
  }

  InsertPt = Revert ? nullptr : isSafeToDefineLR();
  if (!InsertPt) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Unable to find safe insertion point.\n");
    Revert = true;
    return;
  } else
    LLVM_DEBUG(dbgs() << "ARM Loops: Start insertion point: " << *InsertPt);

  if (!IsTailPredicationLegal()) {
    LLVM_DEBUG(if (!VCTP)
                 dbgs() << "ARM Loops: Didn't find a VCTP instruction.\n";
               dbgs() << "ARM Loops: Tail-predication is not valid.\n");
    return;
  }

  assert(ML.getBlocks().size() == 1 &&
         "Shouldn't be processing a loop with more than one block");
  CannotTailPredicate = !ValidateTailPredicate(InsertPt);
  LLVM_DEBUG(if (CannotTailPredicate)
             dbgs() << "ARM Loops: Couldn't validate tail predicate.\n");
}

bool LowOverheadLoop::ValidateMVEInst(MachineInstr* MI) {
  if (CannotTailPredicate)
    return false;

  if (isVCTP(MI)) {
    // If we find another VCTP, check whether it uses the same value as the main VCTP.
    // If it does, store it in the SecondaryVCTPs set, else refuse it.
    if (VCTP) {
      if (!VCTP->getOperand(1).isIdenticalTo(MI->getOperand(1)) ||
          !RDA.hasSameReachingDef(VCTP, MI, MI->getOperand(1).getReg())) {
        LLVM_DEBUG(dbgs() << "ARM Loops: Found VCTP with a different reaching "
                             "definition from the main VCTP");
        return false;
      }
      LLVM_DEBUG(dbgs() << "ARM Loops: Found secondary VCTP: " << *MI);
      SecondaryVCTPs.insert(MI);
    } else {
      LLVM_DEBUG(dbgs() << "ARM Loops: Found 'main' VCTP: " << *MI);
      VCTP = MI;
    }
  } else if (isVPTOpcode(MI->getOpcode())) {
    if (MI->getOpcode() != ARM::MVE_VPST) {
      assert(MI->findRegisterDefOperandIdx(ARM::VPR) != -1 &&
             "VPT does not implicitly define VPR?!");
      CurrentPredicate.insert(MI);
    }

    VPTBlocks.emplace_back(MI, CurrentPredicate);
    CurrentBlock = &VPTBlocks.back();
    return true;
  } else if (MI->getOpcode() == ARM::MVE_VPSEL ||
             MI->getOpcode() == ARM::MVE_VPNOT) {
    // TODO: Allow VPSEL and VPNOT, we currently cannot because:
    // 1) It will use the VPR as a predicate operand, but doesn't have to be
    //    instead a VPT block, which means we can assert while building up
    //    the VPT block because we don't find another VPT or VPST to being a new
    //    one.
    // 2) VPSEL still requires a VPR operand even after tail predicating,
    //    which means we can't remove it unless there is another
    //    instruction, such as vcmp, that can provide the VPR def.
    return false;
  }

  bool IsUse = false;
  bool IsDef = false;
  const MCInstrDesc &MCID = MI->getDesc();
  for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || MO.getReg() != ARM::VPR)
      continue;

    if (MO.isDef()) {
      CurrentPredicate.insert(MI);
      IsDef = true;
    } else if (ARM::isVpred(MCID.OpInfo[i].OperandType)) {
      CurrentBlock->addInst(MI, CurrentPredicate);
      IsUse = true;
    } else {
      LLVM_DEBUG(dbgs() << "ARM Loops: Found instruction using vpr: " << *MI);
      return false;
    }
  }

  // If we find a vpr def that is not already predicated on the vctp, we've
  // got disjoint predicates that may not be equivalent when we do the
  // conversion.
  if (IsDef && !IsUse && VCTP && !isVCTP(MI)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Found disjoint vpr def: " << *MI);
    return false;
  }

  uint64_t Flags = MCID.TSFlags;
  if ((Flags & ARMII::DomainMask) != ARMII::DomainMVE)
    return true;

  // If we find an instruction that has been marked as not valid for tail
  // predication, only allow the instruction if it's contained within a valid
  // VPT block.
  if ((Flags & ARMII::ValidForTailPredication) == 0 && !IsUse) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Can't tail predicate: " << *MI);
    return false;
  }

  // If the instruction is already explicitly predicated, then the conversion
  // will be fine, but ensure that all memory operations are predicated.
  return !IsUse && MI->mayLoadOrStore() ? false : true;
}

bool ARMLowOverheadLoops::runOnMachineFunction(MachineFunction &mf) {
  const ARMSubtarget &ST = static_cast<const ARMSubtarget&>(mf.getSubtarget());
  if (!ST.hasLOB())
    return false;

  MF = &mf;
  LLVM_DEBUG(dbgs() << "ARM Loops on " << MF->getName() << " ------------- \n");

  MLI = &getAnalysis<MachineLoopInfo>();
  RDA = &getAnalysis<ReachingDefAnalysis>();
  MF->getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
  MRI = &MF->getRegInfo();
  TII = static_cast<const ARMBaseInstrInfo*>(ST.getInstrInfo());
  TRI = ST.getRegisterInfo();
  BBUtils = std::unique_ptr<ARMBasicBlockUtils>(new ARMBasicBlockUtils(*MF));
  BBUtils->computeAllBlockSizes();
  BBUtils->adjustBBOffsetsAfter(&MF->front());

  bool Changed = false;
  for (auto ML : *MLI) {
    if (!ML->getParentLoop())
      Changed |= ProcessLoop(ML);
  }
  Changed |= RevertNonLoops();
  return Changed;
}

bool ARMLowOverheadLoops::ProcessLoop(MachineLoop *ML) {

  bool Changed = false;

  // Process inner loops first.
  for (auto I = ML->begin(), E = ML->end(); I != E; ++I)
    Changed |= ProcessLoop(*I);

  LLVM_DEBUG(dbgs() << "ARM Loops: Processing loop containing:\n";
             if (auto *Preheader = ML->getLoopPreheader())
               dbgs() << " - " << Preheader->getName() << "\n";
             else if (auto *Preheader = MLI->findLoopPreheader(ML))
               dbgs() << " - " << Preheader->getName() << "\n";
             else if (auto *Preheader = MLI->findLoopPreheader(ML, true))
               dbgs() << " - " << Preheader->getName() << "\n";
             for (auto *MBB : ML->getBlocks())
               dbgs() << " - " << MBB->getName() << "\n";
            );

  // Search the given block for a loop start instruction. If one isn't found,
  // and there's only one predecessor block, search that one too.
  std::function<MachineInstr*(MachineBasicBlock*)> SearchForStart =
    [&SearchForStart](MachineBasicBlock *MBB) -> MachineInstr* {
    for (auto &MI : *MBB) {
      if (isLoopStart(MI))
        return &MI;
    }
    if (MBB->pred_size() == 1)
      return SearchForStart(*MBB->pred_begin());
    return nullptr;
  };

  LowOverheadLoop LoLoop(*ML, *MLI, *RDA, *TRI, *TII);
  // Search the preheader for the start intrinsic.
  // FIXME: I don't see why we shouldn't be supporting multiple predecessors
  // with potentially multiple set.loop.iterations, so we need to enable this.
  if (LoLoop.Preheader)
    LoLoop.Start = SearchForStart(LoLoop.Preheader);
  else
    return false;

  // Find the low-overhead loop components and decide whether or not to fall
  // back to a normal loop. Also look for a vctp instructions and decide
  // whether we can convert that predicate using tail predication.
  for (auto *MBB : reverse(ML->getBlocks())) {
    for (auto &MI : *MBB) {
      if (MI.isDebugValue())
        continue;
      else if (MI.getOpcode() == ARM::t2LoopDec)
        LoLoop.Dec = &MI;
      else if (MI.getOpcode() == ARM::t2LoopEnd)
        LoLoop.End = &MI;
      else if (isLoopStart(MI))
        LoLoop.Start = &MI;
      else if (MI.getDesc().isCall()) {
        // TODO: Though the call will require LE to execute again, does this
        // mean we should revert? Always executing LE hopefully should be
        // faster than performing a sub,cmp,br or even subs,br.
        LoLoop.Revert = true;
        LLVM_DEBUG(dbgs() << "ARM Loops: Found call.\n");
      } else {
        // Record VPR defs and build up their corresponding vpt blocks.
        // Check we know how to tail predicate any mve instructions.
        LoLoop.AnalyseMVEInst(&MI);
      }
    }
  }

  LLVM_DEBUG(LoLoop.dump());
  if (!LoLoop.FoundAllComponents()) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Didn't find loop start, update, end\n");
    return false;
  }

  // Check that the only instruction using LoopDec is LoopEnd.
  // TODO: Check for copy chains that really have no effect.
  SmallPtrSet<MachineInstr*, 2> Uses;
  RDA->getReachingLocalUses(LoLoop.Dec, ARM::LR, Uses);
  if (Uses.size() > 1 || !Uses.count(LoLoop.End)) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Unable to remove LoopDec.\n");
    LoLoop.Revert = true;
  }
  LoLoop.CheckLegality(BBUtils.get());
  Expand(LoLoop);
  return true;
}

// WhileLoopStart holds the exit block, so produce a cmp lr, 0 and then a
// beq that branches to the exit branch.
// TODO: We could also try to generate a cbz if the value in LR is also in
// another low register.
void ARMLowOverheadLoops::RevertWhile(MachineInstr *MI) const {
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp: " << *MI);
  MachineBasicBlock *MBB = MI->getParent();
  MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
                                    TII->get(ARM::t2CMPri));
  MIB.add(MI->getOperand(0));
  MIB.addImm(0);
  MIB.addImm(ARMCC::AL);
  MIB.addReg(ARM::NoRegister);

  MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
  unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
    ARM::tBcc : ARM::t2Bcc;

  MIB = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
  MIB.add(MI->getOperand(1));   // branch target
  MIB.addImm(ARMCC::EQ);        // condition code
  MIB.addReg(ARM::CPSR);
  MI->eraseFromParent();
}

bool ARMLowOverheadLoops::RevertLoopDec(MachineInstr *MI) const {
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to sub: " << *MI);
  MachineBasicBlock *MBB = MI->getParent();
  SmallPtrSet<MachineInstr*, 1> Ignore;
  for (auto I = MachineBasicBlock::iterator(MI), E = MBB->end(); I != E; ++I) {
    if (I->getOpcode() == ARM::t2LoopEnd) {
      Ignore.insert(&*I);
      break;
    }
  }

  // If nothing defines CPSR between LoopDec and LoopEnd, use a t2SUBS.
  bool SetFlags = RDA->isSafeToDefRegAt(MI, ARM::CPSR, Ignore);

  MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
                                    TII->get(ARM::t2SUBri));
  MIB.addDef(ARM::LR);
  MIB.add(MI->getOperand(1));
  MIB.add(MI->getOperand(2));
  MIB.addImm(ARMCC::AL);
  MIB.addReg(0);

  if (SetFlags) {
    MIB.addReg(ARM::CPSR);
    MIB->getOperand(5).setIsDef(true);
  } else
    MIB.addReg(0);

  MI->eraseFromParent();
  return SetFlags;
}

// Generate a subs, or sub and cmp, and a branch instead of an LE.
void ARMLowOverheadLoops::RevertLoopEnd(MachineInstr *MI, bool SkipCmp) const {
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting to cmp, br: " << *MI);

  MachineBasicBlock *MBB = MI->getParent();
  // Create cmp
  if (!SkipCmp) {
    MachineInstrBuilder MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
                                      TII->get(ARM::t2CMPri));
    MIB.addReg(ARM::LR);
    MIB.addImm(0);
    MIB.addImm(ARMCC::AL);
    MIB.addReg(ARM::NoRegister);
  }

  MachineBasicBlock *DestBB = MI->getOperand(1).getMBB();
  unsigned BrOpc = BBUtils->isBBInRange(MI, DestBB, 254) ?
    ARM::tBcc : ARM::t2Bcc;

  // Create bne
  MachineInstrBuilder MIB =
    BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(BrOpc));
  MIB.add(MI->getOperand(1));   // branch target
  MIB.addImm(ARMCC::NE);        // condition code
  MIB.addReg(ARM::CPSR);
  MI->eraseFromParent();
}

// Perform dead code elimation on the loop iteration count setup expression.
// If we are tail-predicating, the number of elements to be processed is the
// operand of the VCTP instruction in the vector body, see getCount(), which is
// register $r3 in this example:
//
//   $lr = big-itercount-expression
//   ..
//   t2DoLoopStart renamable $lr
//   vector.body:
//     ..
//     $vpr = MVE_VCTP32 renamable $r3
//     renamable $lr = t2LoopDec killed renamable $lr, 1
//     t2LoopEnd renamable $lr, %vector.body
//     tB %end
//
// What we would like achieve here is to replace the do-loop start pseudo
// instruction t2DoLoopStart with:
//
//    $lr = MVE_DLSTP_32 killed renamable $r3
//
// Thus, $r3 which defines the number of elements, is written to $lr,
// and then we want to delete the whole chain that used to define $lr,
// see the comment below how this chain could look like.
//
void ARMLowOverheadLoops::IterationCountDCE(LowOverheadLoop &LoLoop) {
  if (!LoLoop.IsTailPredicationLegal())
    return;

  LLVM_DEBUG(dbgs() << "ARM Loops: Trying DCE on loop iteration count.\n");

  MachineInstr *Def = RDA->getMIOperand(LoLoop.Start, 0);
  if (!Def) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Couldn't find iteration count.\n");
    return;
  }

  // Collect and remove the users of iteration count.
  SmallPtrSet<MachineInstr*, 4> Killed  = { LoLoop.Start, LoLoop.Dec,
                                            LoLoop.End, LoLoop.InsertPt };
  SmallPtrSet<MachineInstr*, 2> Remove;
  if (RDA->isSafeToRemove(Def, Remove, Killed))
    LoLoop.ToRemove.insert(Remove.begin(), Remove.end());
  else {
    LLVM_DEBUG(dbgs() << "ARM Loops: Unsafe to remove loop iteration count.\n");
    return;
  }

  // Collect the dead code and the MBBs in which they reside.
  RDA->collectKilledOperands(Def, Killed);
  SmallPtrSet<MachineBasicBlock*, 2> BasicBlocks;
  for (auto *MI : Killed)
    BasicBlocks.insert(MI->getParent());

  // Collect IT blocks in all affected basic blocks.
  std::map<MachineInstr *, SmallPtrSet<MachineInstr *, 2>> ITBlocks;
  for (auto *MBB : BasicBlocks) {
    for (auto &MI : *MBB) {
      if (MI.getOpcode() != ARM::t2IT)
        continue;
      RDA->getReachingLocalUses(&MI, ARM::ITSTATE, ITBlocks[&MI]);
    }
  }

  // If we're removing all of the instructions within an IT block, then
  // also remove the IT instruction.
  SmallPtrSet<MachineInstr*, 2> ModifiedITs;
  for (auto *MI : Killed) {
    if (MachineOperand *MO = MI->findRegisterUseOperand(ARM::ITSTATE)) {
      MachineInstr *IT = RDA->getMIOperand(MI, *MO);
      auto &CurrentBlock = ITBlocks[IT];
      CurrentBlock.erase(MI);
      if (CurrentBlock.empty())
        ModifiedITs.erase(IT);
      else
        ModifiedITs.insert(IT);
    }
  }

  // Delete the killed instructions only if we don't have any IT blocks that
  // need to be modified because we need to fixup the mask.
  // TODO: Handle cases where IT blocks are modified.
  if (ModifiedITs.empty()) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Will remove iteration count:\n";
               for (auto *MI : Killed)
                 dbgs() << " - " << *MI);
    LoLoop.ToRemove.insert(Killed.begin(), Killed.end());
  } else
    LLVM_DEBUG(dbgs() << "ARM Loops: Would need to modify IT block(s).\n");
}

MachineInstr* ARMLowOverheadLoops::ExpandLoopStart(LowOverheadLoop &LoLoop) {
  LLVM_DEBUG(dbgs() << "ARM Loops: Expanding LoopStart.\n");
  // When using tail-predication, try to delete the dead code that was used to
  // calculate the number of loop iterations.
  IterationCountDCE(LoLoop);

  MachineInstr *InsertPt = LoLoop.InsertPt;
  MachineInstr *Start = LoLoop.Start;
  MachineBasicBlock *MBB = InsertPt->getParent();
  bool IsDo = Start->getOpcode() == ARM::t2DoLoopStart;
  unsigned Opc = LoLoop.getStartOpcode();
  MachineOperand &Count = LoLoop.getCount();

  MachineInstrBuilder MIB =
    BuildMI(*MBB, InsertPt, InsertPt->getDebugLoc(), TII->get(Opc));

  MIB.addDef(ARM::LR);
  MIB.add(Count);
  if (!IsDo)
    MIB.add(Start->getOperand(1));

  // If we're inserting at a mov lr, then remove it as it's redundant.
  if (InsertPt != Start)
    LoLoop.ToRemove.insert(InsertPt);
  LoLoop.ToRemove.insert(Start);
  LLVM_DEBUG(dbgs() << "ARM Loops: Inserted start: " << *MIB);
  return &*MIB;
}

void ARMLowOverheadLoops::FixupReductions(LowOverheadLoop &LoLoop) const {
  LLVM_DEBUG(dbgs() << "ARM Loops: Fixing up reduction(s).\n");
  auto BuildMov = [this](MachineInstr &InsertPt, Register To, Register From) {
    MachineBasicBlock *MBB = InsertPt.getParent();
    MachineInstrBuilder MIB =
      BuildMI(*MBB, &InsertPt, InsertPt.getDebugLoc(), TII->get(ARM::MVE_VORR));
    MIB.addDef(To);
    MIB.addReg(From);
    MIB.addReg(From);
    MIB.addImm(0);
    MIB.addReg(0);
    MIB.addReg(To);
    LLVM_DEBUG(dbgs() << "ARM Loops: Inserted VMOV: " << *MIB);
  };

  for (auto &Reduction : LoLoop.Reductions) {
    MachineInstr &Copy = Reduction->Copy;
    MachineInstr &Reduce = Reduction->Reduce;
    Register DestReg = Copy.getOperand(0).getReg();

    // Change the initialiser if present
    if (Reduction->Init) {
      MachineInstr *Init = Reduction->Init;

      for (unsigned i = 0; i < Init->getNumOperands(); ++i) {
        MachineOperand &MO = Init->getOperand(i);
        if (MO.isReg() && MO.isUse() && MO.isTied() &&
            Init->findTiedOperandIdx(i) == 0)
          Init->getOperand(i).setReg(DestReg);
      }
      Init->getOperand(0).setReg(DestReg);
      LLVM_DEBUG(dbgs() << "ARM Loops: Changed init regs: " << *Init);
    } else
      BuildMov(LoLoop.Preheader->instr_back(), DestReg, Copy.getOperand(1).getReg());

    // Change the reducing op to write to the register that is used to copy
    // its value on the next iteration. Also update the tied-def operand.
    Reduce.getOperand(0).setReg(DestReg);
    Reduce.getOperand(5).setReg(DestReg);
    LLVM_DEBUG(dbgs() << "ARM Loops: Changed reduction regs: " << Reduce);

    // Instead of a vpsel, just copy the register into the necessary one.
    MachineInstr &VPSEL = Reduction->VPSEL;
    if (VPSEL.getOperand(0).getReg() != DestReg)
      BuildMov(VPSEL, VPSEL.getOperand(0).getReg(), DestReg);

    // Remove the unnecessary instructions.
    LLVM_DEBUG(dbgs() << "ARM Loops: Removing:\n"
               << " - " << Copy
               << " - " << VPSEL << "\n");
    Copy.eraseFromParent();
    VPSEL.eraseFromParent();
  }
}

void ARMLowOverheadLoops::ConvertVPTBlocks(LowOverheadLoop &LoLoop) {
  auto RemovePredicate = [](MachineInstr *MI) {
    LLVM_DEBUG(dbgs() << "ARM Loops: Removing predicate from: " << *MI);
    if (int PIdx = llvm::findFirstVPTPredOperandIdx(*MI)) {
      assert(MI->getOperand(PIdx).getImm() == ARMVCC::Then &&
             "Expected Then predicate!");
      MI->getOperand(PIdx).setImm(ARMVCC::None);
      MI->getOperand(PIdx+1).setReg(0);
    } else
      llvm_unreachable("trying to unpredicate a non-predicated instruction");
  };

  // There are a few scenarios which we have to fix up:
  // 1. VPT Blocks with non-uniform predicates:
  //    - a. When the divergent instruction is a vctp
  //    - b. When the block uses a vpst, and is only predicated on the vctp
  //    - c. When the block uses a vpt and (optionally) contains one or more
  //         vctp.
  // 2. VPT Blocks with uniform predicates:
  //    - a. The block uses a vpst, and is only predicated on the vctp
  for (auto &Block : LoLoop.getVPTBlocks()) {
    SmallVectorImpl<PredicatedMI> &Insts = Block.getInsts();
    if (Block.HasNonUniformPredicate()) {
      PredicatedMI *Divergent = Block.getDivergent();
      if (isVCTP(Divergent->MI)) {
        // The vctp will be removed, so the block mask of the vp(s)t will need
        // to be recomputed.
        LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen());
      } else if (Block.isVPST() && Block.IsOnlyPredicatedOn(LoLoop.VCTP)) {
        // The VPT block has a non-uniform predicate but it uses a vpst and its
        // entry is guarded only by a vctp, which means we:
        // - Need to remove the original vpst.
        // - Then need to unpredicate any following instructions, until
        //   we come across the divergent vpr def.
        // - Insert a new vpst to predicate the instruction(s) that following
        //   the divergent vpr def.
        // TODO: We could be producing more VPT blocks than necessary and could
        // fold the newly created one into a proceeding one.
        for (auto I = ++MachineBasicBlock::iterator(Block.getPredicateThen()),
             E = ++MachineBasicBlock::iterator(Divergent->MI); I != E; ++I)
          RemovePredicate(&*I);

        unsigned Size = 0;
        auto E = MachineBasicBlock::reverse_iterator(Divergent->MI);
        auto I = MachineBasicBlock::reverse_iterator(Insts.back().MI);
        MachineInstr *InsertAt = nullptr;
        while (I != E) {
          InsertAt = &*I;
          ++Size;
          ++I;
        }
        // Create a VPST (with a null mask for now, we'll recompute it later).
        MachineInstrBuilder MIB = BuildMI(*InsertAt->getParent(), InsertAt,
                                          InsertAt->getDebugLoc(),
                                          TII->get(ARM::MVE_VPST));
        MIB.addImm(0);
        LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen());
        LLVM_DEBUG(dbgs() << "ARM Loops: Created VPST: " << *MIB);
        LoLoop.ToRemove.insert(Block.getPredicateThen());
        LoLoop.BlockMasksToRecompute.insert(MIB.getInstr());
      }
      // Else, if the block uses a vpt, iterate over the block, removing the
      // extra VCTPs it may contain.
      else if (Block.isVPT()) {
        bool RemovedVCTP = false;
        for (PredicatedMI &Elt : Block.getInsts()) {
          MachineInstr *MI = Elt.MI;
          if (isVCTP(MI)) {
            LLVM_DEBUG(dbgs() << "ARM Loops: Removing VCTP: " << *MI);
            LoLoop.ToRemove.insert(MI);
            RemovedVCTP = true;
            continue;
          }
        }
        if (RemovedVCTP)
          LoLoop.BlockMasksToRecompute.insert(Block.getPredicateThen());
      }
    } else if (Block.IsOnlyPredicatedOn(LoLoop.VCTP) && Block.isVPST()) {
      // A vpt block starting with VPST, is only predicated upon vctp and has no
      // internal vpr defs:
      // - Remove vpst.
      // - Unpredicate the remaining instructions.
      LLVM_DEBUG(dbgs() << "ARM Loops: Removing VPST: " << *Block.getPredicateThen());
      LoLoop.ToRemove.insert(Block.getPredicateThen());
      for (auto &PredMI : Insts)
        RemovePredicate(PredMI.MI);
    }
  }
  LLVM_DEBUG(dbgs() << "ARM Loops: Removing remaining VCTPs...\n");
  // Remove the "main" VCTP
  LoLoop.ToRemove.insert(LoLoop.VCTP);
  LLVM_DEBUG(dbgs() << "    " << *LoLoop.VCTP);
  // Remove remaining secondary VCTPs
  for (MachineInstr *VCTP : LoLoop.SecondaryVCTPs) {
    // All VCTPs that aren't marked for removal yet should be unpredicated ones.
    // The predicated ones should have already been marked for removal when
    // visiting the VPT blocks.
    if (LoLoop.ToRemove.insert(VCTP).second) {
      assert(getVPTInstrPredicate(*VCTP) == ARMVCC::None &&
             "Removing Predicated VCTP without updating the block mask!");
      LLVM_DEBUG(dbgs() << "    " << *VCTP);
    }
  }
}

void ARMLowOverheadLoops::Expand(LowOverheadLoop &LoLoop) {

  // Combine the LoopDec and LoopEnd instructions into LE(TP).
  auto ExpandLoopEnd = [this](LowOverheadLoop &LoLoop) {
    MachineInstr *End = LoLoop.End;
    MachineBasicBlock *MBB = End->getParent();
    unsigned Opc = LoLoop.IsTailPredicationLegal() ?
      ARM::MVE_LETP : ARM::t2LEUpdate;
    MachineInstrBuilder MIB = BuildMI(*MBB, End, End->getDebugLoc(),
                                      TII->get(Opc));
    MIB.addDef(ARM::LR);
    MIB.add(End->getOperand(0));
    MIB.add(End->getOperand(1));
    LLVM_DEBUG(dbgs() << "ARM Loops: Inserted LE: " << *MIB);
    LoLoop.ToRemove.insert(LoLoop.Dec);
    LoLoop.ToRemove.insert(End);
    return &*MIB;
  };

  // TODO: We should be able to automatically remove these branches before we
  // get here - probably by teaching analyzeBranch about the pseudo
  // instructions.
  // If there is an unconditional branch, after I, that just branches to the
  // next block, remove it.
  auto RemoveDeadBranch = [](MachineInstr *I) {
    MachineBasicBlock *BB = I->getParent();
    MachineInstr *Terminator = &BB->instr_back();
    if (Terminator->isUnconditionalBranch() && I != Terminator) {
      MachineBasicBlock *Succ = Terminator->getOperand(0).getMBB();
      if (BB->isLayoutSuccessor(Succ)) {
        LLVM_DEBUG(dbgs() << "ARM Loops: Removing branch: " << *Terminator);
        Terminator->eraseFromParent();
      }
    }
  };

  if (LoLoop.Revert) {
    if (LoLoop.Start->getOpcode() == ARM::t2WhileLoopStart)
      RevertWhile(LoLoop.Start);
    else
      LoLoop.Start->eraseFromParent();
    bool FlagsAlreadySet = RevertLoopDec(LoLoop.Dec);
    RevertLoopEnd(LoLoop.End, FlagsAlreadySet);
  } else {
    LoLoop.Start = ExpandLoopStart(LoLoop);
    RemoveDeadBranch(LoLoop.Start);
    LoLoop.End = ExpandLoopEnd(LoLoop);
    RemoveDeadBranch(LoLoop.End);
    if (LoLoop.IsTailPredicationLegal()) {
      ConvertVPTBlocks(LoLoop);
      FixupReductions(LoLoop);
    }
    for (auto *I : LoLoop.ToRemove) {
      LLVM_DEBUG(dbgs() << "ARM Loops: Erasing " << *I);
      I->eraseFromParent();
    }
    for (auto *I : LoLoop.BlockMasksToRecompute) {
      LLVM_DEBUG(dbgs() << "ARM Loops: Recomputing VPT/VPST Block Mask: " << *I);
      recomputeVPTBlockMask(*I);
      LLVM_DEBUG(dbgs() << "           ... done: " << *I);
    }
  }

  PostOrderLoopTraversal DFS(LoLoop.ML, *MLI);
  DFS.ProcessLoop();
  const SmallVectorImpl<MachineBasicBlock*> &PostOrder = DFS.getOrder();
  for (auto *MBB : PostOrder) {
    recomputeLiveIns(*MBB);
    // FIXME: For some reason, the live-in print order is non-deterministic for
    // our tests and I can't out why... So just sort them.
    MBB->sortUniqueLiveIns();
  }

  for (auto *MBB : reverse(PostOrder))
    recomputeLivenessFlags(*MBB);

  // We've moved, removed and inserted new instructions, so update RDA.
  RDA->reset();
}

bool ARMLowOverheadLoops::RevertNonLoops() {
  LLVM_DEBUG(dbgs() << "ARM Loops: Reverting any remaining pseudos...\n");
  bool Changed = false;

  for (auto &MBB : *MF) {
    SmallVector<MachineInstr*, 4> Starts;
    SmallVector<MachineInstr*, 4> Decs;
    SmallVector<MachineInstr*, 4> Ends;

    for (auto &I : MBB) {
      if (isLoopStart(I))
        Starts.push_back(&I);
      else if (I.getOpcode() == ARM::t2LoopDec)
        Decs.push_back(&I);
      else if (I.getOpcode() == ARM::t2LoopEnd)
        Ends.push_back(&I);
    }

    if (Starts.empty() && Decs.empty() && Ends.empty())
      continue;

    Changed = true;

    for (auto *Start : Starts) {
      if (Start->getOpcode() == ARM::t2WhileLoopStart)
        RevertWhile(Start);
      else
        Start->eraseFromParent();
    }
    for (auto *Dec : Decs)
      RevertLoopDec(Dec);

    for (auto *End : Ends)
      RevertLoopEnd(End);
  }
  return Changed;
}

FunctionPass *llvm::createARMLowOverheadLoopsPass() {
  return new ARMLowOverheadLoops();
}