ARMLoadStoreOptimizer.cpp 94.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
//===- ARMLoadStoreOptimizer.cpp - ARM load / store opt. pass -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This file contains a pass that performs load / store related peephole
/// optimizations. This pass should be run after register allocation.
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMISelLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "Utils/ARMBaseInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "arm-ldst-opt"

STATISTIC(NumLDMGened , "Number of ldm instructions generated");
STATISTIC(NumSTMGened , "Number of stm instructions generated");
STATISTIC(NumVLDMGened, "Number of vldm instructions generated");
STATISTIC(NumVSTMGened, "Number of vstm instructions generated");
STATISTIC(NumLdStMoved, "Number of load / store instructions moved");
STATISTIC(NumLDRDFormed,"Number of ldrd created before allocation");
STATISTIC(NumSTRDFormed,"Number of strd created before allocation");
STATISTIC(NumLDRD2LDM,  "Number of ldrd instructions turned back into ldm");
STATISTIC(NumSTRD2STM,  "Number of strd instructions turned back into stm");
STATISTIC(NumLDRD2LDR,  "Number of ldrd instructions turned back into ldr's");
STATISTIC(NumSTRD2STR,  "Number of strd instructions turned back into str's");

/// This switch disables formation of double/multi instructions that could
/// potentially lead to (new) alignment traps even with CCR.UNALIGN_TRP
/// disabled. This can be used to create libraries that are robust even when
/// users provoke undefined behaviour by supplying misaligned pointers.
/// \see mayCombineMisaligned()
static cl::opt<bool>
AssumeMisalignedLoadStores("arm-assume-misaligned-load-store", cl::Hidden,
    cl::init(false), cl::desc("Be more conservative in ARM load/store opt"));

#define ARM_LOAD_STORE_OPT_NAME "ARM load / store optimization pass"

namespace {

  /// Post- register allocation pass the combine load / store instructions to
  /// form ldm / stm instructions.
  struct ARMLoadStoreOpt : public MachineFunctionPass {
    static char ID;

    const MachineFunction *MF;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const ARMSubtarget *STI;
    const TargetLowering *TL;
    ARMFunctionInfo *AFI;
    LivePhysRegs LiveRegs;
    RegisterClassInfo RegClassInfo;
    MachineBasicBlock::const_iterator LiveRegPos;
    bool LiveRegsValid;
    bool RegClassInfoValid;
    bool isThumb1, isThumb2;

    ARMLoadStoreOpt() : MachineFunctionPass(ID) {}

    bool runOnMachineFunction(MachineFunction &Fn) override;

    MachineFunctionProperties getRequiredProperties() const override {
      return MachineFunctionProperties().set(
          MachineFunctionProperties::Property::NoVRegs);
    }

    StringRef getPassName() const override { return ARM_LOAD_STORE_OPT_NAME; }

  private:
    /// A set of load/store MachineInstrs with same base register sorted by
    /// offset.
    struct MemOpQueueEntry {
      MachineInstr *MI;
      int Offset;        ///< Load/Store offset.
      unsigned Position; ///< Position as counted from end of basic block.

      MemOpQueueEntry(MachineInstr &MI, int Offset, unsigned Position)
          : MI(&MI), Offset(Offset), Position(Position) {}
    };
    using MemOpQueue = SmallVector<MemOpQueueEntry, 8>;

    /// A set of MachineInstrs that fulfill (nearly all) conditions to get
    /// merged into a LDM/STM.
    struct MergeCandidate {
      /// List of instructions ordered by load/store offset.
      SmallVector<MachineInstr*, 4> Instrs;

      /// Index in Instrs of the instruction being latest in the schedule.
      unsigned LatestMIIdx;

      /// Index in Instrs of the instruction being earliest in the schedule.
      unsigned EarliestMIIdx;

      /// Index into the basic block where the merged instruction will be
      /// inserted. (See MemOpQueueEntry.Position)
      unsigned InsertPos;

      /// Whether the instructions can be merged into a ldm/stm instruction.
      bool CanMergeToLSMulti;

      /// Whether the instructions can be merged into a ldrd/strd instruction.
      bool CanMergeToLSDouble;
    };
    SpecificBumpPtrAllocator<MergeCandidate> Allocator;
    SmallVector<const MergeCandidate*,4> Candidates;
    SmallVector<MachineInstr*,4> MergeBaseCandidates;

    void moveLiveRegsBefore(const MachineBasicBlock &MBB,
                            MachineBasicBlock::const_iterator Before);
    unsigned findFreeReg(const TargetRegisterClass &RegClass);
    void UpdateBaseRegUses(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
                           unsigned Base, unsigned WordOffset,
                           ARMCC::CondCodes Pred, unsigned PredReg);
    MachineInstr *CreateLoadStoreMulti(
        MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
        int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
        ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
        ArrayRef<std::pair<unsigned, bool>> Regs,
        ArrayRef<MachineInstr*> Instrs);
    MachineInstr *CreateLoadStoreDouble(
        MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
        int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
        ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
        ArrayRef<std::pair<unsigned, bool>> Regs,
        ArrayRef<MachineInstr*> Instrs) const;
    void FormCandidates(const MemOpQueue &MemOps);
    MachineInstr *MergeOpsUpdate(const MergeCandidate &Cand);
    bool FixInvalidRegPairOp(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator &MBBI);
    bool MergeBaseUpdateLoadStore(MachineInstr *MI);
    bool MergeBaseUpdateLSMultiple(MachineInstr *MI);
    bool MergeBaseUpdateLSDouble(MachineInstr &MI) const;
    bool LoadStoreMultipleOpti(MachineBasicBlock &MBB);
    bool MergeReturnIntoLDM(MachineBasicBlock &MBB);
    bool CombineMovBx(MachineBasicBlock &MBB);
  };

} // end anonymous namespace

char ARMLoadStoreOpt::ID = 0;

INITIALIZE_PASS(ARMLoadStoreOpt, "arm-ldst-opt", ARM_LOAD_STORE_OPT_NAME, false,
                false)

static bool definesCPSR(const MachineInstr &MI) {
  for (const auto &MO : MI.operands()) {
    if (!MO.isReg())
      continue;
    if (MO.isDef() && MO.getReg() == ARM::CPSR && !MO.isDead())
      // If the instruction has live CPSR def, then it's not safe to fold it
      // into load / store.
      return true;
  }

  return false;
}

static int getMemoryOpOffset(const MachineInstr &MI) {
  unsigned Opcode = MI.getOpcode();
  bool isAM3 = Opcode == ARM::LDRD || Opcode == ARM::STRD;
  unsigned NumOperands = MI.getDesc().getNumOperands();
  unsigned OffField = MI.getOperand(NumOperands - 3).getImm();

  if (Opcode == ARM::t2LDRi12 || Opcode == ARM::t2LDRi8 ||
      Opcode == ARM::t2STRi12 || Opcode == ARM::t2STRi8 ||
      Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8 ||
      Opcode == ARM::LDRi12   || Opcode == ARM::STRi12)
    return OffField;

  // Thumb1 immediate offsets are scaled by 4
  if (Opcode == ARM::tLDRi || Opcode == ARM::tSTRi ||
      Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi)
    return OffField * 4;

  int Offset = isAM3 ? ARM_AM::getAM3Offset(OffField)
    : ARM_AM::getAM5Offset(OffField) * 4;
  ARM_AM::AddrOpc Op = isAM3 ? ARM_AM::getAM3Op(OffField)
    : ARM_AM::getAM5Op(OffField);

  if (Op == ARM_AM::sub)
    return -Offset;

  return Offset;
}

static const MachineOperand &getLoadStoreBaseOp(const MachineInstr &MI) {
  return MI.getOperand(1);
}

static const MachineOperand &getLoadStoreRegOp(const MachineInstr &MI) {
  return MI.getOperand(0);
}

static int getLoadStoreMultipleOpcode(unsigned Opcode, ARM_AM::AMSubMode Mode) {
  switch (Opcode) {
  default: llvm_unreachable("Unhandled opcode!");
  case ARM::LDRi12:
    ++NumLDMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::LDMIA;
    case ARM_AM::da: return ARM::LDMDA;
    case ARM_AM::db: return ARM::LDMDB;
    case ARM_AM::ib: return ARM::LDMIB;
    }
  case ARM::STRi12:
    ++NumSTMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::STMIA;
    case ARM_AM::da: return ARM::STMDA;
    case ARM_AM::db: return ARM::STMDB;
    case ARM_AM::ib: return ARM::STMIB;
    }
  case ARM::tLDRi:
  case ARM::tLDRspi:
    // tLDMIA is writeback-only - unless the base register is in the input
    // reglist.
    ++NumLDMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::tLDMIA;
    }
  case ARM::tSTRi:
  case ARM::tSTRspi:
    // There is no non-writeback tSTMIA either.
    ++NumSTMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::tSTMIA_UPD;
    }
  case ARM::t2LDRi8:
  case ARM::t2LDRi12:
    ++NumLDMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::t2LDMIA;
    case ARM_AM::db: return ARM::t2LDMDB;
    }
  case ARM::t2STRi8:
  case ARM::t2STRi12:
    ++NumSTMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::t2STMIA;
    case ARM_AM::db: return ARM::t2STMDB;
    }
  case ARM::VLDRS:
    ++NumVLDMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::VLDMSIA;
    case ARM_AM::db: return 0; // Only VLDMSDB_UPD exists.
    }
  case ARM::VSTRS:
    ++NumVSTMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::VSTMSIA;
    case ARM_AM::db: return 0; // Only VSTMSDB_UPD exists.
    }
  case ARM::VLDRD:
    ++NumVLDMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::VLDMDIA;
    case ARM_AM::db: return 0; // Only VLDMDDB_UPD exists.
    }
  case ARM::VSTRD:
    ++NumVSTMGened;
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::VSTMDIA;
    case ARM_AM::db: return 0; // Only VSTMDDB_UPD exists.
    }
  }
}

static ARM_AM::AMSubMode getLoadStoreMultipleSubMode(unsigned Opcode) {
  switch (Opcode) {
  default: llvm_unreachable("Unhandled opcode!");
  case ARM::LDMIA_RET:
  case ARM::LDMIA:
  case ARM::LDMIA_UPD:
  case ARM::STMIA:
  case ARM::STMIA_UPD:
  case ARM::tLDMIA:
  case ARM::tLDMIA_UPD:
  case ARM::tSTMIA_UPD:
  case ARM::t2LDMIA_RET:
  case ARM::t2LDMIA:
  case ARM::t2LDMIA_UPD:
  case ARM::t2STMIA:
  case ARM::t2STMIA_UPD:
  case ARM::VLDMSIA:
  case ARM::VLDMSIA_UPD:
  case ARM::VSTMSIA:
  case ARM::VSTMSIA_UPD:
  case ARM::VLDMDIA:
  case ARM::VLDMDIA_UPD:
  case ARM::VSTMDIA:
  case ARM::VSTMDIA_UPD:
    return ARM_AM::ia;

  case ARM::LDMDA:
  case ARM::LDMDA_UPD:
  case ARM::STMDA:
  case ARM::STMDA_UPD:
    return ARM_AM::da;

  case ARM::LDMDB:
  case ARM::LDMDB_UPD:
  case ARM::STMDB:
  case ARM::STMDB_UPD:
  case ARM::t2LDMDB:
  case ARM::t2LDMDB_UPD:
  case ARM::t2STMDB:
  case ARM::t2STMDB_UPD:
  case ARM::VLDMSDB_UPD:
  case ARM::VSTMSDB_UPD:
  case ARM::VLDMDDB_UPD:
  case ARM::VSTMDDB_UPD:
    return ARM_AM::db;

  case ARM::LDMIB:
  case ARM::LDMIB_UPD:
  case ARM::STMIB:
  case ARM::STMIB_UPD:
    return ARM_AM::ib;
  }
}

static bool isT1i32Load(unsigned Opc) {
  return Opc == ARM::tLDRi || Opc == ARM::tLDRspi;
}

static bool isT2i32Load(unsigned Opc) {
  return Opc == ARM::t2LDRi12 || Opc == ARM::t2LDRi8;
}

static bool isi32Load(unsigned Opc) {
  return Opc == ARM::LDRi12 || isT1i32Load(Opc) || isT2i32Load(Opc) ;
}

static bool isT1i32Store(unsigned Opc) {
  return Opc == ARM::tSTRi || Opc == ARM::tSTRspi;
}

static bool isT2i32Store(unsigned Opc) {
  return Opc == ARM::t2STRi12 || Opc == ARM::t2STRi8;
}

static bool isi32Store(unsigned Opc) {
  return Opc == ARM::STRi12 || isT1i32Store(Opc) || isT2i32Store(Opc);
}

static bool isLoadSingle(unsigned Opc) {
  return isi32Load(Opc) || Opc == ARM::VLDRS || Opc == ARM::VLDRD;
}

static unsigned getImmScale(unsigned Opc) {
  switch (Opc) {
  default: llvm_unreachable("Unhandled opcode!");
  case ARM::tLDRi:
  case ARM::tSTRi:
  case ARM::tLDRspi:
  case ARM::tSTRspi:
    return 1;
  case ARM::tLDRHi:
  case ARM::tSTRHi:
    return 2;
  case ARM::tLDRBi:
  case ARM::tSTRBi:
    return 4;
  }
}

static unsigned getLSMultipleTransferSize(const MachineInstr *MI) {
  switch (MI->getOpcode()) {
  default: return 0;
  case ARM::LDRi12:
  case ARM::STRi12:
  case ARM::tLDRi:
  case ARM::tSTRi:
  case ARM::tLDRspi:
  case ARM::tSTRspi:
  case ARM::t2LDRi8:
  case ARM::t2LDRi12:
  case ARM::t2STRi8:
  case ARM::t2STRi12:
  case ARM::VLDRS:
  case ARM::VSTRS:
    return 4;
  case ARM::VLDRD:
  case ARM::VSTRD:
    return 8;
  case ARM::LDMIA:
  case ARM::LDMDA:
  case ARM::LDMDB:
  case ARM::LDMIB:
  case ARM::STMIA:
  case ARM::STMDA:
  case ARM::STMDB:
  case ARM::STMIB:
  case ARM::tLDMIA:
  case ARM::tLDMIA_UPD:
  case ARM::tSTMIA_UPD:
  case ARM::t2LDMIA:
  case ARM::t2LDMDB:
  case ARM::t2STMIA:
  case ARM::t2STMDB:
  case ARM::VLDMSIA:
  case ARM::VSTMSIA:
    return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 4;
  case ARM::VLDMDIA:
  case ARM::VSTMDIA:
    return (MI->getNumOperands() - MI->getDesc().getNumOperands() + 1) * 8;
  }
}

/// Update future uses of the base register with the offset introduced
/// due to writeback. This function only works on Thumb1.
void ARMLoadStoreOpt::UpdateBaseRegUses(MachineBasicBlock &MBB,
                                        MachineBasicBlock::iterator MBBI,
                                        const DebugLoc &DL, unsigned Base,
                                        unsigned WordOffset,
                                        ARMCC::CondCodes Pred,
                                        unsigned PredReg) {
  assert(isThumb1 && "Can only update base register uses for Thumb1!");
  // Start updating any instructions with immediate offsets. Insert a SUB before
  // the first non-updateable instruction (if any).
  for (; MBBI != MBB.end(); ++MBBI) {
    bool InsertSub = false;
    unsigned Opc = MBBI->getOpcode();

    if (MBBI->readsRegister(Base)) {
      int Offset;
      bool IsLoad =
        Opc == ARM::tLDRi || Opc == ARM::tLDRHi || Opc == ARM::tLDRBi;
      bool IsStore =
        Opc == ARM::tSTRi || Opc == ARM::tSTRHi || Opc == ARM::tSTRBi;

      if (IsLoad || IsStore) {
        // Loads and stores with immediate offsets can be updated, but only if
        // the new offset isn't negative.
        // The MachineOperand containing the offset immediate is the last one
        // before predicates.
        MachineOperand &MO =
          MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
        // The offsets are scaled by 1, 2 or 4 depending on the Opcode.
        Offset = MO.getImm() - WordOffset * getImmScale(Opc);

        // If storing the base register, it needs to be reset first.
        Register InstrSrcReg = getLoadStoreRegOp(*MBBI).getReg();

        if (Offset >= 0 && !(IsStore && InstrSrcReg == Base))
          MO.setImm(Offset);
        else
          InsertSub = true;
      } else if ((Opc == ARM::tSUBi8 || Opc == ARM::tADDi8) &&
                 !definesCPSR(*MBBI)) {
        // SUBS/ADDS using this register, with a dead def of the CPSR.
        // Merge it with the update; if the merged offset is too large,
        // insert a new sub instead.
        MachineOperand &MO =
          MBBI->getOperand(MBBI->getDesc().getNumOperands() - 3);
        Offset = (Opc == ARM::tSUBi8) ?
          MO.getImm() + WordOffset * 4 :
          MO.getImm() - WordOffset * 4 ;
        if (Offset >= 0 && TL->isLegalAddImmediate(Offset)) {
          // FIXME: Swap ADDS<->SUBS if Offset < 0, erase instruction if
          // Offset == 0.
          MO.setImm(Offset);
          // The base register has now been reset, so exit early.
          return;
        } else {
          InsertSub = true;
        }
      } else {
        // Can't update the instruction.
        InsertSub = true;
      }
    } else if (definesCPSR(*MBBI) || MBBI->isCall() || MBBI->isBranch()) {
      // Since SUBS sets the condition flags, we can't place the base reset
      // after an instruction that has a live CPSR def.
      // The base register might also contain an argument for a function call.
      InsertSub = true;
    }

    if (InsertSub) {
      // An instruction above couldn't be updated, so insert a sub.
      BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base)
          .add(t1CondCodeOp(true))
          .addReg(Base)
          .addImm(WordOffset * 4)
          .addImm(Pred)
          .addReg(PredReg);
      return;
    }

    if (MBBI->killsRegister(Base) || MBBI->definesRegister(Base))
      // Register got killed. Stop updating.
      return;
  }

  // End of block was reached.
  if (MBB.succ_size() > 0) {
    // FIXME: Because of a bug, live registers are sometimes missing from
    // the successor blocks' live-in sets. This means we can't trust that
    // information and *always* have to reset at the end of a block.
    // See PR21029.
    if (MBBI != MBB.end()) --MBBI;
    BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBi8), Base)
        .add(t1CondCodeOp(true))
        .addReg(Base)
        .addImm(WordOffset * 4)
        .addImm(Pred)
        .addReg(PredReg);
  }
}

/// Return the first register of class \p RegClass that is not in \p Regs.
unsigned ARMLoadStoreOpt::findFreeReg(const TargetRegisterClass &RegClass) {
  if (!RegClassInfoValid) {
    RegClassInfo.runOnMachineFunction(*MF);
    RegClassInfoValid = true;
  }

  for (unsigned Reg : RegClassInfo.getOrder(&RegClass))
    if (!LiveRegs.contains(Reg))
      return Reg;
  return 0;
}

/// Compute live registers just before instruction \p Before (in normal schedule
/// direction). Computes backwards so multiple queries in the same block must
/// come in reverse order.
void ARMLoadStoreOpt::moveLiveRegsBefore(const MachineBasicBlock &MBB,
    MachineBasicBlock::const_iterator Before) {
  // Initialize if we never queried in this block.
  if (!LiveRegsValid) {
    LiveRegs.init(*TRI);
    LiveRegs.addLiveOuts(MBB);
    LiveRegPos = MBB.end();
    LiveRegsValid = true;
  }
  // Move backward just before the "Before" position.
  while (LiveRegPos != Before) {
    --LiveRegPos;
    LiveRegs.stepBackward(*LiveRegPos);
  }
}

static bool ContainsReg(const ArrayRef<std::pair<unsigned, bool>> &Regs,
                        unsigned Reg) {
  for (const std::pair<unsigned, bool> &R : Regs)
    if (R.first == Reg)
      return true;
  return false;
}

/// Create and insert a LDM or STM with Base as base register and registers in
/// Regs as the register operands that would be loaded / stored.  It returns
/// true if the transformation is done.
MachineInstr *ARMLoadStoreOpt::CreateLoadStoreMulti(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
    int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
    ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
    ArrayRef<std::pair<unsigned, bool>> Regs,
    ArrayRef<MachineInstr*> Instrs) {
  unsigned NumRegs = Regs.size();
  assert(NumRegs > 1);

  // For Thumb1 targets, it might be necessary to clobber the CPSR to merge.
  // Compute liveness information for that register to make the decision.
  bool SafeToClobberCPSR = !isThumb1 ||
    (MBB.computeRegisterLiveness(TRI, ARM::CPSR, InsertBefore, 20) ==
     MachineBasicBlock::LQR_Dead);

  bool Writeback = isThumb1; // Thumb1 LDM/STM have base reg writeback.

  // Exception: If the base register is in the input reglist, Thumb1 LDM is
  // non-writeback.
  // It's also not possible to merge an STR of the base register in Thumb1.
  if (isThumb1 && ContainsReg(Regs, Base)) {
    assert(Base != ARM::SP && "Thumb1 does not allow SP in register list");
    if (Opcode == ARM::tLDRi)
      Writeback = false;
    else if (Opcode == ARM::tSTRi)
      return nullptr;
  }

  ARM_AM::AMSubMode Mode = ARM_AM::ia;
  // VFP and Thumb2 do not support IB or DA modes. Thumb1 only supports IA.
  bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
  bool haveIBAndDA = isNotVFP && !isThumb2 && !isThumb1;

  if (Offset == 4 && haveIBAndDA) {
    Mode = ARM_AM::ib;
  } else if (Offset == -4 * (int)NumRegs + 4 && haveIBAndDA) {
    Mode = ARM_AM::da;
  } else if (Offset == -4 * (int)NumRegs && isNotVFP && !isThumb1) {
    // VLDM/VSTM do not support DB mode without also updating the base reg.
    Mode = ARM_AM::db;
  } else if (Offset != 0 || Opcode == ARM::tLDRspi || Opcode == ARM::tSTRspi) {
    // Check if this is a supported opcode before inserting instructions to
    // calculate a new base register.
    if (!getLoadStoreMultipleOpcode(Opcode, Mode)) return nullptr;

    // If starting offset isn't zero, insert a MI to materialize a new base.
    // But only do so if it is cost effective, i.e. merging more than two
    // loads / stores.
    if (NumRegs <= 2)
      return nullptr;

    // On Thumb1, it's not worth materializing a new base register without
    // clobbering the CPSR (i.e. not using ADDS/SUBS).
    if (!SafeToClobberCPSR)
      return nullptr;

    unsigned NewBase;
    if (isi32Load(Opcode)) {
      // If it is a load, then just use one of the destination registers
      // as the new base. Will no longer be writeback in Thumb1.
      NewBase = Regs[NumRegs-1].first;
      Writeback = false;
    } else {
      // Find a free register that we can use as scratch register.
      moveLiveRegsBefore(MBB, InsertBefore);
      // The merged instruction does not exist yet but will use several Regs if
      // it is a Store.
      if (!isLoadSingle(Opcode))
        for (const std::pair<unsigned, bool> &R : Regs)
          LiveRegs.addReg(R.first);

      NewBase = findFreeReg(isThumb1 ? ARM::tGPRRegClass : ARM::GPRRegClass);
      if (NewBase == 0)
        return nullptr;
    }

    int BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2ADDspImm
                                                          : ARM::t2ADDri)
                           : (isThumb1 && Base == ARM::SP)
                                 ? ARM::tADDrSPi
                                 : (isThumb1 && Offset < 8)
                                       ? ARM::tADDi3
                                       : isThumb1 ? ARM::tADDi8 : ARM::ADDri;

    if (Offset < 0) {
      // FIXME: There are no Thumb1 load/store instructions with negative
      // offsets. So the Base != ARM::SP might be unnecessary.
      Offset = -Offset;
      BaseOpc = isThumb2 ? (BaseKill && Base == ARM::SP ? ARM::t2SUBspImm
                                                        : ARM::t2SUBri)
                         : (isThumb1 && Offset < 8 && Base != ARM::SP)
                               ? ARM::tSUBi3
                               : isThumb1 ? ARM::tSUBi8 : ARM::SUBri;
    }

    if (!TL->isLegalAddImmediate(Offset))
      // FIXME: Try add with register operand?
      return nullptr; // Probably not worth it then.

    // We can only append a kill flag to the add/sub input if the value is not
    // used in the register list of the stm as well.
    bool KillOldBase = BaseKill &&
      (!isi32Store(Opcode) || !ContainsReg(Regs, Base));

    if (isThumb1) {
      // Thumb1: depending on immediate size, use either
      //   ADDS NewBase, Base, #imm3
      // or
      //   MOV  NewBase, Base
      //   ADDS NewBase, #imm8.
      if (Base != NewBase &&
          (BaseOpc == ARM::tADDi8 || BaseOpc == ARM::tSUBi8)) {
        // Need to insert a MOV to the new base first.
        if (isARMLowRegister(NewBase) && isARMLowRegister(Base) &&
            !STI->hasV6Ops()) {
          // thumbv4t doesn't have lo->lo copies, and we can't predicate tMOVSr
          if (Pred != ARMCC::AL)
            return nullptr;
          BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVSr), NewBase)
            .addReg(Base, getKillRegState(KillOldBase));
        } else
          BuildMI(MBB, InsertBefore, DL, TII->get(ARM::tMOVr), NewBase)
              .addReg(Base, getKillRegState(KillOldBase))
              .add(predOps(Pred, PredReg));

        // The following ADDS/SUBS becomes an update.
        Base = NewBase;
        KillOldBase = true;
      }
      if (BaseOpc == ARM::tADDrSPi) {
        assert(Offset % 4 == 0 && "tADDrSPi offset is scaled by 4");
        BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
            .addReg(Base, getKillRegState(KillOldBase))
            .addImm(Offset / 4)
            .add(predOps(Pred, PredReg));
      } else
        BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
            .add(t1CondCodeOp(true))
            .addReg(Base, getKillRegState(KillOldBase))
            .addImm(Offset)
            .add(predOps(Pred, PredReg));
    } else {
      BuildMI(MBB, InsertBefore, DL, TII->get(BaseOpc), NewBase)
          .addReg(Base, getKillRegState(KillOldBase))
          .addImm(Offset)
          .add(predOps(Pred, PredReg))
          .add(condCodeOp());
    }
    Base = NewBase;
    BaseKill = true; // New base is always killed straight away.
  }

  bool isDef = isLoadSingle(Opcode);

  // Get LS multiple opcode. Note that for Thumb1 this might be an opcode with
  // base register writeback.
  Opcode = getLoadStoreMultipleOpcode(Opcode, Mode);
  if (!Opcode)
    return nullptr;

  // Check if a Thumb1 LDM/STM merge is safe. This is the case if:
  // - There is no writeback (LDM of base register),
  // - the base register is killed by the merged instruction,
  // - or it's safe to overwrite the condition flags, i.e. to insert a SUBS
  //   to reset the base register.
  // Otherwise, don't merge.
  // It's safe to return here since the code to materialize a new base register
  // above is also conditional on SafeToClobberCPSR.
  if (isThumb1 && !SafeToClobberCPSR && Writeback && !BaseKill)
    return nullptr;

  MachineInstrBuilder MIB;

  if (Writeback) {
    assert(isThumb1 && "expected Writeback only inThumb1");
    if (Opcode == ARM::tLDMIA) {
      assert(!(ContainsReg(Regs, Base)) && "Thumb1 can't LDM ! with Base in Regs");
      // Update tLDMIA with writeback if necessary.
      Opcode = ARM::tLDMIA_UPD;
    }

    MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode));

    // Thumb1: we might need to set base writeback when building the MI.
    MIB.addReg(Base, getDefRegState(true))
       .addReg(Base, getKillRegState(BaseKill));

    // The base isn't dead after a merged instruction with writeback.
    // Insert a sub instruction after the newly formed instruction to reset.
    if (!BaseKill)
      UpdateBaseRegUses(MBB, InsertBefore, DL, Base, NumRegs, Pred, PredReg);
  } else {
    // No writeback, simply build the MachineInstr.
    MIB = BuildMI(MBB, InsertBefore, DL, TII->get(Opcode));
    MIB.addReg(Base, getKillRegState(BaseKill));
  }

  MIB.addImm(Pred).addReg(PredReg);

  for (const std::pair<unsigned, bool> &R : Regs)
    MIB.addReg(R.first, getDefRegState(isDef) | getKillRegState(R.second));

  MIB.cloneMergedMemRefs(Instrs);

  return MIB.getInstr();
}

MachineInstr *ARMLoadStoreOpt::CreateLoadStoreDouble(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
    int Offset, unsigned Base, bool BaseKill, unsigned Opcode,
    ARMCC::CondCodes Pred, unsigned PredReg, const DebugLoc &DL,
    ArrayRef<std::pair<unsigned, bool>> Regs,
    ArrayRef<MachineInstr*> Instrs) const {
  bool IsLoad = isi32Load(Opcode);
  assert((IsLoad || isi32Store(Opcode)) && "Must have integer load or store");
  unsigned LoadStoreOpcode = IsLoad ? ARM::t2LDRDi8 : ARM::t2STRDi8;

  assert(Regs.size() == 2);
  MachineInstrBuilder MIB = BuildMI(MBB, InsertBefore, DL,
                                    TII->get(LoadStoreOpcode));
  if (IsLoad) {
    MIB.addReg(Regs[0].first, RegState::Define)
       .addReg(Regs[1].first, RegState::Define);
  } else {
    MIB.addReg(Regs[0].first, getKillRegState(Regs[0].second))
       .addReg(Regs[1].first, getKillRegState(Regs[1].second));
  }
  MIB.addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg);
  MIB.cloneMergedMemRefs(Instrs);
  return MIB.getInstr();
}

/// Call MergeOps and update MemOps and merges accordingly on success.
MachineInstr *ARMLoadStoreOpt::MergeOpsUpdate(const MergeCandidate &Cand) {
  const MachineInstr *First = Cand.Instrs.front();
  unsigned Opcode = First->getOpcode();
  bool IsLoad = isLoadSingle(Opcode);
  SmallVector<std::pair<unsigned, bool>, 8> Regs;
  SmallVector<unsigned, 4> ImpDefs;
  DenseSet<unsigned> KilledRegs;
  DenseSet<unsigned> UsedRegs;
  // Determine list of registers and list of implicit super-register defs.
  for (const MachineInstr *MI : Cand.Instrs) {
    const MachineOperand &MO = getLoadStoreRegOp(*MI);
    Register Reg = MO.getReg();
    bool IsKill = MO.isKill();
    if (IsKill)
      KilledRegs.insert(Reg);
    Regs.push_back(std::make_pair(Reg, IsKill));
    UsedRegs.insert(Reg);

    if (IsLoad) {
      // Collect any implicit defs of super-registers, after merging we can't
      // be sure anymore that we properly preserved these live ranges and must
      // removed these implicit operands.
      for (const MachineOperand &MO : MI->implicit_operands()) {
        if (!MO.isReg() || !MO.isDef() || MO.isDead())
          continue;
        assert(MO.isImplicit());
        Register DefReg = MO.getReg();

        if (is_contained(ImpDefs, DefReg))
          continue;
        // We can ignore cases where the super-reg is read and written.
        if (MI->readsRegister(DefReg))
          continue;
        ImpDefs.push_back(DefReg);
      }
    }
  }

  // Attempt the merge.
  using iterator = MachineBasicBlock::iterator;

  MachineInstr *LatestMI = Cand.Instrs[Cand.LatestMIIdx];
  iterator InsertBefore = std::next(iterator(LatestMI));
  MachineBasicBlock &MBB = *LatestMI->getParent();
  unsigned Offset = getMemoryOpOffset(*First);
  Register Base = getLoadStoreBaseOp(*First).getReg();
  bool BaseKill = LatestMI->killsRegister(Base);
  Register PredReg;
  ARMCC::CondCodes Pred = getInstrPredicate(*First, PredReg);
  DebugLoc DL = First->getDebugLoc();
  MachineInstr *Merged = nullptr;
  if (Cand.CanMergeToLSDouble)
    Merged = CreateLoadStoreDouble(MBB, InsertBefore, Offset, Base, BaseKill,
                                   Opcode, Pred, PredReg, DL, Regs,
                                   Cand.Instrs);
  if (!Merged && Cand.CanMergeToLSMulti)
    Merged = CreateLoadStoreMulti(MBB, InsertBefore, Offset, Base, BaseKill,
                                  Opcode, Pred, PredReg, DL, Regs, Cand.Instrs);
  if (!Merged)
    return nullptr;

  // Determine earliest instruction that will get removed. We then keep an
  // iterator just above it so the following erases don't invalidated it.
  iterator EarliestI(Cand.Instrs[Cand.EarliestMIIdx]);
  bool EarliestAtBegin = false;
  if (EarliestI == MBB.begin()) {
    EarliestAtBegin = true;
  } else {
    EarliestI = std::prev(EarliestI);
  }

  // Remove instructions which have been merged.
  for (MachineInstr *MI : Cand.Instrs)
    MBB.erase(MI);

  // Determine range between the earliest removed instruction and the new one.
  if (EarliestAtBegin)
    EarliestI = MBB.begin();
  else
    EarliestI = std::next(EarliestI);
  auto FixupRange = make_range(EarliestI, iterator(Merged));

  if (isLoadSingle(Opcode)) {
    // If the previous loads defined a super-reg, then we have to mark earlier
    // operands undef; Replicate the super-reg def on the merged instruction.
    for (MachineInstr &MI : FixupRange) {
      for (unsigned &ImpDefReg : ImpDefs) {
        for (MachineOperand &MO : MI.implicit_operands()) {
          if (!MO.isReg() || MO.getReg() != ImpDefReg)
            continue;
          if (MO.readsReg())
            MO.setIsUndef();
          else if (MO.isDef())
            ImpDefReg = 0;
        }
      }
    }

    MachineInstrBuilder MIB(*Merged->getParent()->getParent(), Merged);
    for (unsigned ImpDef : ImpDefs)
      MIB.addReg(ImpDef, RegState::ImplicitDefine);
  } else {
    // Remove kill flags: We are possibly storing the values later now.
    assert(isi32Store(Opcode) || Opcode == ARM::VSTRS || Opcode == ARM::VSTRD);
    for (MachineInstr &MI : FixupRange) {
      for (MachineOperand &MO : MI.uses()) {
        if (!MO.isReg() || !MO.isKill())
          continue;
        if (UsedRegs.count(MO.getReg()))
          MO.setIsKill(false);
      }
    }
    assert(ImpDefs.empty());
  }

  return Merged;
}

static bool isValidLSDoubleOffset(int Offset) {
  unsigned Value = abs(Offset);
  // t2LDRDi8/t2STRDi8 supports an 8 bit immediate which is internally
  // multiplied by 4.
  return (Value % 4) == 0 && Value < 1024;
}

/// Return true for loads/stores that can be combined to a double/multi
/// operation without increasing the requirements for alignment.
static bool mayCombineMisaligned(const TargetSubtargetInfo &STI,
                                 const MachineInstr &MI) {
  // vldr/vstr trap on misaligned pointers anyway, forming vldm makes no
  // difference.
  unsigned Opcode = MI.getOpcode();
  if (!isi32Load(Opcode) && !isi32Store(Opcode))
    return true;

  // Stack pointer alignment is out of the programmers control so we can trust
  // SP-relative loads/stores.
  if (getLoadStoreBaseOp(MI).getReg() == ARM::SP &&
      STI.getFrameLowering()->getTransientStackAlign() >= Align(4))
    return true;
  return false;
}

/// Find candidates for load/store multiple merge in list of MemOpQueueEntries.
void ARMLoadStoreOpt::FormCandidates(const MemOpQueue &MemOps) {
  const MachineInstr *FirstMI = MemOps[0].MI;
  unsigned Opcode = FirstMI->getOpcode();
  bool isNotVFP = isi32Load(Opcode) || isi32Store(Opcode);
  unsigned Size = getLSMultipleTransferSize(FirstMI);

  unsigned SIndex = 0;
  unsigned EIndex = MemOps.size();
  do {
    // Look at the first instruction.
    const MachineInstr *MI = MemOps[SIndex].MI;
    int Offset = MemOps[SIndex].Offset;
    const MachineOperand &PMO = getLoadStoreRegOp(*MI);
    Register PReg = PMO.getReg();
    unsigned PRegNum = PMO.isUndef() ? std::numeric_limits<unsigned>::max()
                                     : TRI->getEncodingValue(PReg);
    unsigned Latest = SIndex;
    unsigned Earliest = SIndex;
    unsigned Count = 1;
    bool CanMergeToLSDouble =
      STI->isThumb2() && isNotVFP && isValidLSDoubleOffset(Offset);
    // ARM errata 602117: LDRD with base in list may result in incorrect base
    // register when interrupted or faulted.
    if (STI->isCortexM3() && isi32Load(Opcode) &&
        PReg == getLoadStoreBaseOp(*MI).getReg())
      CanMergeToLSDouble = false;

    bool CanMergeToLSMulti = true;
    // On swift vldm/vstm starting with an odd register number as that needs
    // more uops than single vldrs.
    if (STI->hasSlowOddRegister() && !isNotVFP && (PRegNum % 2) == 1)
      CanMergeToLSMulti = false;

    // LDRD/STRD do not allow SP/PC. LDM/STM do not support it or have it
    // deprecated; LDM to PC is fine but cannot happen here.
    if (PReg == ARM::SP || PReg == ARM::PC)
      CanMergeToLSMulti = CanMergeToLSDouble = false;

    // Should we be conservative?
    if (AssumeMisalignedLoadStores && !mayCombineMisaligned(*STI, *MI))
      CanMergeToLSMulti = CanMergeToLSDouble = false;

    // vldm / vstm limit are 32 for S variants, 16 for D variants.
    unsigned Limit;
    switch (Opcode) {
    default:
      Limit = UINT_MAX;
      break;
    case ARM::VLDRD:
    case ARM::VSTRD:
      Limit = 16;
      break;
    }

    // Merge following instructions where possible.
    for (unsigned I = SIndex+1; I < EIndex; ++I, ++Count) {
      int NewOffset = MemOps[I].Offset;
      if (NewOffset != Offset + (int)Size)
        break;
      const MachineOperand &MO = getLoadStoreRegOp(*MemOps[I].MI);
      Register Reg = MO.getReg();
      if (Reg == ARM::SP || Reg == ARM::PC)
        break;
      if (Count == Limit)
        break;

      // See if the current load/store may be part of a multi load/store.
      unsigned RegNum = MO.isUndef() ? std::numeric_limits<unsigned>::max()
                                     : TRI->getEncodingValue(Reg);
      bool PartOfLSMulti = CanMergeToLSMulti;
      if (PartOfLSMulti) {
        // Register numbers must be in ascending order.
        if (RegNum <= PRegNum)
          PartOfLSMulti = false;
        // For VFP / NEON load/store multiples, the registers must be
        // consecutive and within the limit on the number of registers per
        // instruction.
        else if (!isNotVFP && RegNum != PRegNum+1)
          PartOfLSMulti = false;
      }
      // See if the current load/store may be part of a double load/store.
      bool PartOfLSDouble = CanMergeToLSDouble && Count <= 1;

      if (!PartOfLSMulti && !PartOfLSDouble)
        break;
      CanMergeToLSMulti &= PartOfLSMulti;
      CanMergeToLSDouble &= PartOfLSDouble;
      // Track MemOp with latest and earliest position (Positions are
      // counted in reverse).
      unsigned Position = MemOps[I].Position;
      if (Position < MemOps[Latest].Position)
        Latest = I;
      else if (Position > MemOps[Earliest].Position)
        Earliest = I;
      // Prepare for next MemOp.
      Offset += Size;
      PRegNum = RegNum;
    }

    // Form a candidate from the Ops collected so far.
    MergeCandidate *Candidate = new(Allocator.Allocate()) MergeCandidate;
    for (unsigned C = SIndex, CE = SIndex + Count; C < CE; ++C)
      Candidate->Instrs.push_back(MemOps[C].MI);
    Candidate->LatestMIIdx = Latest - SIndex;
    Candidate->EarliestMIIdx = Earliest - SIndex;
    Candidate->InsertPos = MemOps[Latest].Position;
    if (Count == 1)
      CanMergeToLSMulti = CanMergeToLSDouble = false;
    Candidate->CanMergeToLSMulti = CanMergeToLSMulti;
    Candidate->CanMergeToLSDouble = CanMergeToLSDouble;
    Candidates.push_back(Candidate);
    // Continue after the chain.
    SIndex += Count;
  } while (SIndex < EIndex);
}

static unsigned getUpdatingLSMultipleOpcode(unsigned Opc,
                                            ARM_AM::AMSubMode Mode) {
  switch (Opc) {
  default: llvm_unreachable("Unhandled opcode!");
  case ARM::LDMIA:
  case ARM::LDMDA:
  case ARM::LDMDB:
  case ARM::LDMIB:
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::LDMIA_UPD;
    case ARM_AM::ib: return ARM::LDMIB_UPD;
    case ARM_AM::da: return ARM::LDMDA_UPD;
    case ARM_AM::db: return ARM::LDMDB_UPD;
    }
  case ARM::STMIA:
  case ARM::STMDA:
  case ARM::STMDB:
  case ARM::STMIB:
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::STMIA_UPD;
    case ARM_AM::ib: return ARM::STMIB_UPD;
    case ARM_AM::da: return ARM::STMDA_UPD;
    case ARM_AM::db: return ARM::STMDB_UPD;
    }
  case ARM::t2LDMIA:
  case ARM::t2LDMDB:
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::t2LDMIA_UPD;
    case ARM_AM::db: return ARM::t2LDMDB_UPD;
    }
  case ARM::t2STMIA:
  case ARM::t2STMDB:
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::t2STMIA_UPD;
    case ARM_AM::db: return ARM::t2STMDB_UPD;
    }
  case ARM::VLDMSIA:
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::VLDMSIA_UPD;
    case ARM_AM::db: return ARM::VLDMSDB_UPD;
    }
  case ARM::VLDMDIA:
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::VLDMDIA_UPD;
    case ARM_AM::db: return ARM::VLDMDDB_UPD;
    }
  case ARM::VSTMSIA:
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::VSTMSIA_UPD;
    case ARM_AM::db: return ARM::VSTMSDB_UPD;
    }
  case ARM::VSTMDIA:
    switch (Mode) {
    default: llvm_unreachable("Unhandled submode!");
    case ARM_AM::ia: return ARM::VSTMDIA_UPD;
    case ARM_AM::db: return ARM::VSTMDDB_UPD;
    }
  }
}

/// Check if the given instruction increments or decrements a register and
/// return the amount it is incremented/decremented. Returns 0 if the CPSR flags
/// generated by the instruction are possibly read as well.
static int isIncrementOrDecrement(const MachineInstr &MI, Register Reg,
                                  ARMCC::CondCodes Pred, Register PredReg) {
  bool CheckCPSRDef;
  int Scale;
  switch (MI.getOpcode()) {
  case ARM::tADDi8:  Scale =  4; CheckCPSRDef = true; break;
  case ARM::tSUBi8:  Scale = -4; CheckCPSRDef = true; break;
  case ARM::t2SUBri:
  case ARM::t2SUBspImm:
  case ARM::SUBri:   Scale = -1; CheckCPSRDef = true; break;
  case ARM::t2ADDri:
  case ARM::t2ADDspImm:
  case ARM::ADDri:   Scale =  1; CheckCPSRDef = true; break;
  case ARM::tADDspi: Scale =  4; CheckCPSRDef = false; break;
  case ARM::tSUBspi: Scale = -4; CheckCPSRDef = false; break;
  default: return 0;
  }

  Register MIPredReg;
  if (MI.getOperand(0).getReg() != Reg ||
      MI.getOperand(1).getReg() != Reg ||
      getInstrPredicate(MI, MIPredReg) != Pred ||
      MIPredReg != PredReg)
    return 0;

  if (CheckCPSRDef && definesCPSR(MI))
    return 0;
  return MI.getOperand(2).getImm() * Scale;
}

/// Searches for an increment or decrement of \p Reg before \p MBBI.
static MachineBasicBlock::iterator
findIncDecBefore(MachineBasicBlock::iterator MBBI, Register Reg,
                 ARMCC::CondCodes Pred, Register PredReg, int &Offset) {
  Offset = 0;
  MachineBasicBlock &MBB = *MBBI->getParent();
  MachineBasicBlock::iterator BeginMBBI = MBB.begin();
  MachineBasicBlock::iterator EndMBBI = MBB.end();
  if (MBBI == BeginMBBI)
    return EndMBBI;

  // Skip debug values.
  MachineBasicBlock::iterator PrevMBBI = std::prev(MBBI);
  while (PrevMBBI->isDebugInstr() && PrevMBBI != BeginMBBI)
    --PrevMBBI;

  Offset = isIncrementOrDecrement(*PrevMBBI, Reg, Pred, PredReg);
  return Offset == 0 ? EndMBBI : PrevMBBI;
}

/// Searches for a increment or decrement of \p Reg after \p MBBI.
static MachineBasicBlock::iterator
findIncDecAfter(MachineBasicBlock::iterator MBBI, Register Reg,
                ARMCC::CondCodes Pred, Register PredReg, int &Offset) {
  Offset = 0;
  MachineBasicBlock &MBB = *MBBI->getParent();
  MachineBasicBlock::iterator EndMBBI = MBB.end();
  MachineBasicBlock::iterator NextMBBI = std::next(MBBI);
  // Skip debug values.
  while (NextMBBI != EndMBBI && NextMBBI->isDebugInstr())
    ++NextMBBI;
  if (NextMBBI == EndMBBI)
    return EndMBBI;

  Offset = isIncrementOrDecrement(*NextMBBI, Reg, Pred, PredReg);
  return Offset == 0 ? EndMBBI : NextMBBI;
}

/// Fold proceeding/trailing inc/dec of base register into the
/// LDM/STM/VLDM{D|S}/VSTM{D|S} op when possible:
///
/// stmia rn, <ra, rb, rc>
/// rn := rn + 4 * 3;
/// =>
/// stmia rn!, <ra, rb, rc>
///
/// rn := rn - 4 * 3;
/// ldmia rn, <ra, rb, rc>
/// =>
/// ldmdb rn!, <ra, rb, rc>
bool ARMLoadStoreOpt::MergeBaseUpdateLSMultiple(MachineInstr *MI) {
  // Thumb1 is already using updating loads/stores.
  if (isThumb1) return false;

  const MachineOperand &BaseOP = MI->getOperand(0);
  Register Base = BaseOP.getReg();
  bool BaseKill = BaseOP.isKill();
  Register PredReg;
  ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
  unsigned Opcode = MI->getOpcode();
  DebugLoc DL = MI->getDebugLoc();

  // Can't use an updating ld/st if the base register is also a dest
  // register. e.g. ldmdb r0!, {r0, r1, r2}. The behavior is undefined.
  for (unsigned i = 2, e = MI->getNumOperands(); i != e; ++i)
    if (MI->getOperand(i).getReg() == Base)
      return false;

  int Bytes = getLSMultipleTransferSize(MI);
  MachineBasicBlock &MBB = *MI->getParent();
  MachineBasicBlock::iterator MBBI(MI);
  int Offset;
  MachineBasicBlock::iterator MergeInstr
    = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset);
  ARM_AM::AMSubMode Mode = getLoadStoreMultipleSubMode(Opcode);
  if (Mode == ARM_AM::ia && Offset == -Bytes) {
    Mode = ARM_AM::db;
  } else if (Mode == ARM_AM::ib && Offset == -Bytes) {
    Mode = ARM_AM::da;
  } else {
    MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset);
    if (((Mode != ARM_AM::ia && Mode != ARM_AM::ib) || Offset != Bytes) &&
        ((Mode != ARM_AM::da && Mode != ARM_AM::db) || Offset != -Bytes)) {

      // We couldn't find an inc/dec to merge. But if the base is dead, we
      // can still change to a writeback form as that will save us 2 bytes
      // of code size. It can create WAW hazards though, so only do it if
      // we're minimizing code size.
      if (!STI->hasMinSize() || !BaseKill)
        return false;

      bool HighRegsUsed = false;
      for (unsigned i = 2, e = MI->getNumOperands(); i != e; ++i)
        if (MI->getOperand(i).getReg() >= ARM::R8) {
          HighRegsUsed = true;
          break;
        }

      if (!HighRegsUsed)
        MergeInstr = MBB.end();
      else
        return false;
    }
  }
  if (MergeInstr != MBB.end())
    MBB.erase(MergeInstr);

  unsigned NewOpc = getUpdatingLSMultipleOpcode(Opcode, Mode);
  MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
    .addReg(Base, getDefRegState(true)) // WB base register
    .addReg(Base, getKillRegState(BaseKill))
    .addImm(Pred).addReg(PredReg);

  // Transfer the rest of operands.
  for (unsigned OpNum = 3, e = MI->getNumOperands(); OpNum != e; ++OpNum)
    MIB.add(MI->getOperand(OpNum));

  // Transfer memoperands.
  MIB.setMemRefs(MI->memoperands());

  MBB.erase(MBBI);
  return true;
}

static unsigned getPreIndexedLoadStoreOpcode(unsigned Opc,
                                             ARM_AM::AddrOpc Mode) {
  switch (Opc) {
  case ARM::LDRi12:
    return ARM::LDR_PRE_IMM;
  case ARM::STRi12:
    return ARM::STR_PRE_IMM;
  case ARM::VLDRS:
    return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
  case ARM::VLDRD:
    return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
  case ARM::VSTRS:
    return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
  case ARM::VSTRD:
    return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
  case ARM::t2LDRi8:
  case ARM::t2LDRi12:
    return ARM::t2LDR_PRE;
  case ARM::t2STRi8:
  case ARM::t2STRi12:
    return ARM::t2STR_PRE;
  default: llvm_unreachable("Unhandled opcode!");
  }
}

static unsigned getPostIndexedLoadStoreOpcode(unsigned Opc,
                                              ARM_AM::AddrOpc Mode) {
  switch (Opc) {
  case ARM::LDRi12:
    return ARM::LDR_POST_IMM;
  case ARM::STRi12:
    return ARM::STR_POST_IMM;
  case ARM::VLDRS:
    return Mode == ARM_AM::add ? ARM::VLDMSIA_UPD : ARM::VLDMSDB_UPD;
  case ARM::VLDRD:
    return Mode == ARM_AM::add ? ARM::VLDMDIA_UPD : ARM::VLDMDDB_UPD;
  case ARM::VSTRS:
    return Mode == ARM_AM::add ? ARM::VSTMSIA_UPD : ARM::VSTMSDB_UPD;
  case ARM::VSTRD:
    return Mode == ARM_AM::add ? ARM::VSTMDIA_UPD : ARM::VSTMDDB_UPD;
  case ARM::t2LDRi8:
  case ARM::t2LDRi12:
    return ARM::t2LDR_POST;
  case ARM::t2STRi8:
  case ARM::t2STRi12:
    return ARM::t2STR_POST;

  case ARM::MVE_VLDRBS16:
    return ARM::MVE_VLDRBS16_post;
  case ARM::MVE_VLDRBS32:
    return ARM::MVE_VLDRBS32_post;
  case ARM::MVE_VLDRBU16:
    return ARM::MVE_VLDRBU16_post;
  case ARM::MVE_VLDRBU32:
    return ARM::MVE_VLDRBU32_post;
  case ARM::MVE_VLDRHS32:
    return ARM::MVE_VLDRHS32_post;
  case ARM::MVE_VLDRHU32:
    return ARM::MVE_VLDRHU32_post;
  case ARM::MVE_VLDRBU8:
    return ARM::MVE_VLDRBU8_post;
  case ARM::MVE_VLDRHU16:
    return ARM::MVE_VLDRHU16_post;
  case ARM::MVE_VLDRWU32:
    return ARM::MVE_VLDRWU32_post;
  case ARM::MVE_VSTRB16:
    return ARM::MVE_VSTRB16_post;
  case ARM::MVE_VSTRB32:
    return ARM::MVE_VSTRB32_post;
  case ARM::MVE_VSTRH32:
    return ARM::MVE_VSTRH32_post;
  case ARM::MVE_VSTRBU8:
    return ARM::MVE_VSTRBU8_post;
  case ARM::MVE_VSTRHU16:
    return ARM::MVE_VSTRHU16_post;
  case ARM::MVE_VSTRWU32:
    return ARM::MVE_VSTRWU32_post;

  default: llvm_unreachable("Unhandled opcode!");
  }
}

/// Fold proceeding/trailing inc/dec of base register into the
/// LDR/STR/FLD{D|S}/FST{D|S} op when possible:
bool ARMLoadStoreOpt::MergeBaseUpdateLoadStore(MachineInstr *MI) {
  // Thumb1 doesn't have updating LDR/STR.
  // FIXME: Use LDM/STM with single register instead.
  if (isThumb1) return false;

  Register Base = getLoadStoreBaseOp(*MI).getReg();
  bool BaseKill = getLoadStoreBaseOp(*MI).isKill();
  unsigned Opcode = MI->getOpcode();
  DebugLoc DL = MI->getDebugLoc();
  bool isAM5 = (Opcode == ARM::VLDRD || Opcode == ARM::VLDRS ||
                Opcode == ARM::VSTRD || Opcode == ARM::VSTRS);
  bool isAM2 = (Opcode == ARM::LDRi12 || Opcode == ARM::STRi12);
  if (isi32Load(Opcode) || isi32Store(Opcode))
    if (MI->getOperand(2).getImm() != 0)
      return false;
  if (isAM5 && ARM_AM::getAM5Offset(MI->getOperand(2).getImm()) != 0)
    return false;

  // Can't do the merge if the destination register is the same as the would-be
  // writeback register.
  if (MI->getOperand(0).getReg() == Base)
    return false;

  Register PredReg;
  ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);
  int Bytes = getLSMultipleTransferSize(MI);
  MachineBasicBlock &MBB = *MI->getParent();
  MachineBasicBlock::iterator MBBI(MI);
  int Offset;
  MachineBasicBlock::iterator MergeInstr
    = findIncDecBefore(MBBI, Base, Pred, PredReg, Offset);
  unsigned NewOpc;
  if (!isAM5 && Offset == Bytes) {
    NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::add);
  } else if (Offset == -Bytes) {
    NewOpc = getPreIndexedLoadStoreOpcode(Opcode, ARM_AM::sub);
  } else {
    MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset);
    if (Offset == Bytes) {
      NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::add);
    } else if (!isAM5 && Offset == -Bytes) {
      NewOpc = getPostIndexedLoadStoreOpcode(Opcode, ARM_AM::sub);
    } else
      return false;
  }
  MBB.erase(MergeInstr);

  ARM_AM::AddrOpc AddSub = Offset < 0 ? ARM_AM::sub : ARM_AM::add;

  bool isLd = isLoadSingle(Opcode);
  if (isAM5) {
    // VLDM[SD]_UPD, VSTM[SD]_UPD
    // (There are no base-updating versions of VLDR/VSTR instructions, but the
    // updating load/store-multiple instructions can be used with only one
    // register.)
    MachineOperand &MO = MI->getOperand(0);
    BuildMI(MBB, MBBI, DL, TII->get(NewOpc))
      .addReg(Base, getDefRegState(true)) // WB base register
      .addReg(Base, getKillRegState(isLd ? BaseKill : false))
      .addImm(Pred).addReg(PredReg)
      .addReg(MO.getReg(), (isLd ? getDefRegState(true) :
                            getKillRegState(MO.isKill())))
      .cloneMemRefs(*MI);
  } else if (isLd) {
    if (isAM2) {
      // LDR_PRE, LDR_POST
      if (NewOpc == ARM::LDR_PRE_IMM || NewOpc == ARM::LDRB_PRE_IMM) {
        BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
          .addReg(Base, RegState::Define)
          .addReg(Base).addImm(Offset).addImm(Pred).addReg(PredReg)
          .cloneMemRefs(*MI);
      } else {
        int Imm = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift);
        BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
            .addReg(Base, RegState::Define)
            .addReg(Base)
            .addReg(0)
            .addImm(Imm)
            .add(predOps(Pred, PredReg))
            .cloneMemRefs(*MI);
      }
    } else {
      // t2LDR_PRE, t2LDR_POST
      BuildMI(MBB, MBBI, DL, TII->get(NewOpc), MI->getOperand(0).getReg())
          .addReg(Base, RegState::Define)
          .addReg(Base)
          .addImm(Offset)
          .add(predOps(Pred, PredReg))
          .cloneMemRefs(*MI);
    }
  } else {
    MachineOperand &MO = MI->getOperand(0);
    // FIXME: post-indexed stores use am2offset_imm, which still encodes
    // the vestigal zero-reg offset register. When that's fixed, this clause
    // can be removed entirely.
    if (isAM2 && NewOpc == ARM::STR_POST_IMM) {
      int Imm = ARM_AM::getAM2Opc(AddSub, Bytes, ARM_AM::no_shift);
      // STR_PRE, STR_POST
      BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base)
          .addReg(MO.getReg(), getKillRegState(MO.isKill()))
          .addReg(Base)
          .addReg(0)
          .addImm(Imm)
          .add(predOps(Pred, PredReg))
          .cloneMemRefs(*MI);
    } else {
      // t2STR_PRE, t2STR_POST
      BuildMI(MBB, MBBI, DL, TII->get(NewOpc), Base)
          .addReg(MO.getReg(), getKillRegState(MO.isKill()))
          .addReg(Base)
          .addImm(Offset)
          .add(predOps(Pred, PredReg))
          .cloneMemRefs(*MI);
    }
  }
  MBB.erase(MBBI);

  return true;
}

bool ARMLoadStoreOpt::MergeBaseUpdateLSDouble(MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();
  assert((Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8) &&
         "Must have t2STRDi8 or t2LDRDi8");
  if (MI.getOperand(3).getImm() != 0)
    return false;

  // Behaviour for writeback is undefined if base register is the same as one
  // of the others.
  const MachineOperand &BaseOp = MI.getOperand(2);
  Register Base = BaseOp.getReg();
  const MachineOperand &Reg0Op = MI.getOperand(0);
  const MachineOperand &Reg1Op = MI.getOperand(1);
  if (Reg0Op.getReg() == Base || Reg1Op.getReg() == Base)
    return false;

  Register PredReg;
  ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
  MachineBasicBlock::iterator MBBI(MI);
  MachineBasicBlock &MBB = *MI.getParent();
  int Offset;
  MachineBasicBlock::iterator MergeInstr = findIncDecBefore(MBBI, Base, Pred,
                                                            PredReg, Offset);
  unsigned NewOpc;
  if (Offset == 8 || Offset == -8) {
    NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_PRE : ARM::t2STRD_PRE;
  } else {
    MergeInstr = findIncDecAfter(MBBI, Base, Pred, PredReg, Offset);
    if (Offset == 8 || Offset == -8) {
      NewOpc = Opcode == ARM::t2LDRDi8 ? ARM::t2LDRD_POST : ARM::t2STRD_POST;
    } else
      return false;
  }
  MBB.erase(MergeInstr);

  DebugLoc DL = MI.getDebugLoc();
  MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc));
  if (NewOpc == ARM::t2LDRD_PRE || NewOpc == ARM::t2LDRD_POST) {
    MIB.add(Reg0Op).add(Reg1Op).addReg(BaseOp.getReg(), RegState::Define);
  } else {
    assert(NewOpc == ARM::t2STRD_PRE || NewOpc == ARM::t2STRD_POST);
    MIB.addReg(BaseOp.getReg(), RegState::Define).add(Reg0Op).add(Reg1Op);
  }
  MIB.addReg(BaseOp.getReg(), RegState::Kill)
     .addImm(Offset).addImm(Pred).addReg(PredReg);
  assert(TII->get(Opcode).getNumOperands() == 6 &&
         TII->get(NewOpc).getNumOperands() == 7 &&
         "Unexpected number of operands in Opcode specification.");

  // Transfer implicit operands.
  for (const MachineOperand &MO : MI.implicit_operands())
    MIB.add(MO);
  MIB.cloneMemRefs(MI);

  MBB.erase(MBBI);
  return true;
}

/// Returns true if instruction is a memory operation that this pass is capable
/// of operating on.
static bool isMemoryOp(const MachineInstr &MI) {
  unsigned Opcode = MI.getOpcode();
  switch (Opcode) {
  case ARM::VLDRS:
  case ARM::VSTRS:
  case ARM::VLDRD:
  case ARM::VSTRD:
  case ARM::LDRi12:
  case ARM::STRi12:
  case ARM::tLDRi:
  case ARM::tSTRi:
  case ARM::tLDRspi:
  case ARM::tSTRspi:
  case ARM::t2LDRi8:
  case ARM::t2LDRi12:
  case ARM::t2STRi8:
  case ARM::t2STRi12:
    break;
  default:
    return false;
  }
  if (!MI.getOperand(1).isReg())
    return false;

  // When no memory operands are present, conservatively assume unaligned,
  // volatile, unfoldable.
  if (!MI.hasOneMemOperand())
    return false;

  const MachineMemOperand &MMO = **MI.memoperands_begin();

  // Don't touch volatile memory accesses - we may be changing their order.
  // TODO: We could allow unordered and monotonic atomics here, but we need to
  // make sure the resulting ldm/stm is correctly marked as atomic.
  if (MMO.isVolatile() || MMO.isAtomic())
    return false;

  // Unaligned ldr/str is emulated by some kernels, but unaligned ldm/stm is
  // not.
  if (MMO.getAlign() < Align(4))
    return false;

  // str <undef> could probably be eliminated entirely, but for now we just want
  // to avoid making a mess of it.
  // FIXME: Use str <undef> as a wildcard to enable better stm folding.
  if (MI.getOperand(0).isReg() && MI.getOperand(0).isUndef())
    return false;

  // Likewise don't mess with references to undefined addresses.
  if (MI.getOperand(1).isUndef())
    return false;

  return true;
}

static void InsertLDR_STR(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator &MBBI, int Offset,
                          bool isDef, unsigned NewOpc, unsigned Reg,
                          bool RegDeadKill, bool RegUndef, unsigned BaseReg,
                          bool BaseKill, bool BaseUndef, ARMCC::CondCodes Pred,
                          unsigned PredReg, const TargetInstrInfo *TII,
                          MachineInstr *MI) {
  if (isDef) {
    MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
                                      TII->get(NewOpc))
      .addReg(Reg, getDefRegState(true) | getDeadRegState(RegDeadKill))
      .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
    MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
    // FIXME: This is overly conservative; the new instruction accesses 4
    // bytes, not 8.
    MIB.cloneMemRefs(*MI);
  } else {
    MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
                                      TII->get(NewOpc))
      .addReg(Reg, getKillRegState(RegDeadKill) | getUndefRegState(RegUndef))
      .addReg(BaseReg, getKillRegState(BaseKill)|getUndefRegState(BaseUndef));
    MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
    // FIXME: This is overly conservative; the new instruction accesses 4
    // bytes, not 8.
    MIB.cloneMemRefs(*MI);
  }
}

bool ARMLoadStoreOpt::FixInvalidRegPairOp(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator &MBBI) {
  MachineInstr *MI = &*MBBI;
  unsigned Opcode = MI->getOpcode();
  // FIXME: Code/comments below check Opcode == t2STRDi8, but this check returns
  // if we see this opcode.
  if (Opcode != ARM::LDRD && Opcode != ARM::STRD && Opcode != ARM::t2LDRDi8)
    return false;

  const MachineOperand &BaseOp = MI->getOperand(2);
  Register BaseReg = BaseOp.getReg();
  Register EvenReg = MI->getOperand(0).getReg();
  Register OddReg = MI->getOperand(1).getReg();
  unsigned EvenRegNum = TRI->getDwarfRegNum(EvenReg, false);
  unsigned OddRegNum  = TRI->getDwarfRegNum(OddReg, false);

  // ARM errata 602117: LDRD with base in list may result in incorrect base
  // register when interrupted or faulted.
  bool Errata602117 = EvenReg == BaseReg &&
    (Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8) && STI->isCortexM3();
  // ARM LDRD/STRD needs consecutive registers.
  bool NonConsecutiveRegs = (Opcode == ARM::LDRD || Opcode == ARM::STRD) &&
    (EvenRegNum % 2 != 0 || EvenRegNum + 1 != OddRegNum);

  if (!Errata602117 && !NonConsecutiveRegs)
    return false;

  bool isT2 = Opcode == ARM::t2LDRDi8 || Opcode == ARM::t2STRDi8;
  bool isLd = Opcode == ARM::LDRD || Opcode == ARM::t2LDRDi8;
  bool EvenDeadKill = isLd ?
    MI->getOperand(0).isDead() : MI->getOperand(0).isKill();
  bool EvenUndef = MI->getOperand(0).isUndef();
  bool OddDeadKill  = isLd ?
    MI->getOperand(1).isDead() : MI->getOperand(1).isKill();
  bool OddUndef = MI->getOperand(1).isUndef();
  bool BaseKill = BaseOp.isKill();
  bool BaseUndef = BaseOp.isUndef();
  assert((isT2 || MI->getOperand(3).getReg() == ARM::NoRegister) &&
         "register offset not handled below");
  int OffImm = getMemoryOpOffset(*MI);
  Register PredReg;
  ARMCC::CondCodes Pred = getInstrPredicate(*MI, PredReg);

  if (OddRegNum > EvenRegNum && OffImm == 0) {
    // Ascending register numbers and no offset. It's safe to change it to a
    // ldm or stm.
    unsigned NewOpc = (isLd)
      ? (isT2 ? ARM::t2LDMIA : ARM::LDMIA)
      : (isT2 ? ARM::t2STMIA : ARM::STMIA);
    if (isLd) {
      BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
        .addReg(BaseReg, getKillRegState(BaseKill))
        .addImm(Pred).addReg(PredReg)
        .addReg(EvenReg, getDefRegState(isLd) | getDeadRegState(EvenDeadKill))
        .addReg(OddReg,  getDefRegState(isLd) | getDeadRegState(OddDeadKill))
        .cloneMemRefs(*MI);
      ++NumLDRD2LDM;
    } else {
      BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(NewOpc))
        .addReg(BaseReg, getKillRegState(BaseKill))
        .addImm(Pred).addReg(PredReg)
        .addReg(EvenReg,
                getKillRegState(EvenDeadKill) | getUndefRegState(EvenUndef))
        .addReg(OddReg,
                getKillRegState(OddDeadKill)  | getUndefRegState(OddUndef))
        .cloneMemRefs(*MI);
      ++NumSTRD2STM;
    }
  } else {
    // Split into two instructions.
    unsigned NewOpc = (isLd)
      ? (isT2 ? (OffImm < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
      : (isT2 ? (OffImm < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
    // Be extra careful for thumb2. t2LDRi8 can't reference a zero offset,
    // so adjust and use t2LDRi12 here for that.
    unsigned NewOpc2 = (isLd)
      ? (isT2 ? (OffImm+4 < 0 ? ARM::t2LDRi8 : ARM::t2LDRi12) : ARM::LDRi12)
      : (isT2 ? (OffImm+4 < 0 ? ARM::t2STRi8 : ARM::t2STRi12) : ARM::STRi12);
    // If this is a load, make sure the first load does not clobber the base
    // register before the second load reads it.
    if (isLd && TRI->regsOverlap(EvenReg, BaseReg)) {
      assert(!TRI->regsOverlap(OddReg, BaseReg));
      InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill,
                    false, BaseReg, false, BaseUndef, Pred, PredReg, TII, MI);
      InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill,
                    false, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII,
                    MI);
    } else {
      if (OddReg == EvenReg && EvenDeadKill) {
        // If the two source operands are the same, the kill marker is
        // probably on the first one. e.g.
        // t2STRDi8 killed %r5, %r5, killed %r9, 0, 14, %reg0
        EvenDeadKill = false;
        OddDeadKill = true;
      }
      // Never kill the base register in the first instruction.
      if (EvenReg == BaseReg)
        EvenDeadKill = false;
      InsertLDR_STR(MBB, MBBI, OffImm, isLd, NewOpc, EvenReg, EvenDeadKill,
                    EvenUndef, BaseReg, false, BaseUndef, Pred, PredReg, TII,
                    MI);
      InsertLDR_STR(MBB, MBBI, OffImm + 4, isLd, NewOpc2, OddReg, OddDeadKill,
                    OddUndef, BaseReg, BaseKill, BaseUndef, Pred, PredReg, TII,
                    MI);
    }
    if (isLd)
      ++NumLDRD2LDR;
    else
      ++NumSTRD2STR;
  }

  MBBI = MBB.erase(MBBI);
  return true;
}

/// An optimization pass to turn multiple LDR / STR ops of the same base and
/// incrementing offset into LDM / STM ops.
bool ARMLoadStoreOpt::LoadStoreMultipleOpti(MachineBasicBlock &MBB) {
  MemOpQueue MemOps;
  unsigned CurrBase = 0;
  unsigned CurrOpc = ~0u;
  ARMCC::CondCodes CurrPred = ARMCC::AL;
  unsigned Position = 0;
  assert(Candidates.size() == 0);
  assert(MergeBaseCandidates.size() == 0);
  LiveRegsValid = false;

  for (MachineBasicBlock::iterator I = MBB.end(), MBBI; I != MBB.begin();
       I = MBBI) {
    // The instruction in front of the iterator is the one we look at.
    MBBI = std::prev(I);
    if (FixInvalidRegPairOp(MBB, MBBI))
      continue;
    ++Position;

    if (isMemoryOp(*MBBI)) {
      unsigned Opcode = MBBI->getOpcode();
      const MachineOperand &MO = MBBI->getOperand(0);
      Register Reg = MO.getReg();
      Register Base = getLoadStoreBaseOp(*MBBI).getReg();
      Register PredReg;
      ARMCC::CondCodes Pred = getInstrPredicate(*MBBI, PredReg);
      int Offset = getMemoryOpOffset(*MBBI);
      if (CurrBase == 0) {
        // Start of a new chain.
        CurrBase = Base;
        CurrOpc  = Opcode;
        CurrPred = Pred;
        MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position));
        continue;
      }
      // Note: No need to match PredReg in the next if.
      if (CurrOpc == Opcode && CurrBase == Base && CurrPred == Pred) {
        // Watch out for:
        //   r4 := ldr [r0, #8]
        //   r4 := ldr [r0, #4]
        // or
        //   r0 := ldr [r0]
        // If a load overrides the base register or a register loaded by
        // another load in our chain, we cannot take this instruction.
        bool Overlap = false;
        if (isLoadSingle(Opcode)) {
          Overlap = (Base == Reg);
          if (!Overlap) {
            for (const MemOpQueueEntry &E : MemOps) {
              if (TRI->regsOverlap(Reg, E.MI->getOperand(0).getReg())) {
                Overlap = true;
                break;
              }
            }
          }
        }

        if (!Overlap) {
          // Check offset and sort memory operation into the current chain.
          if (Offset > MemOps.back().Offset) {
            MemOps.push_back(MemOpQueueEntry(*MBBI, Offset, Position));
            continue;
          } else {
            MemOpQueue::iterator MI, ME;
            for (MI = MemOps.begin(), ME = MemOps.end(); MI != ME; ++MI) {
              if (Offset < MI->Offset) {
                // Found a place to insert.
                break;
              }
              if (Offset == MI->Offset) {
                // Collision, abort.
                MI = ME;
                break;
              }
            }
            if (MI != MemOps.end()) {
              MemOps.insert(MI, MemOpQueueEntry(*MBBI, Offset, Position));
              continue;
            }
          }
        }
      }

      // Don't advance the iterator; The op will start a new chain next.
      MBBI = I;
      --Position;
      // Fallthrough to look into existing chain.
    } else if (MBBI->isDebugInstr()) {
      continue;
    } else if (MBBI->getOpcode() == ARM::t2LDRDi8 ||
               MBBI->getOpcode() == ARM::t2STRDi8) {
      // ARMPreAllocLoadStoreOpt has already formed some LDRD/STRD instructions
      // remember them because we may still be able to merge add/sub into them.
      MergeBaseCandidates.push_back(&*MBBI);
    }

    // If we are here then the chain is broken; Extract candidates for a merge.
    if (MemOps.size() > 0) {
      FormCandidates(MemOps);
      // Reset for the next chain.
      CurrBase = 0;
      CurrOpc = ~0u;
      CurrPred = ARMCC::AL;
      MemOps.clear();
    }
  }
  if (MemOps.size() > 0)
    FormCandidates(MemOps);

  // Sort candidates so they get processed from end to begin of the basic
  // block later; This is necessary for liveness calculation.
  auto LessThan = [](const MergeCandidate* M0, const MergeCandidate *M1) {
    return M0->InsertPos < M1->InsertPos;
  };
  llvm::sort(Candidates, LessThan);

  // Go through list of candidates and merge.
  bool Changed = false;
  for (const MergeCandidate *Candidate : Candidates) {
    if (Candidate->CanMergeToLSMulti || Candidate->CanMergeToLSDouble) {
      MachineInstr *Merged = MergeOpsUpdate(*Candidate);
      // Merge preceding/trailing base inc/dec into the merged op.
      if (Merged) {
        Changed = true;
        unsigned Opcode = Merged->getOpcode();
        if (Opcode == ARM::t2STRDi8 || Opcode == ARM::t2LDRDi8)
          MergeBaseUpdateLSDouble(*Merged);
        else
          MergeBaseUpdateLSMultiple(Merged);
      } else {
        for (MachineInstr *MI : Candidate->Instrs) {
          if (MergeBaseUpdateLoadStore(MI))
            Changed = true;
        }
      }
    } else {
      assert(Candidate->Instrs.size() == 1);
      if (MergeBaseUpdateLoadStore(Candidate->Instrs.front()))
        Changed = true;
    }
  }
  Candidates.clear();
  // Try to fold add/sub into the LDRD/STRD formed by ARMPreAllocLoadStoreOpt.
  for (MachineInstr *MI : MergeBaseCandidates)
    MergeBaseUpdateLSDouble(*MI);
  MergeBaseCandidates.clear();

  return Changed;
}

/// If this is a exit BB, try merging the return ops ("bx lr" and "mov pc, lr")
/// into the preceding stack restore so it directly restore the value of LR
/// into pc.
///   ldmfd sp!, {..., lr}
///   bx lr
/// or
///   ldmfd sp!, {..., lr}
///   mov pc, lr
/// =>
///   ldmfd sp!, {..., pc}
bool ARMLoadStoreOpt::MergeReturnIntoLDM(MachineBasicBlock &MBB) {
  // Thumb1 LDM doesn't allow high registers.
  if (isThumb1) return false;
  if (MBB.empty()) return false;

  MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
  if (MBBI != MBB.begin() && MBBI != MBB.end() &&
      (MBBI->getOpcode() == ARM::BX_RET ||
       MBBI->getOpcode() == ARM::tBX_RET ||
       MBBI->getOpcode() == ARM::MOVPCLR)) {
    MachineBasicBlock::iterator PrevI = std::prev(MBBI);
    // Ignore any debug instructions.
    while (PrevI->isDebugInstr() && PrevI != MBB.begin())
      --PrevI;
    MachineInstr &PrevMI = *PrevI;
    unsigned Opcode = PrevMI.getOpcode();
    if (Opcode == ARM::LDMIA_UPD || Opcode == ARM::LDMDA_UPD ||
        Opcode == ARM::LDMDB_UPD || Opcode == ARM::LDMIB_UPD ||
        Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
      MachineOperand &MO = PrevMI.getOperand(PrevMI.getNumOperands() - 1);
      if (MO.getReg() != ARM::LR)
        return false;
      unsigned NewOpc = (isThumb2 ? ARM::t2LDMIA_RET : ARM::LDMIA_RET);
      assert(((isThumb2 && Opcode == ARM::t2LDMIA_UPD) ||
              Opcode == ARM::LDMIA_UPD) && "Unsupported multiple load-return!");
      PrevMI.setDesc(TII->get(NewOpc));
      MO.setReg(ARM::PC);
      PrevMI.copyImplicitOps(*MBB.getParent(), *MBBI);
      MBB.erase(MBBI);
      // We now restore LR into PC so it is not live-out of the return block
      // anymore: Clear the CSI Restored bit.
      MachineFrameInfo &MFI = MBB.getParent()->getFrameInfo();
      // CSI should be fixed after PrologEpilog Insertion
      assert(MFI.isCalleeSavedInfoValid() && "CSI should be valid");
      for (CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) {
        if (Info.getReg() == ARM::LR) {
          Info.setRestored(false);
          break;
        }
      }
      return true;
    }
  }
  return false;
}

bool ARMLoadStoreOpt::CombineMovBx(MachineBasicBlock &MBB) {
  MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
  if (MBBI == MBB.begin() || MBBI == MBB.end() ||
      MBBI->getOpcode() != ARM::tBX_RET)
    return false;

  MachineBasicBlock::iterator Prev = MBBI;
  --Prev;
  if (Prev->getOpcode() != ARM::tMOVr || !Prev->definesRegister(ARM::LR))
    return false;

  for (auto Use : Prev->uses())
    if (Use.isKill()) {
      assert(STI->hasV4TOps());
      BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::tBX))
          .addReg(Use.getReg(), RegState::Kill)
          .add(predOps(ARMCC::AL))
          .copyImplicitOps(*MBBI);
      MBB.erase(MBBI);
      MBB.erase(Prev);
      return true;
    }

  llvm_unreachable("tMOVr doesn't kill a reg before tBX_RET?");
}

bool ARMLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
  if (skipFunction(Fn.getFunction()))
    return false;

  MF = &Fn;
  STI = &static_cast<const ARMSubtarget &>(Fn.getSubtarget());
  TL = STI->getTargetLowering();
  AFI = Fn.getInfo<ARMFunctionInfo>();
  TII = STI->getInstrInfo();
  TRI = STI->getRegisterInfo();

  RegClassInfoValid = false;
  isThumb2 = AFI->isThumb2Function();
  isThumb1 = AFI->isThumbFunction() && !isThumb2;

  bool Modified = false;
  for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
       ++MFI) {
    MachineBasicBlock &MBB = *MFI;
    Modified |= LoadStoreMultipleOpti(MBB);
    if (STI->hasV5TOps())
      Modified |= MergeReturnIntoLDM(MBB);
    if (isThumb1)
      Modified |= CombineMovBx(MBB);
  }

  Allocator.DestroyAll();
  return Modified;
}

#define ARM_PREALLOC_LOAD_STORE_OPT_NAME                                       \
  "ARM pre- register allocation load / store optimization pass"

namespace {

  /// Pre- register allocation pass that move load / stores from consecutive
  /// locations close to make it more likely they will be combined later.
  struct ARMPreAllocLoadStoreOpt : public MachineFunctionPass{
    static char ID;

    AliasAnalysis *AA;
    const DataLayout *TD;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const ARMSubtarget *STI;
    MachineRegisterInfo *MRI;
    MachineDominatorTree *DT;
    MachineFunction *MF;

    ARMPreAllocLoadStoreOpt() : MachineFunctionPass(ID) {}

    bool runOnMachineFunction(MachineFunction &Fn) override;

    StringRef getPassName() const override {
      return ARM_PREALLOC_LOAD_STORE_OPT_NAME;
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<MachineDominatorTree>();
      AU.addPreserved<MachineDominatorTree>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    bool CanFormLdStDWord(MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl,
                          unsigned &NewOpc, Register &EvenReg, Register &OddReg,
                          Register &BaseReg, int &Offset, Register &PredReg,
                          ARMCC::CondCodes &Pred, bool &isT2);
    bool RescheduleOps(MachineBasicBlock *MBB,
                       SmallVectorImpl<MachineInstr *> &Ops,
                       unsigned Base, bool isLd,
                       DenseMap<MachineInstr*, unsigned> &MI2LocMap);
    bool RescheduleLoadStoreInstrs(MachineBasicBlock *MBB);
    bool DistributeIncrements();
    bool DistributeIncrements(Register Base);
  };

} // end anonymous namespace

char ARMPreAllocLoadStoreOpt::ID = 0;

INITIALIZE_PASS_BEGIN(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt",
                      ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(ARMPreAllocLoadStoreOpt, "arm-prera-ldst-opt",
                    ARM_PREALLOC_LOAD_STORE_OPT_NAME, false, false)

// Limit the number of instructions to be rescheduled.
// FIXME: tune this limit, and/or come up with some better heuristics.
static cl::opt<unsigned> InstReorderLimit("arm-prera-ldst-opt-reorder-limit",
                                          cl::init(8), cl::Hidden);

bool ARMPreAllocLoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) {
  if (AssumeMisalignedLoadStores || skipFunction(Fn.getFunction()))
    return false;

  TD = &Fn.getDataLayout();
  STI = &static_cast<const ARMSubtarget &>(Fn.getSubtarget());
  TII = STI->getInstrInfo();
  TRI = STI->getRegisterInfo();
  MRI = &Fn.getRegInfo();
  DT = &getAnalysis<MachineDominatorTree>();
  MF  = &Fn;
  AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();

  bool Modified = DistributeIncrements();
  for (MachineBasicBlock &MFI : Fn)
    Modified |= RescheduleLoadStoreInstrs(&MFI);

  return Modified;
}

static bool IsSafeAndProfitableToMove(bool isLd, unsigned Base,
                                      MachineBasicBlock::iterator I,
                                      MachineBasicBlock::iterator E,
                                      SmallPtrSetImpl<MachineInstr*> &MemOps,
                                      SmallSet<unsigned, 4> &MemRegs,
                                      const TargetRegisterInfo *TRI,
                                      AliasAnalysis *AA) {
  // Are there stores / loads / calls between them?
  SmallSet<unsigned, 4> AddedRegPressure;
  while (++I != E) {
    if (I->isDebugInstr() || MemOps.count(&*I))
      continue;
    if (I->isCall() || I->isTerminator() || I->hasUnmodeledSideEffects())
      return false;
    if (I->mayStore() || (!isLd && I->mayLoad()))
      for (MachineInstr *MemOp : MemOps)
        if (I->mayAlias(AA, *MemOp, /*UseTBAA*/ false))
          return false;
    for (unsigned j = 0, NumOps = I->getNumOperands(); j != NumOps; ++j) {
      MachineOperand &MO = I->getOperand(j);
      if (!MO.isReg())
        continue;
      Register Reg = MO.getReg();
      if (MO.isDef() && TRI->regsOverlap(Reg, Base))
        return false;
      if (Reg != Base && !MemRegs.count(Reg))
        AddedRegPressure.insert(Reg);
    }
  }

  // Estimate register pressure increase due to the transformation.
  if (MemRegs.size() <= 4)
    // Ok if we are moving small number of instructions.
    return true;
  return AddedRegPressure.size() <= MemRegs.size() * 2;
}

bool ARMPreAllocLoadStoreOpt::CanFormLdStDWord(
    MachineInstr *Op0, MachineInstr *Op1, DebugLoc &dl, unsigned &NewOpc,
    Register &FirstReg, Register &SecondReg, Register &BaseReg, int &Offset,
    Register &PredReg, ARMCC::CondCodes &Pred, bool &isT2) {
  // Make sure we're allowed to generate LDRD/STRD.
  if (!STI->hasV5TEOps())
    return false;

  // FIXME: VLDRS / VSTRS -> VLDRD / VSTRD
  unsigned Scale = 1;
  unsigned Opcode = Op0->getOpcode();
  if (Opcode == ARM::LDRi12) {
    NewOpc = ARM::LDRD;
  } else if (Opcode == ARM::STRi12) {
    NewOpc = ARM::STRD;
  } else if (Opcode == ARM::t2LDRi8 || Opcode == ARM::t2LDRi12) {
    NewOpc = ARM::t2LDRDi8;
    Scale = 4;
    isT2 = true;
  } else if (Opcode == ARM::t2STRi8 || Opcode == ARM::t2STRi12) {
    NewOpc = ARM::t2STRDi8;
    Scale = 4;
    isT2 = true;
  } else {
    return false;
  }

  // Make sure the base address satisfies i64 ld / st alignment requirement.
  // At the moment, we ignore the memoryoperand's value.
  // If we want to use AliasAnalysis, we should check it accordingly.
  if (!Op0->hasOneMemOperand() ||
      (*Op0->memoperands_begin())->isVolatile() ||
      (*Op0->memoperands_begin())->isAtomic())
    return false;

  Align Alignment = (*Op0->memoperands_begin())->getAlign();
  const Function &Func = MF->getFunction();
  Align ReqAlign =
      STI->hasV6Ops() ? TD->getABITypeAlign(Type::getInt64Ty(Func.getContext()))
                      : Align(8); // Pre-v6 need 8-byte align
  if (Alignment < ReqAlign)
    return false;

  // Then make sure the immediate offset fits.
  int OffImm = getMemoryOpOffset(*Op0);
  if (isT2) {
    int Limit = (1 << 8) * Scale;
    if (OffImm >= Limit || (OffImm <= -Limit) || (OffImm & (Scale-1)))
      return false;
    Offset = OffImm;
  } else {
    ARM_AM::AddrOpc AddSub = ARM_AM::add;
    if (OffImm < 0) {
      AddSub = ARM_AM::sub;
      OffImm = - OffImm;
    }
    int Limit = (1 << 8) * Scale;
    if (OffImm >= Limit || (OffImm & (Scale-1)))
      return false;
    Offset = ARM_AM::getAM3Opc(AddSub, OffImm);
  }
  FirstReg = Op0->getOperand(0).getReg();
  SecondReg = Op1->getOperand(0).getReg();
  if (FirstReg == SecondReg)
    return false;
  BaseReg = Op0->getOperand(1).getReg();
  Pred = getInstrPredicate(*Op0, PredReg);
  dl = Op0->getDebugLoc();
  return true;
}

bool ARMPreAllocLoadStoreOpt::RescheduleOps(MachineBasicBlock *MBB,
                                 SmallVectorImpl<MachineInstr *> &Ops,
                                 unsigned Base, bool isLd,
                                 DenseMap<MachineInstr*, unsigned> &MI2LocMap) {
  bool RetVal = false;

  // Sort by offset (in reverse order).
  llvm::sort(Ops, [](const MachineInstr *LHS, const MachineInstr *RHS) {
    int LOffset = getMemoryOpOffset(*LHS);
    int ROffset = getMemoryOpOffset(*RHS);
    assert(LHS == RHS || LOffset != ROffset);
    return LOffset > ROffset;
  });

  // The loads / stores of the same base are in order. Scan them from first to
  // last and check for the following:
  // 1. Any def of base.
  // 2. Any gaps.
  while (Ops.size() > 1) {
    unsigned FirstLoc = ~0U;
    unsigned LastLoc = 0;
    MachineInstr *FirstOp = nullptr;
    MachineInstr *LastOp = nullptr;
    int LastOffset = 0;
    unsigned LastOpcode = 0;
    unsigned LastBytes = 0;
    unsigned NumMove = 0;
    for (int i = Ops.size() - 1; i >= 0; --i) {
      // Make sure each operation has the same kind.
      MachineInstr *Op = Ops[i];
      unsigned LSMOpcode
        = getLoadStoreMultipleOpcode(Op->getOpcode(), ARM_AM::ia);
      if (LastOpcode && LSMOpcode != LastOpcode)
        break;

      // Check that we have a continuous set of offsets.
      int Offset = getMemoryOpOffset(*Op);
      unsigned Bytes = getLSMultipleTransferSize(Op);
      if (LastBytes) {
        if (Bytes != LastBytes || Offset != (LastOffset + (int)Bytes))
          break;
      }

      // Don't try to reschedule too many instructions.
      if (NumMove == InstReorderLimit)
        break;

      // Found a mergable instruction; save information about it.
      ++NumMove;
      LastOffset = Offset;
      LastBytes = Bytes;
      LastOpcode = LSMOpcode;

      unsigned Loc = MI2LocMap[Op];
      if (Loc <= FirstLoc) {
        FirstLoc = Loc;
        FirstOp = Op;
      }
      if (Loc >= LastLoc) {
        LastLoc = Loc;
        LastOp = Op;
      }
    }

    if (NumMove <= 1)
      Ops.pop_back();
    else {
      SmallPtrSet<MachineInstr*, 4> MemOps;
      SmallSet<unsigned, 4> MemRegs;
      for (size_t i = Ops.size() - NumMove, e = Ops.size(); i != e; ++i) {
        MemOps.insert(Ops[i]);
        MemRegs.insert(Ops[i]->getOperand(0).getReg());
      }

      // Be conservative, if the instructions are too far apart, don't
      // move them. We want to limit the increase of register pressure.
      bool DoMove = (LastLoc - FirstLoc) <= NumMove*4; // FIXME: Tune this.
      if (DoMove)
        DoMove = IsSafeAndProfitableToMove(isLd, Base, FirstOp, LastOp,
                                           MemOps, MemRegs, TRI, AA);
      if (!DoMove) {
        for (unsigned i = 0; i != NumMove; ++i)
          Ops.pop_back();
      } else {
        // This is the new location for the loads / stores.
        MachineBasicBlock::iterator InsertPos = isLd ? FirstOp : LastOp;
        while (InsertPos != MBB->end() &&
               (MemOps.count(&*InsertPos) || InsertPos->isDebugInstr()))
          ++InsertPos;

        // If we are moving a pair of loads / stores, see if it makes sense
        // to try to allocate a pair of registers that can form register pairs.
        MachineInstr *Op0 = Ops.back();
        MachineInstr *Op1 = Ops[Ops.size()-2];
        Register FirstReg, SecondReg;
        Register BaseReg, PredReg;
        ARMCC::CondCodes Pred = ARMCC::AL;
        bool isT2 = false;
        unsigned NewOpc = 0;
        int Offset = 0;
        DebugLoc dl;
        if (NumMove == 2 && CanFormLdStDWord(Op0, Op1, dl, NewOpc,
                                             FirstReg, SecondReg, BaseReg,
                                             Offset, PredReg, Pred, isT2)) {
          Ops.pop_back();
          Ops.pop_back();

          const MCInstrDesc &MCID = TII->get(NewOpc);
          const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF);
          MRI->constrainRegClass(FirstReg, TRC);
          MRI->constrainRegClass(SecondReg, TRC);

          // Form the pair instruction.
          if (isLd) {
            MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
              .addReg(FirstReg, RegState::Define)
              .addReg(SecondReg, RegState::Define)
              .addReg(BaseReg);
            // FIXME: We're converting from LDRi12 to an insn that still
            // uses addrmode2, so we need an explicit offset reg. It should
            // always by reg0 since we're transforming LDRi12s.
            if (!isT2)
              MIB.addReg(0);
            MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
            MIB.cloneMergedMemRefs({Op0, Op1});
            LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n");
            ++NumLDRDFormed;
          } else {
            MachineInstrBuilder MIB = BuildMI(*MBB, InsertPos, dl, MCID)
              .addReg(FirstReg)
              .addReg(SecondReg)
              .addReg(BaseReg);
            // FIXME: We're converting from LDRi12 to an insn that still
            // uses addrmode2, so we need an explicit offset reg. It should
            // always by reg0 since we're transforming STRi12s.
            if (!isT2)
              MIB.addReg(0);
            MIB.addImm(Offset).addImm(Pred).addReg(PredReg);
            MIB.cloneMergedMemRefs({Op0, Op1});
            LLVM_DEBUG(dbgs() << "Formed " << *MIB << "\n");
            ++NumSTRDFormed;
          }
          MBB->erase(Op0);
          MBB->erase(Op1);

          if (!isT2) {
            // Add register allocation hints to form register pairs.
            MRI->setRegAllocationHint(FirstReg, ARMRI::RegPairEven, SecondReg);
            MRI->setRegAllocationHint(SecondReg,  ARMRI::RegPairOdd, FirstReg);
          }
        } else {
          for (unsigned i = 0; i != NumMove; ++i) {
            MachineInstr *Op = Ops.back();
            Ops.pop_back();
            MBB->splice(InsertPos, MBB, Op);
          }
        }

        NumLdStMoved += NumMove;
        RetVal = true;
      }
    }
  }

  return RetVal;
}

bool
ARMPreAllocLoadStoreOpt::RescheduleLoadStoreInstrs(MachineBasicBlock *MBB) {
  bool RetVal = false;

  DenseMap<MachineInstr*, unsigned> MI2LocMap;
  using MapIt = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>::iterator;
  using Base2InstMap = DenseMap<unsigned, SmallVector<MachineInstr *, 4>>;
  using BaseVec = SmallVector<unsigned, 4>;
  Base2InstMap Base2LdsMap;
  Base2InstMap Base2StsMap;
  BaseVec LdBases;
  BaseVec StBases;

  unsigned Loc = 0;
  MachineBasicBlock::iterator MBBI = MBB->begin();
  MachineBasicBlock::iterator E = MBB->end();
  while (MBBI != E) {
    for (; MBBI != E; ++MBBI) {
      MachineInstr &MI = *MBBI;
      if (MI.isCall() || MI.isTerminator()) {
        // Stop at barriers.
        ++MBBI;
        break;
      }

      if (!MI.isDebugInstr())
        MI2LocMap[&MI] = ++Loc;

      if (!isMemoryOp(MI))
        continue;
      Register PredReg;
      if (getInstrPredicate(MI, PredReg) != ARMCC::AL)
        continue;

      int Opc = MI.getOpcode();
      bool isLd = isLoadSingle(Opc);
      Register Base = MI.getOperand(1).getReg();
      int Offset = getMemoryOpOffset(MI);
      bool StopHere = false;
      auto FindBases = [&] (Base2InstMap &Base2Ops, BaseVec &Bases) {
        MapIt BI = Base2Ops.find(Base);
        if (BI == Base2Ops.end()) {
          Base2Ops[Base].push_back(&MI);
          Bases.push_back(Base);
          return;
        }
        for (unsigned i = 0, e = BI->second.size(); i != e; ++i) {
          if (Offset == getMemoryOpOffset(*BI->second[i])) {
            StopHere = true;
            break;
          }
        }
        if (!StopHere)
          BI->second.push_back(&MI);
      };

      if (isLd)
        FindBases(Base2LdsMap, LdBases);
      else
        FindBases(Base2StsMap, StBases);

      if (StopHere) {
        // Found a duplicate (a base+offset combination that's seen earlier).
        // Backtrack.
        --Loc;
        break;
      }
    }

    // Re-schedule loads.
    for (unsigned i = 0, e = LdBases.size(); i != e; ++i) {
      unsigned Base = LdBases[i];
      SmallVectorImpl<MachineInstr *> &Lds = Base2LdsMap[Base];
      if (Lds.size() > 1)
        RetVal |= RescheduleOps(MBB, Lds, Base, true, MI2LocMap);
    }

    // Re-schedule stores.
    for (unsigned i = 0, e = StBases.size(); i != e; ++i) {
      unsigned Base = StBases[i];
      SmallVectorImpl<MachineInstr *> &Sts = Base2StsMap[Base];
      if (Sts.size() > 1)
        RetVal |= RescheduleOps(MBB, Sts, Base, false, MI2LocMap);
    }

    if (MBBI != E) {
      Base2LdsMap.clear();
      Base2StsMap.clear();
      LdBases.clear();
      StBases.clear();
    }
  }

  return RetVal;
}

// Get the Base register operand index from the memory access MachineInst if we
// should attempt to distribute postinc on it. Return -1 if not of a valid
// instruction type. If it returns an index, it is assumed that instruction is a
// r+i indexing mode, and getBaseOperandIndex() + 1 is the Offset index.
static int getBaseOperandIndex(MachineInstr &MI) {
  switch (MI.getOpcode()) {
  case ARM::MVE_VLDRBS16:
  case ARM::MVE_VLDRBS32:
  case ARM::MVE_VLDRBU16:
  case ARM::MVE_VLDRBU32:
  case ARM::MVE_VLDRHS32:
  case ARM::MVE_VLDRHU32:
  case ARM::MVE_VLDRBU8:
  case ARM::MVE_VLDRHU16:
  case ARM::MVE_VLDRWU32:
  case ARM::MVE_VSTRB16:
  case ARM::MVE_VSTRB32:
  case ARM::MVE_VSTRH32:
  case ARM::MVE_VSTRBU8:
  case ARM::MVE_VSTRHU16:
  case ARM::MVE_VSTRWU32:
    return 1;
  }
  return -1;
}

static MachineInstr *createPostIncLoadStore(MachineInstr *MI, int Offset,
                                            Register NewReg,
                                            const TargetInstrInfo *TII,
                                            const TargetRegisterInfo *TRI) {
  MachineFunction *MF = MI->getMF();
  MachineRegisterInfo &MRI = MF->getRegInfo();

  unsigned NewOpcode = getPostIndexedLoadStoreOpcode(
      MI->getOpcode(), Offset > 0 ? ARM_AM::add : ARM_AM::sub);

  const MCInstrDesc &MCID = TII->get(NewOpcode);
  // Constrain the def register class
  const TargetRegisterClass *TRC = TII->getRegClass(MCID, 0, TRI, *MF);
  MRI.constrainRegClass(NewReg, TRC);
  // And do the same for the base operand
  TRC = TII->getRegClass(MCID, 2, TRI, *MF);
  MRI.constrainRegClass(MI->getOperand(1).getReg(), TRC);

  return BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), MCID)
      .addReg(NewReg, RegState::Define)
      .add(MI->getOperand(0))
      .add(MI->getOperand(1))
      .addImm(Offset)
      .add(MI->getOperand(3))
      .add(MI->getOperand(4))
      .cloneMemRefs(*MI);
}

// Given a Base Register, optimise the load/store uses to attempt to create more
// post-inc accesses. We do this by taking zero offset loads/stores with an add,
// and convert them to a postinc load/store of the same type. Any subsequent
// accesses will be adjusted to use and account for the post-inc value.
// For example:
// LDR #0            LDR_POSTINC #16
// LDR #4            LDR #-12
// LDR #8            LDR #-8
// LDR #12           LDR #-4
// ADD #16
bool ARMPreAllocLoadStoreOpt::DistributeIncrements(Register Base) {
  // We are looking for:
  // One zero offset load/store that can become postinc
  MachineInstr *BaseAccess = nullptr;
  // An increment that can be folded in
  MachineInstr *Increment = nullptr;
  // Other accesses after BaseAccess that will need to be updated to use the
  // postinc value
  SmallPtrSet<MachineInstr *, 8> OtherAccesses;
  for (auto &Use : MRI->use_nodbg_instructions(Base)) {
    if (!Increment && getAddSubImmediate(Use) != 0) {
      Increment = &Use;
      continue;
    }

    int BaseOp = getBaseOperandIndex(Use);
    if (BaseOp == -1)
      return false;

    if (!Use.getOperand(BaseOp).isReg() ||
        Use.getOperand(BaseOp).getReg() != Base)
      return false;
    if (Use.getOperand(BaseOp + 1).getImm() == 0)
      BaseAccess = &Use;
    else
      OtherAccesses.insert(&Use);
  }

  if (!BaseAccess || !Increment ||
      BaseAccess->getParent() != Increment->getParent())
    return false;
  Register PredReg;
  if (Increment->definesRegister(ARM::CPSR) ||
      getInstrPredicate(*Increment, PredReg) != ARMCC::AL)
    return false;

  LLVM_DEBUG(dbgs() << "\nAttempting to distribute increments on VirtualReg "
                    << Base.virtRegIndex() << "\n");

  // Make sure that Increment has no uses before BaseAccess.
  for (MachineInstr &Use :
       MRI->use_nodbg_instructions(Increment->getOperand(0).getReg())) {
    if (!DT->dominates(BaseAccess, &Use) || &Use == BaseAccess) {
      LLVM_DEBUG(dbgs() << "  BaseAccess doesn't dominate use of increment\n");
      return false;
    }
  }

  // Make sure that Increment can be folded into Base
  int IncrementOffset = getAddSubImmediate(*Increment);
  unsigned NewPostIncOpcode = getPostIndexedLoadStoreOpcode(
      BaseAccess->getOpcode(), IncrementOffset > 0 ? ARM_AM::add : ARM_AM::sub);
  if (!isLegalAddressImm(NewPostIncOpcode, IncrementOffset, TII)) {
    LLVM_DEBUG(dbgs() << "  Illegal addressing mode immediate on postinc\n");
    return false;
  }

  // And make sure that the negative value of increment can be added to all
  // other offsets after the BaseAccess. We rely on either
  // dominates(BaseAccess, OtherAccess) or dominates(OtherAccess, BaseAccess)
  // to keep things simple.
  SmallPtrSet<MachineInstr *, 4> SuccessorAccesses;
  for (auto *Use : OtherAccesses) {
    if (DT->dominates(BaseAccess, Use)) {
      SuccessorAccesses.insert(Use);
      unsigned BaseOp = getBaseOperandIndex(*Use);
      if (!isLegalAddressImm(
              Use->getOpcode(),
              Use->getOperand(BaseOp + 1).getImm() - IncrementOffset, TII)) {
        LLVM_DEBUG(dbgs() << "  Illegal addressing mode immediate on use\n");
        return false;
      }
    } else if (!DT->dominates(Use, BaseAccess)) {
      LLVM_DEBUG(
          dbgs() << "  Unknown dominance relation between Base and Use\n");
      return false;
    }
  }

  // Replace BaseAccess with a post inc
  LLVM_DEBUG(dbgs() << "Changing: "; BaseAccess->dump());
  LLVM_DEBUG(dbgs() << "  And   : "; Increment->dump());
  Register NewBaseReg = Increment->getOperand(0).getReg();
  MachineInstr *BaseAccessPost =
      createPostIncLoadStore(BaseAccess, IncrementOffset, NewBaseReg, TII, TRI);
  BaseAccess->eraseFromParent();
  Increment->eraseFromParent();
  (void)BaseAccessPost;
  LLVM_DEBUG(dbgs() << "  To    : "; BaseAccessPost->dump());

  for (auto *Use : SuccessorAccesses) {
    LLVM_DEBUG(dbgs() << "Changing: "; Use->dump());
    unsigned BaseOp = getBaseOperandIndex(*Use);
    Use->getOperand(BaseOp).setReg(NewBaseReg);
    int OldOffset = Use->getOperand(BaseOp + 1).getImm();
    Use->getOperand(BaseOp + 1).setImm(OldOffset - IncrementOffset);
    LLVM_DEBUG(dbgs() << "  To    : "; Use->dump());
  }

  // Remove the kill flag from all uses of NewBaseReg, in case any old uses
  // remain.
  for (MachineOperand &Op : MRI->use_nodbg_operands(NewBaseReg))
    Op.setIsKill(false);
  return true;
}

bool ARMPreAllocLoadStoreOpt::DistributeIncrements() {
  bool Changed = false;
  SmallSetVector<Register, 4> Visited;
  for (auto &MBB : *MF) {
    for (auto &MI : MBB) {
      int BaseOp = getBaseOperandIndex(MI);
      if (BaseOp == -1 || !MI.getOperand(BaseOp).isReg())
        continue;

      Register Base = MI.getOperand(BaseOp).getReg();
      if (!Base.isVirtual() || Visited.count(Base))
        continue;

      Visited.insert(Base);
    }
  }

  for (auto Base : Visited)
    Changed |= DistributeIncrements(Base);

  return Changed;
}

/// Returns an instance of the load / store optimization pass.
FunctionPass *llvm::createARMLoadStoreOptimizationPass(bool PreAlloc) {
  if (PreAlloc)
    return new ARMPreAllocLoadStoreOpt();
  return new ARMLoadStoreOpt();
}