ARMFrameLowering.cpp
102 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
//===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the ARM implementation of TargetFrameLowering class.
//
//===----------------------------------------------------------------------===//
#include "ARMFrameLowering.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "Utils/ARMBaseInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>
#define DEBUG_TYPE "arm-frame-lowering"
using namespace llvm;
static cl::opt<bool>
SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
cl::desc("Align ARM NEON spills in prolog and epilog"));
static MachineBasicBlock::iterator
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
unsigned NumAlignedDPRCS2Regs);
ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
: TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
STI(sti) {}
bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
// iOS always has a FP for backtracking, force other targets to keep their FP
// when doing FastISel. The emitted code is currently superior, and in cases
// like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
return MF.getSubtarget<ARMSubtarget>().useFastISel();
}
/// Returns true if the target can safely skip saving callee-saved registers
/// for noreturn nounwind functions.
bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
!MF.getFunction().hasFnAttribute(Attribute::UWTable));
// Frame pointer and link register are not treated as normal CSR, thus we
// can always skip CSR saves for nonreturning functions.
return true;
}
/// hasFP - Return true if the specified function should have a dedicated frame
/// pointer register. This is true if the function has variable sized allocas
/// or if frame pointer elimination is disabled.
bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const MachineFrameInfo &MFI = MF.getFrameInfo();
// ABI-required frame pointer.
if (MF.getTarget().Options.DisableFramePointerElim(MF))
return true;
// Frame pointer required for use within this function.
return (RegInfo->needsStackRealignment(MF) ||
MFI.hasVarSizedObjects() ||
MFI.isFrameAddressTaken());
}
/// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
/// not required, we reserve argument space for call sites in the function
/// immediately on entry to the current function. This eliminates the need for
/// add/sub sp brackets around call sites. Returns true if the call frame is
/// included as part of the stack frame.
bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
unsigned CFSize = MFI.getMaxCallFrameSize();
// It's not always a good idea to include the call frame as part of the
// stack frame. ARM (especially Thumb) has small immediate offset to
// address the stack frame. So a large call frame can cause poor codegen
// and may even makes it impossible to scavenge a register.
if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
return false;
return !MFI.hasVarSizedObjects();
}
/// canSimplifyCallFramePseudos - If there is a reserved call frame, the
/// call frame pseudos can be simplified. Unlike most targets, having a FP
/// is not sufficient here since we still may reference some objects via SP
/// even when FP is available in Thumb2 mode.
bool
ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
}
static void emitRegPlusImmediate(
bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
if (isARM)
emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
Pred, PredReg, TII, MIFlags);
else
emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
Pred, PredReg, TII, MIFlags);
}
static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
const ARMBaseInstrInfo &TII, int NumBytes,
unsigned MIFlags = MachineInstr::NoFlags,
ARMCC::CondCodes Pred = ARMCC::AL,
unsigned PredReg = 0) {
emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
MIFlags, Pred, PredReg);
}
static int sizeOfSPAdjustment(const MachineInstr &MI) {
int RegSize;
switch (MI.getOpcode()) {
case ARM::VSTMDDB_UPD:
RegSize = 8;
break;
case ARM::STMDB_UPD:
case ARM::t2STMDB_UPD:
RegSize = 4;
break;
case ARM::t2STR_PRE:
case ARM::STR_PRE_IMM:
return 4;
default:
llvm_unreachable("Unknown push or pop like instruction");
}
int count = 0;
// ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
// pred) so the list starts at 4.
for (int i = MI.getNumOperands() - 1; i >= 4; --i)
count += RegSize;
return count;
}
static bool WindowsRequiresStackProbe(const MachineFunction &MF,
size_t StackSizeInBytes) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const Function &F = MF.getFunction();
unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
if (F.hasFnAttribute("stack-probe-size"))
F.getFnAttribute("stack-probe-size")
.getValueAsString()
.getAsInteger(0, StackProbeSize);
return (StackSizeInBytes >= StackProbeSize) &&
!F.hasFnAttribute("no-stack-arg-probe");
}
namespace {
struct StackAdjustingInsts {
struct InstInfo {
MachineBasicBlock::iterator I;
unsigned SPAdjust;
bool BeforeFPSet;
};
SmallVector<InstInfo, 4> Insts;
void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
bool BeforeFPSet = false) {
InstInfo Info = {I, SPAdjust, BeforeFPSet};
Insts.push_back(Info);
}
void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
auto Info =
llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
assert(Info != Insts.end() && "invalid sp adjusting instruction");
Info->SPAdjust += ExtraBytes;
}
void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
const ARMBaseInstrInfo &TII, bool HasFP) {
MachineFunction &MF = *MBB.getParent();
unsigned CFAOffset = 0;
for (auto &Info : Insts) {
if (HasFP && !Info.BeforeFPSet)
return;
CFAOffset += Info.SPAdjust;
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
BuildMI(MBB, std::next(Info.I), dl,
TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
}
};
} // end anonymous namespace
/// Emit an instruction sequence that will align the address in
/// register Reg by zero-ing out the lower bits. For versions of the
/// architecture that support Neon, this must be done in a single
/// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
/// single instruction. That function only gets called when optimizing
/// spilling of D registers on a core with the Neon instruction set
/// present.
static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
const TargetInstrInfo &TII,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, const unsigned Reg,
const Align Alignment,
const bool MustBeSingleInstruction) {
const ARMSubtarget &AST =
static_cast<const ARMSubtarget &>(MF.getSubtarget());
const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
const unsigned AlignMask = Alignment.value() - 1U;
const unsigned NrBitsToZero = Log2(Alignment);
assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
if (!AFI->isThumbFunction()) {
// if the BFC instruction is available, use that to zero the lower
// bits:
// bfc Reg, #0, log2(Alignment)
// otherwise use BIC, if the mask to zero the required number of bits
// can be encoded in the bic immediate field
// bic Reg, Reg, Alignment-1
// otherwise, emit
// lsr Reg, Reg, log2(Alignment)
// lsl Reg, Reg, log2(Alignment)
if (CanUseBFC) {
BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
.addReg(Reg, RegState::Kill)
.addImm(~AlignMask)
.add(predOps(ARMCC::AL));
} else if (AlignMask <= 255) {
BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
.addReg(Reg, RegState::Kill)
.addImm(AlignMask)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
} else {
assert(!MustBeSingleInstruction &&
"Shouldn't call emitAligningInstructions demanding a single "
"instruction to be emitted for large stack alignment for a target "
"without BFC.");
BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
.addReg(Reg, RegState::Kill)
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
.add(predOps(ARMCC::AL))
.add(condCodeOp());
BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
.addReg(Reg, RegState::Kill)
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
.add(predOps(ARMCC::AL))
.add(condCodeOp());
}
} else {
// Since this is only reached for Thumb-2 targets, the BFC instruction
// should always be available.
assert(CanUseBFC);
BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
.addReg(Reg, RegState::Kill)
.addImm(~AlignMask)
.add(predOps(ARMCC::AL));
}
}
/// We need the offset of the frame pointer relative to other MachineFrameInfo
/// offsets which are encoded relative to SP at function begin.
/// See also emitPrologue() for how the FP is set up.
/// Unfortunately we cannot determine this value in determineCalleeSaves() yet
/// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
/// this to produce a conservative estimate that we check in an assert() later.
static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) {
// For Thumb1, push.w isn't available, so the first push will always push
// r7 and lr onto the stack first.
if (AFI.isThumb1OnlyFunction())
return -AFI.getArgRegsSaveSize() - (2 * 4);
// This is a conservative estimation: Assume the frame pointer being r7 and
// pc("r15") up to r8 getting spilled before (= 8 registers).
int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4);
}
void ARMFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo &MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
MachineModuleInfo &MMI = MF.getMMI();
MCContext &Context = MMI.getContext();
const TargetMachine &TM = MF.getTarget();
const MCRegisterInfo *MRI = Context.getRegisterInfo();
const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
assert(!AFI->isThumb1OnlyFunction() &&
"This emitPrologue does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
Align Alignment = STI.getFrameLowering()->getStackAlign();
unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
unsigned NumBytes = MFI.getStackSize();
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
int FPCXTSaveSize = 0;
// Debug location must be unknown since the first debug location is used
// to determine the end of the prologue.
DebugLoc dl;
Register FramePtr = RegInfo->getFrameRegister(MF);
// Determine the sizes of each callee-save spill areas and record which frame
// belongs to which callee-save spill areas.
unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
int FramePtrSpillFI = 0;
int D8SpillFI = 0;
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
StackAdjustingInsts DefCFAOffsetCandidates;
bool HasFP = hasFP(MF);
// Allocate the vararg register save area.
if (ArgRegsSaveSize) {
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
MachineInstr::FrameSetup);
DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
}
if (!AFI->hasStackFrame() &&
(!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
if (NumBytes - ArgRegsSaveSize != 0) {
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
MachineInstr::FrameSetup);
DefCFAOffsetCandidates.addInst(std::prev(MBBI),
NumBytes - ArgRegsSaveSize, true);
}
DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
return;
}
// Determine spill area sizes.
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned Reg = CSI[i].getReg();
int FI = CSI[i].getFrameIdx();
switch (Reg) {
case ARM::R8:
case ARM::R9:
case ARM::R10:
case ARM::R11:
case ARM::R12:
if (STI.splitFramePushPop(MF)) {
GPRCS2Size += 4;
break;
}
LLVM_FALLTHROUGH;
case ARM::R0:
case ARM::R1:
case ARM::R2:
case ARM::R3:
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
if (Reg == FramePtr)
FramePtrSpillFI = FI;
GPRCS1Size += 4;
break;
case ARM::FPCXTNS:
FPCXTSaveSize = 4;
break;
default:
// This is a DPR. Exclude the aligned DPRCS2 spills.
if (Reg == ARM::D8)
D8SpillFI = FI;
if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
DPRCSSize += 8;
}
}
// Move past FPCXT area.
MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
if (FPCXTSaveSize > 0) {
LastPush = MBBI++;
DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
}
// Move past area 1.
if (GPRCS1Size > 0) {
GPRCS1Push = LastPush = MBBI++;
DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
}
// Determine starting offsets of spill areas.
unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
unsigned DPRGapSize =
(GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) %
DPRAlign.value();
unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
int FramePtrOffsetInPush = 0;
if (HasFP) {
int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
assert(getMaxFPOffset(STI, *AFI) <= FPOffset &&
"Max FP estimation is wrong");
FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
NumBytes);
}
AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
// Move past area 2.
if (GPRCS2Size > 0) {
GPRCS2Push = LastPush = MBBI++;
DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
}
// Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
// .cfi_offset operations will reflect that.
if (DPRGapSize) {
assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
if (LastPush != MBB.end() &&
tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
else {
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
MachineInstr::FrameSetup);
DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
}
}
// Move past area 3.
if (DPRCSSize > 0) {
// Since vpush register list cannot have gaps, there may be multiple vpush
// instructions in the prologue.
while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
LastPush = MBBI++;
}
}
// Move past the aligned DPRCS2 area.
if (AFI->getNumAlignedDPRCS2Regs() > 0) {
MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
// The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
// leaves the stack pointer pointing to the DPRCS2 area.
//
// Adjust NumBytes to represent the stack slots below the DPRCS2 area.
NumBytes += MFI.getObjectOffset(D8SpillFI);
} else
NumBytes = DPRCSOffset;
if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
uint32_t NumWords = NumBytes >> 2;
if (NumWords < 65536)
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
.addImm(NumWords)
.setMIFlags(MachineInstr::FrameSetup)
.add(predOps(ARMCC::AL));
else
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
.addImm(NumWords)
.setMIFlags(MachineInstr::FrameSetup);
switch (TM.getCodeModel()) {
case CodeModel::Tiny:
llvm_unreachable("Tiny code model not available on ARM.");
case CodeModel::Small:
case CodeModel::Medium:
case CodeModel::Kernel:
BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
.add(predOps(ARMCC::AL))
.addExternalSymbol("__chkstk")
.addReg(ARM::R4, RegState::Implicit)
.setMIFlags(MachineInstr::FrameSetup);
break;
case CodeModel::Large:
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
.addExternalSymbol("__chkstk")
.setMIFlags(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
.add(predOps(ARMCC::AL))
.addReg(ARM::R12, RegState::Kill)
.addReg(ARM::R4, RegState::Implicit)
.setMIFlags(MachineInstr::FrameSetup);
break;
}
BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
.addReg(ARM::SP, RegState::Kill)
.addReg(ARM::R4, RegState::Kill)
.setMIFlags(MachineInstr::FrameSetup)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
NumBytes = 0;
}
if (NumBytes) {
// Adjust SP after all the callee-save spills.
if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
else {
emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
MachineInstr::FrameSetup);
DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
}
if (HasFP && isARM)
// Restore from fp only in ARM mode: e.g. sub sp, r7, #24
// Note it's not safe to do this in Thumb2 mode because it would have
// taken two instructions:
// mov sp, r7
// sub sp, #24
// If an interrupt is taken between the two instructions, then sp is in
// an inconsistent state (pointing to the middle of callee-saved area).
// The interrupt handler can end up clobbering the registers.
AFI->setShouldRestoreSPFromFP(true);
}
// Set FP to point to the stack slot that contains the previous FP.
// For iOS, FP is R7, which has now been stored in spill area 1.
// Otherwise, if this is not iOS, all the callee-saved registers go
// into spill area 1, including the FP in R11. In either case, it
// is in area one and the adjustment needs to take place just after
// that push.
if (HasFP) {
MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
dl, TII, FramePtr, ARM::SP,
PushSize + FramePtrOffsetInPush,
MachineInstr::FrameSetup);
if (FramePtrOffsetInPush + PushSize != 0) {
unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
nullptr, MRI->getDwarfRegNum(FramePtr, true),
FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
} else {
unsigned CFIIndex =
MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
nullptr, MRI->getDwarfRegNum(FramePtr, true)));
BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
}
// Now that the prologue's actual instructions are finalised, we can insert
// the necessary DWARF cf instructions to describe the situation. Start by
// recording where each register ended up:
if (GPRCS1Size > 0) {
MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
int CFIIndex;
for (const auto &Entry : CSI) {
unsigned Reg = Entry.getReg();
int FI = Entry.getFrameIdx();
switch (Reg) {
case ARM::R8:
case ARM::R9:
case ARM::R10:
case ARM::R11:
case ARM::R12:
if (STI.splitFramePushPop(MF))
break;
LLVM_FALLTHROUGH;
case ARM::R0:
case ARM::R1:
case ARM::R2:
case ARM::R3:
case ARM::R4:
case ARM::R5:
case ARM::R6:
case ARM::R7:
case ARM::LR:
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
break;
}
}
}
if (GPRCS2Size > 0) {
MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
for (const auto &Entry : CSI) {
unsigned Reg = Entry.getReg();
int FI = Entry.getFrameIdx();
switch (Reg) {
case ARM::R8:
case ARM::R9:
case ARM::R10:
case ARM::R11:
case ARM::R12:
if (STI.splitFramePushPop(MF)) {
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
unsigned Offset = MFI.getObjectOffset(FI);
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
break;
}
}
}
if (DPRCSSize > 0) {
// Since vpush register list cannot have gaps, there may be multiple vpush
// instructions in the prologue.
MachineBasicBlock::iterator Pos = std::next(LastPush);
for (const auto &Entry : CSI) {
unsigned Reg = Entry.getReg();
int FI = Entry.getFrameIdx();
if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
(Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
unsigned Offset = MFI.getObjectOffset(FI);
unsigned CFIIndex = MF.addFrameInst(
MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex)
.setMIFlags(MachineInstr::FrameSetup);
}
}
}
// Now we can emit descriptions of where the canonical frame address was
// throughout the process. If we have a frame pointer, it takes over the job
// half-way through, so only the first few .cfi_def_cfa_offset instructions
// actually get emitted.
DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
if (STI.isTargetELF() && hasFP(MF))
MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
AFI->getFramePtrSpillOffset());
AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
AFI->setDPRCalleeSavedGapSize(DPRGapSize);
AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
// If we need dynamic stack realignment, do it here. Be paranoid and make
// sure if we also have VLAs, we have a base pointer for frame access.
// If aligned NEON registers were spilled, the stack has already been
// realigned.
if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->needsStackRealignment(MF)) {
Align MaxAlign = MFI.getMaxAlign();
assert(!AFI->isThumb1OnlyFunction());
if (!AFI->isThumbFunction()) {
emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
false);
} else {
// We cannot use sp as source/dest register here, thus we're using r4 to
// perform the calculations. We're emitting the following sequence:
// mov r4, sp
// -- use emitAligningInstructions to produce best sequence to zero
// -- out lower bits in r4
// mov sp, r4
// FIXME: It will be better just to find spare register here.
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
.addReg(ARM::SP, RegState::Kill)
.add(predOps(ARMCC::AL));
emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
false);
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
.addReg(ARM::R4, RegState::Kill)
.add(predOps(ARMCC::AL));
}
AFI->setShouldRestoreSPFromFP(true);
}
// If we need a base pointer, set it up here. It's whatever the value
// of the stack pointer is at this point. Any variable size objects
// will be allocated after this, so we can still use the base pointer
// to reference locals.
// FIXME: Clarify FrameSetup flags here.
if (RegInfo->hasBasePointer(MF)) {
if (isARM)
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
.addReg(ARM::SP)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
else
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
}
// If the frame has variable sized objects then the epilogue must restore
// the sp from fp. We can assume there's an FP here since hasFP already
// checks for hasVarSizedObjects.
if (MFI.hasVarSizedObjects())
AFI->setShouldRestoreSPFromFP(true);
}
void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
const ARMBaseInstrInfo &TII =
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
assert(!AFI->isThumb1OnlyFunction() &&
"This emitEpilogue does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
int NumBytes = (int)MFI.getStackSize();
Register FramePtr = RegInfo->getFrameRegister(MF);
// All calls are tail calls in GHC calling conv, and functions have no
// prologue/epilogue.
if (MF.getFunction().getCallingConv() == CallingConv::GHC)
return;
// First put ourselves on the first (from top) terminator instructions.
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
if (!AFI->hasStackFrame()) {
if (NumBytes - ArgRegsSaveSize != 0)
emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ArgRegsSaveSize,
MachineInstr::FrameDestroy);
} else {
// Unwind MBBI to point to first LDR / VLDRD.
if (MBBI != MBB.begin()) {
do {
--MBBI;
} while (MBBI != MBB.begin() &&
MBBI->getFlag(MachineInstr::FrameDestroy));
if (!MBBI->getFlag(MachineInstr::FrameDestroy))
++MBBI;
}
// Move SP to start of FP callee save spill area.
NumBytes -= (ArgRegsSaveSize +
AFI->getFPCXTSaveAreaSize() +
AFI->getGPRCalleeSavedArea1Size() +
AFI->getGPRCalleeSavedArea2Size() +
AFI->getDPRCalleeSavedGapSize() +
AFI->getDPRCalleeSavedAreaSize());
// Reset SP based on frame pointer only if the stack frame extends beyond
// frame pointer stack slot or target is ELF and the function has FP.
if (AFI->shouldRestoreSPFromFP()) {
NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
if (NumBytes) {
if (isARM)
emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
ARMCC::AL, 0, TII,
MachineInstr::FrameDestroy);
else {
// It's not possible to restore SP from FP in a single instruction.
// For iOS, this looks like:
// mov sp, r7
// sub sp, #24
// This is bad, if an interrupt is taken after the mov, sp is in an
// inconsistent state.
// Use the first callee-saved register as a scratch register.
assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
"No scratch register to restore SP from FP!");
emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
.addReg(ARM::R4)
.add(predOps(ARMCC::AL))
.setMIFlag(MachineInstr::FrameDestroy);
}
} else {
// Thumb2 or ARM.
if (isARM)
BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
.addReg(FramePtr)
.add(predOps(ARMCC::AL))
.add(condCodeOp())
.setMIFlag(MachineInstr::FrameDestroy);
else
BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
.addReg(FramePtr)
.add(predOps(ARMCC::AL))
.setMIFlag(MachineInstr::FrameDestroy);
}
} else if (NumBytes &&
!tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
MachineInstr::FrameDestroy);
// Increment past our save areas.
if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
MBBI++;
// Since vpop register list cannot have gaps, there may be multiple vpop
// instructions in the epilogue.
while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
MBBI++;
}
if (AFI->getDPRCalleeSavedGapSize()) {
assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
"unexpected DPR alignment gap");
emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
MachineInstr::FrameDestroy);
}
if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
if (AFI->getFPCXTSaveAreaSize()) MBBI++;
}
if (ArgRegsSaveSize)
emitSPUpdate(isARM, MBB, MBBI, dl, TII, ArgRegsSaveSize,
MachineInstr::FrameDestroy);
}
/// getFrameIndexReference - Provide a base+offset reference to an FI slot for
/// debug info. It's the same as what we use for resolving the code-gen
/// references for now. FIXME: This can go wrong when references are
/// SP-relative and simple call frames aren't used.
int ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
Register &FrameReg) const {
return ResolveFrameIndexReference(MF, FI, FrameReg, 0);
}
int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
int FI, Register &FrameReg,
int SPAdj) const {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
int FPOffset = Offset - AFI->getFramePtrSpillOffset();
bool isFixed = MFI.isFixedObjectIndex(FI);
FrameReg = ARM::SP;
Offset += SPAdj;
// SP can move around if there are allocas. We may also lose track of SP
// when emergency spilling inside a non-reserved call frame setup.
bool hasMovingSP = !hasReservedCallFrame(MF);
// When dynamically realigning the stack, use the frame pointer for
// parameters, and the stack/base pointer for locals.
if (RegInfo->needsStackRealignment(MF)) {
assert(hasFP(MF) && "dynamic stack realignment without a FP!");
if (isFixed) {
FrameReg = RegInfo->getFrameRegister(MF);
Offset = FPOffset;
} else if (hasMovingSP) {
assert(RegInfo->hasBasePointer(MF) &&
"VLAs and dynamic stack alignment, but missing base pointer!");
FrameReg = RegInfo->getBaseRegister();
Offset -= SPAdj;
}
return Offset;
}
// If there is a frame pointer, use it when we can.
if (hasFP(MF) && AFI->hasStackFrame()) {
// Use frame pointer to reference fixed objects. Use it for locals if
// there are VLAs (and thus the SP isn't reliable as a base).
if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
FrameReg = RegInfo->getFrameRegister(MF);
return FPOffset;
} else if (hasMovingSP) {
assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
if (AFI->isThumb2Function()) {
// Try to use the frame pointer if we can, else use the base pointer
// since it's available. This is handy for the emergency spill slot, in
// particular.
if (FPOffset >= -255 && FPOffset < 0) {
FrameReg = RegInfo->getFrameRegister(MF);
return FPOffset;
}
}
} else if (AFI->isThumbFunction()) {
// Prefer SP to base pointer, if the offset is suitably aligned and in
// range as the effective range of the immediate offset is bigger when
// basing off SP.
// Use add <rd>, sp, #<imm8>
// ldr <rd>, [sp, #<imm8>]
if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
return Offset;
// In Thumb2 mode, the negative offset is very limited. Try to avoid
// out of range references. ldr <rt>,[<rn>, #-<imm8>]
if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
FrameReg = RegInfo->getFrameRegister(MF);
return FPOffset;
}
} else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
// Otherwise, use SP or FP, whichever is closer to the stack slot.
FrameReg = RegInfo->getFrameRegister(MF);
return FPOffset;
}
}
// Use the base pointer if we have one.
// FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
// That can happen if we forced a base pointer for a large call frame.
if (RegInfo->hasBasePointer(MF)) {
FrameReg = RegInfo->getBaseRegister();
Offset -= SPAdj;
}
return Offset;
}
void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
ArrayRef<CalleeSavedInfo> CSI,
unsigned StmOpc, unsigned StrOpc,
bool NoGap, bool (*Func)(unsigned, bool),
unsigned NumAlignedDPRCS2Regs,
unsigned MIFlags) const {
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
DebugLoc DL;
using RegAndKill = std::pair<unsigned, bool>;
SmallVector<RegAndKill, 4> Regs;
unsigned i = CSI.size();
while (i != 0) {
unsigned LastReg = 0;
for (; i != 0; --i) {
unsigned Reg = CSI[i-1].getReg();
if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
// D-registers in the aligned area DPRCS2 are NOT spilled here.
if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
continue;
const MachineRegisterInfo &MRI = MF.getRegInfo();
bool isLiveIn = MRI.isLiveIn(Reg);
if (!isLiveIn && !MRI.isReserved(Reg))
MBB.addLiveIn(Reg);
// If NoGap is true, push consecutive registers and then leave the rest
// for other instructions. e.g.
// vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
if (NoGap && LastReg && LastReg != Reg-1)
break;
LastReg = Reg;
// Do not set a kill flag on values that are also marked as live-in. This
// happens with the @llvm-returnaddress intrinsic and with arguments
// passed in callee saved registers.
// Omitting the kill flags is conservatively correct even if the live-in
// is not used after all.
Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
}
if (Regs.empty())
continue;
llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
});
if (Regs.size() > 1 || StrOpc== 0) {
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
.addReg(ARM::SP)
.setMIFlags(MIFlags)
.add(predOps(ARMCC::AL));
for (unsigned i = 0, e = Regs.size(); i < e; ++i)
MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
} else if (Regs.size() == 1) {
BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
.addReg(Regs[0].first, getKillRegState(Regs[0].second))
.addReg(ARM::SP)
.setMIFlags(MIFlags)
.addImm(-4)
.add(predOps(ARMCC::AL));
}
Regs.clear();
// Put any subsequent vpush instructions before this one: they will refer to
// higher register numbers so need to be pushed first in order to preserve
// monotonicity.
if (MI != MBB.begin())
--MI;
}
}
void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
MutableArrayRef<CalleeSavedInfo> CSI,
unsigned LdmOpc, unsigned LdrOpc,
bool isVarArg, bool NoGap,
bool (*Func)(unsigned, bool),
unsigned NumAlignedDPRCS2Regs) const {
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
DebugLoc DL;
bool isTailCall = false;
bool isInterrupt = false;
bool isTrap = false;
bool isCmseEntry = false;
if (MBB.end() != MI) {
DL = MI->getDebugLoc();
unsigned RetOpcode = MI->getOpcode();
isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
isInterrupt =
RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
isTrap =
RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
RetOpcode == ARM::tTRAP;
isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
}
SmallVector<unsigned, 4> Regs;
unsigned i = CSI.size();
while (i != 0) {
unsigned LastReg = 0;
bool DeleteRet = false;
for (; i != 0; --i) {
CalleeSavedInfo &Info = CSI[i-1];
unsigned Reg = Info.getReg();
if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
// The aligned reloads from area DPRCS2 are not inserted here.
if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
continue;
if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
!isCmseEntry && !isTrap && STI.hasV5TOps()) {
if (MBB.succ_empty()) {
Reg = ARM::PC;
// Fold the return instruction into the LDM.
DeleteRet = true;
LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
// We 'restore' LR into PC so it is not live out of the return block:
// Clear Restored bit.
Info.setRestored(false);
} else
LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
}
// If NoGap is true, pop consecutive registers and then leave the rest
// for other instructions. e.g.
// vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
if (NoGap && LastReg && LastReg != Reg-1)
break;
LastReg = Reg;
Regs.push_back(Reg);
}
if (Regs.empty())
continue;
llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
});
if (Regs.size() > 1 || LdrOpc == 0) {
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL))
.setMIFlags(MachineInstr::FrameDestroy);
for (unsigned i = 0, e = Regs.size(); i < e; ++i)
MIB.addReg(Regs[i], getDefRegState(true));
if (DeleteRet) {
if (MI != MBB.end()) {
MIB.copyImplicitOps(*MI);
MI->eraseFromParent();
}
}
MI = MIB;
} else if (Regs.size() == 1) {
// If we adjusted the reg to PC from LR above, switch it back here. We
// only do that for LDM.
if (Regs[0] == ARM::PC)
Regs[0] = ARM::LR;
MachineInstrBuilder MIB =
BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
.addReg(ARM::SP, RegState::Define)
.addReg(ARM::SP)
.setMIFlags(MachineInstr::FrameDestroy);
// ARM mode needs an extra reg0 here due to addrmode2. Will go away once
// that refactoring is complete (eventually).
if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
MIB.addReg(0);
MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
} else
MIB.addImm(4);
MIB.add(predOps(ARMCC::AL));
}
Regs.clear();
// Put any subsequent vpop instructions after this one: they will refer to
// higher register numbers so need to be popped afterwards.
if (MI != MBB.end())
++MI;
}
}
/// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
/// starting from d8. Also insert stack realignment code and leave the stack
/// pointer pointing to the d8 spill slot.
static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned NumAlignedDPRCS2Regs,
ArrayRef<CalleeSavedInfo> CSI,
const TargetRegisterInfo *TRI) {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
MachineFrameInfo &MFI = MF.getFrameInfo();
// Mark the D-register spill slots as properly aligned. Since MFI computes
// stack slot layout backwards, this can actually mean that the d-reg stack
// slot offsets can be wrong. The offset for d8 will always be correct.
for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
unsigned DNum = CSI[i].getReg() - ARM::D8;
if (DNum > NumAlignedDPRCS2Regs - 1)
continue;
int FI = CSI[i].getFrameIdx();
// The even-numbered registers will be 16-byte aligned, the odd-numbered
// registers will be 8-byte aligned.
MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
// The stack slot for D8 needs to be maximally aligned because this is
// actually the point where we align the stack pointer. MachineFrameInfo
// computes all offsets relative to the incoming stack pointer which is a
// bit weird when realigning the stack. Any extra padding for this
// over-alignment is not realized because the code inserted below adjusts
// the stack pointer by numregs * 8 before aligning the stack pointer.
if (DNum == 0)
MFI.setObjectAlignment(FI, MFI.getMaxAlign());
}
// Move the stack pointer to the d8 spill slot, and align it at the same
// time. Leave the stack slot address in the scratch register r4.
//
// sub r4, sp, #numregs * 8
// bic r4, r4, #align - 1
// mov sp, r4
//
bool isThumb = AFI->isThumbFunction();
assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
AFI->setShouldRestoreSPFromFP(true);
// sub r4, sp, #numregs * 8
// The immediate is <= 64, so it doesn't need any special encoding.
unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
.addReg(ARM::SP)
.addImm(8 * NumAlignedDPRCS2Regs)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
Align MaxAlign = MF.getFrameInfo().getMaxAlign();
// We must set parameter MustBeSingleInstruction to true, since
// skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
// stack alignment. Luckily, this can always be done since all ARM
// architecture versions that support Neon also support the BFC
// instruction.
emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
// mov sp, r4
// The stack pointer must be adjusted before spilling anything, otherwise
// the stack slots could be clobbered by an interrupt handler.
// Leave r4 live, it is used below.
Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
.addReg(ARM::R4)
.add(predOps(ARMCC::AL));
if (!isThumb)
MIB.add(condCodeOp());
// Now spill NumAlignedDPRCS2Regs registers starting from d8.
// r4 holds the stack slot address.
unsigned NextReg = ARM::D8;
// 16-byte aligned vst1.64 with 4 d-regs and address writeback.
// The writeback is only needed when emitting two vst1.64 instructions.
if (NumAlignedDPRCS2Regs >= 6) {
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
&ARM::QQPRRegClass);
MBB.addLiveIn(SupReg);
BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
.addReg(ARM::R4, RegState::Kill)
.addImm(16)
.addReg(NextReg)
.addReg(SupReg, RegState::ImplicitKill)
.add(predOps(ARMCC::AL));
NextReg += 4;
NumAlignedDPRCS2Regs -= 4;
}
// We won't modify r4 beyond this point. It currently points to the next
// register to be spilled.
unsigned R4BaseReg = NextReg;
// 16-byte aligned vst1.64 with 4 d-regs, no writeback.
if (NumAlignedDPRCS2Regs >= 4) {
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
&ARM::QQPRRegClass);
MBB.addLiveIn(SupReg);
BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
.addReg(ARM::R4)
.addImm(16)
.addReg(NextReg)
.addReg(SupReg, RegState::ImplicitKill)
.add(predOps(ARMCC::AL));
NextReg += 4;
NumAlignedDPRCS2Regs -= 4;
}
// 16-byte aligned vst1.64 with 2 d-regs.
if (NumAlignedDPRCS2Regs >= 2) {
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
&ARM::QPRRegClass);
MBB.addLiveIn(SupReg);
BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
.addReg(ARM::R4)
.addImm(16)
.addReg(SupReg)
.add(predOps(ARMCC::AL));
NextReg += 2;
NumAlignedDPRCS2Regs -= 2;
}
// Finally, use a vanilla vstr.64 for the odd last register.
if (NumAlignedDPRCS2Regs) {
MBB.addLiveIn(NextReg);
// vstr.64 uses addrmode5 which has an offset scale of 4.
BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
.addReg(NextReg)
.addReg(ARM::R4)
.addImm((NextReg - R4BaseReg) * 2)
.add(predOps(ARMCC::AL));
}
// The last spill instruction inserted should kill the scratch register r4.
std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
}
/// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
/// iterator to the following instruction.
static MachineBasicBlock::iterator
skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
unsigned NumAlignedDPRCS2Regs) {
// sub r4, sp, #numregs * 8
// bic r4, r4, #align - 1
// mov sp, r4
++MI; ++MI; ++MI;
assert(MI->mayStore() && "Expecting spill instruction");
// These switches all fall through.
switch(NumAlignedDPRCS2Regs) {
case 7:
++MI;
assert(MI->mayStore() && "Expecting spill instruction");
LLVM_FALLTHROUGH;
default:
++MI;
assert(MI->mayStore() && "Expecting spill instruction");
LLVM_FALLTHROUGH;
case 1:
case 2:
case 4:
assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
++MI;
}
return MI;
}
/// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
/// starting from d8. These instructions are assumed to execute while the
/// stack is still aligned, unlike the code inserted by emitPopInst.
static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI,
unsigned NumAlignedDPRCS2Regs,
ArrayRef<CalleeSavedInfo> CSI,
const TargetRegisterInfo *TRI) {
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
// Find the frame index assigned to d8.
int D8SpillFI = 0;
for (unsigned i = 0, e = CSI.size(); i != e; ++i)
if (CSI[i].getReg() == ARM::D8) {
D8SpillFI = CSI[i].getFrameIdx();
break;
}
// Materialize the address of the d8 spill slot into the scratch register r4.
// This can be fairly complicated if the stack frame is large, so just use
// the normal frame index elimination mechanism to do it. This code runs as
// the initial part of the epilog where the stack and base pointers haven't
// been changed yet.
bool isThumb = AFI->isThumbFunction();
assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
.addFrameIndex(D8SpillFI)
.addImm(0)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
// Now restore NumAlignedDPRCS2Regs registers starting from d8.
unsigned NextReg = ARM::D8;
// 16-byte aligned vld1.64 with 4 d-regs and writeback.
if (NumAlignedDPRCS2Regs >= 6) {
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
&ARM::QQPRRegClass);
BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
.addReg(ARM::R4, RegState::Define)
.addReg(ARM::R4, RegState::Kill)
.addImm(16)
.addReg(SupReg, RegState::ImplicitDefine)
.add(predOps(ARMCC::AL));
NextReg += 4;
NumAlignedDPRCS2Regs -= 4;
}
// We won't modify r4 beyond this point. It currently points to the next
// register to be spilled.
unsigned R4BaseReg = NextReg;
// 16-byte aligned vld1.64 with 4 d-regs, no writeback.
if (NumAlignedDPRCS2Regs >= 4) {
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
&ARM::QQPRRegClass);
BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
.addReg(ARM::R4)
.addImm(16)
.addReg(SupReg, RegState::ImplicitDefine)
.add(predOps(ARMCC::AL));
NextReg += 4;
NumAlignedDPRCS2Regs -= 4;
}
// 16-byte aligned vld1.64 with 2 d-regs.
if (NumAlignedDPRCS2Regs >= 2) {
unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
&ARM::QPRRegClass);
BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
.addReg(ARM::R4)
.addImm(16)
.add(predOps(ARMCC::AL));
NextReg += 2;
NumAlignedDPRCS2Regs -= 2;
}
// Finally, use a vanilla vldr.64 for the remaining odd register.
if (NumAlignedDPRCS2Regs)
BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
.addReg(ARM::R4)
.addImm(2 * (NextReg - R4BaseReg))
.add(predOps(ARMCC::AL));
// Last store kills r4.
std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
}
bool ARMFrameLowering::spillCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
unsigned PushOneOpc = AFI->isThumbFunction() ?
ARM::t2STR_PRE : ARM::STR_PRE_IMM;
unsigned FltOpc = ARM::VSTMDDB_UPD;
unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
// Save the non-secure floating point context.
if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
return C.getReg() == ARM::FPCXTNS;
})) {
BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
ARM::SP)
.addReg(ARM::SP)
.addImm(-4)
.add(predOps(ARMCC::AL));
}
emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
MachineInstr::FrameSetup);
emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
MachineInstr::FrameSetup);
emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
// The code above does not insert spill code for the aligned DPRCS2 registers.
// The stack realignment code will be inserted between the push instructions
// and these spills.
if (NumAlignedDPRCS2Regs)
emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
return true;
}
bool ARMFrameLowering::restoreCalleeSavedRegisters(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
if (CSI.empty())
return false;
MachineFunction &MF = *MBB.getParent();
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
bool isVarArg = AFI->getArgRegsSaveSize() > 0;
unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
// The emitPopInst calls below do not insert reloads for the aligned DPRCS2
// registers. Do that here instead.
if (NumAlignedDPRCS2Regs)
emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
unsigned FltOpc = ARM::VLDMDIA_UPD;
emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
NumAlignedDPRCS2Regs);
emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
&isARMArea2Register, 0);
emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
&isARMArea1Register, 0);
return true;
}
// FIXME: Make generic?
static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
const ARMBaseInstrInfo &TII) {
unsigned FnSize = 0;
for (auto &MBB : MF) {
for (auto &MI : MBB)
FnSize += TII.getInstSizeInBytes(MI);
}
if (MF.getJumpTableInfo())
for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
FnSize += Table.MBBs.size() * 4;
FnSize += MF.getConstantPool()->getConstants().size() * 4;
return FnSize;
}
/// estimateRSStackSizeLimit - Look at each instruction that references stack
/// frames and return the stack size limit beyond which some of these
/// instructions will require a scratch register during their expansion later.
// FIXME: Move to TII?
static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
const TargetFrameLowering *TFI,
bool &HasNonSPFrameIndex) {
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
const ARMBaseInstrInfo &TII =
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
unsigned Limit = (1 << 12) - 1;
for (auto &MBB : MF) {
for (auto &MI : MBB) {
if (MI.isDebugInstr())
continue;
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
if (!MI.getOperand(i).isFI())
continue;
// When using ADDri to get the address of a stack object, 255 is the
// largest offset guaranteed to fit in the immediate offset.
if (MI.getOpcode() == ARM::ADDri) {
Limit = std::min(Limit, (1U << 8) - 1);
break;
}
// t2ADDri will not require an extra register, it can reuse the
// destination.
if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
break;
const MCInstrDesc &MCID = MI.getDesc();
const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
if (RegClass && !RegClass->contains(ARM::SP))
HasNonSPFrameIndex = true;
// Otherwise check the addressing mode.
switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
case ARMII::AddrMode_i12:
case ARMII::AddrMode2:
// Default 12 bit limit.
break;
case ARMII::AddrMode3:
case ARMII::AddrModeT2_i8:
Limit = std::min(Limit, (1U << 8) - 1);
break;
case ARMII::AddrMode5FP16:
Limit = std::min(Limit, ((1U << 8) - 1) * 2);
break;
case ARMII::AddrMode5:
case ARMII::AddrModeT2_i8s4:
case ARMII::AddrModeT2_ldrex:
Limit = std::min(Limit, ((1U << 8) - 1) * 4);
break;
case ARMII::AddrModeT2_i12:
// i12 supports only positive offset so these will be converted to
// i8 opcodes. See llvm::rewriteT2FrameIndex.
if (TFI->hasFP(MF) && AFI->hasStackFrame())
Limit = std::min(Limit, (1U << 8) - 1);
break;
case ARMII::AddrMode4:
case ARMII::AddrMode6:
// Addressing modes 4 & 6 (load/store) instructions can't encode an
// immediate offset for stack references.
return 0;
case ARMII::AddrModeT2_i7:
Limit = std::min(Limit, ((1U << 7) - 1) * 1);
break;
case ARMII::AddrModeT2_i7s2:
Limit = std::min(Limit, ((1U << 7) - 1) * 2);
break;
case ARMII::AddrModeT2_i7s4:
Limit = std::min(Limit, ((1U << 7) - 1) * 4);
break;
default:
llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
}
break; // At most one FI per instruction
}
}
}
return Limit;
}
// In functions that realign the stack, it can be an advantage to spill the
// callee-saved vector registers after realigning the stack. The vst1 and vld1
// instructions take alignment hints that can improve performance.
static void
checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
if (!SpillAlignedNEONRegs)
return;
// Naked functions don't spill callee-saved registers.
if (MF.getFunction().hasFnAttribute(Attribute::Naked))
return;
// We are planning to use NEON instructions vst1 / vld1.
if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
return;
// Don't bother if the default stack alignment is sufficiently high.
if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
return;
// Aligned spills require stack realignment.
if (!static_cast<const ARMBaseRegisterInfo *>(
MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
return;
// We always spill contiguous d-registers starting from d8. Count how many
// needs spilling. The register allocator will almost always use the
// callee-saved registers in order, but it can happen that there are holes in
// the range. Registers above the hole will be spilled to the standard DPRCS
// area.
unsigned NumSpills = 0;
for (; NumSpills < 8; ++NumSpills)
if (!SavedRegs.test(ARM::D8 + NumSpills))
break;
// Don't do this for just one d-register. It's not worth it.
if (NumSpills < 2)
return;
// Spill the first NumSpills D-registers after realigning the stack.
MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
// A scratch register is required for the vst1 / vld1 instructions.
SavedRegs.set(ARM::R4);
}
bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
// For CMSE entry functions, we want to save the FPCXT_NS immediately
// upon function entry (resp. restore it immmediately before return)
if (STI.hasV8_1MMainlineOps() &&
MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
return false;
return true;
}
void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
// This tells PEI to spill the FP as if it is any other callee-save register
// to take advantage the eliminateFrameIndex machinery. This also ensures it
// is spilled in the order specified by getCalleeSavedRegs() to make it easier
// to combine multiple loads / stores.
bool CanEliminateFrame = true;
bool CS1Spilled = false;
bool LRSpilled = false;
unsigned NumGPRSpills = 0;
unsigned NumFPRSpills = 0;
SmallVector<unsigned, 4> UnspilledCS1GPRs;
SmallVector<unsigned, 4> UnspilledCS2GPRs;
const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
const ARMBaseInstrInfo &TII =
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
(void)TRI; // Silence unused warning in non-assert builds.
Register FramePtr = RegInfo->getFrameRegister(MF);
// Spill R4 if Thumb2 function requires stack realignment - it will be used as
// scratch register. Also spill R4 if Thumb2 function has varsized objects,
// since it's not always possible to restore sp from fp in a single
// instruction.
// FIXME: It will be better just to find spare register here.
if (AFI->isThumb2Function() &&
(MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF)))
SavedRegs.set(ARM::R4);
// If a stack probe will be emitted, spill R4 and LR, since they are
// clobbered by the stack probe call.
// This estimate should be a safe, conservative estimate. The actual
// stack probe is enabled based on the size of the local objects;
// this estimate also includes the varargs store size.
if (STI.isTargetWindows() &&
WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
SavedRegs.set(ARM::R4);
SavedRegs.set(ARM::LR);
}
if (AFI->isThumb1OnlyFunction()) {
// Spill LR if Thumb1 function uses variable length argument lists.
if (AFI->getArgRegsSaveSize() > 0)
SavedRegs.set(ARM::LR);
// Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
// requires stack alignment. We don't know for sure what the stack size
// will be, but for this, an estimate is good enough. If there anything
// changes it, it'll be a spill, which implies we've used all the registers
// and so R4 is already used, so not marking it here will be OK.
// FIXME: It will be better just to find spare register here.
if (MFI.hasVarSizedObjects() || RegInfo->needsStackRealignment(MF) ||
MFI.estimateStackSize(MF) > 508)
SavedRegs.set(ARM::R4);
}
// See if we can spill vector registers to aligned stack.
checkNumAlignedDPRCS2Regs(MF, SavedRegs);
// Spill the BasePtr if it's used.
if (RegInfo->hasBasePointer(MF))
SavedRegs.set(RegInfo->getBaseRegister());
// On v8.1-M.Main CMSE entry functions save/restore FPCXT.
if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
CanEliminateFrame = false;
// Don't spill FP if the frame can be eliminated. This is determined
// by scanning the callee-save registers to see if any is modified.
const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
for (unsigned i = 0; CSRegs[i]; ++i) {
unsigned Reg = CSRegs[i];
bool Spilled = false;
if (SavedRegs.test(Reg)) {
Spilled = true;
CanEliminateFrame = false;
}
if (!ARM::GPRRegClass.contains(Reg)) {
if (Spilled) {
if (ARM::SPRRegClass.contains(Reg))
NumFPRSpills++;
else if (ARM::DPRRegClass.contains(Reg))
NumFPRSpills += 2;
else if (ARM::QPRRegClass.contains(Reg))
NumFPRSpills += 4;
}
continue;
}
if (Spilled) {
NumGPRSpills++;
if (!STI.splitFramePushPop(MF)) {
if (Reg == ARM::LR)
LRSpilled = true;
CS1Spilled = true;
continue;
}
// Keep track if LR and any of R4, R5, R6, and R7 is spilled.
switch (Reg) {
case ARM::LR:
LRSpilled = true;
LLVM_FALLTHROUGH;
case ARM::R0: case ARM::R1:
case ARM::R2: case ARM::R3:
case ARM::R4: case ARM::R5:
case ARM::R6: case ARM::R7:
CS1Spilled = true;
break;
default:
break;
}
} else {
if (!STI.splitFramePushPop(MF)) {
UnspilledCS1GPRs.push_back(Reg);
continue;
}
switch (Reg) {
case ARM::R0: case ARM::R1:
case ARM::R2: case ARM::R3:
case ARM::R4: case ARM::R5:
case ARM::R6: case ARM::R7:
case ARM::LR:
UnspilledCS1GPRs.push_back(Reg);
break;
default:
UnspilledCS2GPRs.push_back(Reg);
break;
}
}
}
bool ForceLRSpill = false;
if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
// Force LR to be spilled if the Thumb function size is > 2048. This enables
// use of BL to implement far jump.
if (FnSize >= (1 << 11)) {
CanEliminateFrame = false;
ForceLRSpill = true;
}
}
// If any of the stack slot references may be out of range of an immediate
// offset, make sure a register (or a spill slot) is available for the
// register scavenger. Note that if we're indexing off the frame pointer, the
// effective stack size is 4 bytes larger since the FP points to the stack
// slot of the previous FP. Also, if we have variable sized objects in the
// function, stack slot references will often be negative, and some of
// our instructions are positive-offset only, so conservatively consider
// that case to want a spill slot (or register) as well. Similarly, if
// the function adjusts the stack pointer during execution and the
// adjustments aren't already part of our stack size estimate, our offset
// calculations may be off, so be conservative.
// FIXME: We could add logic to be more precise about negative offsets
// and which instructions will need a scratch register for them. Is it
// worth the effort and added fragility?
unsigned EstimatedStackSize =
MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
// Determine biggest (positive) SP offset in MachineFrameInfo.
int MaxFixedOffset = 0;
for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
}
bool HasFP = hasFP(MF);
if (HasFP) {
if (AFI->hasStackFrame())
EstimatedStackSize += 4;
} else {
// If FP is not used, SP will be used to access arguments, so count the
// size of arguments into the estimation.
EstimatedStackSize += MaxFixedOffset;
}
EstimatedStackSize += 16; // For possible paddings.
unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
bool HasNonSPFrameIndex = false;
if (AFI->isThumb1OnlyFunction()) {
// For Thumb1, don't bother to iterate over the function. The only
// instruction that requires an emergency spill slot is a store to a
// frame index.
//
// tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
// immediate. tSTRi, which is used for bp- and fp-relative accesses, has
// a 5-bit unsigned immediate.
//
// We could try to check if the function actually contains a tSTRspi
// that might need the spill slot, but it's not really important.
// Functions with VLAs or extremely large call frames are rare, and
// if a function is allocating more than 1KB of stack, an extra 4-byte
// slot probably isn't relevant.
if (RegInfo->hasBasePointer(MF))
EstimatedRSStackSizeLimit = (1U << 5) * 4;
else
EstimatedRSStackSizeLimit = (1U << 8) * 4;
EstimatedRSFixedSizeLimit = (1U << 5) * 4;
} else {
EstimatedRSStackSizeLimit =
estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
}
// Final estimate of whether sp or bp-relative accesses might require
// scavenging.
bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
// If the stack pointer moves and we don't have a base pointer, the
// estimate logic doesn't work. The actual offsets might be larger when
// we're constructing a call frame, or we might need to use negative
// offsets from fp.
bool HasMovingSP = MFI.hasVarSizedObjects() ||
(MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
// If we have a frame pointer, we assume arguments will be accessed
// relative to the frame pointer. Check whether fp-relative accesses to
// arguments require scavenging.
//
// We could do slightly better on Thumb1; in some cases, an sp-relative
// offset would be legal even though an fp-relative offset is not.
int MaxFPOffset = getMaxFPOffset(STI, *AFI);
bool HasLargeArgumentList =
HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
HasLargeArgumentList || HasNonSPFrameIndex;
LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
<< "; EstimatedStack: " << EstimatedStackSize
<< "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
<< "; BigFrameOffsets: " << BigFrameOffsets << "\n");
if (BigFrameOffsets ||
!CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
AFI->setHasStackFrame(true);
if (HasFP) {
SavedRegs.set(FramePtr);
// If the frame pointer is required by the ABI, also spill LR so that we
// emit a complete frame record.
if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
SavedRegs.set(ARM::LR);
LRSpilled = true;
NumGPRSpills++;
auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
if (LRPos != UnspilledCS1GPRs.end())
UnspilledCS1GPRs.erase(LRPos);
}
auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
if (FPPos != UnspilledCS1GPRs.end())
UnspilledCS1GPRs.erase(FPPos);
NumGPRSpills++;
if (FramePtr == ARM::R7)
CS1Spilled = true;
}
// This is true when we inserted a spill for a callee-save GPR which is
// not otherwise used by the function. This guaranteees it is possible
// to scavenge a register to hold the address of a stack slot. On Thumb1,
// the register must be a valid operand to tSTRi, i.e. r4-r7. For other
// subtargets, this is any GPR, i.e. r4-r11 or lr.
//
// If we don't insert a spill, we instead allocate an emergency spill
// slot, which can be used by scavenging to spill an arbitrary register.
//
// We currently don't try to figure out whether any specific instruction
// requires scavening an additional register.
bool ExtraCSSpill = false;
if (AFI->isThumb1OnlyFunction()) {
// For Thumb1-only targets, we need some low registers when we save and
// restore the high registers (which aren't allocatable, but could be
// used by inline assembly) because the push/pop instructions can not
// access high registers. If necessary, we might need to push more low
// registers to ensure that there is at least one free that can be used
// for the saving & restoring, and preferably we should ensure that as
// many as are needed are available so that fewer push/pop instructions
// are required.
// Low registers which are not currently pushed, but could be (r4-r7).
SmallVector<unsigned, 4> AvailableRegs;
// Unused argument registers (r0-r3) can be clobbered in the prologue for
// free.
int EntryRegDeficit = 0;
for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
if (!MF.getRegInfo().isLiveIn(Reg)) {
--EntryRegDeficit;
LLVM_DEBUG(dbgs()
<< printReg(Reg, TRI)
<< " is unused argument register, EntryRegDeficit = "
<< EntryRegDeficit << "\n");
}
}
// Unused return registers can be clobbered in the epilogue for free.
int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
<< " return regs used, ExitRegDeficit = "
<< ExitRegDeficit << "\n");
int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
// r4-r6 can be used in the prologue if they are pushed by the first push
// instruction.
for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
if (SavedRegs.test(Reg)) {
--RegDeficit;
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
<< " is saved low register, RegDeficit = "
<< RegDeficit << "\n");
} else {
AvailableRegs.push_back(Reg);
LLVM_DEBUG(
dbgs()
<< printReg(Reg, TRI)
<< " is non-saved low register, adding to AvailableRegs\n");
}
}
// r7 can be used if it is not being used as the frame pointer.
if (!HasFP) {
if (SavedRegs.test(ARM::R7)) {
--RegDeficit;
LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
<< RegDeficit << "\n");
} else {
AvailableRegs.push_back(ARM::R7);
LLVM_DEBUG(
dbgs()
<< "%r7 is non-saved low register, adding to AvailableRegs\n");
}
}
// Each of r8-r11 needs to be copied to a low register, then pushed.
for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
if (SavedRegs.test(Reg)) {
++RegDeficit;
LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
<< " is saved high register, RegDeficit = "
<< RegDeficit << "\n");
}
}
// LR can only be used by PUSH, not POP, and can't be used at all if the
// llvm.returnaddress intrinsic is used. This is only worth doing if we
// are more limited at function entry than exit.
if ((EntryRegDeficit > ExitRegDeficit) &&
!(MF.getRegInfo().isLiveIn(ARM::LR) &&
MF.getFrameInfo().isReturnAddressTaken())) {
if (SavedRegs.test(ARM::LR)) {
--RegDeficit;
LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
<< RegDeficit << "\n");
} else {
AvailableRegs.push_back(ARM::LR);
LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
}
}
// If there are more high registers that need pushing than low registers
// available, push some more low registers so that we can use fewer push
// instructions. This might not reduce RegDeficit all the way to zero,
// because we can only guarantee that r4-r6 are available, but r8-r11 may
// need saving.
LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
unsigned Reg = AvailableRegs.pop_back_val();
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
<< " to make up reg deficit\n");
SavedRegs.set(Reg);
NumGPRSpills++;
CS1Spilled = true;
assert(!MRI.isReserved(Reg) && "Should not be reserved");
if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
ExtraCSSpill = true;
UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
if (Reg == ARM::LR)
LRSpilled = true;
}
LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
<< "\n");
}
// Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
// restore LR in that case.
bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
// If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
// Spill LR as well so we can fold BX_RET to the registers restore (LDM).
if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
SavedRegs.set(ARM::LR);
NumGPRSpills++;
SmallVectorImpl<unsigned>::iterator LRPos;
LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
if (LRPos != UnspilledCS1GPRs.end())
UnspilledCS1GPRs.erase(LRPos);
ForceLRSpill = false;
if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
!AFI->isThumb1OnlyFunction())
ExtraCSSpill = true;
}
// If stack and double are 8-byte aligned and we are spilling an odd number
// of GPRs, spill one extra callee save GPR so we won't have to pad between
// the integer and double callee save areas.
LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
const Align TargetAlign = getStackAlign();
if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
unsigned Reg = UnspilledCS1GPRs[i];
// Don't spill high register if the function is thumb. In the case of
// Windows on ARM, accept R11 (frame pointer)
if (!AFI->isThumbFunction() ||
(STI.isTargetWindows() && Reg == ARM::R11) ||
isARMLowRegister(Reg) ||
(Reg == ARM::LR && !ExpensiveLRRestore)) {
SavedRegs.set(Reg);
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
<< " to make up alignment\n");
if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
!(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
ExtraCSSpill = true;
break;
}
}
} else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
unsigned Reg = UnspilledCS2GPRs.front();
SavedRegs.set(Reg);
LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
<< " to make up alignment\n");
if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
ExtraCSSpill = true;
}
}
// Estimate if we might need to scavenge a register at some point in order
// to materialize a stack offset. If so, either spill one additional
// callee-saved register or reserve a special spill slot to facilitate
// register scavenging. Thumb1 needs a spill slot for stack pointer
// adjustments also, even when the frame itself is small.
if (BigFrameOffsets && !ExtraCSSpill) {
// If any non-reserved CS register isn't spilled, just spill one or two
// extra. That should take care of it!
unsigned NumExtras = TargetAlign.value() / 4;
SmallVector<unsigned, 2> Extras;
while (NumExtras && !UnspilledCS1GPRs.empty()) {
unsigned Reg = UnspilledCS1GPRs.back();
UnspilledCS1GPRs.pop_back();
if (!MRI.isReserved(Reg) &&
(!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
Extras.push_back(Reg);
NumExtras--;
}
}
// For non-Thumb1 functions, also check for hi-reg CS registers
if (!AFI->isThumb1OnlyFunction()) {
while (NumExtras && !UnspilledCS2GPRs.empty()) {
unsigned Reg = UnspilledCS2GPRs.back();
UnspilledCS2GPRs.pop_back();
if (!MRI.isReserved(Reg)) {
Extras.push_back(Reg);
NumExtras--;
}
}
}
if (NumExtras == 0) {
for (unsigned Reg : Extras) {
SavedRegs.set(Reg);
if (!MRI.isPhysRegUsed(Reg))
ExtraCSSpill = true;
}
}
if (!ExtraCSSpill && RS) {
// Reserve a slot closest to SP or frame pointer.
LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
const TargetRegisterClass &RC = ARM::GPRRegClass;
unsigned Size = TRI->getSpillSize(RC);
Align Alignment = TRI->getSpillAlign(RC);
RS->addScavengingFrameIndex(
MFI.CreateStackObject(Size, Alignment, false));
}
}
}
if (ForceLRSpill)
SavedRegs.set(ARM::LR);
AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
}
void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
BitVector &SavedRegs) const {
TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
// If we have the "returned" parameter attribute which guarantees that we
// return the value which was passed in r0 unmodified (e.g. C++ 'structors),
// record that fact for IPRA.
const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
if (AFI->getPreservesR0())
SavedRegs.set(ARM::R0);
}
bool ARMFrameLowering::assignCalleeSavedSpillSlots(
MachineFunction &MF, const TargetRegisterInfo *TRI,
std::vector<CalleeSavedInfo> &CSI) const {
// For CMSE entry functions, handle floating-point context as if it was a
// callee-saved register.
if (STI.hasV8_1MMainlineOps() &&
MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
CSI.emplace_back(ARM::FPCXTNS);
CSI.back().setRestored(false);
}
return false;
}
const TargetFrameLowering::SpillSlot *
ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
NumEntries = array_lengthof(FixedSpillOffsets);
return FixedSpillOffsets;
}
MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF, MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
const ARMBaseInstrInfo &TII =
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
if (!hasReservedCallFrame(MF)) {
// If we have alloca, convert as follows:
// ADJCALLSTACKDOWN -> sub, sp, sp, amount
// ADJCALLSTACKUP -> add, sp, sp, amount
MachineInstr &Old = *I;
DebugLoc dl = Old.getDebugLoc();
unsigned Amount = TII.getFrameSize(Old);
if (Amount != 0) {
// We need to keep the stack aligned properly. To do this, we round the
// amount of space needed for the outgoing arguments up to the next
// alignment boundary.
Amount = alignSPAdjust(Amount);
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
assert(!AFI->isThumb1OnlyFunction() &&
"This eliminateCallFramePseudoInstr does not support Thumb1!");
bool isARM = !AFI->isThumbFunction();
// Replace the pseudo instruction with a new instruction...
unsigned Opc = Old.getOpcode();
int PIdx = Old.findFirstPredOperandIdx();
ARMCC::CondCodes Pred =
(PIdx == -1) ? ARMCC::AL
: (ARMCC::CondCodes)Old.getOperand(PIdx).getImm();
unsigned PredReg = TII.getFramePred(Old);
if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
Pred, PredReg);
} else {
assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
Pred, PredReg);
}
}
}
return MBB.erase(I);
}
/// Get the minimum constant for ARM that is greater than or equal to the
/// argument. In ARM, constants can have any value that can be produced by
/// rotating an 8-bit value to the right by an even number of bits within a
/// 32-bit word.
static uint32_t alignToARMConstant(uint32_t Value) {
unsigned Shifted = 0;
if (Value == 0)
return 0;
while (!(Value & 0xC0000000)) {
Value = Value << 2;
Shifted += 2;
}
bool Carry = (Value & 0x00FFFFFF);
Value = ((Value & 0xFF000000) >> 24) + Carry;
if (Value & 0x0000100)
Value = Value & 0x000001FC;
if (Shifted > 24)
Value = Value >> (Shifted - 24);
else
Value = Value << (24 - Shifted);
return Value;
}
// The stack limit in the TCB is set to this many bytes above the actual
// stack limit.
static const uint64_t kSplitStackAvailable = 256;
// Adjust the function prologue to enable split stacks. This currently only
// supports android and linux.
//
// The ABI of the segmented stack prologue is a little arbitrarily chosen, but
// must be well defined in order to allow for consistent implementations of the
// __morestack helper function. The ABI is also not a normal ABI in that it
// doesn't follow the normal calling conventions because this allows the
// prologue of each function to be optimized further.
//
// Currently, the ABI looks like (when calling __morestack)
//
// * r4 holds the minimum stack size requested for this function call
// * r5 holds the stack size of the arguments to the function
// * the beginning of the function is 3 instructions after the call to
// __morestack
//
// Implementations of __morestack should use r4 to allocate a new stack, r5 to
// place the arguments on to the new stack, and the 3-instruction knowledge to
// jump directly to the body of the function when working on the new stack.
//
// An old (and possibly no longer compatible) implementation of __morestack for
// ARM can be found at [1].
//
// [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
void ARMFrameLowering::adjustForSegmentedStacks(
MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
unsigned Opcode;
unsigned CFIIndex;
const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
bool Thumb = ST->isThumb();
// Sadly, this currently doesn't support varargs, platforms other than
// android/linux. Note that thumb1/thumb2 are support for android/linux.
if (MF.getFunction().isVarArg())
report_fatal_error("Segmented stacks do not support vararg functions.");
if (!ST->isTargetAndroid() && !ST->isTargetLinux())
report_fatal_error("Segmented stacks not supported on this platform.");
MachineFrameInfo &MFI = MF.getFrameInfo();
MachineModuleInfo &MMI = MF.getMMI();
MCContext &Context = MMI.getContext();
const MCRegisterInfo *MRI = Context.getRegisterInfo();
const ARMBaseInstrInfo &TII =
*static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
DebugLoc DL;
uint64_t StackSize = MFI.getStackSize();
// Do not generate a prologue for leaf functions with a stack of size zero.
// For non-leaf functions we have to allow for the possibility that the
// callis to a non-split function, as in PR37807. This function could also
// take the address of a non-split function. When the linker tries to adjust
// its non-existent prologue, it would fail with an error. Mark the object
// file so that such failures are not errors. See this Go language bug-report
// https://go-review.googlesource.com/c/go/+/148819/
if (StackSize == 0 && !MFI.hasTailCall()) {
MF.getMMI().setHasNosplitStack(true);
return;
}
// Use R4 and R5 as scratch registers.
// We save R4 and R5 before use and restore them before leaving the function.
unsigned ScratchReg0 = ARM::R4;
unsigned ScratchReg1 = ARM::R5;
uint64_t AlignedStackSize;
MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
// Grab everything that reaches PrologueMBB to update there liveness as well.
SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
SmallVector<MachineBasicBlock *, 2> WalkList;
WalkList.push_back(&PrologueMBB);
do {
MachineBasicBlock *CurMBB = WalkList.pop_back_val();
for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
if (BeforePrologueRegion.insert(PredBB).second)
WalkList.push_back(PredBB);
}
} while (!WalkList.empty());
// The order in that list is important.
// The blocks will all be inserted before PrologueMBB using that order.
// Therefore the block that should appear first in the CFG should appear
// first in the list.
MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
PostStackMBB};
for (MachineBasicBlock *B : AddedBlocks)
BeforePrologueRegion.insert(B);
for (const auto &LI : PrologueMBB.liveins()) {
for (MachineBasicBlock *PredBB : BeforePrologueRegion)
PredBB->addLiveIn(LI);
}
// Remove the newly added blocks from the list, since we know
// we do not have to do the following updates for them.
for (MachineBasicBlock *B : AddedBlocks) {
BeforePrologueRegion.erase(B);
MF.insert(PrologueMBB.getIterator(), B);
}
for (MachineBasicBlock *MBB : BeforePrologueRegion) {
// Make sure the LiveIns are still sorted and unique.
MBB->sortUniqueLiveIns();
// Replace the edges to PrologueMBB by edges to the sequences
// we are about to add.
MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
}
// The required stack size that is aligned to ARM constant criterion.
AlignedStackSize = alignToARMConstant(StackSize);
// When the frame size is less than 256 we just compare the stack
// boundary directly to the value of the stack pointer, per gcc.
bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
// We will use two of the callee save registers as scratch registers so we
// need to save those registers onto the stack.
// We will use SR0 to hold stack limit and SR1 to hold the stack size
// requested and arguments for __morestack().
// SR0: Scratch Register #0
// SR1: Scratch Register #1
// push {SR0, SR1}
if (Thumb) {
BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
.add(predOps(ARMCC::AL))
.addReg(ScratchReg0)
.addReg(ScratchReg1);
} else {
BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
.addReg(ARM::SP, RegState::Define)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL))
.addReg(ScratchReg0)
.addReg(ScratchReg1);
}
// Emit the relevant DWARF information about the change in stack pointer as
// well as where to find both r4 and r5 (the callee-save registers)
CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// mov SR1, sp
if (Thumb) {
BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
} else if (CompareStackPointer) {
BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
}
// sub SR1, sp, #StackSize
if (!CompareStackPointer && Thumb) {
BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
.add(condCodeOp())
.addReg(ScratchReg1)
.addImm(AlignedStackSize)
.add(predOps(ARMCC::AL));
} else if (!CompareStackPointer) {
BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
.addReg(ARM::SP)
.addImm(AlignedStackSize)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
}
if (Thumb && ST->isThumb1Only()) {
unsigned PCLabelId = ARMFI->createPICLabelUId();
ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
MachineConstantPool *MCP = MF.getConstantPool();
unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
// ldr SR0, [pc, offset(STACK_LIMIT)]
BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
.addConstantPoolIndex(CPI)
.add(predOps(ARMCC::AL));
// ldr SR0, [SR0]
BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
.addReg(ScratchReg0)
.addImm(0)
.add(predOps(ARMCC::AL));
} else {
// Get TLS base address from the coprocessor
// mrc p15, #0, SR0, c13, c0, #3
BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
ScratchReg0)
.addImm(15)
.addImm(0)
.addImm(13)
.addImm(0)
.addImm(3)
.add(predOps(ARMCC::AL));
// Use the last tls slot on android and a private field of the TCP on linux.
assert(ST->isTargetAndroid() || ST->isTargetLinux());
unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
// Get the stack limit from the right offset
// ldr SR0, [sr0, #4 * TlsOffset]
BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
ScratchReg0)
.addReg(ScratchReg0)
.addImm(4 * TlsOffset)
.add(predOps(ARMCC::AL));
}
// Compare stack limit with stack size requested.
// cmp SR0, SR1
Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
BuildMI(GetMBB, DL, TII.get(Opcode))
.addReg(ScratchReg0)
.addReg(ScratchReg1)
.add(predOps(ARMCC::AL));
// This jump is taken if StackLimit < SP - stack required.
Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
.addImm(ARMCC::LO)
.addReg(ARM::CPSR);
// Calling __morestack(StackSize, Size of stack arguments).
// __morestack knows that the stack size requested is in SR0(r4)
// and amount size of stack arguments is in SR1(r5).
// Pass first argument for the __morestack by Scratch Register #0.
// The amount size of stack required
if (Thumb) {
BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
.add(condCodeOp())
.addImm(AlignedStackSize)
.add(predOps(ARMCC::AL));
} else {
BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
.addImm(AlignedStackSize)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
}
// Pass second argument for the __morestack by Scratch Register #1.
// The amount size of stack consumed to save function arguments.
if (Thumb) {
BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
.add(condCodeOp())
.addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
.add(predOps(ARMCC::AL));
} else {
BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
.addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
.add(predOps(ARMCC::AL))
.add(condCodeOp());
}
// push {lr} - Save return address of this function.
if (Thumb) {
BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
.add(predOps(ARMCC::AL))
.addReg(ARM::LR);
} else {
BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
.addReg(ARM::SP, RegState::Define)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL))
.addReg(ARM::LR);
}
// Emit the DWARF info about the change in stack as well as where to find the
// previous link register
CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// Call __morestack().
if (Thumb) {
BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
.add(predOps(ARMCC::AL))
.addExternalSymbol("__morestack");
} else {
BuildMI(AllocMBB, DL, TII.get(ARM::BL))
.addExternalSymbol("__morestack");
}
// pop {lr} - Restore return address of this original function.
if (Thumb) {
if (ST->isThumb1Only()) {
BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
.add(predOps(ARMCC::AL))
.addReg(ScratchReg0);
BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
.addReg(ScratchReg0)
.add(predOps(ARMCC::AL));
} else {
BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
.addReg(ARM::LR, RegState::Define)
.addReg(ARM::SP, RegState::Define)
.addReg(ARM::SP)
.addImm(4)
.add(predOps(ARMCC::AL));
}
} else {
BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
.addReg(ARM::SP, RegState::Define)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL))
.addReg(ARM::LR);
}
// Restore SR0 and SR1 in case of __morestack() was called.
// __morestack() will skip PostStackMBB block so we need to restore
// scratch registers from here.
// pop {SR0, SR1}
if (Thumb) {
BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
.add(predOps(ARMCC::AL))
.addReg(ScratchReg0)
.addReg(ScratchReg1);
} else {
BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
.addReg(ARM::SP, RegState::Define)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL))
.addReg(ScratchReg0)
.addReg(ScratchReg1);
}
// Update the CFA offset now that we've popped
CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// Return from this function.
BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
// Restore SR0 and SR1 in case of __morestack() was not called.
// pop {SR0, SR1}
if (Thumb) {
BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
.add(predOps(ARMCC::AL))
.addReg(ScratchReg0)
.addReg(ScratchReg1);
} else {
BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
.addReg(ARM::SP, RegState::Define)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL))
.addReg(ScratchReg0)
.addReg(ScratchReg1);
}
// Update the CFA offset now that we've popped
CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// Tell debuggers that r4 and r5 are now the same as they were in the
// previous function, that they're the "Same Value".
CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
.addCFIIndex(CFIIndex);
// Organizing MBB lists
PostStackMBB->addSuccessor(&PrologueMBB);
AllocMBB->addSuccessor(PostStackMBB);
GetMBB->addSuccessor(PostStackMBB);
GetMBB->addSuccessor(AllocMBB);
McrMBB->addSuccessor(GetMBB);
PrevStackMBB->addSuccessor(McrMBB);
#ifdef EXPENSIVE_CHECKS
MF.verify();
#endif
}