ARMBaseInstrInfo.cpp 209 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042
//===-- ARMBaseInstrInfo.cpp - ARM Instruction Information ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the Base ARM implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMConstantPoolValue.h"
#include "ARMFeatures.h"
#include "ARMHazardRecognizer.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <new>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "arm-instrinfo"

#define GET_INSTRINFO_CTOR_DTOR
#include "ARMGenInstrInfo.inc"

static cl::opt<bool>
EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
               cl::desc("Enable ARM 2-addr to 3-addr conv"));

/// ARM_MLxEntry - Record information about MLA / MLS instructions.
struct ARM_MLxEntry {
  uint16_t MLxOpc;     // MLA / MLS opcode
  uint16_t MulOpc;     // Expanded multiplication opcode
  uint16_t AddSubOpc;  // Expanded add / sub opcode
  bool NegAcc;         // True if the acc is negated before the add / sub.
  bool HasLane;        // True if instruction has an extra "lane" operand.
};

static const ARM_MLxEntry ARM_MLxTable[] = {
  // MLxOpc,          MulOpc,           AddSubOpc,       NegAcc, HasLane
  // fp scalar ops
  { ARM::VMLAS,       ARM::VMULS,       ARM::VADDS,      false,  false },
  { ARM::VMLSS,       ARM::VMULS,       ARM::VSUBS,      false,  false },
  { ARM::VMLAD,       ARM::VMULD,       ARM::VADDD,      false,  false },
  { ARM::VMLSD,       ARM::VMULD,       ARM::VSUBD,      false,  false },
  { ARM::VNMLAS,      ARM::VNMULS,      ARM::VSUBS,      true,   false },
  { ARM::VNMLSS,      ARM::VMULS,       ARM::VSUBS,      true,   false },
  { ARM::VNMLAD,      ARM::VNMULD,      ARM::VSUBD,      true,   false },
  { ARM::VNMLSD,      ARM::VMULD,       ARM::VSUBD,      true,   false },

  // fp SIMD ops
  { ARM::VMLAfd,      ARM::VMULfd,      ARM::VADDfd,     false,  false },
  { ARM::VMLSfd,      ARM::VMULfd,      ARM::VSUBfd,     false,  false },
  { ARM::VMLAfq,      ARM::VMULfq,      ARM::VADDfq,     false,  false },
  { ARM::VMLSfq,      ARM::VMULfq,      ARM::VSUBfq,     false,  false },
  { ARM::VMLAslfd,    ARM::VMULslfd,    ARM::VADDfd,     false,  true  },
  { ARM::VMLSslfd,    ARM::VMULslfd,    ARM::VSUBfd,     false,  true  },
  { ARM::VMLAslfq,    ARM::VMULslfq,    ARM::VADDfq,     false,  true  },
  { ARM::VMLSslfq,    ARM::VMULslfq,    ARM::VSUBfq,     false,  true  },
};

ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
  : ARMGenInstrInfo(ARM::ADJCALLSTACKDOWN, ARM::ADJCALLSTACKUP),
    Subtarget(STI) {
  for (unsigned i = 0, e = array_lengthof(ARM_MLxTable); i != e; ++i) {
    if (!MLxEntryMap.insert(std::make_pair(ARM_MLxTable[i].MLxOpc, i)).second)
      llvm_unreachable("Duplicated entries?");
    MLxHazardOpcodes.insert(ARM_MLxTable[i].AddSubOpc);
    MLxHazardOpcodes.insert(ARM_MLxTable[i].MulOpc);
  }
}

// Use a ScoreboardHazardRecognizer for prepass ARM scheduling. TargetInstrImpl
// currently defaults to no prepass hazard recognizer.
ScheduleHazardRecognizer *
ARMBaseInstrInfo::CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
                                               const ScheduleDAG *DAG) const {
  if (usePreRAHazardRecognizer()) {
    const InstrItineraryData *II =
        static_cast<const ARMSubtarget *>(STI)->getInstrItineraryData();
    return new ScoreboardHazardRecognizer(II, DAG, "pre-RA-sched");
  }
  return TargetInstrInfo::CreateTargetHazardRecognizer(STI, DAG);
}

ScheduleHazardRecognizer *ARMBaseInstrInfo::
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                   const ScheduleDAG *DAG) const {
  if (Subtarget.isThumb2() || Subtarget.hasVFP2Base())
    return new ARMHazardRecognizer(II, DAG);
  return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
}

MachineInstr *ARMBaseInstrInfo::convertToThreeAddress(
    MachineFunction::iterator &MFI, MachineInstr &MI, LiveVariables *LV) const {
  // FIXME: Thumb2 support.

  if (!EnableARM3Addr)
    return nullptr;

  MachineFunction &MF = *MI.getParent()->getParent();
  uint64_t TSFlags = MI.getDesc().TSFlags;
  bool isPre = false;
  switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
  default: return nullptr;
  case ARMII::IndexModePre:
    isPre = true;
    break;
  case ARMII::IndexModePost:
    break;
  }

  // Try splitting an indexed load/store to an un-indexed one plus an add/sub
  // operation.
  unsigned MemOpc = getUnindexedOpcode(MI.getOpcode());
  if (MemOpc == 0)
    return nullptr;

  MachineInstr *UpdateMI = nullptr;
  MachineInstr *MemMI = nullptr;
  unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
  const MCInstrDesc &MCID = MI.getDesc();
  unsigned NumOps = MCID.getNumOperands();
  bool isLoad = !MI.mayStore();
  const MachineOperand &WB = isLoad ? MI.getOperand(1) : MI.getOperand(0);
  const MachineOperand &Base = MI.getOperand(2);
  const MachineOperand &Offset = MI.getOperand(NumOps - 3);
  Register WBReg = WB.getReg();
  Register BaseReg = Base.getReg();
  Register OffReg = Offset.getReg();
  unsigned OffImm = MI.getOperand(NumOps - 2).getImm();
  ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI.getOperand(NumOps - 1).getImm();
  switch (AddrMode) {
  default: llvm_unreachable("Unknown indexed op!");
  case ARMII::AddrMode2: {
    bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
    unsigned Amt = ARM_AM::getAM2Offset(OffImm);
    if (OffReg == 0) {
      if (ARM_AM::getSOImmVal(Amt) == -1)
        // Can't encode it in a so_imm operand. This transformation will
        // add more than 1 instruction. Abandon!
        return nullptr;
      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
                     .addReg(BaseReg)
                     .addImm(Amt)
                     .add(predOps(Pred))
                     .add(condCodeOp());
    } else if (Amt != 0) {
      ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
      unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
                         get(isSub ? ARM::SUBrsi : ARM::ADDrsi), WBReg)
                     .addReg(BaseReg)
                     .addReg(OffReg)
                     .addReg(0)
                     .addImm(SOOpc)
                     .add(predOps(Pred))
                     .add(condCodeOp());
    } else
      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
                     .addReg(BaseReg)
                     .addReg(OffReg)
                     .add(predOps(Pred))
                     .add(condCodeOp());
    break;
  }
  case ARMII::AddrMode3 : {
    bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
    unsigned Amt = ARM_AM::getAM3Offset(OffImm);
    if (OffReg == 0)
      // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
                         get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
                     .addReg(BaseReg)
                     .addImm(Amt)
                     .add(predOps(Pred))
                     .add(condCodeOp());
    else
      UpdateMI = BuildMI(MF, MI.getDebugLoc(),
                         get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
                     .addReg(BaseReg)
                     .addReg(OffReg)
                     .add(predOps(Pred))
                     .add(condCodeOp());
    break;
  }
  }

  std::vector<MachineInstr*> NewMIs;
  if (isPre) {
    if (isLoad)
      MemMI =
          BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
              .addReg(WBReg)
              .addImm(0)
              .addImm(Pred);
    else
      MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
                  .addReg(MI.getOperand(1).getReg())
                  .addReg(WBReg)
                  .addReg(0)
                  .addImm(0)
                  .addImm(Pred);
    NewMIs.push_back(MemMI);
    NewMIs.push_back(UpdateMI);
  } else {
    if (isLoad)
      MemMI =
          BuildMI(MF, MI.getDebugLoc(), get(MemOpc), MI.getOperand(0).getReg())
              .addReg(BaseReg)
              .addImm(0)
              .addImm(Pred);
    else
      MemMI = BuildMI(MF, MI.getDebugLoc(), get(MemOpc))
                  .addReg(MI.getOperand(1).getReg())
                  .addReg(BaseReg)
                  .addReg(0)
                  .addImm(0)
                  .addImm(Pred);
    if (WB.isDead())
      UpdateMI->getOperand(0).setIsDead();
    NewMIs.push_back(UpdateMI);
    NewMIs.push_back(MemMI);
  }

  // Transfer LiveVariables states, kill / dead info.
  if (LV) {
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.isReg() && Register::isVirtualRegister(MO.getReg())) {
        Register Reg = MO.getReg();

        LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
        if (MO.isDef()) {
          MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
          if (MO.isDead())
            LV->addVirtualRegisterDead(Reg, *NewMI);
        }
        if (MO.isUse() && MO.isKill()) {
          for (unsigned j = 0; j < 2; ++j) {
            // Look at the two new MI's in reverse order.
            MachineInstr *NewMI = NewMIs[j];
            if (!NewMI->readsRegister(Reg))
              continue;
            LV->addVirtualRegisterKilled(Reg, *NewMI);
            if (VI.removeKill(MI))
              VI.Kills.push_back(NewMI);
            break;
          }
        }
      }
    }
  }

  MachineBasicBlock::iterator MBBI = MI.getIterator();
  MFI->insert(MBBI, NewMIs[1]);
  MFI->insert(MBBI, NewMIs[0]);
  return NewMIs[0];
}

// Branch analysis.
bool ARMBaseInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                     MachineBasicBlock *&TBB,
                                     MachineBasicBlock *&FBB,
                                     SmallVectorImpl<MachineOperand> &Cond,
                                     bool AllowModify) const {
  TBB = nullptr;
  FBB = nullptr;

  MachineBasicBlock::iterator I = MBB.end();
  if (I == MBB.begin())
    return false; // Empty blocks are easy.
  --I;

  // Walk backwards from the end of the basic block until the branch is
  // analyzed or we give up.
  while (isPredicated(*I) || I->isTerminator() || I->isDebugValue()) {
    // Flag to be raised on unanalyzeable instructions. This is useful in cases
    // where we want to clean up on the end of the basic block before we bail
    // out.
    bool CantAnalyze = false;

    // Skip over DEBUG values and predicated nonterminators.
    while (I->isDebugInstr() || !I->isTerminator()) {
      if (I == MBB.begin())
        return false;
      --I;
    }

    if (isIndirectBranchOpcode(I->getOpcode()) ||
        isJumpTableBranchOpcode(I->getOpcode())) {
      // Indirect branches and jump tables can't be analyzed, but we still want
      // to clean up any instructions at the tail of the basic block.
      CantAnalyze = true;
    } else if (isUncondBranchOpcode(I->getOpcode())) {
      TBB = I->getOperand(0).getMBB();
    } else if (isCondBranchOpcode(I->getOpcode())) {
      // Bail out if we encounter multiple conditional branches.
      if (!Cond.empty())
        return true;

      assert(!FBB && "FBB should have been null.");
      FBB = TBB;
      TBB = I->getOperand(0).getMBB();
      Cond.push_back(I->getOperand(1));
      Cond.push_back(I->getOperand(2));
    } else if (I->isReturn()) {
      // Returns can't be analyzed, but we should run cleanup.
      CantAnalyze = !isPredicated(*I);
    } else {
      // We encountered other unrecognized terminator. Bail out immediately.
      return true;
    }

    // Cleanup code - to be run for unpredicated unconditional branches and
    //                returns.
    if (!isPredicated(*I) &&
          (isUncondBranchOpcode(I->getOpcode()) ||
           isIndirectBranchOpcode(I->getOpcode()) ||
           isJumpTableBranchOpcode(I->getOpcode()) ||
           I->isReturn())) {
      // Forget any previous condition branch information - it no longer applies.
      Cond.clear();
      FBB = nullptr;

      // If we can modify the function, delete everything below this
      // unconditional branch.
      if (AllowModify) {
        MachineBasicBlock::iterator DI = std::next(I);
        while (DI != MBB.end()) {
          MachineInstr &InstToDelete = *DI;
          ++DI;
          InstToDelete.eraseFromParent();
        }
      }
    }

    if (CantAnalyze)
      return true;

    if (I == MBB.begin())
      return false;

    --I;
  }

  // We made it past the terminators without bailing out - we must have
  // analyzed this branch successfully.
  return false;
}

unsigned ARMBaseInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                        int *BytesRemoved) const {
  assert(!BytesRemoved && "code size not handled");

  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  if (!isUncondBranchOpcode(I->getOpcode()) &&
      !isCondBranchOpcode(I->getOpcode()))
    return 0;

  // Remove the branch.
  I->eraseFromParent();

  I = MBB.end();

  if (I == MBB.begin()) return 1;
  --I;
  if (!isCondBranchOpcode(I->getOpcode()))
    return 1;

  // Remove the branch.
  I->eraseFromParent();
  return 2;
}

unsigned ARMBaseInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                        MachineBasicBlock *TBB,
                                        MachineBasicBlock *FBB,
                                        ArrayRef<MachineOperand> Cond,
                                        const DebugLoc &DL,
                                        int *BytesAdded) const {
  assert(!BytesAdded && "code size not handled");
  ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
  int BOpc   = !AFI->isThumbFunction()
    ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
  int BccOpc = !AFI->isThumbFunction()
    ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
  bool isThumb = AFI->isThumbFunction() || AFI->isThumb2Function();

  // Shouldn't be a fall through.
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 2 || Cond.size() == 0) &&
         "ARM branch conditions have two components!");

  // For conditional branches, we use addOperand to preserve CPSR flags.

  if (!FBB) {
    if (Cond.empty()) { // Unconditional branch?
      if (isThumb)
        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB).add(predOps(ARMCC::AL));
      else
        BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
    } else
      BuildMI(&MBB, DL, get(BccOpc))
          .addMBB(TBB)
          .addImm(Cond[0].getImm())
          .add(Cond[1]);
    return 1;
  }

  // Two-way conditional branch.
  BuildMI(&MBB, DL, get(BccOpc))
      .addMBB(TBB)
      .addImm(Cond[0].getImm())
      .add(Cond[1]);
  if (isThumb)
    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB).add(predOps(ARMCC::AL));
  else
    BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
  return 2;
}

bool ARMBaseInstrInfo::
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
  ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
  Cond[0].setImm(ARMCC::getOppositeCondition(CC));
  return false;
}

bool ARMBaseInstrInfo::isPredicated(const MachineInstr &MI) const {
  if (MI.isBundle()) {
    MachineBasicBlock::const_instr_iterator I = MI.getIterator();
    MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
    while (++I != E && I->isInsideBundle()) {
      int PIdx = I->findFirstPredOperandIdx();
      if (PIdx != -1 && I->getOperand(PIdx).getImm() != ARMCC::AL)
        return true;
    }
    return false;
  }

  int PIdx = MI.findFirstPredOperandIdx();
  return PIdx != -1 && MI.getOperand(PIdx).getImm() != ARMCC::AL;
}

std::string ARMBaseInstrInfo::createMIROperandComment(
    const MachineInstr &MI, const MachineOperand &Op, unsigned OpIdx,
    const TargetRegisterInfo *TRI) const {

  // First, let's see if there is a generic comment for this operand
  std::string GenericComment =
      TargetInstrInfo::createMIROperandComment(MI, Op, OpIdx, TRI);
  if (!GenericComment.empty())
    return GenericComment;

  // If not, check if we have an immediate operand.
  if (Op.getType() != MachineOperand::MO_Immediate)
    return std::string();

  // And print its corresponding condition code if the immediate is a
  // predicate.
  int FirstPredOp = MI.findFirstPredOperandIdx();
  if (FirstPredOp != (int) OpIdx)
    return std::string();

  std::string CC = "CC::";
  CC += ARMCondCodeToString((ARMCC::CondCodes)Op.getImm());
  return CC;
}

bool ARMBaseInstrInfo::PredicateInstruction(
    MachineInstr &MI, ArrayRef<MachineOperand> Pred) const {
  unsigned Opc = MI.getOpcode();
  if (isUncondBranchOpcode(Opc)) {
    MI.setDesc(get(getMatchingCondBranchOpcode(Opc)));
    MachineInstrBuilder(*MI.getParent()->getParent(), MI)
      .addImm(Pred[0].getImm())
      .addReg(Pred[1].getReg());
    return true;
  }

  int PIdx = MI.findFirstPredOperandIdx();
  if (PIdx != -1) {
    MachineOperand &PMO = MI.getOperand(PIdx);
    PMO.setImm(Pred[0].getImm());
    MI.getOperand(PIdx+1).setReg(Pred[1].getReg());
    return true;
  }
  return false;
}

bool ARMBaseInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
                                         ArrayRef<MachineOperand> Pred2) const {
  if (Pred1.size() > 2 || Pred2.size() > 2)
    return false;

  ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
  ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
  if (CC1 == CC2)
    return true;

  switch (CC1) {
  default:
    return false;
  case ARMCC::AL:
    return true;
  case ARMCC::HS:
    return CC2 == ARMCC::HI;
  case ARMCC::LS:
    return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
  case ARMCC::GE:
    return CC2 == ARMCC::GT;
  case ARMCC::LE:
    return CC2 == ARMCC::LT;
  }
}

bool ARMBaseInstrInfo::DefinesPredicate(
    MachineInstr &MI, std::vector<MachineOperand> &Pred) const {
  bool Found = false;
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if ((MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) ||
        (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)) {
      Pred.push_back(MO);
      Found = true;
    }
  }

  return Found;
}

bool ARMBaseInstrInfo::isCPSRDefined(const MachineInstr &MI) {
  for (const auto &MO : MI.operands())
    if (MO.isReg() && MO.getReg() == ARM::CPSR && MO.isDef() && !MO.isDead())
      return true;
  return false;
}

bool ARMBaseInstrInfo::isAddrMode3OpImm(const MachineInstr &MI,
                                        unsigned Op) const {
  const MachineOperand &Offset = MI.getOperand(Op + 1);
  return Offset.getReg() != 0;
}

// Load with negative register offset requires additional 1cyc and +I unit
// for Cortex A57
bool ARMBaseInstrInfo::isAddrMode3OpMinusReg(const MachineInstr &MI,
                                             unsigned Op) const {
  const MachineOperand &Offset = MI.getOperand(Op + 1);
  const MachineOperand &Opc = MI.getOperand(Op + 2);
  assert(Opc.isImm());
  assert(Offset.isReg());
  int64_t OpcImm = Opc.getImm();

  bool isSub = ARM_AM::getAM3Op(OpcImm) == ARM_AM::sub;
  return (isSub && Offset.getReg() != 0);
}

bool ARMBaseInstrInfo::isLdstScaledReg(const MachineInstr &MI,
                                       unsigned Op) const {
  const MachineOperand &Opc = MI.getOperand(Op + 2);
  unsigned OffImm = Opc.getImm();
  return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
}

// Load, scaled register offset, not plus LSL2
bool ARMBaseInstrInfo::isLdstScaledRegNotPlusLsl2(const MachineInstr &MI,
                                                  unsigned Op) const {
  const MachineOperand &Opc = MI.getOperand(Op + 2);
  unsigned OffImm = Opc.getImm();

  bool isAdd = ARM_AM::getAM2Op(OffImm) == ARM_AM::add;
  unsigned Amt = ARM_AM::getAM2Offset(OffImm);
  ARM_AM::ShiftOpc ShiftOpc = ARM_AM::getAM2ShiftOpc(OffImm);
  if (ShiftOpc == ARM_AM::no_shift) return false; // not scaled
  bool SimpleScaled = (isAdd && ShiftOpc == ARM_AM::lsl && Amt == 2);
  return !SimpleScaled;
}

// Minus reg for ldstso addr mode
bool ARMBaseInstrInfo::isLdstSoMinusReg(const MachineInstr &MI,
                                        unsigned Op) const {
  unsigned OffImm = MI.getOperand(Op + 2).getImm();
  return ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
}

// Load, scaled register offset
bool ARMBaseInstrInfo::isAm2ScaledReg(const MachineInstr &MI,
                                      unsigned Op) const {
  unsigned OffImm = MI.getOperand(Op + 2).getImm();
  return ARM_AM::getAM2ShiftOpc(OffImm) != ARM_AM::no_shift;
}

static bool isEligibleForITBlock(const MachineInstr *MI) {
  switch (MI->getOpcode()) {
  default: return true;
  case ARM::tADC:   // ADC (register) T1
  case ARM::tADDi3: // ADD (immediate) T1
  case ARM::tADDi8: // ADD (immediate) T2
  case ARM::tADDrr: // ADD (register) T1
  case ARM::tAND:   // AND (register) T1
  case ARM::tASRri: // ASR (immediate) T1
  case ARM::tASRrr: // ASR (register) T1
  case ARM::tBIC:   // BIC (register) T1
  case ARM::tEOR:   // EOR (register) T1
  case ARM::tLSLri: // LSL (immediate) T1
  case ARM::tLSLrr: // LSL (register) T1
  case ARM::tLSRri: // LSR (immediate) T1
  case ARM::tLSRrr: // LSR (register) T1
  case ARM::tMUL:   // MUL T1
  case ARM::tMVN:   // MVN (register) T1
  case ARM::tORR:   // ORR (register) T1
  case ARM::tROR:   // ROR (register) T1
  case ARM::tRSB:   // RSB (immediate) T1
  case ARM::tSBC:   // SBC (register) T1
  case ARM::tSUBi3: // SUB (immediate) T1
  case ARM::tSUBi8: // SUB (immediate) T2
  case ARM::tSUBrr: // SUB (register) T1
    return !ARMBaseInstrInfo::isCPSRDefined(*MI);
  }
}

/// isPredicable - Return true if the specified instruction can be predicated.
/// By default, this returns true for every instruction with a
/// PredicateOperand.
bool ARMBaseInstrInfo::isPredicable(const MachineInstr &MI) const {
  if (!MI.isPredicable())
    return false;

  if (MI.isBundle())
    return false;

  if (!isEligibleForITBlock(&MI))
    return false;

  const ARMFunctionInfo *AFI =
      MI.getParent()->getParent()->getInfo<ARMFunctionInfo>();

  // Neon instructions in Thumb2 IT blocks are deprecated, see ARMARM.
  // In their ARM encoding, they can't be encoded in a conditional form.
  if ((MI.getDesc().TSFlags & ARMII::DomainMask) == ARMII::DomainNEON)
    return false;

  if (AFI->isThumb2Function()) {
    if (getSubtarget().restrictIT())
      return isV8EligibleForIT(&MI);
  }

  return true;
}

namespace llvm {

template <> bool IsCPSRDead<MachineInstr>(const MachineInstr *MI) {
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    if (!MO.isReg() || MO.isUndef() || MO.isUse())
      continue;
    if (MO.getReg() != ARM::CPSR)
      continue;
    if (!MO.isDead())
      return false;
  }
  // all definitions of CPSR are dead
  return true;
}

} // end namespace llvm

/// GetInstSize - Return the size of the specified MachineInstr.
///
unsigned ARMBaseInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  const MachineBasicBlock &MBB = *MI.getParent();
  const MachineFunction *MF = MBB.getParent();
  const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();

  const MCInstrDesc &MCID = MI.getDesc();
  if (MCID.getSize())
    return MCID.getSize();

  switch (MI.getOpcode()) {
  default:
    // pseudo-instruction sizes are zero.
    return 0;
  case TargetOpcode::BUNDLE:
    return getInstBundleLength(MI);
  case ARM::MOVi16_ga_pcrel:
  case ARM::MOVTi16_ga_pcrel:
  case ARM::t2MOVi16_ga_pcrel:
  case ARM::t2MOVTi16_ga_pcrel:
    return 4;
  case ARM::MOVi32imm:
  case ARM::t2MOVi32imm:
    return 8;
  case ARM::CONSTPOOL_ENTRY:
  case ARM::JUMPTABLE_INSTS:
  case ARM::JUMPTABLE_ADDRS:
  case ARM::JUMPTABLE_TBB:
  case ARM::JUMPTABLE_TBH:
    // If this machine instr is a constant pool entry, its size is recorded as
    // operand #2.
    return MI.getOperand(2).getImm();
  case ARM::Int_eh_sjlj_longjmp:
    return 16;
  case ARM::tInt_eh_sjlj_longjmp:
    return 10;
  case ARM::tInt_WIN_eh_sjlj_longjmp:
    return 12;
  case ARM::Int_eh_sjlj_setjmp:
  case ARM::Int_eh_sjlj_setjmp_nofp:
    return 20;
  case ARM::tInt_eh_sjlj_setjmp:
  case ARM::t2Int_eh_sjlj_setjmp:
  case ARM::t2Int_eh_sjlj_setjmp_nofp:
    return 12;
  case ARM::SPACE:
    return MI.getOperand(1).getImm();
  case ARM::INLINEASM:
  case ARM::INLINEASM_BR: {
    // If this machine instr is an inline asm, measure it.
    unsigned Size = getInlineAsmLength(MI.getOperand(0).getSymbolName(), *MAI);
    if (!MF->getInfo<ARMFunctionInfo>()->isThumbFunction())
      Size = alignTo(Size, 4);
    return Size;
  }
  }
}

unsigned ARMBaseInstrInfo::getInstBundleLength(const MachineInstr &MI) const {
  unsigned Size = 0;
  MachineBasicBlock::const_instr_iterator I = MI.getIterator();
  MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
  while (++I != E && I->isInsideBundle()) {
    assert(!I->isBundle() && "No nested bundle!");
    Size += getInstSizeInBytes(*I);
  }
  return Size;
}

void ARMBaseInstrInfo::copyFromCPSR(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator I,
                                    unsigned DestReg, bool KillSrc,
                                    const ARMSubtarget &Subtarget) const {
  unsigned Opc = Subtarget.isThumb()
                     ? (Subtarget.isMClass() ? ARM::t2MRS_M : ARM::t2MRS_AR)
                     : ARM::MRS;

  MachineInstrBuilder MIB =
      BuildMI(MBB, I, I->getDebugLoc(), get(Opc), DestReg);

  // There is only 1 A/R class MRS instruction, and it always refers to
  // APSR. However, there are lots of other possibilities on M-class cores.
  if (Subtarget.isMClass())
    MIB.addImm(0x800);

  MIB.add(predOps(ARMCC::AL))
     .addReg(ARM::CPSR, RegState::Implicit | getKillRegState(KillSrc));
}

void ARMBaseInstrInfo::copyToCPSR(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator I,
                                  unsigned SrcReg, bool KillSrc,
                                  const ARMSubtarget &Subtarget) const {
  unsigned Opc = Subtarget.isThumb()
                     ? (Subtarget.isMClass() ? ARM::t2MSR_M : ARM::t2MSR_AR)
                     : ARM::MSR;

  MachineInstrBuilder MIB = BuildMI(MBB, I, I->getDebugLoc(), get(Opc));

  if (Subtarget.isMClass())
    MIB.addImm(0x800);
  else
    MIB.addImm(8);

  MIB.addReg(SrcReg, getKillRegState(KillSrc))
     .add(predOps(ARMCC::AL))
     .addReg(ARM::CPSR, RegState::Implicit | RegState::Define);
}

void llvm::addUnpredicatedMveVpredNOp(MachineInstrBuilder &MIB) {
  MIB.addImm(ARMVCC::None);
  MIB.addReg(0);
}

void llvm::addUnpredicatedMveVpredROp(MachineInstrBuilder &MIB,
                                      Register DestReg) {
  addUnpredicatedMveVpredNOp(MIB);
  MIB.addReg(DestReg, RegState::Undef);
}

void llvm::addPredicatedMveVpredNOp(MachineInstrBuilder &MIB, unsigned Cond) {
  MIB.addImm(Cond);
  MIB.addReg(ARM::VPR, RegState::Implicit);
}

void llvm::addPredicatedMveVpredROp(MachineInstrBuilder &MIB,
                                    unsigned Cond, unsigned Inactive) {
  addPredicatedMveVpredNOp(MIB, Cond);
  MIB.addReg(Inactive);
}

void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator I,
                                   const DebugLoc &DL, MCRegister DestReg,
                                   MCRegister SrcReg, bool KillSrc) const {
  bool GPRDest = ARM::GPRRegClass.contains(DestReg);
  bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);

  if (GPRDest && GPRSrc) {
    BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .add(predOps(ARMCC::AL))
        .add(condCodeOp());
    return;
  }

  bool SPRDest = ARM::SPRRegClass.contains(DestReg);
  bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);

  unsigned Opc = 0;
  if (SPRDest && SPRSrc)
    Opc = ARM::VMOVS;
  else if (GPRDest && SPRSrc)
    Opc = ARM::VMOVRS;
  else if (SPRDest && GPRSrc)
    Opc = ARM::VMOVSR;
  else if (ARM::DPRRegClass.contains(DestReg, SrcReg) && Subtarget.hasFP64())
    Opc = ARM::VMOVD;
  else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
    Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;

  if (Opc) {
    MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
    MIB.addReg(SrcReg, getKillRegState(KillSrc));
    if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR)
      MIB.addReg(SrcReg, getKillRegState(KillSrc));
    if (Opc == ARM::MVE_VORR)
      addUnpredicatedMveVpredROp(MIB, DestReg);
    else
      MIB.add(predOps(ARMCC::AL));
    return;
  }

  // Handle register classes that require multiple instructions.
  unsigned BeginIdx = 0;
  unsigned SubRegs = 0;
  int Spacing = 1;

  // Use VORRq when possible.
  if (ARM::QQPRRegClass.contains(DestReg, SrcReg)) {
    Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
    BeginIdx = ARM::qsub_0;
    SubRegs = 2;
  } else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg)) {
    Opc = Subtarget.hasNEON() ? ARM::VORRq : ARM::MVE_VORR;
    BeginIdx = ARM::qsub_0;
    SubRegs = 4;
  // Fall back to VMOVD.
  } else if (ARM::DPairRegClass.contains(DestReg, SrcReg)) {
    Opc = ARM::VMOVD;
    BeginIdx = ARM::dsub_0;
    SubRegs = 2;
  } else if (ARM::DTripleRegClass.contains(DestReg, SrcReg)) {
    Opc = ARM::VMOVD;
    BeginIdx = ARM::dsub_0;
    SubRegs = 3;
  } else if (ARM::DQuadRegClass.contains(DestReg, SrcReg)) {
    Opc = ARM::VMOVD;
    BeginIdx = ARM::dsub_0;
    SubRegs = 4;
  } else if (ARM::GPRPairRegClass.contains(DestReg, SrcReg)) {
    Opc = Subtarget.isThumb2() ? ARM::tMOVr : ARM::MOVr;
    BeginIdx = ARM::gsub_0;
    SubRegs = 2;
  } else if (ARM::DPairSpcRegClass.contains(DestReg, SrcReg)) {
    Opc = ARM::VMOVD;
    BeginIdx = ARM::dsub_0;
    SubRegs = 2;
    Spacing = 2;
  } else if (ARM::DTripleSpcRegClass.contains(DestReg, SrcReg)) {
    Opc = ARM::VMOVD;
    BeginIdx = ARM::dsub_0;
    SubRegs = 3;
    Spacing = 2;
  } else if (ARM::DQuadSpcRegClass.contains(DestReg, SrcReg)) {
    Opc = ARM::VMOVD;
    BeginIdx = ARM::dsub_0;
    SubRegs = 4;
    Spacing = 2;
  } else if (ARM::DPRRegClass.contains(DestReg, SrcReg) &&
             !Subtarget.hasFP64()) {
    Opc = ARM::VMOVS;
    BeginIdx = ARM::ssub_0;
    SubRegs = 2;
  } else if (SrcReg == ARM::CPSR) {
    copyFromCPSR(MBB, I, DestReg, KillSrc, Subtarget);
    return;
  } else if (DestReg == ARM::CPSR) {
    copyToCPSR(MBB, I, SrcReg, KillSrc, Subtarget);
    return;
  } else if (DestReg == ARM::VPR) {
    assert(ARM::GPRRegClass.contains(SrcReg));
    BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_P0), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .add(predOps(ARMCC::AL));
    return;
  } else if (SrcReg == ARM::VPR) {
    assert(ARM::GPRRegClass.contains(DestReg));
    BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_P0), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .add(predOps(ARMCC::AL));
    return;
  } else if (DestReg == ARM::FPSCR_NZCV) {
    assert(ARM::GPRRegClass.contains(SrcReg));
    BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMSR_FPSCR_NZCVQC), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .add(predOps(ARMCC::AL));
    return;
  } else if (SrcReg == ARM::FPSCR_NZCV) {
    assert(ARM::GPRRegClass.contains(DestReg));
    BuildMI(MBB, I, I->getDebugLoc(), get(ARM::VMRS_FPSCR_NZCVQC), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .add(predOps(ARMCC::AL));
    return;
  }

  assert(Opc && "Impossible reg-to-reg copy");

  const TargetRegisterInfo *TRI = &getRegisterInfo();
  MachineInstrBuilder Mov;

  // Copy register tuples backward when the first Dest reg overlaps with SrcReg.
  if (TRI->regsOverlap(SrcReg, TRI->getSubReg(DestReg, BeginIdx))) {
    BeginIdx = BeginIdx + ((SubRegs - 1) * Spacing);
    Spacing = -Spacing;
  }
#ifndef NDEBUG
  SmallSet<unsigned, 4> DstRegs;
#endif
  for (unsigned i = 0; i != SubRegs; ++i) {
    Register Dst = TRI->getSubReg(DestReg, BeginIdx + i * Spacing);
    Register Src = TRI->getSubReg(SrcReg, BeginIdx + i * Spacing);
    assert(Dst && Src && "Bad sub-register");
#ifndef NDEBUG
    assert(!DstRegs.count(Src) && "destructive vector copy");
    DstRegs.insert(Dst);
#endif
    Mov = BuildMI(MBB, I, I->getDebugLoc(), get(Opc), Dst).addReg(Src);
    // VORR (NEON or MVE) takes two source operands.
    if (Opc == ARM::VORRq || Opc == ARM::MVE_VORR) {
      Mov.addReg(Src);
    }
    // MVE VORR takes predicate operands in place of an ordinary condition.
    if (Opc == ARM::MVE_VORR)
      addUnpredicatedMveVpredROp(Mov, Dst);
    else
      Mov = Mov.add(predOps(ARMCC::AL));
    // MOVr can set CC.
    if (Opc == ARM::MOVr)
      Mov = Mov.add(condCodeOp());
  }
  // Add implicit super-register defs and kills to the last instruction.
  Mov->addRegisterDefined(DestReg, TRI);
  if (KillSrc)
    Mov->addRegisterKilled(SrcReg, TRI);
}

Optional<DestSourcePair>
ARMBaseInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
  // VMOVRRD is also a copy instruction but it requires
  // special way of handling. It is more complex copy version
  // and since that we are not considering it. For recognition
  // of such instruction isExtractSubregLike MI interface fuction
  // could be used.
  // VORRq is considered as a move only if two inputs are
  // the same register.
  if (!MI.isMoveReg() ||
      (MI.getOpcode() == ARM::VORRq &&
       MI.getOperand(1).getReg() != MI.getOperand(2).getReg()))
    return None;
  return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
}

Optional<ParamLoadedValue>
ARMBaseInstrInfo::describeLoadedValue(const MachineInstr &MI,
                                      Register Reg) const {
  if (auto DstSrcPair = isCopyInstrImpl(MI)) {
    Register DstReg = DstSrcPair->Destination->getReg();

    // TODO: We don't handle cases where the forwarding reg is narrower/wider
    // than the copy registers. Consider for example:
    //
    //   s16 = VMOVS s0
    //   s17 = VMOVS s1
    //   call @callee(d0)
    //
    // We'd like to describe the call site value of d0 as d8, but this requires
    // gathering and merging the descriptions for the two VMOVS instructions.
    //
    // We also don't handle the reverse situation, where the forwarding reg is
    // narrower than the copy destination:
    //
    //   d8 = VMOVD d0
    //   call @callee(s1)
    //
    // We need to produce a fragment description (the call site value of s1 is
    // /not/ just d8).
    if (DstReg != Reg)
      return None;
  }
  return TargetInstrInfo::describeLoadedValue(MI, Reg);
}

const MachineInstrBuilder &
ARMBaseInstrInfo::AddDReg(MachineInstrBuilder &MIB, unsigned Reg,
                          unsigned SubIdx, unsigned State,
                          const TargetRegisterInfo *TRI) const {
  if (!SubIdx)
    return MIB.addReg(Reg, State);

  if (Register::isPhysicalRegister(Reg))
    return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
  return MIB.addReg(Reg, State, SubIdx);
}

void ARMBaseInstrInfo::
storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                    Register SrcReg, bool isKill, int FI,
                    const TargetRegisterClass *RC,
                    const TargetRegisterInfo *TRI) const {
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  Align Alignment = MFI.getObjectAlign(FI);

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
      MFI.getObjectSize(FI), Alignment);

  switch (TRI->getSpillSize(*RC)) {
    case 2:
      if (ARM::HPRRegClass.hasSubClassEq(RC)) {
        BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRH))
            .addReg(SrcReg, getKillRegState(isKill))
            .addFrameIndex(FI)
            .addImm(0)
            .addMemOperand(MMO)
            .add(predOps(ARMCC::AL));
      } else
        llvm_unreachable("Unknown reg class!");
      break;
    case 4:
      if (ARM::GPRRegClass.hasSubClassEq(RC)) {
        BuildMI(MBB, I, DebugLoc(), get(ARM::STRi12))
            .addReg(SrcReg, getKillRegState(isKill))
            .addFrameIndex(FI)
            .addImm(0)
            .addMemOperand(MMO)
            .add(predOps(ARMCC::AL));
      } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
        BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRS))
            .addReg(SrcReg, getKillRegState(isKill))
            .addFrameIndex(FI)
            .addImm(0)
            .addMemOperand(MMO)
            .add(predOps(ARMCC::AL));
      } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
        BuildMI(MBB, I, DebugLoc(), get(ARM::VSTR_P0_off))
            .addReg(SrcReg, getKillRegState(isKill))
            .addFrameIndex(FI)
            .addImm(0)
            .addMemOperand(MMO)
            .add(predOps(ARMCC::AL));
      } else
        llvm_unreachable("Unknown reg class!");
      break;
    case 8:
      if (ARM::DPRRegClass.hasSubClassEq(RC)) {
        BuildMI(MBB, I, DebugLoc(), get(ARM::VSTRD))
            .addReg(SrcReg, getKillRegState(isKill))
            .addFrameIndex(FI)
            .addImm(0)
            .addMemOperand(MMO)
            .add(predOps(ARMCC::AL));
      } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
        if (Subtarget.hasV5TEOps()) {
          MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STRD));
          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
          MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
             .add(predOps(ARMCC::AL));
        } else {
          // Fallback to STM instruction, which has existed since the dawn of
          // time.
          MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::STMIA))
                                        .addFrameIndex(FI)
                                        .addMemOperand(MMO)
                                        .add(predOps(ARMCC::AL));
          AddDReg(MIB, SrcReg, ARM::gsub_0, getKillRegState(isKill), TRI);
          AddDReg(MIB, SrcReg, ARM::gsub_1, 0, TRI);
        }
      } else
        llvm_unreachable("Unknown reg class!");
      break;
    case 16:
      if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
        // Use aligned spills if the stack can be realigned.
        if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
          BuildMI(MBB, I, DebugLoc(), get(ARM::VST1q64))
              .addFrameIndex(FI)
              .addImm(16)
              .addReg(SrcReg, getKillRegState(isKill))
              .addMemOperand(MMO)
              .add(predOps(ARMCC::AL));
        } else {
          BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMQIA))
              .addReg(SrcReg, getKillRegState(isKill))
              .addFrameIndex(FI)
              .addMemOperand(MMO)
              .add(predOps(ARMCC::AL));
        }
      } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
                 Subtarget.hasMVEIntegerOps()) {
        auto MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::MVE_VSTRWU32));
        MIB.addReg(SrcReg, getKillRegState(isKill))
          .addFrameIndex(FI)
          .addImm(0)
          .addMemOperand(MMO);
        addUnpredicatedMveVpredNOp(MIB);
      } else
        llvm_unreachable("Unknown reg class!");
      break;
    case 24:
      if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
        // Use aligned spills if the stack can be realigned.
        if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
            Subtarget.hasNEON()) {
          BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64TPseudo))
              .addFrameIndex(FI)
              .addImm(16)
              .addReg(SrcReg, getKillRegState(isKill))
              .addMemOperand(MMO)
              .add(predOps(ARMCC::AL));
        } else {
          MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
                                            get(ARM::VSTMDIA))
                                        .addFrameIndex(FI)
                                        .add(predOps(ARMCC::AL))
                                        .addMemOperand(MMO);
          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
          AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
        }
      } else
        llvm_unreachable("Unknown reg class!");
      break;
    case 32:
      if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
        if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
            Subtarget.hasNEON()) {
          // FIXME: It's possible to only store part of the QQ register if the
          // spilled def has a sub-register index.
          BuildMI(MBB, I, DebugLoc(), get(ARM::VST1d64QPseudo))
              .addFrameIndex(FI)
              .addImm(16)
              .addReg(SrcReg, getKillRegState(isKill))
              .addMemOperand(MMO)
              .add(predOps(ARMCC::AL));
        } else {
          MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(),
                                            get(ARM::VSTMDIA))
                                        .addFrameIndex(FI)
                                        .add(predOps(ARMCC::AL))
                                        .addMemOperand(MMO);
          MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
          MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
          MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
                AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
        }
      } else
        llvm_unreachable("Unknown reg class!");
      break;
    case 64:
      if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
        MachineInstrBuilder MIB = BuildMI(MBB, I, DebugLoc(), get(ARM::VSTMDIA))
                                      .addFrameIndex(FI)
                                      .add(predOps(ARMCC::AL))
                                      .addMemOperand(MMO);
        MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
        MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
        MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
        MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
        MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
        MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
        MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
              AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
      } else
        llvm_unreachable("Unknown reg class!");
      break;
    default:
      llvm_unreachable("Unknown reg class!");
  }
}

unsigned ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                              int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default: break;
  case ARM::STRrs:
  case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
    if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
        MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
        MI.getOperand(3).getImm() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  case ARM::STRi12:
  case ARM::t2STRi12:
  case ARM::tSTRspi:
  case ARM::VSTRD:
  case ARM::VSTRS:
    if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
        MI.getOperand(2).getImm() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  case ARM::VSTR_P0_off:
    if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
        MI.getOperand(1).getImm() == 0) {
      FrameIndex = MI.getOperand(0).getIndex();
      return ARM::P0;
    }
    break;
  case ARM::VST1q64:
  case ARM::VST1d64TPseudo:
  case ARM::VST1d64QPseudo:
    if (MI.getOperand(0).isFI() && MI.getOperand(2).getSubReg() == 0) {
      FrameIndex = MI.getOperand(0).getIndex();
      return MI.getOperand(2).getReg();
    }
    break;
  case ARM::VSTMQIA:
    if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  }

  return 0;
}

unsigned ARMBaseInstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI,
                                                    int &FrameIndex) const {
  SmallVector<const MachineMemOperand *, 1> Accesses;
  if (MI.mayStore() && hasStoreToStackSlot(MI, Accesses) &&
      Accesses.size() == 1) {
    FrameIndex =
        cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
            ->getFrameIndex();
    return true;
  }
  return false;
}

void ARMBaseInstrInfo::
loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                     Register DestReg, int FI,
                     const TargetRegisterClass *RC,
                     const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (I != MBB.end()) DL = I->getDebugLoc();
  MachineFunction &MF = *MBB.getParent();
  MachineFrameInfo &MFI = MF.getFrameInfo();
  const Align Alignment = MFI.getObjectAlign(FI);
  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
      MFI.getObjectSize(FI), Alignment);

  switch (TRI->getSpillSize(*RC)) {
  case 2:
    if (ARM::HPRRegClass.hasSubClassEq(RC)) {
      BuildMI(MBB, I, DL, get(ARM::VLDRH), DestReg)
          .addFrameIndex(FI)
          .addImm(0)
          .addMemOperand(MMO)
          .add(predOps(ARMCC::AL));
    } else
      llvm_unreachable("Unknown reg class!");
    break;
  case 4:
    if (ARM::GPRRegClass.hasSubClassEq(RC)) {
      BuildMI(MBB, I, DL, get(ARM::LDRi12), DestReg)
          .addFrameIndex(FI)
          .addImm(0)
          .addMemOperand(MMO)
          .add(predOps(ARMCC::AL));
    } else if (ARM::SPRRegClass.hasSubClassEq(RC)) {
      BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
          .addFrameIndex(FI)
          .addImm(0)
          .addMemOperand(MMO)
          .add(predOps(ARMCC::AL));
    } else if (ARM::VCCRRegClass.hasSubClassEq(RC)) {
      BuildMI(MBB, I, DL, get(ARM::VLDR_P0_off), DestReg)
          .addFrameIndex(FI)
          .addImm(0)
          .addMemOperand(MMO)
          .add(predOps(ARMCC::AL));
    } else
      llvm_unreachable("Unknown reg class!");
    break;
  case 8:
    if (ARM::DPRRegClass.hasSubClassEq(RC)) {
      BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
          .addFrameIndex(FI)
          .addImm(0)
          .addMemOperand(MMO)
          .add(predOps(ARMCC::AL));
    } else if (ARM::GPRPairRegClass.hasSubClassEq(RC)) {
      MachineInstrBuilder MIB;

      if (Subtarget.hasV5TEOps()) {
        MIB = BuildMI(MBB, I, DL, get(ARM::LDRD));
        AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
        AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
        MIB.addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO)
           .add(predOps(ARMCC::AL));
      } else {
        // Fallback to LDM instruction, which has existed since the dawn of
        // time.
        MIB = BuildMI(MBB, I, DL, get(ARM::LDMIA))
                  .addFrameIndex(FI)
                  .addMemOperand(MMO)
                  .add(predOps(ARMCC::AL));
        MIB = AddDReg(MIB, DestReg, ARM::gsub_0, RegState::DefineNoRead, TRI);
        MIB = AddDReg(MIB, DestReg, ARM::gsub_1, RegState::DefineNoRead, TRI);
      }

      if (Register::isPhysicalRegister(DestReg))
        MIB.addReg(DestReg, RegState::ImplicitDefine);
    } else
      llvm_unreachable("Unknown reg class!");
    break;
  case 16:
    if (ARM::DPairRegClass.hasSubClassEq(RC) && Subtarget.hasNEON()) {
      if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF)) {
        BuildMI(MBB, I, DL, get(ARM::VLD1q64), DestReg)
            .addFrameIndex(FI)
            .addImm(16)
            .addMemOperand(MMO)
            .add(predOps(ARMCC::AL));
      } else {
        BuildMI(MBB, I, DL, get(ARM::VLDMQIA), DestReg)
            .addFrameIndex(FI)
            .addMemOperand(MMO)
            .add(predOps(ARMCC::AL));
      }
    } else if (ARM::QPRRegClass.hasSubClassEq(RC) &&
               Subtarget.hasMVEIntegerOps()) {
      auto MIB = BuildMI(MBB, I, DL, get(ARM::MVE_VLDRWU32), DestReg);
      MIB.addFrameIndex(FI)
        .addImm(0)
        .addMemOperand(MMO);
      addUnpredicatedMveVpredNOp(MIB);
    } else
      llvm_unreachable("Unknown reg class!");
    break;
  case 24:
    if (ARM::DTripleRegClass.hasSubClassEq(RC)) {
      if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
          Subtarget.hasNEON()) {
        BuildMI(MBB, I, DL, get(ARM::VLD1d64TPseudo), DestReg)
            .addFrameIndex(FI)
            .addImm(16)
            .addMemOperand(MMO)
            .add(predOps(ARMCC::AL));
      } else {
        MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
                                      .addFrameIndex(FI)
                                      .addMemOperand(MMO)
                                      .add(predOps(ARMCC::AL));
        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
        if (Register::isPhysicalRegister(DestReg))
          MIB.addReg(DestReg, RegState::ImplicitDefine);
      }
    } else
      llvm_unreachable("Unknown reg class!");
    break;
   case 32:
    if (ARM::QQPRRegClass.hasSubClassEq(RC) || ARM::DQuadRegClass.hasSubClassEq(RC)) {
      if (Alignment >= 16 && getRegisterInfo().canRealignStack(MF) &&
          Subtarget.hasNEON()) {
        BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
            .addFrameIndex(FI)
            .addImm(16)
            .addMemOperand(MMO)
            .add(predOps(ARMCC::AL));
      } else {
        MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
                                      .addFrameIndex(FI)
                                      .add(predOps(ARMCC::AL))
                                      .addMemOperand(MMO);
        MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
        MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
        MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
        MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
        if (Register::isPhysicalRegister(DestReg))
          MIB.addReg(DestReg, RegState::ImplicitDefine);
      }
    } else
      llvm_unreachable("Unknown reg class!");
    break;
  case 64:
    if (ARM::QQQQPRRegClass.hasSubClassEq(RC)) {
      MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(ARM::VLDMDIA))
                                    .addFrameIndex(FI)
                                    .add(predOps(ARMCC::AL))
                                    .addMemOperand(MMO);
      MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::DefineNoRead, TRI);
      MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::DefineNoRead, TRI);
      MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::DefineNoRead, TRI);
      MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::DefineNoRead, TRI);
      MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::DefineNoRead, TRI);
      MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::DefineNoRead, TRI);
      MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::DefineNoRead, TRI);
      MIB = AddDReg(MIB, DestReg, ARM::dsub_7, RegState::DefineNoRead, TRI);
      if (Register::isPhysicalRegister(DestReg))
        MIB.addReg(DestReg, RegState::ImplicitDefine);
    } else
      llvm_unreachable("Unknown reg class!");
    break;
  default:
    llvm_unreachable("Unknown regclass!");
  }
}

unsigned ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                               int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default: break;
  case ARM::LDRrs:
  case ARM::t2LDRs:  // FIXME: don't use t2LDRs to access frame.
    if (MI.getOperand(1).isFI() && MI.getOperand(2).isReg() &&
        MI.getOperand(3).isImm() && MI.getOperand(2).getReg() == 0 &&
        MI.getOperand(3).getImm() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  case ARM::LDRi12:
  case ARM::t2LDRi12:
  case ARM::tLDRspi:
  case ARM::VLDRD:
  case ARM::VLDRS:
    if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
        MI.getOperand(2).getImm() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  case ARM::VLDR_P0_off:
    if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
        MI.getOperand(1).getImm() == 0) {
      FrameIndex = MI.getOperand(0).getIndex();
      return ARM::P0;
    }
    break;
  case ARM::VLD1q64:
  case ARM::VLD1d8TPseudo:
  case ARM::VLD1d16TPseudo:
  case ARM::VLD1d32TPseudo:
  case ARM::VLD1d64TPseudo:
  case ARM::VLD1d8QPseudo:
  case ARM::VLD1d16QPseudo:
  case ARM::VLD1d32QPseudo:
  case ARM::VLD1d64QPseudo:
    if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  case ARM::VLDMQIA:
    if (MI.getOperand(1).isFI() && MI.getOperand(0).getSubReg() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  }

  return 0;
}

unsigned ARMBaseInstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI,
                                                     int &FrameIndex) const {
  SmallVector<const MachineMemOperand *, 1> Accesses;
  if (MI.mayLoad() && hasLoadFromStackSlot(MI, Accesses) &&
      Accesses.size() == 1) {
    FrameIndex =
        cast<FixedStackPseudoSourceValue>(Accesses.front()->getPseudoValue())
            ->getFrameIndex();
    return true;
  }
  return false;
}

/// Expands MEMCPY to either LDMIA/STMIA or LDMIA_UPD/STMID_UPD
/// depending on whether the result is used.
void ARMBaseInstrInfo::expandMEMCPY(MachineBasicBlock::iterator MI) const {
  bool isThumb1 = Subtarget.isThumb1Only();
  bool isThumb2 = Subtarget.isThumb2();
  const ARMBaseInstrInfo *TII = Subtarget.getInstrInfo();

  DebugLoc dl = MI->getDebugLoc();
  MachineBasicBlock *BB = MI->getParent();

  MachineInstrBuilder LDM, STM;
  if (isThumb1 || !MI->getOperand(1).isDead()) {
    MachineOperand LDWb(MI->getOperand(1));
    LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA_UPD
                                                 : isThumb1 ? ARM::tLDMIA_UPD
                                                            : ARM::LDMIA_UPD))
              .add(LDWb);
  } else {
    LDM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2LDMIA : ARM::LDMIA));
  }

  if (isThumb1 || !MI->getOperand(0).isDead()) {
    MachineOperand STWb(MI->getOperand(0));
    STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA_UPD
                                                 : isThumb1 ? ARM::tSTMIA_UPD
                                                            : ARM::STMIA_UPD))
              .add(STWb);
  } else {
    STM = BuildMI(*BB, MI, dl, TII->get(isThumb2 ? ARM::t2STMIA : ARM::STMIA));
  }

  MachineOperand LDBase(MI->getOperand(3));
  LDM.add(LDBase).add(predOps(ARMCC::AL));

  MachineOperand STBase(MI->getOperand(2));
  STM.add(STBase).add(predOps(ARMCC::AL));

  // Sort the scratch registers into ascending order.
  const TargetRegisterInfo &TRI = getRegisterInfo();
  SmallVector<unsigned, 6> ScratchRegs;
  for(unsigned I = 5; I < MI->getNumOperands(); ++I)
    ScratchRegs.push_back(MI->getOperand(I).getReg());
  llvm::sort(ScratchRegs,
             [&TRI](const unsigned &Reg1, const unsigned &Reg2) -> bool {
               return TRI.getEncodingValue(Reg1) <
                      TRI.getEncodingValue(Reg2);
             });

  for (const auto &Reg : ScratchRegs) {
    LDM.addReg(Reg, RegState::Define);
    STM.addReg(Reg, RegState::Kill);
  }

  BB->erase(MI);
}

bool ARMBaseInstrInfo::expandPostRAPseudo(MachineInstr &MI) const {
  if (MI.getOpcode() == TargetOpcode::LOAD_STACK_GUARD) {
    assert(getSubtarget().getTargetTriple().isOSBinFormatMachO() &&
           "LOAD_STACK_GUARD currently supported only for MachO.");
    expandLoadStackGuard(MI);
    MI.getParent()->erase(MI);
    return true;
  }

  if (MI.getOpcode() == ARM::MEMCPY) {
    expandMEMCPY(MI);
    return true;
  }

  // This hook gets to expand COPY instructions before they become
  // copyPhysReg() calls.  Look for VMOVS instructions that can legally be
  // widened to VMOVD.  We prefer the VMOVD when possible because it may be
  // changed into a VORR that can go down the NEON pipeline.
  if (!MI.isCopy() || Subtarget.dontWidenVMOVS() || !Subtarget.hasFP64())
    return false;

  // Look for a copy between even S-registers.  That is where we keep floats
  // when using NEON v2f32 instructions for f32 arithmetic.
  Register DstRegS = MI.getOperand(0).getReg();
  Register SrcRegS = MI.getOperand(1).getReg();
  if (!ARM::SPRRegClass.contains(DstRegS, SrcRegS))
    return false;

  const TargetRegisterInfo *TRI = &getRegisterInfo();
  unsigned DstRegD = TRI->getMatchingSuperReg(DstRegS, ARM::ssub_0,
                                              &ARM::DPRRegClass);
  unsigned SrcRegD = TRI->getMatchingSuperReg(SrcRegS, ARM::ssub_0,
                                              &ARM::DPRRegClass);
  if (!DstRegD || !SrcRegD)
    return false;

  // We want to widen this into a DstRegD = VMOVD SrcRegD copy.  This is only
  // legal if the COPY already defines the full DstRegD, and it isn't a
  // sub-register insertion.
  if (!MI.definesRegister(DstRegD, TRI) || MI.readsRegister(DstRegD, TRI))
    return false;

  // A dead copy shouldn't show up here, but reject it just in case.
  if (MI.getOperand(0).isDead())
    return false;

  // All clear, widen the COPY.
  LLVM_DEBUG(dbgs() << "widening:    " << MI);
  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);

  // Get rid of the old implicit-def of DstRegD.  Leave it if it defines a Q-reg
  // or some other super-register.
  int ImpDefIdx = MI.findRegisterDefOperandIdx(DstRegD);
  if (ImpDefIdx != -1)
    MI.RemoveOperand(ImpDefIdx);

  // Change the opcode and operands.
  MI.setDesc(get(ARM::VMOVD));
  MI.getOperand(0).setReg(DstRegD);
  MI.getOperand(1).setReg(SrcRegD);
  MIB.add(predOps(ARMCC::AL));

  // We are now reading SrcRegD instead of SrcRegS.  This may upset the
  // register scavenger and machine verifier, so we need to indicate that we
  // are reading an undefined value from SrcRegD, but a proper value from
  // SrcRegS.
  MI.getOperand(1).setIsUndef();
  MIB.addReg(SrcRegS, RegState::Implicit);

  // SrcRegD may actually contain an unrelated value in the ssub_1
  // sub-register.  Don't kill it.  Only kill the ssub_0 sub-register.
  if (MI.getOperand(1).isKill()) {
    MI.getOperand(1).setIsKill(false);
    MI.addRegisterKilled(SrcRegS, TRI, true);
  }

  LLVM_DEBUG(dbgs() << "replaced by: " << MI);
  return true;
}

/// Create a copy of a const pool value. Update CPI to the new index and return
/// the label UID.
static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
  MachineConstantPool *MCP = MF.getConstantPool();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();

  const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
  assert(MCPE.isMachineConstantPoolEntry() &&
         "Expecting a machine constantpool entry!");
  ARMConstantPoolValue *ACPV =
    static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);

  unsigned PCLabelId = AFI->createPICLabelUId();
  ARMConstantPoolValue *NewCPV = nullptr;

  // FIXME: The below assumes PIC relocation model and that the function
  // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
  // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
  // instructions, so that's probably OK, but is PIC always correct when
  // we get here?
  if (ACPV->isGlobalValue())
    NewCPV = ARMConstantPoolConstant::Create(
        cast<ARMConstantPoolConstant>(ACPV)->getGV(), PCLabelId, ARMCP::CPValue,
        4, ACPV->getModifier(), ACPV->mustAddCurrentAddress());
  else if (ACPV->isExtSymbol())
    NewCPV = ARMConstantPoolSymbol::
      Create(MF.getFunction().getContext(),
             cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(), PCLabelId, 4);
  else if (ACPV->isBlockAddress())
    NewCPV = ARMConstantPoolConstant::
      Create(cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(), PCLabelId,
             ARMCP::CPBlockAddress, 4);
  else if (ACPV->isLSDA())
    NewCPV = ARMConstantPoolConstant::Create(&MF.getFunction(), PCLabelId,
                                             ARMCP::CPLSDA, 4);
  else if (ACPV->isMachineBasicBlock())
    NewCPV = ARMConstantPoolMBB::
      Create(MF.getFunction().getContext(),
             cast<ARMConstantPoolMBB>(ACPV)->getMBB(), PCLabelId, 4);
  else
    llvm_unreachable("Unexpected ARM constantpool value type!!");
  CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlign());
  return PCLabelId;
}

void ARMBaseInstrInfo::reMaterialize(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator I,
                                     Register DestReg, unsigned SubIdx,
                                     const MachineInstr &Orig,
                                     const TargetRegisterInfo &TRI) const {
  unsigned Opcode = Orig.getOpcode();
  switch (Opcode) {
  default: {
    MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig);
    MI->substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI);
    MBB.insert(I, MI);
    break;
  }
  case ARM::tLDRpci_pic:
  case ARM::t2LDRpci_pic: {
    MachineFunction &MF = *MBB.getParent();
    unsigned CPI = Orig.getOperand(1).getIndex();
    unsigned PCLabelId = duplicateCPV(MF, CPI);
    BuildMI(MBB, I, Orig.getDebugLoc(), get(Opcode), DestReg)
        .addConstantPoolIndex(CPI)
        .addImm(PCLabelId)
        .cloneMemRefs(Orig);
    break;
  }
  }
}

MachineInstr &
ARMBaseInstrInfo::duplicate(MachineBasicBlock &MBB,
    MachineBasicBlock::iterator InsertBefore,
    const MachineInstr &Orig) const {
  MachineInstr &Cloned = TargetInstrInfo::duplicate(MBB, InsertBefore, Orig);
  MachineBasicBlock::instr_iterator I = Cloned.getIterator();
  for (;;) {
    switch (I->getOpcode()) {
    case ARM::tLDRpci_pic:
    case ARM::t2LDRpci_pic: {
      MachineFunction &MF = *MBB.getParent();
      unsigned CPI = I->getOperand(1).getIndex();
      unsigned PCLabelId = duplicateCPV(MF, CPI);
      I->getOperand(1).setIndex(CPI);
      I->getOperand(2).setImm(PCLabelId);
      break;
    }
    }
    if (!I->isBundledWithSucc())
      break;
    ++I;
  }
  return Cloned;
}

bool ARMBaseInstrInfo::produceSameValue(const MachineInstr &MI0,
                                        const MachineInstr &MI1,
                                        const MachineRegisterInfo *MRI) const {
  unsigned Opcode = MI0.getOpcode();
  if (Opcode == ARM::t2LDRpci ||
      Opcode == ARM::t2LDRpci_pic ||
      Opcode == ARM::tLDRpci ||
      Opcode == ARM::tLDRpci_pic ||
      Opcode == ARM::LDRLIT_ga_pcrel ||
      Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
      Opcode == ARM::tLDRLIT_ga_pcrel ||
      Opcode == ARM::MOV_ga_pcrel ||
      Opcode == ARM::MOV_ga_pcrel_ldr ||
      Opcode == ARM::t2MOV_ga_pcrel) {
    if (MI1.getOpcode() != Opcode)
      return false;
    if (MI0.getNumOperands() != MI1.getNumOperands())
      return false;

    const MachineOperand &MO0 = MI0.getOperand(1);
    const MachineOperand &MO1 = MI1.getOperand(1);
    if (MO0.getOffset() != MO1.getOffset())
      return false;

    if (Opcode == ARM::LDRLIT_ga_pcrel ||
        Opcode == ARM::LDRLIT_ga_pcrel_ldr ||
        Opcode == ARM::tLDRLIT_ga_pcrel ||
        Opcode == ARM::MOV_ga_pcrel ||
        Opcode == ARM::MOV_ga_pcrel_ldr ||
        Opcode == ARM::t2MOV_ga_pcrel)
      // Ignore the PC labels.
      return MO0.getGlobal() == MO1.getGlobal();

    const MachineFunction *MF = MI0.getParent()->getParent();
    const MachineConstantPool *MCP = MF->getConstantPool();
    int CPI0 = MO0.getIndex();
    int CPI1 = MO1.getIndex();
    const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
    const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
    bool isARMCP0 = MCPE0.isMachineConstantPoolEntry();
    bool isARMCP1 = MCPE1.isMachineConstantPoolEntry();
    if (isARMCP0 && isARMCP1) {
      ARMConstantPoolValue *ACPV0 =
        static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
      ARMConstantPoolValue *ACPV1 =
        static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
      return ACPV0->hasSameValue(ACPV1);
    } else if (!isARMCP0 && !isARMCP1) {
      return MCPE0.Val.ConstVal == MCPE1.Val.ConstVal;
    }
    return false;
  } else if (Opcode == ARM::PICLDR) {
    if (MI1.getOpcode() != Opcode)
      return false;
    if (MI0.getNumOperands() != MI1.getNumOperands())
      return false;

    Register Addr0 = MI0.getOperand(1).getReg();
    Register Addr1 = MI1.getOperand(1).getReg();
    if (Addr0 != Addr1) {
      if (!MRI || !Register::isVirtualRegister(Addr0) ||
          !Register::isVirtualRegister(Addr1))
        return false;

      // This assumes SSA form.
      MachineInstr *Def0 = MRI->getVRegDef(Addr0);
      MachineInstr *Def1 = MRI->getVRegDef(Addr1);
      // Check if the loaded value, e.g. a constantpool of a global address, are
      // the same.
      if (!produceSameValue(*Def0, *Def1, MRI))
        return false;
    }

    for (unsigned i = 3, e = MI0.getNumOperands(); i != e; ++i) {
      // %12 = PICLDR %11, 0, 14, %noreg
      const MachineOperand &MO0 = MI0.getOperand(i);
      const MachineOperand &MO1 = MI1.getOperand(i);
      if (!MO0.isIdenticalTo(MO1))
        return false;
    }
    return true;
  }

  return MI0.isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
}

/// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
/// determine if two loads are loading from the same base address. It should
/// only return true if the base pointers are the same and the only differences
/// between the two addresses is the offset. It also returns the offsets by
/// reference.
///
/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
/// is permanently disabled.
bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
                                               int64_t &Offset1,
                                               int64_t &Offset2) const {
  // Don't worry about Thumb: just ARM and Thumb2.
  if (Subtarget.isThumb1Only()) return false;

  if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
    return false;

  switch (Load1->getMachineOpcode()) {
  default:
    return false;
  case ARM::LDRi12:
  case ARM::LDRBi12:
  case ARM::LDRD:
  case ARM::LDRH:
  case ARM::LDRSB:
  case ARM::LDRSH:
  case ARM::VLDRD:
  case ARM::VLDRS:
  case ARM::t2LDRi8:
  case ARM::t2LDRBi8:
  case ARM::t2LDRDi8:
  case ARM::t2LDRSHi8:
  case ARM::t2LDRi12:
  case ARM::t2LDRBi12:
  case ARM::t2LDRSHi12:
    break;
  }

  switch (Load2->getMachineOpcode()) {
  default:
    return false;
  case ARM::LDRi12:
  case ARM::LDRBi12:
  case ARM::LDRD:
  case ARM::LDRH:
  case ARM::LDRSB:
  case ARM::LDRSH:
  case ARM::VLDRD:
  case ARM::VLDRS:
  case ARM::t2LDRi8:
  case ARM::t2LDRBi8:
  case ARM::t2LDRSHi8:
  case ARM::t2LDRi12:
  case ARM::t2LDRBi12:
  case ARM::t2LDRSHi12:
    break;
  }

  // Check if base addresses and chain operands match.
  if (Load1->getOperand(0) != Load2->getOperand(0) ||
      Load1->getOperand(4) != Load2->getOperand(4))
    return false;

  // Index should be Reg0.
  if (Load1->getOperand(3) != Load2->getOperand(3))
    return false;

  // Determine the offsets.
  if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
      isa<ConstantSDNode>(Load2->getOperand(1))) {
    Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
    Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
    return true;
  }

  return false;
}

/// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
/// determine (in conjunction with areLoadsFromSameBasePtr) if two loads should
/// be scheduled togther. On some targets if two loads are loading from
/// addresses in the same cache line, it's better if they are scheduled
/// together. This function takes two integers that represent the load offsets
/// from the common base address. It returns true if it decides it's desirable
/// to schedule the two loads together. "NumLoads" is the number of loads that
/// have already been scheduled after Load1.
///
/// FIXME: remove this in favor of the MachineInstr interface once pre-RA-sched
/// is permanently disabled.
bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
                                               int64_t Offset1, int64_t Offset2,
                                               unsigned NumLoads) const {
  // Don't worry about Thumb: just ARM and Thumb2.
  if (Subtarget.isThumb1Only()) return false;

  assert(Offset2 > Offset1);

  if ((Offset2 - Offset1) / 8 > 64)
    return false;

  // Check if the machine opcodes are different. If they are different
  // then we consider them to not be of the same base address,
  // EXCEPT in the case of Thumb2 byte loads where one is LDRBi8 and the other LDRBi12.
  // In this case, they are considered to be the same because they are different
  // encoding forms of the same basic instruction.
  if ((Load1->getMachineOpcode() != Load2->getMachineOpcode()) &&
      !((Load1->getMachineOpcode() == ARM::t2LDRBi8 &&
         Load2->getMachineOpcode() == ARM::t2LDRBi12) ||
        (Load1->getMachineOpcode() == ARM::t2LDRBi12 &&
         Load2->getMachineOpcode() == ARM::t2LDRBi8)))
    return false;  // FIXME: overly conservative?

  // Four loads in a row should be sufficient.
  if (NumLoads >= 3)
    return false;

  return true;
}

bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr &MI,
                                            const MachineBasicBlock *MBB,
                                            const MachineFunction &MF) const {
  // Debug info is never a scheduling boundary. It's necessary to be explicit
  // due to the special treatment of IT instructions below, otherwise a
  // dbg_value followed by an IT will result in the IT instruction being
  // considered a scheduling hazard, which is wrong. It should be the actual
  // instruction preceding the dbg_value instruction(s), just like it is
  // when debug info is not present.
  if (MI.isDebugInstr())
    return false;

  // Terminators and labels can't be scheduled around.
  if (MI.isTerminator() || MI.isPosition())
    return true;

  // INLINEASM_BR can jump to another block
  if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
    return true;

  // Treat the start of the IT block as a scheduling boundary, but schedule
  // t2IT along with all instructions following it.
  // FIXME: This is a big hammer. But the alternative is to add all potential
  // true and anti dependencies to IT block instructions as implicit operands
  // to the t2IT instruction. The added compile time and complexity does not
  // seem worth it.
  MachineBasicBlock::const_iterator I = MI;
  // Make sure to skip any debug instructions
  while (++I != MBB->end() && I->isDebugInstr())
    ;
  if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
    return true;

  // Don't attempt to schedule around any instruction that defines
  // a stack-oriented pointer, as it's unlikely to be profitable. This
  // saves compile time, because it doesn't require every single
  // stack slot reference to depend on the instruction that does the
  // modification.
  // Calls don't actually change the stack pointer, even if they have imp-defs.
  // No ARM calling conventions change the stack pointer. (X86 calling
  // conventions sometimes do).
  if (!MI.isCall() && MI.definesRegister(ARM::SP))
    return true;

  return false;
}

bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock &MBB,
                    unsigned NumCycles, unsigned ExtraPredCycles,
                    BranchProbability Probability) const {
  if (!NumCycles)
    return false;

  // If we are optimizing for size, see if the branch in the predecessor can be
  // lowered to cbn?z by the constant island lowering pass, and return false if
  // so. This results in a shorter instruction sequence.
  if (MBB.getParent()->getFunction().hasOptSize()) {
    MachineBasicBlock *Pred = *MBB.pred_begin();
    if (!Pred->empty()) {
      MachineInstr *LastMI = &*Pred->rbegin();
      if (LastMI->getOpcode() == ARM::t2Bcc) {
        const TargetRegisterInfo *TRI = &getRegisterInfo();
        MachineInstr *CmpMI = findCMPToFoldIntoCBZ(LastMI, TRI);
        if (CmpMI)
          return false;
      }
    }
  }
  return isProfitableToIfCvt(MBB, NumCycles, ExtraPredCycles,
                             MBB, 0, 0, Probability);
}

bool ARMBaseInstrInfo::
isProfitableToIfCvt(MachineBasicBlock &TBB,
                    unsigned TCycles, unsigned TExtra,
                    MachineBasicBlock &FBB,
                    unsigned FCycles, unsigned FExtra,
                    BranchProbability Probability) const {
  if (!TCycles)
    return false;

  // In thumb code we often end up trading one branch for a IT block, and
  // if we are cloning the instruction can increase code size. Prevent
  // blocks with multiple predecesors from being ifcvted to prevent this
  // cloning.
  if (Subtarget.isThumb2() && TBB.getParent()->getFunction().hasMinSize()) {
    if (TBB.pred_size() != 1 || FBB.pred_size() != 1)
      return false;
  }

  // Attempt to estimate the relative costs of predication versus branching.
  // Here we scale up each component of UnpredCost to avoid precision issue when
  // scaling TCycles/FCycles by Probability.
  const unsigned ScalingUpFactor = 1024;

  unsigned PredCost = (TCycles + FCycles + TExtra + FExtra) * ScalingUpFactor;
  unsigned UnpredCost;
  if (!Subtarget.hasBranchPredictor()) {
    // When we don't have a branch predictor it's always cheaper to not take a
    // branch than take it, so we have to take that into account.
    unsigned NotTakenBranchCost = 1;
    unsigned TakenBranchCost = Subtarget.getMispredictionPenalty();
    unsigned TUnpredCycles, FUnpredCycles;
    if (!FCycles) {
      // Triangle: TBB is the fallthrough
      TUnpredCycles = TCycles + NotTakenBranchCost;
      FUnpredCycles = TakenBranchCost;
    } else {
      // Diamond: TBB is the block that is branched to, FBB is the fallthrough
      TUnpredCycles = TCycles + TakenBranchCost;
      FUnpredCycles = FCycles + NotTakenBranchCost;
      // The branch at the end of FBB will disappear when it's predicated, so
      // discount it from PredCost.
      PredCost -= 1 * ScalingUpFactor;
    }
    // The total cost is the cost of each path scaled by their probabilites
    unsigned TUnpredCost = Probability.scale(TUnpredCycles * ScalingUpFactor);
    unsigned FUnpredCost = Probability.getCompl().scale(FUnpredCycles * ScalingUpFactor);
    UnpredCost = TUnpredCost + FUnpredCost;
    // When predicating assume that the first IT can be folded away but later
    // ones cost one cycle each
    if (Subtarget.isThumb2() && TCycles + FCycles > 4) {
      PredCost += ((TCycles + FCycles - 4) / 4) * ScalingUpFactor;
    }
  } else {
    unsigned TUnpredCost = Probability.scale(TCycles * ScalingUpFactor);
    unsigned FUnpredCost =
      Probability.getCompl().scale(FCycles * ScalingUpFactor);
    UnpredCost = TUnpredCost + FUnpredCost;
    UnpredCost += 1 * ScalingUpFactor; // The branch itself
    UnpredCost += Subtarget.getMispredictionPenalty() * ScalingUpFactor / 10;
  }

  return PredCost <= UnpredCost;
}

unsigned
ARMBaseInstrInfo::extraSizeToPredicateInstructions(const MachineFunction &MF,
                                                   unsigned NumInsts) const {
  // Thumb2 needs a 2-byte IT instruction to predicate up to 4 instructions.
  // ARM has a condition code field in every predicable instruction, using it
  // doesn't change code size.
  return Subtarget.isThumb2() ? divideCeil(NumInsts, 4) * 2 : 0;
}

unsigned
ARMBaseInstrInfo::predictBranchSizeForIfCvt(MachineInstr &MI) const {
  // If this branch is likely to be folded into the comparison to form a
  // CB(N)Z, then removing it won't reduce code size at all, because that will
  // just replace the CB(N)Z with a CMP.
  if (MI.getOpcode() == ARM::t2Bcc &&
      findCMPToFoldIntoCBZ(&MI, &getRegisterInfo()))
    return 0;

  unsigned Size = getInstSizeInBytes(MI);

  // For Thumb2, all branches are 32-bit instructions during the if conversion
  // pass, but may be replaced with 16-bit instructions during size reduction.
  // Since the branches considered by if conversion tend to be forward branches
  // over small basic blocks, they are very likely to be in range for the
  // narrow instructions, so we assume the final code size will be half what it
  // currently is.
  if (Subtarget.isThumb2())
    Size /= 2;

  return Size;
}

bool
ARMBaseInstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
                                            MachineBasicBlock &FMBB) const {
  // Reduce false anti-dependencies to let the target's out-of-order execution
  // engine do its thing.
  return Subtarget.isProfitableToUnpredicate();
}

/// getInstrPredicate - If instruction is predicated, returns its predicate
/// condition, otherwise returns AL. It also returns the condition code
/// register by reference.
ARMCC::CondCodes llvm::getInstrPredicate(const MachineInstr &MI,
                                         Register &PredReg) {
  int PIdx = MI.findFirstPredOperandIdx();
  if (PIdx == -1) {
    PredReg = 0;
    return ARMCC::AL;
  }

  PredReg = MI.getOperand(PIdx+1).getReg();
  return (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
}

unsigned llvm::getMatchingCondBranchOpcode(unsigned Opc) {
  if (Opc == ARM::B)
    return ARM::Bcc;
  if (Opc == ARM::tB)
    return ARM::tBcc;
  if (Opc == ARM::t2B)
    return ARM::t2Bcc;

  llvm_unreachable("Unknown unconditional branch opcode!");
}

MachineInstr *ARMBaseInstrInfo::commuteInstructionImpl(MachineInstr &MI,
                                                       bool NewMI,
                                                       unsigned OpIdx1,
                                                       unsigned OpIdx2) const {
  switch (MI.getOpcode()) {
  case ARM::MOVCCr:
  case ARM::t2MOVCCr: {
    // MOVCC can be commuted by inverting the condition.
    Register PredReg;
    ARMCC::CondCodes CC = getInstrPredicate(MI, PredReg);
    // MOVCC AL can't be inverted. Shouldn't happen.
    if (CC == ARMCC::AL || PredReg != ARM::CPSR)
      return nullptr;
    MachineInstr *CommutedMI =
        TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
    if (!CommutedMI)
      return nullptr;
    // After swapping the MOVCC operands, also invert the condition.
    CommutedMI->getOperand(CommutedMI->findFirstPredOperandIdx())
        .setImm(ARMCC::getOppositeCondition(CC));
    return CommutedMI;
  }
  }
  return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
}

/// Identify instructions that can be folded into a MOVCC instruction, and
/// return the defining instruction.
MachineInstr *
ARMBaseInstrInfo::canFoldIntoMOVCC(Register Reg, const MachineRegisterInfo &MRI,
                                   const TargetInstrInfo *TII) const {
  if (!Reg.isVirtual())
    return nullptr;
  if (!MRI.hasOneNonDBGUse(Reg))
    return nullptr;
  MachineInstr *MI = MRI.getVRegDef(Reg);
  if (!MI)
    return nullptr;
  // Check if MI can be predicated and folded into the MOVCC.
  if (!isPredicable(*MI))
    return nullptr;
  // Check if MI has any non-dead defs or physreg uses. This also detects
  // predicated instructions which will be reading CPSR.
  for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
    const MachineOperand &MO = MI->getOperand(i);
    // Reject frame index operands, PEI can't handle the predicated pseudos.
    if (MO.isFI() || MO.isCPI() || MO.isJTI())
      return nullptr;
    if (!MO.isReg())
      continue;
    // MI can't have any tied operands, that would conflict with predication.
    if (MO.isTied())
      return nullptr;
    if (Register::isPhysicalRegister(MO.getReg()))
      return nullptr;
    if (MO.isDef() && !MO.isDead())
      return nullptr;
  }
  bool DontMoveAcrossStores = true;
  if (!MI->isSafeToMove(/* AliasAnalysis = */ nullptr, DontMoveAcrossStores))
    return nullptr;
  return MI;
}

bool ARMBaseInstrInfo::analyzeSelect(const MachineInstr &MI,
                                     SmallVectorImpl<MachineOperand> &Cond,
                                     unsigned &TrueOp, unsigned &FalseOp,
                                     bool &Optimizable) const {
  assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
         "Unknown select instruction");
  // MOVCC operands:
  // 0: Def.
  // 1: True use.
  // 2: False use.
  // 3: Condition code.
  // 4: CPSR use.
  TrueOp = 1;
  FalseOp = 2;
  Cond.push_back(MI.getOperand(3));
  Cond.push_back(MI.getOperand(4));
  // We can always fold a def.
  Optimizable = true;
  return false;
}

MachineInstr *
ARMBaseInstrInfo::optimizeSelect(MachineInstr &MI,
                                 SmallPtrSetImpl<MachineInstr *> &SeenMIs,
                                 bool PreferFalse) const {
  assert((MI.getOpcode() == ARM::MOVCCr || MI.getOpcode() == ARM::t2MOVCCr) &&
         "Unknown select instruction");
  MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
  MachineInstr *DefMI = canFoldIntoMOVCC(MI.getOperand(2).getReg(), MRI, this);
  bool Invert = !DefMI;
  if (!DefMI)
    DefMI = canFoldIntoMOVCC(MI.getOperand(1).getReg(), MRI, this);
  if (!DefMI)
    return nullptr;

  // Find new register class to use.
  MachineOperand FalseReg = MI.getOperand(Invert ? 2 : 1);
  Register DestReg = MI.getOperand(0).getReg();
  const TargetRegisterClass *PreviousClass = MRI.getRegClass(FalseReg.getReg());
  if (!MRI.constrainRegClass(DestReg, PreviousClass))
    return nullptr;

  // Create a new predicated version of DefMI.
  // Rfalse is the first use.
  MachineInstrBuilder NewMI =
      BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), DefMI->getDesc(), DestReg);

  // Copy all the DefMI operands, excluding its (null) predicate.
  const MCInstrDesc &DefDesc = DefMI->getDesc();
  for (unsigned i = 1, e = DefDesc.getNumOperands();
       i != e && !DefDesc.OpInfo[i].isPredicate(); ++i)
    NewMI.add(DefMI->getOperand(i));

  unsigned CondCode = MI.getOperand(3).getImm();
  if (Invert)
    NewMI.addImm(ARMCC::getOppositeCondition(ARMCC::CondCodes(CondCode)));
  else
    NewMI.addImm(CondCode);
  NewMI.add(MI.getOperand(4));

  // DefMI is not the -S version that sets CPSR, so add an optional %noreg.
  if (NewMI->hasOptionalDef())
    NewMI.add(condCodeOp());

  // The output register value when the predicate is false is an implicit
  // register operand tied to the first def.
  // The tie makes the register allocator ensure the FalseReg is allocated the
  // same register as operand 0.
  FalseReg.setImplicit();
  NewMI.add(FalseReg);
  NewMI->tieOperands(0, NewMI->getNumOperands() - 1);

  // Update SeenMIs set: register newly created MI and erase removed DefMI.
  SeenMIs.insert(NewMI);
  SeenMIs.erase(DefMI);

  // If MI is inside a loop, and DefMI is outside the loop, then kill flags on
  // DefMI would be invalid when tranferred inside the loop.  Checking for a
  // loop is expensive, but at least remove kill flags if they are in different
  // BBs.
  if (DefMI->getParent() != MI.getParent())
    NewMI->clearKillInfo();

  // The caller will erase MI, but not DefMI.
  DefMI->eraseFromParent();
  return NewMI;
}

/// Map pseudo instructions that imply an 'S' bit onto real opcodes. Whether the
/// instruction is encoded with an 'S' bit is determined by the optional CPSR
/// def operand.
///
/// This will go away once we can teach tblgen how to set the optional CPSR def
/// operand itself.
struct AddSubFlagsOpcodePair {
  uint16_t PseudoOpc;
  uint16_t MachineOpc;
};

static const AddSubFlagsOpcodePair AddSubFlagsOpcodeMap[] = {
  {ARM::ADDSri, ARM::ADDri},
  {ARM::ADDSrr, ARM::ADDrr},
  {ARM::ADDSrsi, ARM::ADDrsi},
  {ARM::ADDSrsr, ARM::ADDrsr},

  {ARM::SUBSri, ARM::SUBri},
  {ARM::SUBSrr, ARM::SUBrr},
  {ARM::SUBSrsi, ARM::SUBrsi},
  {ARM::SUBSrsr, ARM::SUBrsr},

  {ARM::RSBSri, ARM::RSBri},
  {ARM::RSBSrsi, ARM::RSBrsi},
  {ARM::RSBSrsr, ARM::RSBrsr},

  {ARM::tADDSi3, ARM::tADDi3},
  {ARM::tADDSi8, ARM::tADDi8},
  {ARM::tADDSrr, ARM::tADDrr},
  {ARM::tADCS, ARM::tADC},

  {ARM::tSUBSi3, ARM::tSUBi3},
  {ARM::tSUBSi8, ARM::tSUBi8},
  {ARM::tSUBSrr, ARM::tSUBrr},
  {ARM::tSBCS, ARM::tSBC},
  {ARM::tRSBS, ARM::tRSB},
  {ARM::tLSLSri, ARM::tLSLri},

  {ARM::t2ADDSri, ARM::t2ADDri},
  {ARM::t2ADDSrr, ARM::t2ADDrr},
  {ARM::t2ADDSrs, ARM::t2ADDrs},

  {ARM::t2SUBSri, ARM::t2SUBri},
  {ARM::t2SUBSrr, ARM::t2SUBrr},
  {ARM::t2SUBSrs, ARM::t2SUBrs},

  {ARM::t2RSBSri, ARM::t2RSBri},
  {ARM::t2RSBSrs, ARM::t2RSBrs},
};

unsigned llvm::convertAddSubFlagsOpcode(unsigned OldOpc) {
  for (unsigned i = 0, e = array_lengthof(AddSubFlagsOpcodeMap); i != e; ++i)
    if (OldOpc == AddSubFlagsOpcodeMap[i].PseudoOpc)
      return AddSubFlagsOpcodeMap[i].MachineOpc;
  return 0;
}

void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
                                   MachineBasicBlock::iterator &MBBI,
                                   const DebugLoc &dl, Register DestReg,
                                   Register BaseReg, int NumBytes,
                                   ARMCC::CondCodes Pred, Register PredReg,
                                   const ARMBaseInstrInfo &TII,
                                   unsigned MIFlags) {
  if (NumBytes == 0 && DestReg != BaseReg) {
    BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), DestReg)
        .addReg(BaseReg, RegState::Kill)
        .add(predOps(Pred, PredReg))
        .add(condCodeOp())
        .setMIFlags(MIFlags);
    return;
  }

  bool isSub = NumBytes < 0;
  if (isSub) NumBytes = -NumBytes;

  while (NumBytes) {
    unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
    unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
    assert(ThisVal && "Didn't extract field correctly");

    // We will handle these bits from offset, clear them.
    NumBytes &= ~ThisVal;

    assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");

    // Build the new ADD / SUB.
    unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
    BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
        .addReg(BaseReg, RegState::Kill)
        .addImm(ThisVal)
        .add(predOps(Pred, PredReg))
        .add(condCodeOp())
        .setMIFlags(MIFlags);
    BaseReg = DestReg;
  }
}

bool llvm::tryFoldSPUpdateIntoPushPop(const ARMSubtarget &Subtarget,
                                      MachineFunction &MF, MachineInstr *MI,
                                      unsigned NumBytes) {
  // This optimisation potentially adds lots of load and store
  // micro-operations, it's only really a great benefit to code-size.
  if (!Subtarget.hasMinSize())
    return false;

  // If only one register is pushed/popped, LLVM can use an LDR/STR
  // instead. We can't modify those so make sure we're dealing with an
  // instruction we understand.
  bool IsPop = isPopOpcode(MI->getOpcode());
  bool IsPush = isPushOpcode(MI->getOpcode());
  if (!IsPush && !IsPop)
    return false;

  bool IsVFPPushPop = MI->getOpcode() == ARM::VSTMDDB_UPD ||
                      MI->getOpcode() == ARM::VLDMDIA_UPD;
  bool IsT1PushPop = MI->getOpcode() == ARM::tPUSH ||
                     MI->getOpcode() == ARM::tPOP ||
                     MI->getOpcode() == ARM::tPOP_RET;

  assert((IsT1PushPop || (MI->getOperand(0).getReg() == ARM::SP &&
                          MI->getOperand(1).getReg() == ARM::SP)) &&
         "trying to fold sp update into non-sp-updating push/pop");

  // The VFP push & pop act on D-registers, so we can only fold an adjustment
  // by a multiple of 8 bytes in correctly. Similarly rN is 4-bytes. Don't try
  // if this is violated.
  if (NumBytes % (IsVFPPushPop ? 8 : 4) != 0)
    return false;

  // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
  // pred) so the list starts at 4. Thumb1 starts after the predicate.
  int RegListIdx = IsT1PushPop ? 2 : 4;

  // Calculate the space we'll need in terms of registers.
  unsigned RegsNeeded;
  const TargetRegisterClass *RegClass;
  if (IsVFPPushPop) {
    RegsNeeded = NumBytes / 8;
    RegClass = &ARM::DPRRegClass;
  } else {
    RegsNeeded = NumBytes / 4;
    RegClass = &ARM::GPRRegClass;
  }

  // We're going to have to strip all list operands off before
  // re-adding them since the order matters, so save the existing ones
  // for later.
  SmallVector<MachineOperand, 4> RegList;

  // We're also going to need the first register transferred by this
  // instruction, which won't necessarily be the first register in the list.
  unsigned FirstRegEnc = -1;

  const TargetRegisterInfo *TRI = MF.getRegInfo().getTargetRegisterInfo();
  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i) {
    MachineOperand &MO = MI->getOperand(i);
    RegList.push_back(MO);

    if (MO.isReg() && !MO.isImplicit() &&
        TRI->getEncodingValue(MO.getReg()) < FirstRegEnc)
      FirstRegEnc = TRI->getEncodingValue(MO.getReg());
  }

  const MCPhysReg *CSRegs = TRI->getCalleeSavedRegs(&MF);

  // Now try to find enough space in the reglist to allocate NumBytes.
  for (int CurRegEnc = FirstRegEnc - 1; CurRegEnc >= 0 && RegsNeeded;
       --CurRegEnc) {
    unsigned CurReg = RegClass->getRegister(CurRegEnc);
    if (IsT1PushPop && CurRegEnc > TRI->getEncodingValue(ARM::R7))
      continue;
    if (!IsPop) {
      // Pushing any register is completely harmless, mark the register involved
      // as undef since we don't care about its value and must not restore it
      // during stack unwinding.
      RegList.push_back(MachineOperand::CreateReg(CurReg, false, false,
                                                  false, false, true));
      --RegsNeeded;
      continue;
    }

    // However, we can only pop an extra register if it's not live. For
    // registers live within the function we might clobber a return value
    // register; the other way a register can be live here is if it's
    // callee-saved.
    if (isCalleeSavedRegister(CurReg, CSRegs) ||
        MI->getParent()->computeRegisterLiveness(TRI, CurReg, MI) !=
        MachineBasicBlock::LQR_Dead) {
      // VFP pops don't allow holes in the register list, so any skip is fatal
      // for our transformation. GPR pops do, so we should just keep looking.
      if (IsVFPPushPop)
        return false;
      else
        continue;
    }

    // Mark the unimportant registers as <def,dead> in the POP.
    RegList.push_back(MachineOperand::CreateReg(CurReg, true, false, false,
                                                true));
    --RegsNeeded;
  }

  if (RegsNeeded > 0)
    return false;

  // Finally we know we can profitably perform the optimisation so go
  // ahead: strip all existing registers off and add them back again
  // in the right order.
  for (int i = MI->getNumOperands() - 1; i >= RegListIdx; --i)
    MI->RemoveOperand(i);

  // Add the complete list back in.
  MachineInstrBuilder MIB(MF, &*MI);
  for (int i = RegList.size() - 1; i >= 0; --i)
    MIB.add(RegList[i]);

  return true;
}

bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
                                Register FrameReg, int &Offset,
                                const ARMBaseInstrInfo &TII) {
  unsigned Opcode = MI.getOpcode();
  const MCInstrDesc &Desc = MI.getDesc();
  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
  bool isSub = false;

  // Memory operands in inline assembly always use AddrMode2.
  if (Opcode == ARM::INLINEASM || Opcode == ARM::INLINEASM_BR)
    AddrMode = ARMII::AddrMode2;

  if (Opcode == ARM::ADDri) {
    Offset += MI.getOperand(FrameRegIdx+1).getImm();
    if (Offset == 0) {
      // Turn it into a move.
      MI.setDesc(TII.get(ARM::MOVr));
      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
      MI.RemoveOperand(FrameRegIdx+1);
      Offset = 0;
      return true;
    } else if (Offset < 0) {
      Offset = -Offset;
      isSub = true;
      MI.setDesc(TII.get(ARM::SUBri));
    }

    // Common case: small offset, fits into instruction.
    if (ARM_AM::getSOImmVal(Offset) != -1) {
      // Replace the FrameIndex with sp / fp
      MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
      MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
      Offset = 0;
      return true;
    }

    // Otherwise, pull as much of the immedidate into this ADDri/SUBri
    // as possible.
    unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
    unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);

    // We will handle these bits from offset, clear them.
    Offset &= ~ThisImmVal;

    // Get the properly encoded SOImmVal field.
    assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
           "Bit extraction didn't work?");
    MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
 } else {
    unsigned ImmIdx = 0;
    int InstrOffs = 0;
    unsigned NumBits = 0;
    unsigned Scale = 1;
    switch (AddrMode) {
    case ARMII::AddrMode_i12:
      ImmIdx = FrameRegIdx + 1;
      InstrOffs = MI.getOperand(ImmIdx).getImm();
      NumBits = 12;
      break;
    case ARMII::AddrMode2:
      ImmIdx = FrameRegIdx+2;
      InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
      if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
        InstrOffs *= -1;
      NumBits = 12;
      break;
    case ARMII::AddrMode3:
      ImmIdx = FrameRegIdx+2;
      InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
      if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
        InstrOffs *= -1;
      NumBits = 8;
      break;
    case ARMII::AddrMode4:
    case ARMII::AddrMode6:
      // Can't fold any offset even if it's zero.
      return false;
    case ARMII::AddrMode5:
      ImmIdx = FrameRegIdx+1;
      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
        InstrOffs *= -1;
      NumBits = 8;
      Scale = 4;
      break;
    case ARMII::AddrMode5FP16:
      ImmIdx = FrameRegIdx+1;
      InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
      if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
        InstrOffs *= -1;
      NumBits = 8;
      Scale = 2;
      break;
    case ARMII::AddrModeT2_i7:
    case ARMII::AddrModeT2_i7s2:
    case ARMII::AddrModeT2_i7s4:
      ImmIdx = FrameRegIdx+1;
      InstrOffs = MI.getOperand(ImmIdx).getImm();
      NumBits = 7;
      Scale = (AddrMode == ARMII::AddrModeT2_i7s2 ? 2 :
               AddrMode == ARMII::AddrModeT2_i7s4 ? 4 : 1);
      break;
    default:
      llvm_unreachable("Unsupported addressing mode!");
    }

    Offset += InstrOffs * Scale;
    assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
    if (Offset < 0) {
      Offset = -Offset;
      isSub = true;
    }

    // Attempt to fold address comp. if opcode has offset bits
    if (NumBits > 0) {
      // Common case: small offset, fits into instruction.
      MachineOperand &ImmOp = MI.getOperand(ImmIdx);
      int ImmedOffset = Offset / Scale;
      unsigned Mask = (1 << NumBits) - 1;
      if ((unsigned)Offset <= Mask * Scale) {
        // Replace the FrameIndex with sp
        MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
        // FIXME: When addrmode2 goes away, this will simplify (like the
        // T2 version), as the LDR.i12 versions don't need the encoding
        // tricks for the offset value.
        if (isSub) {
          if (AddrMode == ARMII::AddrMode_i12)
            ImmedOffset = -ImmedOffset;
          else
            ImmedOffset |= 1 << NumBits;
        }
        ImmOp.ChangeToImmediate(ImmedOffset);
        Offset = 0;
        return true;
      }

      // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
      ImmedOffset = ImmedOffset & Mask;
      if (isSub) {
        if (AddrMode == ARMII::AddrMode_i12)
          ImmedOffset = -ImmedOffset;
        else
          ImmedOffset |= 1 << NumBits;
      }
      ImmOp.ChangeToImmediate(ImmedOffset);
      Offset &= ~(Mask*Scale);
    }
  }

  Offset = (isSub) ? -Offset : Offset;
  return Offset == 0;
}

/// analyzeCompare - For a comparison instruction, return the source registers
/// in SrcReg and SrcReg2 if having two register operands, and the value it
/// compares against in CmpValue. Return true if the comparison instruction
/// can be analyzed.
bool ARMBaseInstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg,
                                      Register &SrcReg2, int &CmpMask,
                                      int &CmpValue) const {
  switch (MI.getOpcode()) {
  default: break;
  case ARM::CMPri:
  case ARM::t2CMPri:
  case ARM::tCMPi8:
    SrcReg = MI.getOperand(0).getReg();
    SrcReg2 = 0;
    CmpMask = ~0;
    CmpValue = MI.getOperand(1).getImm();
    return true;
  case ARM::CMPrr:
  case ARM::t2CMPrr:
  case ARM::tCMPr:
    SrcReg = MI.getOperand(0).getReg();
    SrcReg2 = MI.getOperand(1).getReg();
    CmpMask = ~0;
    CmpValue = 0;
    return true;
  case ARM::TSTri:
  case ARM::t2TSTri:
    SrcReg = MI.getOperand(0).getReg();
    SrcReg2 = 0;
    CmpMask = MI.getOperand(1).getImm();
    CmpValue = 0;
    return true;
  }

  return false;
}

/// isSuitableForMask - Identify a suitable 'and' instruction that
/// operates on the given source register and applies the same mask
/// as a 'tst' instruction. Provide a limited look-through for copies.
/// When successful, MI will hold the found instruction.
static bool isSuitableForMask(MachineInstr *&MI, Register SrcReg,
                              int CmpMask, bool CommonUse) {
  switch (MI->getOpcode()) {
    case ARM::ANDri:
    case ARM::t2ANDri:
      if (CmpMask != MI->getOperand(2).getImm())
        return false;
      if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
        return true;
      break;
  }

  return false;
}

/// getCmpToAddCondition - assume the flags are set by CMP(a,b), return
/// the condition code if we modify the instructions such that flags are
/// set by ADD(a,b,X).
inline static ARMCC::CondCodes getCmpToAddCondition(ARMCC::CondCodes CC) {
  switch (CC) {
  default: return ARMCC::AL;
  case ARMCC::HS: return ARMCC::LO;
  case ARMCC::LO: return ARMCC::HS;
  case ARMCC::VS: return ARMCC::VS;
  case ARMCC::VC: return ARMCC::VC;
  }
}

/// isRedundantFlagInstr - check whether the first instruction, whose only
/// purpose is to update flags, can be made redundant.
/// CMPrr can be made redundant by SUBrr if the operands are the same.
/// CMPri can be made redundant by SUBri if the operands are the same.
/// CMPrr(r0, r1) can be made redundant by ADDr[ri](r0, r1, X).
/// This function can be extended later on.
inline static bool isRedundantFlagInstr(const MachineInstr *CmpI,
                                        Register SrcReg, Register SrcReg2,
                                        int ImmValue, const MachineInstr *OI,
                                        bool &IsThumb1) {
  if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
      (OI->getOpcode() == ARM::SUBrr || OI->getOpcode() == ARM::t2SUBrr) &&
      ((OI->getOperand(1).getReg() == SrcReg &&
        OI->getOperand(2).getReg() == SrcReg2) ||
       (OI->getOperand(1).getReg() == SrcReg2 &&
        OI->getOperand(2).getReg() == SrcReg))) {
    IsThumb1 = false;
    return true;
  }

  if (CmpI->getOpcode() == ARM::tCMPr && OI->getOpcode() == ARM::tSUBrr &&
      ((OI->getOperand(2).getReg() == SrcReg &&
        OI->getOperand(3).getReg() == SrcReg2) ||
       (OI->getOperand(2).getReg() == SrcReg2 &&
        OI->getOperand(3).getReg() == SrcReg))) {
    IsThumb1 = true;
    return true;
  }

  if ((CmpI->getOpcode() == ARM::CMPri || CmpI->getOpcode() == ARM::t2CMPri) &&
      (OI->getOpcode() == ARM::SUBri || OI->getOpcode() == ARM::t2SUBri) &&
      OI->getOperand(1).getReg() == SrcReg &&
      OI->getOperand(2).getImm() == ImmValue) {
    IsThumb1 = false;
    return true;
  }

  if (CmpI->getOpcode() == ARM::tCMPi8 &&
      (OI->getOpcode() == ARM::tSUBi8 || OI->getOpcode() == ARM::tSUBi3) &&
      OI->getOperand(2).getReg() == SrcReg &&
      OI->getOperand(3).getImm() == ImmValue) {
    IsThumb1 = true;
    return true;
  }

  if ((CmpI->getOpcode() == ARM::CMPrr || CmpI->getOpcode() == ARM::t2CMPrr) &&
      (OI->getOpcode() == ARM::ADDrr || OI->getOpcode() == ARM::t2ADDrr ||
       OI->getOpcode() == ARM::ADDri || OI->getOpcode() == ARM::t2ADDri) &&
      OI->getOperand(0).isReg() && OI->getOperand(1).isReg() &&
      OI->getOperand(0).getReg() == SrcReg &&
      OI->getOperand(1).getReg() == SrcReg2) {
    IsThumb1 = false;
    return true;
  }

  if (CmpI->getOpcode() == ARM::tCMPr &&
      (OI->getOpcode() == ARM::tADDi3 || OI->getOpcode() == ARM::tADDi8 ||
       OI->getOpcode() == ARM::tADDrr) &&
      OI->getOperand(0).getReg() == SrcReg &&
      OI->getOperand(2).getReg() == SrcReg2) {
    IsThumb1 = true;
    return true;
  }

  return false;
}

static bool isOptimizeCompareCandidate(MachineInstr *MI, bool &IsThumb1) {
  switch (MI->getOpcode()) {
  default: return false;
  case ARM::tLSLri:
  case ARM::tLSRri:
  case ARM::tLSLrr:
  case ARM::tLSRrr:
  case ARM::tSUBrr:
  case ARM::tADDrr:
  case ARM::tADDi3:
  case ARM::tADDi8:
  case ARM::tSUBi3:
  case ARM::tSUBi8:
  case ARM::tMUL:
  case ARM::tADC:
  case ARM::tSBC:
  case ARM::tRSB:
  case ARM::tAND:
  case ARM::tORR:
  case ARM::tEOR:
  case ARM::tBIC:
  case ARM::tMVN:
  case ARM::tASRri:
  case ARM::tASRrr:
  case ARM::tROR:
    IsThumb1 = true;
    LLVM_FALLTHROUGH;
  case ARM::RSBrr:
  case ARM::RSBri:
  case ARM::RSCrr:
  case ARM::RSCri:
  case ARM::ADDrr:
  case ARM::ADDri:
  case ARM::ADCrr:
  case ARM::ADCri:
  case ARM::SUBrr:
  case ARM::SUBri:
  case ARM::SBCrr:
  case ARM::SBCri:
  case ARM::t2RSBri:
  case ARM::t2ADDrr:
  case ARM::t2ADDri:
  case ARM::t2ADCrr:
  case ARM::t2ADCri:
  case ARM::t2SUBrr:
  case ARM::t2SUBri:
  case ARM::t2SBCrr:
  case ARM::t2SBCri:
  case ARM::ANDrr:
  case ARM::ANDri:
  case ARM::t2ANDrr:
  case ARM::t2ANDri:
  case ARM::ORRrr:
  case ARM::ORRri:
  case ARM::t2ORRrr:
  case ARM::t2ORRri:
  case ARM::EORrr:
  case ARM::EORri:
  case ARM::t2EORrr:
  case ARM::t2EORri:
  case ARM::t2LSRri:
  case ARM::t2LSRrr:
  case ARM::t2LSLri:
  case ARM::t2LSLrr:
    return true;
  }
}

/// optimizeCompareInstr - Convert the instruction supplying the argument to the
/// comparison into one that sets the zero bit in the flags register;
/// Remove a redundant Compare instruction if an earlier instruction can set the
/// flags in the same way as Compare.
/// E.g. SUBrr(r1,r2) and CMPrr(r1,r2). We also handle the case where two
/// operands are swapped: SUBrr(r1,r2) and CMPrr(r2,r1), by updating the
/// condition code of instructions which use the flags.
bool ARMBaseInstrInfo::optimizeCompareInstr(
    MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int CmpMask,
    int CmpValue, const MachineRegisterInfo *MRI) const {
  // Get the unique definition of SrcReg.
  MachineInstr *MI = MRI->getUniqueVRegDef(SrcReg);
  if (!MI) return false;

  // Masked compares sometimes use the same register as the corresponding 'and'.
  if (CmpMask != ~0) {
    if (!isSuitableForMask(MI, SrcReg, CmpMask, false) || isPredicated(*MI)) {
      MI = nullptr;
      for (MachineRegisterInfo::use_instr_iterator
           UI = MRI->use_instr_begin(SrcReg), UE = MRI->use_instr_end();
           UI != UE; ++UI) {
        if (UI->getParent() != CmpInstr.getParent())
          continue;
        MachineInstr *PotentialAND = &*UI;
        if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true) ||
            isPredicated(*PotentialAND))
          continue;
        MI = PotentialAND;
        break;
      }
      if (!MI) return false;
    }
  }

  // Get ready to iterate backward from CmpInstr.
  MachineBasicBlock::iterator I = CmpInstr, E = MI,
                              B = CmpInstr.getParent()->begin();

  // Early exit if CmpInstr is at the beginning of the BB.
  if (I == B) return false;

  // There are two possible candidates which can be changed to set CPSR:
  // One is MI, the other is a SUB or ADD instruction.
  // For CMPrr(r1,r2), we are looking for SUB(r1,r2), SUB(r2,r1), or
  // ADDr[ri](r1, r2, X).
  // For CMPri(r1, CmpValue), we are looking for SUBri(r1, CmpValue).
  MachineInstr *SubAdd = nullptr;
  if (SrcReg2 != 0)
    // MI is not a candidate for CMPrr.
    MI = nullptr;
  else if (MI->getParent() != CmpInstr.getParent() || CmpValue != 0) {
    // Conservatively refuse to convert an instruction which isn't in the same
    // BB as the comparison.
    // For CMPri w/ CmpValue != 0, a SubAdd may still be a candidate.
    // Thus we cannot return here.
    if (CmpInstr.getOpcode() == ARM::CMPri ||
        CmpInstr.getOpcode() == ARM::t2CMPri ||
        CmpInstr.getOpcode() == ARM::tCMPi8)
      MI = nullptr;
    else
      return false;
  }

  bool IsThumb1 = false;
  if (MI && !isOptimizeCompareCandidate(MI, IsThumb1))
    return false;

  // We also want to do this peephole for cases like this: if (a*b == 0),
  // and optimise away the CMP instruction from the generated code sequence:
  // MULS, MOVS, MOVS, CMP. Here the MOVS instructions load the boolean values
  // resulting from the select instruction, but these MOVS instructions for
  // Thumb1 (V6M) are flag setting and are thus preventing this optimisation.
  // However, if we only have MOVS instructions in between the CMP and the
  // other instruction (the MULS in this example), then the CPSR is dead so we
  // can safely reorder the sequence into: MOVS, MOVS, MULS, CMP. We do this
  // reordering and then continue the analysis hoping we can eliminate the
  // CMP. This peephole works on the vregs, so is still in SSA form. As a
  // consequence, the movs won't redefine/kill the MUL operands which would
  // make this reordering illegal.
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  if (MI && IsThumb1) {
    --I;
    if (I != E && !MI->readsRegister(ARM::CPSR, TRI)) {
      bool CanReorder = true;
      for (; I != E; --I) {
        if (I->getOpcode() != ARM::tMOVi8) {
          CanReorder = false;
          break;
        }
      }
      if (CanReorder) {
        MI = MI->removeFromParent();
        E = CmpInstr;
        CmpInstr.getParent()->insert(E, MI);
      }
    }
    I = CmpInstr;
    E = MI;
  }

  // Check that CPSR isn't set between the comparison instruction and the one we
  // want to change. At the same time, search for SubAdd.
  bool SubAddIsThumb1 = false;
  do {
    const MachineInstr &Instr = *--I;

    // Check whether CmpInstr can be made redundant by the current instruction.
    if (isRedundantFlagInstr(&CmpInstr, SrcReg, SrcReg2, CmpValue, &Instr,
                             SubAddIsThumb1)) {
      SubAdd = &*I;
      break;
    }

    // Allow E (which was initially MI) to be SubAdd but do not search before E.
    if (I == E)
      break;

    if (Instr.modifiesRegister(ARM::CPSR, TRI) ||
        Instr.readsRegister(ARM::CPSR, TRI))
      // This instruction modifies or uses CPSR after the one we want to
      // change. We can't do this transformation.
      return false;

    if (I == B) {
      // In some cases, we scan the use-list of an instruction for an AND;
      // that AND is in the same BB, but may not be scheduled before the
      // corresponding TST.  In that case, bail out.
      //
      // FIXME: We could try to reschedule the AND.
      return false;
    }
  } while (true);

  // Return false if no candidates exist.
  if (!MI && !SubAdd)
    return false;

  // If we found a SubAdd, use it as it will be closer to the CMP
  if (SubAdd) {
    MI = SubAdd;
    IsThumb1 = SubAddIsThumb1;
  }

  // We can't use a predicated instruction - it doesn't always write the flags.
  if (isPredicated(*MI))
    return false;

  // Scan forward for the use of CPSR
  // When checking against MI: if it's a conditional code that requires
  // checking of the V bit or C bit, then this is not safe to do.
  // It is safe to remove CmpInstr if CPSR is redefined or killed.
  // If we are done with the basic block, we need to check whether CPSR is
  // live-out.
  SmallVector<std::pair<MachineOperand*, ARMCC::CondCodes>, 4>
      OperandsToUpdate;
  bool isSafe = false;
  I = CmpInstr;
  E = CmpInstr.getParent()->end();
  while (!isSafe && ++I != E) {
    const MachineInstr &Instr = *I;
    for (unsigned IO = 0, EO = Instr.getNumOperands();
         !isSafe && IO != EO; ++IO) {
      const MachineOperand &MO = Instr.getOperand(IO);
      if (MO.isRegMask() && MO.clobbersPhysReg(ARM::CPSR)) {
        isSafe = true;
        break;
      }
      if (!MO.isReg() || MO.getReg() != ARM::CPSR)
        continue;
      if (MO.isDef()) {
        isSafe = true;
        break;
      }
      // Condition code is after the operand before CPSR except for VSELs.
      ARMCC::CondCodes CC;
      bool IsInstrVSel = true;
      switch (Instr.getOpcode()) {
      default:
        IsInstrVSel = false;
        CC = (ARMCC::CondCodes)Instr.getOperand(IO - 1).getImm();
        break;
      case ARM::VSELEQD:
      case ARM::VSELEQS:
      case ARM::VSELEQH:
        CC = ARMCC::EQ;
        break;
      case ARM::VSELGTD:
      case ARM::VSELGTS:
      case ARM::VSELGTH:
        CC = ARMCC::GT;
        break;
      case ARM::VSELGED:
      case ARM::VSELGES:
      case ARM::VSELGEH:
        CC = ARMCC::GE;
        break;
      case ARM::VSELVSD:
      case ARM::VSELVSS:
      case ARM::VSELVSH:
        CC = ARMCC::VS;
        break;
      }

      if (SubAdd) {
        // If we have SUB(r1, r2) and CMP(r2, r1), the condition code based
        // on CMP needs to be updated to be based on SUB.
        // If we have ADD(r1, r2, X) and CMP(r1, r2), the condition code also
        // needs to be modified.
        // Push the condition code operands to OperandsToUpdate.
        // If it is safe to remove CmpInstr, the condition code of these
        // operands will be modified.
        unsigned Opc = SubAdd->getOpcode();
        bool IsSub = Opc == ARM::SUBrr || Opc == ARM::t2SUBrr ||
                     Opc == ARM::SUBri || Opc == ARM::t2SUBri ||
                     Opc == ARM::tSUBrr || Opc == ARM::tSUBi3 ||
                     Opc == ARM::tSUBi8;
        unsigned OpI = Opc != ARM::tSUBrr ? 1 : 2;
        if (!IsSub ||
            (SrcReg2 != 0 && SubAdd->getOperand(OpI).getReg() == SrcReg2 &&
             SubAdd->getOperand(OpI + 1).getReg() == SrcReg)) {
          // VSel doesn't support condition code update.
          if (IsInstrVSel)
            return false;
          // Ensure we can swap the condition.
          ARMCC::CondCodes NewCC = (IsSub ? getSwappedCondition(CC) : getCmpToAddCondition(CC));
          if (NewCC == ARMCC::AL)
            return false;
          OperandsToUpdate.push_back(
              std::make_pair(&((*I).getOperand(IO - 1)), NewCC));
        }
      } else {
        // No SubAdd, so this is x = <op> y, z; cmp x, 0.
        switch (CC) {
        case ARMCC::EQ: // Z
        case ARMCC::NE: // Z
        case ARMCC::MI: // N
        case ARMCC::PL: // N
        case ARMCC::AL: // none
          // CPSR can be used multiple times, we should continue.
          break;
        case ARMCC::HS: // C
        case ARMCC::LO: // C
        case ARMCC::VS: // V
        case ARMCC::VC: // V
        case ARMCC::HI: // C Z
        case ARMCC::LS: // C Z
        case ARMCC::GE: // N V
        case ARMCC::LT: // N V
        case ARMCC::GT: // Z N V
        case ARMCC::LE: // Z N V
          // The instruction uses the V bit or C bit which is not safe.
          return false;
        }
      }
    }
  }

  // If CPSR is not killed nor re-defined, we should check whether it is
  // live-out. If it is live-out, do not optimize.
  if (!isSafe) {
    MachineBasicBlock *MBB = CmpInstr.getParent();
    for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
             SE = MBB->succ_end(); SI != SE; ++SI)
      if ((*SI)->isLiveIn(ARM::CPSR))
        return false;
  }

  // Toggle the optional operand to CPSR (if it exists - in Thumb1 we always
  // set CPSR so this is represented as an explicit output)
  if (!IsThumb1) {
    MI->getOperand(5).setReg(ARM::CPSR);
    MI->getOperand(5).setIsDef(true);
  }
  assert(!isPredicated(*MI) && "Can't use flags from predicated instruction");
  CmpInstr.eraseFromParent();

  // Modify the condition code of operands in OperandsToUpdate.
  // Since we have SUB(r1, r2) and CMP(r2, r1), the condition code needs to
  // be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc.
  for (unsigned i = 0, e = OperandsToUpdate.size(); i < e; i++)
    OperandsToUpdate[i].first->setImm(OperandsToUpdate[i].second);

  MI->clearRegisterDeads(ARM::CPSR);

  return true;
}

bool ARMBaseInstrInfo::shouldSink(const MachineInstr &MI) const {
  // Do not sink MI if it might be used to optimize a redundant compare.
  // We heuristically only look at the instruction immediately following MI to
  // avoid potentially searching the entire basic block.
  if (isPredicated(MI))
    return true;
  MachineBasicBlock::const_iterator Next = &MI;
  ++Next;
  Register SrcReg, SrcReg2;
  int CmpMask, CmpValue;
  bool IsThumb1;
  if (Next != MI.getParent()->end() &&
      analyzeCompare(*Next, SrcReg, SrcReg2, CmpMask, CmpValue) &&
      isRedundantFlagInstr(&*Next, SrcReg, SrcReg2, CmpValue, &MI, IsThumb1))
    return false;
  return true;
}

bool ARMBaseInstrInfo::FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
                                     Register Reg,
                                     MachineRegisterInfo *MRI) const {
  // Fold large immediates into add, sub, or, xor.
  unsigned DefOpc = DefMI.getOpcode();
  if (DefOpc != ARM::t2MOVi32imm && DefOpc != ARM::MOVi32imm)
    return false;
  if (!DefMI.getOperand(1).isImm())
    // Could be t2MOVi32imm @xx
    return false;

  if (!MRI->hasOneNonDBGUse(Reg))
    return false;

  const MCInstrDesc &DefMCID = DefMI.getDesc();
  if (DefMCID.hasOptionalDef()) {
    unsigned NumOps = DefMCID.getNumOperands();
    const MachineOperand &MO = DefMI.getOperand(NumOps - 1);
    if (MO.getReg() == ARM::CPSR && !MO.isDead())
      // If DefMI defines CPSR and it is not dead, it's obviously not safe
      // to delete DefMI.
      return false;
  }

  const MCInstrDesc &UseMCID = UseMI.getDesc();
  if (UseMCID.hasOptionalDef()) {
    unsigned NumOps = UseMCID.getNumOperands();
    if (UseMI.getOperand(NumOps - 1).getReg() == ARM::CPSR)
      // If the instruction sets the flag, do not attempt this optimization
      // since it may change the semantics of the code.
      return false;
  }

  unsigned UseOpc = UseMI.getOpcode();
  unsigned NewUseOpc = 0;
  uint32_t ImmVal = (uint32_t)DefMI.getOperand(1).getImm();
  uint32_t SOImmValV1 = 0, SOImmValV2 = 0;
  bool Commute = false;
  switch (UseOpc) {
  default: return false;
  case ARM::SUBrr:
  case ARM::ADDrr:
  case ARM::ORRrr:
  case ARM::EORrr:
  case ARM::t2SUBrr:
  case ARM::t2ADDrr:
  case ARM::t2ORRrr:
  case ARM::t2EORrr: {
    Commute = UseMI.getOperand(2).getReg() != Reg;
    switch (UseOpc) {
    default: break;
    case ARM::ADDrr:
    case ARM::SUBrr:
      if (UseOpc == ARM::SUBrr && Commute)
        return false;

      // ADD/SUB are special because they're essentially the same operation, so
      // we can handle a larger range of immediates.
      if (ARM_AM::isSOImmTwoPartVal(ImmVal))
        NewUseOpc = UseOpc == ARM::ADDrr ? ARM::ADDri : ARM::SUBri;
      else if (ARM_AM::isSOImmTwoPartVal(-ImmVal)) {
        ImmVal = -ImmVal;
        NewUseOpc = UseOpc == ARM::ADDrr ? ARM::SUBri : ARM::ADDri;
      } else
        return false;
      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
      break;
    case ARM::ORRrr:
    case ARM::EORrr:
      if (!ARM_AM::isSOImmTwoPartVal(ImmVal))
        return false;
      SOImmValV1 = (uint32_t)ARM_AM::getSOImmTwoPartFirst(ImmVal);
      SOImmValV2 = (uint32_t)ARM_AM::getSOImmTwoPartSecond(ImmVal);
      switch (UseOpc) {
      default: break;
      case ARM::ORRrr: NewUseOpc = ARM::ORRri; break;
      case ARM::EORrr: NewUseOpc = ARM::EORri; break;
      }
      break;
    case ARM::t2ADDrr:
    case ARM::t2SUBrr: {
      if (UseOpc == ARM::t2SUBrr && Commute)
        return false;

      // ADD/SUB are special because they're essentially the same operation, so
      // we can handle a larger range of immediates.
      const bool ToSP = DefMI.getOperand(0).getReg() == ARM::SP;
      const unsigned t2ADD = ToSP ? ARM::t2ADDspImm : ARM::t2ADDri;
      const unsigned t2SUB = ToSP ? ARM::t2SUBspImm : ARM::t2SUBri;
      if (ARM_AM::isT2SOImmTwoPartVal(ImmVal))
        NewUseOpc = UseOpc == ARM::t2ADDrr ? t2ADD : t2SUB;
      else if (ARM_AM::isT2SOImmTwoPartVal(-ImmVal)) {
        ImmVal = -ImmVal;
        NewUseOpc = UseOpc == ARM::t2ADDrr ? t2SUB : t2ADD;
      } else
        return false;
      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
      break;
    }
    case ARM::t2ORRrr:
    case ARM::t2EORrr:
      if (!ARM_AM::isT2SOImmTwoPartVal(ImmVal))
        return false;
      SOImmValV1 = (uint32_t)ARM_AM::getT2SOImmTwoPartFirst(ImmVal);
      SOImmValV2 = (uint32_t)ARM_AM::getT2SOImmTwoPartSecond(ImmVal);
      switch (UseOpc) {
      default: break;
      case ARM::t2ORRrr: NewUseOpc = ARM::t2ORRri; break;
      case ARM::t2EORrr: NewUseOpc = ARM::t2EORri; break;
      }
      break;
    }
  }
  }

  unsigned OpIdx = Commute ? 2 : 1;
  Register Reg1 = UseMI.getOperand(OpIdx).getReg();
  bool isKill = UseMI.getOperand(OpIdx).isKill();
  const TargetRegisterClass *TRC = MRI->getRegClass(Reg);
  Register NewReg = MRI->createVirtualRegister(TRC);
  BuildMI(*UseMI.getParent(), UseMI, UseMI.getDebugLoc(), get(NewUseOpc),
          NewReg)
      .addReg(Reg1, getKillRegState(isKill))
      .addImm(SOImmValV1)
      .add(predOps(ARMCC::AL))
      .add(condCodeOp());
  UseMI.setDesc(get(NewUseOpc));
  UseMI.getOperand(1).setReg(NewReg);
  UseMI.getOperand(1).setIsKill();
  UseMI.getOperand(2).ChangeToImmediate(SOImmValV2);
  DefMI.eraseFromParent();
  // FIXME: t2ADDrr should be split, as different rulles apply when writing to SP.
  // Just as t2ADDri, that was split to [t2ADDri, t2ADDspImm].
  // Then the below code will not be needed, as the input/output register
  // classes will be rgpr or gprSP.
  // For now, we fix the UseMI operand explicitly here:
  switch(NewUseOpc){
    case ARM::t2ADDspImm:
    case ARM::t2SUBspImm:
    case ARM::t2ADDri:
    case ARM::t2SUBri:
      MRI->setRegClass(UseMI.getOperand(0).getReg(), TRC);
  }
  return true;
}

static unsigned getNumMicroOpsSwiftLdSt(const InstrItineraryData *ItinData,
                                        const MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default: {
    const MCInstrDesc &Desc = MI.getDesc();
    int UOps = ItinData->getNumMicroOps(Desc.getSchedClass());
    assert(UOps >= 0 && "bad # UOps");
    return UOps;
  }

  case ARM::LDRrs:
  case ARM::LDRBrs:
  case ARM::STRrs:
  case ARM::STRBrs: {
    unsigned ShOpVal = MI.getOperand(3).getImm();
    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
    if (!isSub &&
        (ShImm == 0 ||
         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
      return 1;
    return 2;
  }

  case ARM::LDRH:
  case ARM::STRH: {
    if (!MI.getOperand(2).getReg())
      return 1;

    unsigned ShOpVal = MI.getOperand(3).getImm();
    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
    if (!isSub &&
        (ShImm == 0 ||
         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
      return 1;
    return 2;
  }

  case ARM::LDRSB:
  case ARM::LDRSH:
    return (ARM_AM::getAM3Op(MI.getOperand(3).getImm()) == ARM_AM::sub) ? 3 : 2;

  case ARM::LDRSB_POST:
  case ARM::LDRSH_POST: {
    Register Rt = MI.getOperand(0).getReg();
    Register Rm = MI.getOperand(3).getReg();
    return (Rt == Rm) ? 4 : 3;
  }

  case ARM::LDR_PRE_REG:
  case ARM::LDRB_PRE_REG: {
    Register Rt = MI.getOperand(0).getReg();
    Register Rm = MI.getOperand(3).getReg();
    if (Rt == Rm)
      return 3;
    unsigned ShOpVal = MI.getOperand(4).getImm();
    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
    if (!isSub &&
        (ShImm == 0 ||
         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
      return 2;
    return 3;
  }

  case ARM::STR_PRE_REG:
  case ARM::STRB_PRE_REG: {
    unsigned ShOpVal = MI.getOperand(4).getImm();
    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
    if (!isSub &&
        (ShImm == 0 ||
         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
      return 2;
    return 3;
  }

  case ARM::LDRH_PRE:
  case ARM::STRH_PRE: {
    Register Rt = MI.getOperand(0).getReg();
    Register Rm = MI.getOperand(3).getReg();
    if (!Rm)
      return 2;
    if (Rt == Rm)
      return 3;
    return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 3 : 2;
  }

  case ARM::LDR_POST_REG:
  case ARM::LDRB_POST_REG:
  case ARM::LDRH_POST: {
    Register Rt = MI.getOperand(0).getReg();
    Register Rm = MI.getOperand(3).getReg();
    return (Rt == Rm) ? 3 : 2;
  }

  case ARM::LDR_PRE_IMM:
  case ARM::LDRB_PRE_IMM:
  case ARM::LDR_POST_IMM:
  case ARM::LDRB_POST_IMM:
  case ARM::STRB_POST_IMM:
  case ARM::STRB_POST_REG:
  case ARM::STRB_PRE_IMM:
  case ARM::STRH_POST:
  case ARM::STR_POST_IMM:
  case ARM::STR_POST_REG:
  case ARM::STR_PRE_IMM:
    return 2;

  case ARM::LDRSB_PRE:
  case ARM::LDRSH_PRE: {
    Register Rm = MI.getOperand(3).getReg();
    if (Rm == 0)
      return 3;
    Register Rt = MI.getOperand(0).getReg();
    if (Rt == Rm)
      return 4;
    unsigned ShOpVal = MI.getOperand(4).getImm();
    bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
    unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
    if (!isSub &&
        (ShImm == 0 ||
         ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
          ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
      return 3;
    return 4;
  }

  case ARM::LDRD: {
    Register Rt = MI.getOperand(0).getReg();
    Register Rn = MI.getOperand(2).getReg();
    Register Rm = MI.getOperand(3).getReg();
    if (Rm)
      return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
                                                                          : 3;
    return (Rt == Rn) ? 3 : 2;
  }

  case ARM::STRD: {
    Register Rm = MI.getOperand(3).getReg();
    if (Rm)
      return (ARM_AM::getAM3Op(MI.getOperand(4).getImm()) == ARM_AM::sub) ? 4
                                                                          : 3;
    return 2;
  }

  case ARM::LDRD_POST:
  case ARM::t2LDRD_POST:
    return 3;

  case ARM::STRD_POST:
  case ARM::t2STRD_POST:
    return 4;

  case ARM::LDRD_PRE: {
    Register Rt = MI.getOperand(0).getReg();
    Register Rn = MI.getOperand(3).getReg();
    Register Rm = MI.getOperand(4).getReg();
    if (Rm)
      return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
                                                                          : 4;
    return (Rt == Rn) ? 4 : 3;
  }

  case ARM::t2LDRD_PRE: {
    Register Rt = MI.getOperand(0).getReg();
    Register Rn = MI.getOperand(3).getReg();
    return (Rt == Rn) ? 4 : 3;
  }

  case ARM::STRD_PRE: {
    Register Rm = MI.getOperand(4).getReg();
    if (Rm)
      return (ARM_AM::getAM3Op(MI.getOperand(5).getImm()) == ARM_AM::sub) ? 5
                                                                          : 4;
    return 3;
  }

  case ARM::t2STRD_PRE:
    return 3;

  case ARM::t2LDR_POST:
  case ARM::t2LDRB_POST:
  case ARM::t2LDRB_PRE:
  case ARM::t2LDRSBi12:
  case ARM::t2LDRSBi8:
  case ARM::t2LDRSBpci:
  case ARM::t2LDRSBs:
  case ARM::t2LDRH_POST:
  case ARM::t2LDRH_PRE:
  case ARM::t2LDRSBT:
  case ARM::t2LDRSB_POST:
  case ARM::t2LDRSB_PRE:
  case ARM::t2LDRSH_POST:
  case ARM::t2LDRSH_PRE:
  case ARM::t2LDRSHi12:
  case ARM::t2LDRSHi8:
  case ARM::t2LDRSHpci:
  case ARM::t2LDRSHs:
    return 2;

  case ARM::t2LDRDi8: {
    Register Rt = MI.getOperand(0).getReg();
    Register Rn = MI.getOperand(2).getReg();
    return (Rt == Rn) ? 3 : 2;
  }

  case ARM::t2STRB_POST:
  case ARM::t2STRB_PRE:
  case ARM::t2STRBs:
  case ARM::t2STRDi8:
  case ARM::t2STRH_POST:
  case ARM::t2STRH_PRE:
  case ARM::t2STRHs:
  case ARM::t2STR_POST:
  case ARM::t2STR_PRE:
  case ARM::t2STRs:
    return 2;
  }
}

// Return the number of 32-bit words loaded by LDM or stored by STM. If this
// can't be easily determined return 0 (missing MachineMemOperand).
//
// FIXME: The current MachineInstr design does not support relying on machine
// mem operands to determine the width of a memory access. Instead, we expect
// the target to provide this information based on the instruction opcode and
// operands. However, using MachineMemOperand is the best solution now for
// two reasons:
//
// 1) getNumMicroOps tries to infer LDM memory width from the total number of MI
// operands. This is much more dangerous than using the MachineMemOperand
// sizes because CodeGen passes can insert/remove optional machine operands. In
// fact, it's totally incorrect for preRA passes and appears to be wrong for
// postRA passes as well.
//
// 2) getNumLDMAddresses is only used by the scheduling machine model and any
// machine model that calls this should handle the unknown (zero size) case.
//
// Long term, we should require a target hook that verifies MachineMemOperand
// sizes during MC lowering. That target hook should be local to MC lowering
// because we can't ensure that it is aware of other MI forms. Doing this will
// ensure that MachineMemOperands are correctly propagated through all passes.
unsigned ARMBaseInstrInfo::getNumLDMAddresses(const MachineInstr &MI) const {
  unsigned Size = 0;
  for (MachineInstr::mmo_iterator I = MI.memoperands_begin(),
                                  E = MI.memoperands_end();
       I != E; ++I) {
    Size += (*I)->getSize();
  }
  // FIXME: The scheduler currently can't handle values larger than 16. But
  // the values can actually go up to 32 for floating-point load/store
  // multiple (VLDMIA etc.). Also, the way this code is reasoning about memory
  // operations isn't right; we could end up with "extra" memory operands for
  // various reasons, like tail merge merging two memory operations.
  return std::min(Size / 4, 16U);
}

static unsigned getNumMicroOpsSingleIssuePlusExtras(unsigned Opc,
                                                    unsigned NumRegs) {
  unsigned UOps = 1 + NumRegs; // 1 for address computation.
  switch (Opc) {
  default:
    break;
  case ARM::VLDMDIA_UPD:
  case ARM::VLDMDDB_UPD:
  case ARM::VLDMSIA_UPD:
  case ARM::VLDMSDB_UPD:
  case ARM::VSTMDIA_UPD:
  case ARM::VSTMDDB_UPD:
  case ARM::VSTMSIA_UPD:
  case ARM::VSTMSDB_UPD:
  case ARM::LDMIA_UPD:
  case ARM::LDMDA_UPD:
  case ARM::LDMDB_UPD:
  case ARM::LDMIB_UPD:
  case ARM::STMIA_UPD:
  case ARM::STMDA_UPD:
  case ARM::STMDB_UPD:
  case ARM::STMIB_UPD:
  case ARM::tLDMIA_UPD:
  case ARM::tSTMIA_UPD:
  case ARM::t2LDMIA_UPD:
  case ARM::t2LDMDB_UPD:
  case ARM::t2STMIA_UPD:
  case ARM::t2STMDB_UPD:
    ++UOps; // One for base register writeback.
    break;
  case ARM::LDMIA_RET:
  case ARM::tPOP_RET:
  case ARM::t2LDMIA_RET:
    UOps += 2; // One for base reg wb, one for write to pc.
    break;
  }
  return UOps;
}

unsigned ARMBaseInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
                                          const MachineInstr &MI) const {
  if (!ItinData || ItinData->isEmpty())
    return 1;

  const MCInstrDesc &Desc = MI.getDesc();
  unsigned Class = Desc.getSchedClass();
  int ItinUOps = ItinData->getNumMicroOps(Class);
  if (ItinUOps >= 0) {
    if (Subtarget.isSwift() && (Desc.mayLoad() || Desc.mayStore()))
      return getNumMicroOpsSwiftLdSt(ItinData, MI);

    return ItinUOps;
  }

  unsigned Opc = MI.getOpcode();
  switch (Opc) {
  default:
    llvm_unreachable("Unexpected multi-uops instruction!");
  case ARM::VLDMQIA:
  case ARM::VSTMQIA:
    return 2;

  // The number of uOps for load / store multiple are determined by the number
  // registers.
  //
  // On Cortex-A8, each pair of register loads / stores can be scheduled on the
  // same cycle. The scheduling for the first load / store must be done
  // separately by assuming the address is not 64-bit aligned.
  //
  // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
  // is not 64-bit aligned, then AGU would take an extra cycle.  For VFP / NEON
  // load / store multiple, the formula is (#reg / 2) + (#reg % 2) + 1.
  case ARM::VLDMDIA:
  case ARM::VLDMDIA_UPD:
  case ARM::VLDMDDB_UPD:
  case ARM::VLDMSIA:
  case ARM::VLDMSIA_UPD:
  case ARM::VLDMSDB_UPD:
  case ARM::VSTMDIA:
  case ARM::VSTMDIA_UPD:
  case ARM::VSTMDDB_UPD:
  case ARM::VSTMSIA:
  case ARM::VSTMSIA_UPD:
  case ARM::VSTMSDB_UPD: {
    unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands();
    return (NumRegs / 2) + (NumRegs % 2) + 1;
  }

  case ARM::LDMIA_RET:
  case ARM::LDMIA:
  case ARM::LDMDA:
  case ARM::LDMDB:
  case ARM::LDMIB:
  case ARM::LDMIA_UPD:
  case ARM::LDMDA_UPD:
  case ARM::LDMDB_UPD:
  case ARM::LDMIB_UPD:
  case ARM::STMIA:
  case ARM::STMDA:
  case ARM::STMDB:
  case ARM::STMIB:
  case ARM::STMIA_UPD:
  case ARM::STMDA_UPD:
  case ARM::STMDB_UPD:
  case ARM::STMIB_UPD:
  case ARM::tLDMIA:
  case ARM::tLDMIA_UPD:
  case ARM::tSTMIA_UPD:
  case ARM::tPOP_RET:
  case ARM::tPOP:
  case ARM::tPUSH:
  case ARM::t2LDMIA_RET:
  case ARM::t2LDMIA:
  case ARM::t2LDMDB:
  case ARM::t2LDMIA_UPD:
  case ARM::t2LDMDB_UPD:
  case ARM::t2STMIA:
  case ARM::t2STMDB:
  case ARM::t2STMIA_UPD:
  case ARM::t2STMDB_UPD: {
    unsigned NumRegs = MI.getNumOperands() - Desc.getNumOperands() + 1;
    switch (Subtarget.getLdStMultipleTiming()) {
    case ARMSubtarget::SingleIssuePlusExtras:
      return getNumMicroOpsSingleIssuePlusExtras(Opc, NumRegs);
    case ARMSubtarget::SingleIssue:
      // Assume the worst.
      return NumRegs;
    case ARMSubtarget::DoubleIssue: {
      if (NumRegs < 4)
        return 2;
      // 4 registers would be issued: 2, 2.
      // 5 registers would be issued: 2, 2, 1.
      unsigned UOps = (NumRegs / 2);
      if (NumRegs % 2)
        ++UOps;
      return UOps;
    }
    case ARMSubtarget::DoubleIssueCheckUnalignedAccess: {
      unsigned UOps = (NumRegs / 2);
      // If there are odd number of registers or if it's not 64-bit aligned,
      // then it takes an extra AGU (Address Generation Unit) cycle.
      if ((NumRegs % 2) || !MI.hasOneMemOperand() ||
          (*MI.memoperands_begin())->getAlign() < Align(8))
        ++UOps;
      return UOps;
      }
    }
  }
  }
  llvm_unreachable("Didn't find the number of microops");
}

int
ARMBaseInstrInfo::getVLDMDefCycle(const InstrItineraryData *ItinData,
                                  const MCInstrDesc &DefMCID,
                                  unsigned DefClass,
                                  unsigned DefIdx, unsigned DefAlign) const {
  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
  if (RegNo <= 0)
    // Def is the address writeback.
    return ItinData->getOperandCycle(DefClass, DefIdx);

  int DefCycle;
  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
    // (regno / 2) + (regno % 2) + 1
    DefCycle = RegNo / 2 + 1;
    if (RegNo % 2)
      ++DefCycle;
  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
    DefCycle = RegNo;
    bool isSLoad = false;

    switch (DefMCID.getOpcode()) {
    default: break;
    case ARM::VLDMSIA:
    case ARM::VLDMSIA_UPD:
    case ARM::VLDMSDB_UPD:
      isSLoad = true;
      break;
    }

    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
    // then it takes an extra cycle.
    if ((isSLoad && (RegNo % 2)) || DefAlign < 8)
      ++DefCycle;
  } else {
    // Assume the worst.
    DefCycle = RegNo + 2;
  }

  return DefCycle;
}

bool ARMBaseInstrInfo::isLDMBaseRegInList(const MachineInstr &MI) const {
  Register BaseReg = MI.getOperand(0).getReg();
  for (unsigned i = 1, sz = MI.getNumOperands(); i < sz; ++i) {
    const auto &Op = MI.getOperand(i);
    if (Op.isReg() && Op.getReg() == BaseReg)
      return true;
  }
  return false;
}
unsigned
ARMBaseInstrInfo::getLDMVariableDefsSize(const MachineInstr &MI) const {
  // ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops
  // (outs GPR:$wb), (ins GPR:$Rn, $p (2xOp), reglist:$regs, variable_ops)
  return MI.getNumOperands() + 1 - MI.getDesc().getNumOperands();
}

int
ARMBaseInstrInfo::getLDMDefCycle(const InstrItineraryData *ItinData,
                                 const MCInstrDesc &DefMCID,
                                 unsigned DefClass,
                                 unsigned DefIdx, unsigned DefAlign) const {
  int RegNo = (int)(DefIdx+1) - DefMCID.getNumOperands() + 1;
  if (RegNo <= 0)
    // Def is the address writeback.
    return ItinData->getOperandCycle(DefClass, DefIdx);

  int DefCycle;
  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
    // 4 registers would be issued: 1, 2, 1.
    // 5 registers would be issued: 1, 2, 2.
    DefCycle = RegNo / 2;
    if (DefCycle < 1)
      DefCycle = 1;
    // Result latency is issue cycle + 2: E2.
    DefCycle += 2;
  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
    DefCycle = (RegNo / 2);
    // If there are odd number of registers or if it's not 64-bit aligned,
    // then it takes an extra AGU (Address Generation Unit) cycle.
    if ((RegNo % 2) || DefAlign < 8)
      ++DefCycle;
    // Result latency is AGU cycles + 2.
    DefCycle += 2;
  } else {
    // Assume the worst.
    DefCycle = RegNo + 2;
  }

  return DefCycle;
}

int
ARMBaseInstrInfo::getVSTMUseCycle(const InstrItineraryData *ItinData,
                                  const MCInstrDesc &UseMCID,
                                  unsigned UseClass,
                                  unsigned UseIdx, unsigned UseAlign) const {
  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
  if (RegNo <= 0)
    return ItinData->getOperandCycle(UseClass, UseIdx);

  int UseCycle;
  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
    // (regno / 2) + (regno % 2) + 1
    UseCycle = RegNo / 2 + 1;
    if (RegNo % 2)
      ++UseCycle;
  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
    UseCycle = RegNo;
    bool isSStore = false;

    switch (UseMCID.getOpcode()) {
    default: break;
    case ARM::VSTMSIA:
    case ARM::VSTMSIA_UPD:
    case ARM::VSTMSDB_UPD:
      isSStore = true;
      break;
    }

    // If there are odd number of 'S' registers or if it's not 64-bit aligned,
    // then it takes an extra cycle.
    if ((isSStore && (RegNo % 2)) || UseAlign < 8)
      ++UseCycle;
  } else {
    // Assume the worst.
    UseCycle = RegNo + 2;
  }

  return UseCycle;
}

int
ARMBaseInstrInfo::getSTMUseCycle(const InstrItineraryData *ItinData,
                                 const MCInstrDesc &UseMCID,
                                 unsigned UseClass,
                                 unsigned UseIdx, unsigned UseAlign) const {
  int RegNo = (int)(UseIdx+1) - UseMCID.getNumOperands() + 1;
  if (RegNo <= 0)
    return ItinData->getOperandCycle(UseClass, UseIdx);

  int UseCycle;
  if (Subtarget.isCortexA8() || Subtarget.isCortexA7()) {
    UseCycle = RegNo / 2;
    if (UseCycle < 2)
      UseCycle = 2;
    // Read in E3.
    UseCycle += 2;
  } else if (Subtarget.isLikeA9() || Subtarget.isSwift()) {
    UseCycle = (RegNo / 2);
    // If there are odd number of registers or if it's not 64-bit aligned,
    // then it takes an extra AGU (Address Generation Unit) cycle.
    if ((RegNo % 2) || UseAlign < 8)
      ++UseCycle;
  } else {
    // Assume the worst.
    UseCycle = 1;
  }
  return UseCycle;
}

int
ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                    const MCInstrDesc &DefMCID,
                                    unsigned DefIdx, unsigned DefAlign,
                                    const MCInstrDesc &UseMCID,
                                    unsigned UseIdx, unsigned UseAlign) const {
  unsigned DefClass = DefMCID.getSchedClass();
  unsigned UseClass = UseMCID.getSchedClass();

  if (DefIdx < DefMCID.getNumDefs() && UseIdx < UseMCID.getNumOperands())
    return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);

  // This may be a def / use of a variable_ops instruction, the operand
  // latency might be determinable dynamically. Let the target try to
  // figure it out.
  int DefCycle = -1;
  bool LdmBypass = false;
  switch (DefMCID.getOpcode()) {
  default:
    DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
    break;

  case ARM::VLDMDIA:
  case ARM::VLDMDIA_UPD:
  case ARM::VLDMDDB_UPD:
  case ARM::VLDMSIA:
  case ARM::VLDMSIA_UPD:
  case ARM::VLDMSDB_UPD:
    DefCycle = getVLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
    break;

  case ARM::LDMIA_RET:
  case ARM::LDMIA:
  case ARM::LDMDA:
  case ARM::LDMDB:
  case ARM::LDMIB:
  case ARM::LDMIA_UPD:
  case ARM::LDMDA_UPD:
  case ARM::LDMDB_UPD:
  case ARM::LDMIB_UPD:
  case ARM::tLDMIA:
  case ARM::tLDMIA_UPD:
  case ARM::tPUSH:
  case ARM::t2LDMIA_RET:
  case ARM::t2LDMIA:
  case ARM::t2LDMDB:
  case ARM::t2LDMIA_UPD:
  case ARM::t2LDMDB_UPD:
    LdmBypass = true;
    DefCycle = getLDMDefCycle(ItinData, DefMCID, DefClass, DefIdx, DefAlign);
    break;
  }

  if (DefCycle == -1)
    // We can't seem to determine the result latency of the def, assume it's 2.
    DefCycle = 2;

  int UseCycle = -1;
  switch (UseMCID.getOpcode()) {
  default:
    UseCycle = ItinData->getOperandCycle(UseClass, UseIdx);
    break;

  case ARM::VSTMDIA:
  case ARM::VSTMDIA_UPD:
  case ARM::VSTMDDB_UPD:
  case ARM::VSTMSIA:
  case ARM::VSTMSIA_UPD:
  case ARM::VSTMSDB_UPD:
    UseCycle = getVSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
    break;

  case ARM::STMIA:
  case ARM::STMDA:
  case ARM::STMDB:
  case ARM::STMIB:
  case ARM::STMIA_UPD:
  case ARM::STMDA_UPD:
  case ARM::STMDB_UPD:
  case ARM::STMIB_UPD:
  case ARM::tSTMIA_UPD:
  case ARM::tPOP_RET:
  case ARM::tPOP:
  case ARM::t2STMIA:
  case ARM::t2STMDB:
  case ARM::t2STMIA_UPD:
  case ARM::t2STMDB_UPD:
    UseCycle = getSTMUseCycle(ItinData, UseMCID, UseClass, UseIdx, UseAlign);
    break;
  }

  if (UseCycle == -1)
    // Assume it's read in the first stage.
    UseCycle = 1;

  UseCycle = DefCycle - UseCycle + 1;
  if (UseCycle > 0) {
    if (LdmBypass) {
      // It's a variable_ops instruction so we can't use DefIdx here. Just use
      // first def operand.
      if (ItinData->hasPipelineForwarding(DefClass, DefMCID.getNumOperands()-1,
                                          UseClass, UseIdx))
        --UseCycle;
    } else if (ItinData->hasPipelineForwarding(DefClass, DefIdx,
                                               UseClass, UseIdx)) {
      --UseCycle;
    }
  }

  return UseCycle;
}

static const MachineInstr *getBundledDefMI(const TargetRegisterInfo *TRI,
                                           const MachineInstr *MI, unsigned Reg,
                                           unsigned &DefIdx, unsigned &Dist) {
  Dist = 0;

  MachineBasicBlock::const_iterator I = MI; ++I;
  MachineBasicBlock::const_instr_iterator II = std::prev(I.getInstrIterator());
  assert(II->isInsideBundle() && "Empty bundle?");

  int Idx = -1;
  while (II->isInsideBundle()) {
    Idx = II->findRegisterDefOperandIdx(Reg, false, true, TRI);
    if (Idx != -1)
      break;
    --II;
    ++Dist;
  }

  assert(Idx != -1 && "Cannot find bundled definition!");
  DefIdx = Idx;
  return &*II;
}

static const MachineInstr *getBundledUseMI(const TargetRegisterInfo *TRI,
                                           const MachineInstr &MI, unsigned Reg,
                                           unsigned &UseIdx, unsigned &Dist) {
  Dist = 0;

  MachineBasicBlock::const_instr_iterator II = ++MI.getIterator();
  assert(II->isInsideBundle() && "Empty bundle?");
  MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();

  // FIXME: This doesn't properly handle multiple uses.
  int Idx = -1;
  while (II != E && II->isInsideBundle()) {
    Idx = II->findRegisterUseOperandIdx(Reg, false, TRI);
    if (Idx != -1)
      break;
    if (II->getOpcode() != ARM::t2IT)
      ++Dist;
    ++II;
  }

  if (Idx == -1) {
    Dist = 0;
    return nullptr;
  }

  UseIdx = Idx;
  return &*II;
}

/// Return the number of cycles to add to (or subtract from) the static
/// itinerary based on the def opcode and alignment. The caller will ensure that
/// adjusted latency is at least one cycle.
static int adjustDefLatency(const ARMSubtarget &Subtarget,
                            const MachineInstr &DefMI,
                            const MCInstrDesc &DefMCID, unsigned DefAlign) {
  int Adjust = 0;
  if (Subtarget.isCortexA8() || Subtarget.isLikeA9() || Subtarget.isCortexA7()) {
    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
    // variants are one cycle cheaper.
    switch (DefMCID.getOpcode()) {
    default: break;
    case ARM::LDRrs:
    case ARM::LDRBrs: {
      unsigned ShOpVal = DefMI.getOperand(3).getImm();
      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
      if (ShImm == 0 ||
          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
        --Adjust;
      break;
    }
    case ARM::t2LDRs:
    case ARM::t2LDRBs:
    case ARM::t2LDRHs:
    case ARM::t2LDRSHs: {
      // Thumb2 mode: lsl only.
      unsigned ShAmt = DefMI.getOperand(3).getImm();
      if (ShAmt == 0 || ShAmt == 2)
        --Adjust;
      break;
    }
    }
  } else if (Subtarget.isSwift()) {
    // FIXME: Properly handle all of the latency adjustments for address
    // writeback.
    switch (DefMCID.getOpcode()) {
    default: break;
    case ARM::LDRrs:
    case ARM::LDRBrs: {
      unsigned ShOpVal = DefMI.getOperand(3).getImm();
      bool isSub = ARM_AM::getAM2Op(ShOpVal) == ARM_AM::sub;
      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
      if (!isSub &&
          (ShImm == 0 ||
           ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
            ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl)))
        Adjust -= 2;
      else if (!isSub &&
               ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
        --Adjust;
      break;
    }
    case ARM::t2LDRs:
    case ARM::t2LDRBs:
    case ARM::t2LDRHs:
    case ARM::t2LDRSHs: {
      // Thumb2 mode: lsl only.
      unsigned ShAmt = DefMI.getOperand(3).getImm();
      if (ShAmt == 0 || ShAmt == 1 || ShAmt == 2 || ShAmt == 3)
        Adjust -= 2;
      break;
    }
    }
  }

  if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment()) {
    switch (DefMCID.getOpcode()) {
    default: break;
    case ARM::VLD1q8:
    case ARM::VLD1q16:
    case ARM::VLD1q32:
    case ARM::VLD1q64:
    case ARM::VLD1q8wb_fixed:
    case ARM::VLD1q16wb_fixed:
    case ARM::VLD1q32wb_fixed:
    case ARM::VLD1q64wb_fixed:
    case ARM::VLD1q8wb_register:
    case ARM::VLD1q16wb_register:
    case ARM::VLD1q32wb_register:
    case ARM::VLD1q64wb_register:
    case ARM::VLD2d8:
    case ARM::VLD2d16:
    case ARM::VLD2d32:
    case ARM::VLD2q8:
    case ARM::VLD2q16:
    case ARM::VLD2q32:
    case ARM::VLD2d8wb_fixed:
    case ARM::VLD2d16wb_fixed:
    case ARM::VLD2d32wb_fixed:
    case ARM::VLD2q8wb_fixed:
    case ARM::VLD2q16wb_fixed:
    case ARM::VLD2q32wb_fixed:
    case ARM::VLD2d8wb_register:
    case ARM::VLD2d16wb_register:
    case ARM::VLD2d32wb_register:
    case ARM::VLD2q8wb_register:
    case ARM::VLD2q16wb_register:
    case ARM::VLD2q32wb_register:
    case ARM::VLD3d8:
    case ARM::VLD3d16:
    case ARM::VLD3d32:
    case ARM::VLD1d64T:
    case ARM::VLD3d8_UPD:
    case ARM::VLD3d16_UPD:
    case ARM::VLD3d32_UPD:
    case ARM::VLD1d64Twb_fixed:
    case ARM::VLD1d64Twb_register:
    case ARM::VLD3q8_UPD:
    case ARM::VLD3q16_UPD:
    case ARM::VLD3q32_UPD:
    case ARM::VLD4d8:
    case ARM::VLD4d16:
    case ARM::VLD4d32:
    case ARM::VLD1d64Q:
    case ARM::VLD4d8_UPD:
    case ARM::VLD4d16_UPD:
    case ARM::VLD4d32_UPD:
    case ARM::VLD1d64Qwb_fixed:
    case ARM::VLD1d64Qwb_register:
    case ARM::VLD4q8_UPD:
    case ARM::VLD4q16_UPD:
    case ARM::VLD4q32_UPD:
    case ARM::VLD1DUPq8:
    case ARM::VLD1DUPq16:
    case ARM::VLD1DUPq32:
    case ARM::VLD1DUPq8wb_fixed:
    case ARM::VLD1DUPq16wb_fixed:
    case ARM::VLD1DUPq32wb_fixed:
    case ARM::VLD1DUPq8wb_register:
    case ARM::VLD1DUPq16wb_register:
    case ARM::VLD1DUPq32wb_register:
    case ARM::VLD2DUPd8:
    case ARM::VLD2DUPd16:
    case ARM::VLD2DUPd32:
    case ARM::VLD2DUPd8wb_fixed:
    case ARM::VLD2DUPd16wb_fixed:
    case ARM::VLD2DUPd32wb_fixed:
    case ARM::VLD2DUPd8wb_register:
    case ARM::VLD2DUPd16wb_register:
    case ARM::VLD2DUPd32wb_register:
    case ARM::VLD4DUPd8:
    case ARM::VLD4DUPd16:
    case ARM::VLD4DUPd32:
    case ARM::VLD4DUPd8_UPD:
    case ARM::VLD4DUPd16_UPD:
    case ARM::VLD4DUPd32_UPD:
    case ARM::VLD1LNd8:
    case ARM::VLD1LNd16:
    case ARM::VLD1LNd32:
    case ARM::VLD1LNd8_UPD:
    case ARM::VLD1LNd16_UPD:
    case ARM::VLD1LNd32_UPD:
    case ARM::VLD2LNd8:
    case ARM::VLD2LNd16:
    case ARM::VLD2LNd32:
    case ARM::VLD2LNq16:
    case ARM::VLD2LNq32:
    case ARM::VLD2LNd8_UPD:
    case ARM::VLD2LNd16_UPD:
    case ARM::VLD2LNd32_UPD:
    case ARM::VLD2LNq16_UPD:
    case ARM::VLD2LNq32_UPD:
    case ARM::VLD4LNd8:
    case ARM::VLD4LNd16:
    case ARM::VLD4LNd32:
    case ARM::VLD4LNq16:
    case ARM::VLD4LNq32:
    case ARM::VLD4LNd8_UPD:
    case ARM::VLD4LNd16_UPD:
    case ARM::VLD4LNd32_UPD:
    case ARM::VLD4LNq16_UPD:
    case ARM::VLD4LNq32_UPD:
      // If the address is not 64-bit aligned, the latencies of these
      // instructions increases by one.
      ++Adjust;
      break;
    }
  }
  return Adjust;
}

int ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                        const MachineInstr &DefMI,
                                        unsigned DefIdx,
                                        const MachineInstr &UseMI,
                                        unsigned UseIdx) const {
  // No operand latency. The caller may fall back to getInstrLatency.
  if (!ItinData || ItinData->isEmpty())
    return -1;

  const MachineOperand &DefMO = DefMI.getOperand(DefIdx);
  Register Reg = DefMO.getReg();

  const MachineInstr *ResolvedDefMI = &DefMI;
  unsigned DefAdj = 0;
  if (DefMI.isBundle())
    ResolvedDefMI =
        getBundledDefMI(&getRegisterInfo(), &DefMI, Reg, DefIdx, DefAdj);
  if (ResolvedDefMI->isCopyLike() || ResolvedDefMI->isInsertSubreg() ||
      ResolvedDefMI->isRegSequence() || ResolvedDefMI->isImplicitDef()) {
    return 1;
  }

  const MachineInstr *ResolvedUseMI = &UseMI;
  unsigned UseAdj = 0;
  if (UseMI.isBundle()) {
    ResolvedUseMI =
        getBundledUseMI(&getRegisterInfo(), UseMI, Reg, UseIdx, UseAdj);
    if (!ResolvedUseMI)
      return -1;
  }

  return getOperandLatencyImpl(
      ItinData, *ResolvedDefMI, DefIdx, ResolvedDefMI->getDesc(), DefAdj, DefMO,
      Reg, *ResolvedUseMI, UseIdx, ResolvedUseMI->getDesc(), UseAdj);
}

int ARMBaseInstrInfo::getOperandLatencyImpl(
    const InstrItineraryData *ItinData, const MachineInstr &DefMI,
    unsigned DefIdx, const MCInstrDesc &DefMCID, unsigned DefAdj,
    const MachineOperand &DefMO, unsigned Reg, const MachineInstr &UseMI,
    unsigned UseIdx, const MCInstrDesc &UseMCID, unsigned UseAdj) const {
  if (Reg == ARM::CPSR) {
    if (DefMI.getOpcode() == ARM::FMSTAT) {
      // fpscr -> cpsr stalls over 20 cycles on A8 (and earlier?)
      return Subtarget.isLikeA9() ? 1 : 20;
    }

    // CPSR set and branch can be paired in the same cycle.
    if (UseMI.isBranch())
      return 0;

    // Otherwise it takes the instruction latency (generally one).
    unsigned Latency = getInstrLatency(ItinData, DefMI);

    // For Thumb2 and -Os, prefer scheduling CPSR setting instruction close to
    // its uses. Instructions which are otherwise scheduled between them may
    // incur a code size penalty (not able to use the CPSR setting 16-bit
    // instructions).
    if (Latency > 0 && Subtarget.isThumb2()) {
      const MachineFunction *MF = DefMI.getParent()->getParent();
      // FIXME: Use Function::hasOptSize().
      if (MF->getFunction().hasFnAttribute(Attribute::OptimizeForSize))
        --Latency;
    }
    return Latency;
  }

  if (DefMO.isImplicit() || UseMI.getOperand(UseIdx).isImplicit())
    return -1;

  unsigned DefAlign = DefMI.hasOneMemOperand()
                          ? (*DefMI.memoperands_begin())->getAlign().value()
                          : 0;
  unsigned UseAlign = UseMI.hasOneMemOperand()
                          ? (*UseMI.memoperands_begin())->getAlign().value()
                          : 0;

  // Get the itinerary's latency if possible, and handle variable_ops.
  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign, UseMCID,
                                  UseIdx, UseAlign);
  // Unable to find operand latency. The caller may resort to getInstrLatency.
  if (Latency < 0)
    return Latency;

  // Adjust for IT block position.
  int Adj = DefAdj + UseAdj;

  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
  Adj += adjustDefLatency(Subtarget, DefMI, DefMCID, DefAlign);
  if (Adj >= 0 || (int)Latency > -Adj) {
    return Latency + Adj;
  }
  // Return the itinerary latency, which may be zero but not less than zero.
  return Latency;
}

int
ARMBaseInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
                                    SDNode *DefNode, unsigned DefIdx,
                                    SDNode *UseNode, unsigned UseIdx) const {
  if (!DefNode->isMachineOpcode())
    return 1;

  const MCInstrDesc &DefMCID = get(DefNode->getMachineOpcode());

  if (isZeroCost(DefMCID.Opcode))
    return 0;

  if (!ItinData || ItinData->isEmpty())
    return DefMCID.mayLoad() ? 3 : 1;

  if (!UseNode->isMachineOpcode()) {
    int Latency = ItinData->getOperandCycle(DefMCID.getSchedClass(), DefIdx);
    int Adj = Subtarget.getPreISelOperandLatencyAdjustment();
    int Threshold = 1 + Adj;
    return Latency <= Threshold ? 1 : Latency - Adj;
  }

  const MCInstrDesc &UseMCID = get(UseNode->getMachineOpcode());
  auto *DefMN = cast<MachineSDNode>(DefNode);
  unsigned DefAlign = !DefMN->memoperands_empty()
                          ? (*DefMN->memoperands_begin())->getAlign().value()
                          : 0;
  auto *UseMN = cast<MachineSDNode>(UseNode);
  unsigned UseAlign = !UseMN->memoperands_empty()
                          ? (*UseMN->memoperands_begin())->getAlign().value()
                          : 0;
  int Latency = getOperandLatency(ItinData, DefMCID, DefIdx, DefAlign,
                                  UseMCID, UseIdx, UseAlign);

  if (Latency > 1 &&
      (Subtarget.isCortexA8() || Subtarget.isLikeA9() ||
       Subtarget.isCortexA7())) {
    // FIXME: Shifter op hack: no shift (i.e. [r +/- r]) or [r + r << 2]
    // variants are one cycle cheaper.
    switch (DefMCID.getOpcode()) {
    default: break;
    case ARM::LDRrs:
    case ARM::LDRBrs: {
      unsigned ShOpVal =
        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
      if (ShImm == 0 ||
          (ShImm == 2 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
        --Latency;
      break;
    }
    case ARM::t2LDRs:
    case ARM::t2LDRBs:
    case ARM::t2LDRHs:
    case ARM::t2LDRSHs: {
      // Thumb2 mode: lsl only.
      unsigned ShAmt =
        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
      if (ShAmt == 0 || ShAmt == 2)
        --Latency;
      break;
    }
    }
  } else if (DefIdx == 0 && Latency > 2 && Subtarget.isSwift()) {
    // FIXME: Properly handle all of the latency adjustments for address
    // writeback.
    switch (DefMCID.getOpcode()) {
    default: break;
    case ARM::LDRrs:
    case ARM::LDRBrs: {
      unsigned ShOpVal =
        cast<ConstantSDNode>(DefNode->getOperand(2))->getZExtValue();
      unsigned ShImm = ARM_AM::getAM2Offset(ShOpVal);
      if (ShImm == 0 ||
          ((ShImm == 1 || ShImm == 2 || ShImm == 3) &&
           ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsl))
        Latency -= 2;
      else if (ShImm == 1 && ARM_AM::getAM2ShiftOpc(ShOpVal) == ARM_AM::lsr)
        --Latency;
      break;
    }
    case ARM::t2LDRs:
    case ARM::t2LDRBs:
    case ARM::t2LDRHs:
    case ARM::t2LDRSHs:
      // Thumb2 mode: lsl 0-3 only.
      Latency -= 2;
      break;
    }
  }

  if (DefAlign < 8 && Subtarget.checkVLDnAccessAlignment())
    switch (DefMCID.getOpcode()) {
    default: break;
    case ARM::VLD1q8:
    case ARM::VLD1q16:
    case ARM::VLD1q32:
    case ARM::VLD1q64:
    case ARM::VLD1q8wb_register:
    case ARM::VLD1q16wb_register:
    case ARM::VLD1q32wb_register:
    case ARM::VLD1q64wb_register:
    case ARM::VLD1q8wb_fixed:
    case ARM::VLD1q16wb_fixed:
    case ARM::VLD1q32wb_fixed:
    case ARM::VLD1q64wb_fixed:
    case ARM::VLD2d8:
    case ARM::VLD2d16:
    case ARM::VLD2d32:
    case ARM::VLD2q8Pseudo:
    case ARM::VLD2q16Pseudo:
    case ARM::VLD2q32Pseudo:
    case ARM::VLD2d8wb_fixed:
    case ARM::VLD2d16wb_fixed:
    case ARM::VLD2d32wb_fixed:
    case ARM::VLD2q8PseudoWB_fixed:
    case ARM::VLD2q16PseudoWB_fixed:
    case ARM::VLD2q32PseudoWB_fixed:
    case ARM::VLD2d8wb_register:
    case ARM::VLD2d16wb_register:
    case ARM::VLD2d32wb_register:
    case ARM::VLD2q8PseudoWB_register:
    case ARM::VLD2q16PseudoWB_register:
    case ARM::VLD2q32PseudoWB_register:
    case ARM::VLD3d8Pseudo:
    case ARM::VLD3d16Pseudo:
    case ARM::VLD3d32Pseudo:
    case ARM::VLD1d8TPseudo:
    case ARM::VLD1d16TPseudo:
    case ARM::VLD1d32TPseudo:
    case ARM::VLD1d64TPseudo:
    case ARM::VLD1d64TPseudoWB_fixed:
    case ARM::VLD1d64TPseudoWB_register:
    case ARM::VLD3d8Pseudo_UPD:
    case ARM::VLD3d16Pseudo_UPD:
    case ARM::VLD3d32Pseudo_UPD:
    case ARM::VLD3q8Pseudo_UPD:
    case ARM::VLD3q16Pseudo_UPD:
    case ARM::VLD3q32Pseudo_UPD:
    case ARM::VLD3q8oddPseudo:
    case ARM::VLD3q16oddPseudo:
    case ARM::VLD3q32oddPseudo:
    case ARM::VLD3q8oddPseudo_UPD:
    case ARM::VLD3q16oddPseudo_UPD:
    case ARM::VLD3q32oddPseudo_UPD:
    case ARM::VLD4d8Pseudo:
    case ARM::VLD4d16Pseudo:
    case ARM::VLD4d32Pseudo:
    case ARM::VLD1d8QPseudo:
    case ARM::VLD1d16QPseudo:
    case ARM::VLD1d32QPseudo:
    case ARM::VLD1d64QPseudo:
    case ARM::VLD1d64QPseudoWB_fixed:
    case ARM::VLD1d64QPseudoWB_register:
    case ARM::VLD1q8HighQPseudo:
    case ARM::VLD1q8LowQPseudo_UPD:
    case ARM::VLD1q8HighTPseudo:
    case ARM::VLD1q8LowTPseudo_UPD:
    case ARM::VLD1q16HighQPseudo:
    case ARM::VLD1q16LowQPseudo_UPD:
    case ARM::VLD1q16HighTPseudo:
    case ARM::VLD1q16LowTPseudo_UPD:
    case ARM::VLD1q32HighQPseudo:
    case ARM::VLD1q32LowQPseudo_UPD:
    case ARM::VLD1q32HighTPseudo:
    case ARM::VLD1q32LowTPseudo_UPD:
    case ARM::VLD1q64HighQPseudo:
    case ARM::VLD1q64LowQPseudo_UPD:
    case ARM::VLD1q64HighTPseudo:
    case ARM::VLD1q64LowTPseudo_UPD:
    case ARM::VLD4d8Pseudo_UPD:
    case ARM::VLD4d16Pseudo_UPD:
    case ARM::VLD4d32Pseudo_UPD:
    case ARM::VLD4q8Pseudo_UPD:
    case ARM::VLD4q16Pseudo_UPD:
    case ARM::VLD4q32Pseudo_UPD:
    case ARM::VLD4q8oddPseudo:
    case ARM::VLD4q16oddPseudo:
    case ARM::VLD4q32oddPseudo:
    case ARM::VLD4q8oddPseudo_UPD:
    case ARM::VLD4q16oddPseudo_UPD:
    case ARM::VLD4q32oddPseudo_UPD:
    case ARM::VLD1DUPq8:
    case ARM::VLD1DUPq16:
    case ARM::VLD1DUPq32:
    case ARM::VLD1DUPq8wb_fixed:
    case ARM::VLD1DUPq16wb_fixed:
    case ARM::VLD1DUPq32wb_fixed:
    case ARM::VLD1DUPq8wb_register:
    case ARM::VLD1DUPq16wb_register:
    case ARM::VLD1DUPq32wb_register:
    case ARM::VLD2DUPd8:
    case ARM::VLD2DUPd16:
    case ARM::VLD2DUPd32:
    case ARM::VLD2DUPd8wb_fixed:
    case ARM::VLD2DUPd16wb_fixed:
    case ARM::VLD2DUPd32wb_fixed:
    case ARM::VLD2DUPd8wb_register:
    case ARM::VLD2DUPd16wb_register:
    case ARM::VLD2DUPd32wb_register:
    case ARM::VLD2DUPq8EvenPseudo:
    case ARM::VLD2DUPq8OddPseudo:
    case ARM::VLD2DUPq16EvenPseudo:
    case ARM::VLD2DUPq16OddPseudo:
    case ARM::VLD2DUPq32EvenPseudo:
    case ARM::VLD2DUPq32OddPseudo:
    case ARM::VLD3DUPq8EvenPseudo:
    case ARM::VLD3DUPq8OddPseudo:
    case ARM::VLD3DUPq16EvenPseudo:
    case ARM::VLD3DUPq16OddPseudo:
    case ARM::VLD3DUPq32EvenPseudo:
    case ARM::VLD3DUPq32OddPseudo:
    case ARM::VLD4DUPd8Pseudo:
    case ARM::VLD4DUPd16Pseudo:
    case ARM::VLD4DUPd32Pseudo:
    case ARM::VLD4DUPd8Pseudo_UPD:
    case ARM::VLD4DUPd16Pseudo_UPD:
    case ARM::VLD4DUPd32Pseudo_UPD:
    case ARM::VLD4DUPq8EvenPseudo:
    case ARM::VLD4DUPq8OddPseudo:
    case ARM::VLD4DUPq16EvenPseudo:
    case ARM::VLD4DUPq16OddPseudo:
    case ARM::VLD4DUPq32EvenPseudo:
    case ARM::VLD4DUPq32OddPseudo:
    case ARM::VLD1LNq8Pseudo:
    case ARM::VLD1LNq16Pseudo:
    case ARM::VLD1LNq32Pseudo:
    case ARM::VLD1LNq8Pseudo_UPD:
    case ARM::VLD1LNq16Pseudo_UPD:
    case ARM::VLD1LNq32Pseudo_UPD:
    case ARM::VLD2LNd8Pseudo:
    case ARM::VLD2LNd16Pseudo:
    case ARM::VLD2LNd32Pseudo:
    case ARM::VLD2LNq16Pseudo:
    case ARM::VLD2LNq32Pseudo:
    case ARM::VLD2LNd8Pseudo_UPD:
    case ARM::VLD2LNd16Pseudo_UPD:
    case ARM::VLD2LNd32Pseudo_UPD:
    case ARM::VLD2LNq16Pseudo_UPD:
    case ARM::VLD2LNq32Pseudo_UPD:
    case ARM::VLD4LNd8Pseudo:
    case ARM::VLD4LNd16Pseudo:
    case ARM::VLD4LNd32Pseudo:
    case ARM::VLD4LNq16Pseudo:
    case ARM::VLD4LNq32Pseudo:
    case ARM::VLD4LNd8Pseudo_UPD:
    case ARM::VLD4LNd16Pseudo_UPD:
    case ARM::VLD4LNd32Pseudo_UPD:
    case ARM::VLD4LNq16Pseudo_UPD:
    case ARM::VLD4LNq32Pseudo_UPD:
      // If the address is not 64-bit aligned, the latencies of these
      // instructions increases by one.
      ++Latency;
      break;
    }

  return Latency;
}

unsigned ARMBaseInstrInfo::getPredicationCost(const MachineInstr &MI) const {
  if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
      MI.isImplicitDef())
    return 0;

  if (MI.isBundle())
    return 0;

  const MCInstrDesc &MCID = MI.getDesc();

  if (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
                        !Subtarget.cheapPredicableCPSRDef())) {
    // When predicated, CPSR is an additional source operand for CPSR updating
    // instructions, this apparently increases their latencies.
    return 1;
  }
  return 0;
}

unsigned ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                           const MachineInstr &MI,
                                           unsigned *PredCost) const {
  if (MI.isCopyLike() || MI.isInsertSubreg() || MI.isRegSequence() ||
      MI.isImplicitDef())
    return 1;

  // An instruction scheduler typically runs on unbundled instructions, however
  // other passes may query the latency of a bundled instruction.
  if (MI.isBundle()) {
    unsigned Latency = 0;
    MachineBasicBlock::const_instr_iterator I = MI.getIterator();
    MachineBasicBlock::const_instr_iterator E = MI.getParent()->instr_end();
    while (++I != E && I->isInsideBundle()) {
      if (I->getOpcode() != ARM::t2IT)
        Latency += getInstrLatency(ItinData, *I, PredCost);
    }
    return Latency;
  }

  const MCInstrDesc &MCID = MI.getDesc();
  if (PredCost && (MCID.isCall() || (MCID.hasImplicitDefOfPhysReg(ARM::CPSR) &&
                                     !Subtarget.cheapPredicableCPSRDef()))) {
    // When predicated, CPSR is an additional source operand for CPSR updating
    // instructions, this apparently increases their latencies.
    *PredCost = 1;
  }
  // Be sure to call getStageLatency for an empty itinerary in case it has a
  // valid MinLatency property.
  if (!ItinData)
    return MI.mayLoad() ? 3 : 1;

  unsigned Class = MCID.getSchedClass();

  // For instructions with variable uops, use uops as latency.
  if (!ItinData->isEmpty() && ItinData->getNumMicroOps(Class) < 0)
    return getNumMicroOps(ItinData, MI);

  // For the common case, fall back on the itinerary's latency.
  unsigned Latency = ItinData->getStageLatency(Class);

  // Adjust for dynamic def-side opcode variants not captured by the itinerary.
  unsigned DefAlign =
      MI.hasOneMemOperand() ? (*MI.memoperands_begin())->getAlign().value() : 0;
  int Adj = adjustDefLatency(Subtarget, MI, MCID, DefAlign);
  if (Adj >= 0 || (int)Latency > -Adj) {
    return Latency + Adj;
  }
  return Latency;
}

int ARMBaseInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
                                      SDNode *Node) const {
  if (!Node->isMachineOpcode())
    return 1;

  if (!ItinData || ItinData->isEmpty())
    return 1;

  unsigned Opcode = Node->getMachineOpcode();
  switch (Opcode) {
  default:
    return ItinData->getStageLatency(get(Opcode).getSchedClass());
  case ARM::VLDMQIA:
  case ARM::VSTMQIA:
    return 2;
  }
}

bool ARMBaseInstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel,
                                             const MachineRegisterInfo *MRI,
                                             const MachineInstr &DefMI,
                                             unsigned DefIdx,
                                             const MachineInstr &UseMI,
                                             unsigned UseIdx) const {
  unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
  unsigned UDomain = UseMI.getDesc().TSFlags & ARMII::DomainMask;
  if (Subtarget.nonpipelinedVFP() &&
      (DDomain == ARMII::DomainVFP || UDomain == ARMII::DomainVFP))
    return true;

  // Hoist VFP / NEON instructions with 4 or higher latency.
  unsigned Latency =
      SchedModel.computeOperandLatency(&DefMI, DefIdx, &UseMI, UseIdx);
  if (Latency <= 3)
    return false;
  return DDomain == ARMII::DomainVFP || DDomain == ARMII::DomainNEON ||
         UDomain == ARMII::DomainVFP || UDomain == ARMII::DomainNEON;
}

bool ARMBaseInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
                                        const MachineInstr &DefMI,
                                        unsigned DefIdx) const {
  const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
  if (!ItinData || ItinData->isEmpty())
    return false;

  unsigned DDomain = DefMI.getDesc().TSFlags & ARMII::DomainMask;
  if (DDomain == ARMII::DomainGeneral) {
    unsigned DefClass = DefMI.getDesc().getSchedClass();
    int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
    return (DefCycle != -1 && DefCycle <= 2);
  }
  return false;
}

bool ARMBaseInstrInfo::verifyInstruction(const MachineInstr &MI,
                                         StringRef &ErrInfo) const {
  if (convertAddSubFlagsOpcode(MI.getOpcode())) {
    ErrInfo = "Pseudo flag setting opcodes only exist in Selection DAG";
    return false;
  }
  if (MI.getOpcode() == ARM::tMOVr && !Subtarget.hasV6Ops()) {
    // Make sure we don't generate a lo-lo mov that isn't supported.
    if (!ARM::hGPRRegClass.contains(MI.getOperand(0).getReg()) &&
        !ARM::hGPRRegClass.contains(MI.getOperand(1).getReg())) {
      ErrInfo = "Non-flag-setting Thumb1 mov is v6-only";
      return false;
    }
  }
  if (MI.getOpcode() == ARM::tPUSH ||
      MI.getOpcode() == ARM::tPOP ||
      MI.getOpcode() == ARM::tPOP_RET) {
    for (int i = 2, e = MI.getNumOperands(); i < e; ++i) {
      if (MI.getOperand(i).isImplicit() ||
          !MI.getOperand(i).isReg())
        continue;
      Register Reg = MI.getOperand(i).getReg();
      if (Reg < ARM::R0 || Reg > ARM::R7) {
        if (!(MI.getOpcode() == ARM::tPUSH && Reg == ARM::LR) &&
            !(MI.getOpcode() == ARM::tPOP_RET && Reg == ARM::PC)) {
          ErrInfo = "Unsupported register in Thumb1 push/pop";
          return false;
        }
      }
    }
  }
  return true;
}

// LoadStackGuard has so far only been implemented for MachO. Different code
// sequence is needed for other targets.
void ARMBaseInstrInfo::expandLoadStackGuardBase(MachineBasicBlock::iterator MI,
                                                unsigned LoadImmOpc,
                                                unsigned LoadOpc) const {
  assert(!Subtarget.isROPI() && !Subtarget.isRWPI() &&
         "ROPI/RWPI not currently supported with stack guard");

  MachineBasicBlock &MBB = *MI->getParent();
  DebugLoc DL = MI->getDebugLoc();
  Register Reg = MI->getOperand(0).getReg();
  const GlobalValue *GV =
      cast<GlobalValue>((*MI->memoperands_begin())->getValue());
  MachineInstrBuilder MIB;

  BuildMI(MBB, MI, DL, get(LoadImmOpc), Reg)
      .addGlobalAddress(GV, 0, ARMII::MO_NONLAZY);

  if (Subtarget.isGVIndirectSymbol(GV)) {
    MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
    MIB.addReg(Reg, RegState::Kill).addImm(0);
    auto Flags = MachineMemOperand::MOLoad |
                 MachineMemOperand::MODereferenceable |
                 MachineMemOperand::MOInvariant;
    MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand(
        MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 4, Align(4));
    MIB.addMemOperand(MMO).add(predOps(ARMCC::AL));
  }

  MIB = BuildMI(MBB, MI, DL, get(LoadOpc), Reg);
  MIB.addReg(Reg, RegState::Kill)
      .addImm(0)
      .cloneMemRefs(*MI)
      .add(predOps(ARMCC::AL));
}

bool
ARMBaseInstrInfo::isFpMLxInstruction(unsigned Opcode, unsigned &MulOpc,
                                     unsigned &AddSubOpc,
                                     bool &NegAcc, bool &HasLane) const {
  DenseMap<unsigned, unsigned>::const_iterator I = MLxEntryMap.find(Opcode);
  if (I == MLxEntryMap.end())
    return false;

  const ARM_MLxEntry &Entry = ARM_MLxTable[I->second];
  MulOpc = Entry.MulOpc;
  AddSubOpc = Entry.AddSubOpc;
  NegAcc = Entry.NegAcc;
  HasLane = Entry.HasLane;
  return true;
}

//===----------------------------------------------------------------------===//
// Execution domains.
//===----------------------------------------------------------------------===//
//
// Some instructions go down the NEON pipeline, some go down the VFP pipeline,
// and some can go down both.  The vmov instructions go down the VFP pipeline,
// but they can be changed to vorr equivalents that are executed by the NEON
// pipeline.
//
// We use the following execution domain numbering:
//
enum ARMExeDomain {
  ExeGeneric = 0,
  ExeVFP = 1,
  ExeNEON = 2
};

//
// Also see ARMInstrFormats.td and Domain* enums in ARMBaseInfo.h
//
std::pair<uint16_t, uint16_t>
ARMBaseInstrInfo::getExecutionDomain(const MachineInstr &MI) const {
  // If we don't have access to NEON instructions then we won't be able
  // to swizzle anything to the NEON domain. Check to make sure.
  if (Subtarget.hasNEON()) {
    // VMOVD, VMOVRS and VMOVSR are VFP instructions, but can be changed to NEON
    // if they are not predicated.
    if (MI.getOpcode() == ARM::VMOVD && !isPredicated(MI))
      return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));

    // CortexA9 is particularly picky about mixing the two and wants these
    // converted.
    if (Subtarget.useNEONForFPMovs() && !isPredicated(MI) &&
        (MI.getOpcode() == ARM::VMOVRS || MI.getOpcode() == ARM::VMOVSR ||
         MI.getOpcode() == ARM::VMOVS))
      return std::make_pair(ExeVFP, (1 << ExeVFP) | (1 << ExeNEON));
  }
  // No other instructions can be swizzled, so just determine their domain.
  unsigned Domain = MI.getDesc().TSFlags & ARMII::DomainMask;

  if (Domain & ARMII::DomainNEON)
    return std::make_pair(ExeNEON, 0);

  // Certain instructions can go either way on Cortex-A8.
  // Treat them as NEON instructions.
  if ((Domain & ARMII::DomainNEONA8) && Subtarget.isCortexA8())
    return std::make_pair(ExeNEON, 0);

  if (Domain & ARMII::DomainVFP)
    return std::make_pair(ExeVFP, 0);

  return std::make_pair(ExeGeneric, 0);
}

static unsigned getCorrespondingDRegAndLane(const TargetRegisterInfo *TRI,
                                            unsigned SReg, unsigned &Lane) {
  unsigned DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_0, &ARM::DPRRegClass);
  Lane = 0;

  if (DReg != ARM::NoRegister)
   return DReg;

  Lane = 1;
  DReg = TRI->getMatchingSuperReg(SReg, ARM::ssub_1, &ARM::DPRRegClass);

  assert(DReg && "S-register with no D super-register?");
  return DReg;
}

/// getImplicitSPRUseForDPRUse - Given a use of a DPR register and lane,
/// set ImplicitSReg to a register number that must be marked as implicit-use or
/// zero if no register needs to be defined as implicit-use.
///
/// If the function cannot determine if an SPR should be marked implicit use or
/// not, it returns false.
///
/// This function handles cases where an instruction is being modified from taking
/// an SPR to a DPR[Lane]. A use of the DPR is being added, which may conflict
/// with an earlier def of an SPR corresponding to DPR[Lane^1] (i.e. the other
/// lane of the DPR).
///
/// If the other SPR is defined, an implicit-use of it should be added. Else,
/// (including the case where the DPR itself is defined), it should not.
///
static bool getImplicitSPRUseForDPRUse(const TargetRegisterInfo *TRI,
                                       MachineInstr &MI, unsigned DReg,
                                       unsigned Lane, unsigned &ImplicitSReg) {
  // If the DPR is defined or used already, the other SPR lane will be chained
  // correctly, so there is nothing to be done.
  if (MI.definesRegister(DReg, TRI) || MI.readsRegister(DReg, TRI)) {
    ImplicitSReg = 0;
    return true;
  }

  // Otherwise we need to go searching to see if the SPR is set explicitly.
  ImplicitSReg = TRI->getSubReg(DReg,
                                (Lane & 1) ? ARM::ssub_0 : ARM::ssub_1);
  MachineBasicBlock::LivenessQueryResult LQR =
      MI.getParent()->computeRegisterLiveness(TRI, ImplicitSReg, MI);

  if (LQR == MachineBasicBlock::LQR_Live)
    return true;
  else if (LQR == MachineBasicBlock::LQR_Unknown)
    return false;

  // If the register is known not to be live, there is no need to add an
  // implicit-use.
  ImplicitSReg = 0;
  return true;
}

void ARMBaseInstrInfo::setExecutionDomain(MachineInstr &MI,
                                          unsigned Domain) const {
  unsigned DstReg, SrcReg, DReg;
  unsigned Lane;
  MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI);
  const TargetRegisterInfo *TRI = &getRegisterInfo();
  switch (MI.getOpcode()) {
  default:
    llvm_unreachable("cannot handle opcode!");
    break;
  case ARM::VMOVD:
    if (Domain != ExeNEON)
      break;

    // Zap the predicate operands.
    assert(!isPredicated(MI) && "Cannot predicate a VORRd");

    // Make sure we've got NEON instructions.
    assert(Subtarget.hasNEON() && "VORRd requires NEON");

    // Source instruction is %DDst = VMOVD %DSrc, 14, %noreg (; implicits)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();

    for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
      MI.RemoveOperand(i - 1);

    // Change to a %DDst = VORRd %DSrc, %DSrc, 14, %noreg (; implicits)
    MI.setDesc(get(ARM::VORRd));
    MIB.addReg(DstReg, RegState::Define)
        .addReg(SrcReg)
        .addReg(SrcReg)
        .add(predOps(ARMCC::AL));
    break;
  case ARM::VMOVRS:
    if (Domain != ExeNEON)
      break;
    assert(!isPredicated(MI) && "Cannot predicate a VGETLN");

    // Source instruction is %RDst = VMOVRS %SSrc, 14, %noreg (; implicits)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();

    for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
      MI.RemoveOperand(i - 1);

    DReg = getCorrespondingDRegAndLane(TRI, SrcReg, Lane);

    // Convert to %RDst = VGETLNi32 %DSrc, Lane, 14, %noreg (; imps)
    // Note that DSrc has been widened and the other lane may be undef, which
    // contaminates the entire register.
    MI.setDesc(get(ARM::VGETLNi32));
    MIB.addReg(DstReg, RegState::Define)
        .addReg(DReg, RegState::Undef)
        .addImm(Lane)
        .add(predOps(ARMCC::AL));

    // The old source should be an implicit use, otherwise we might think it
    // was dead before here.
    MIB.addReg(SrcReg, RegState::Implicit);
    break;
  case ARM::VMOVSR: {
    if (Domain != ExeNEON)
      break;
    assert(!isPredicated(MI) && "Cannot predicate a VSETLN");

    // Source instruction is %SDst = VMOVSR %RSrc, 14, %noreg (; implicits)
    DstReg = MI.getOperand(0).getReg();
    SrcReg = MI.getOperand(1).getReg();

    DReg = getCorrespondingDRegAndLane(TRI, DstReg, Lane);

    unsigned ImplicitSReg;
    if (!getImplicitSPRUseForDPRUse(TRI, MI, DReg, Lane, ImplicitSReg))
      break;

    for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
      MI.RemoveOperand(i - 1);

    // Convert to %DDst = VSETLNi32 %DDst, %RSrc, Lane, 14, %noreg (; imps)
    // Again DDst may be undefined at the beginning of this instruction.
    MI.setDesc(get(ARM::VSETLNi32));
    MIB.addReg(DReg, RegState::Define)
        .addReg(DReg, getUndefRegState(!MI.readsRegister(DReg, TRI)))
        .addReg(SrcReg)
        .addImm(Lane)
        .add(predOps(ARMCC::AL));

    // The narrower destination must be marked as set to keep previous chains
    // in place.
    MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
    if (ImplicitSReg != 0)
      MIB.addReg(ImplicitSReg, RegState::Implicit);
    break;
    }
    case ARM::VMOVS: {
      if (Domain != ExeNEON)
        break;

      // Source instruction is %SDst = VMOVS %SSrc, 14, %noreg (; implicits)
      DstReg = MI.getOperand(0).getReg();
      SrcReg = MI.getOperand(1).getReg();

      unsigned DstLane = 0, SrcLane = 0, DDst, DSrc;
      DDst = getCorrespondingDRegAndLane(TRI, DstReg, DstLane);
      DSrc = getCorrespondingDRegAndLane(TRI, SrcReg, SrcLane);

      unsigned ImplicitSReg;
      if (!getImplicitSPRUseForDPRUse(TRI, MI, DSrc, SrcLane, ImplicitSReg))
        break;

      for (unsigned i = MI.getDesc().getNumOperands(); i; --i)
        MI.RemoveOperand(i - 1);

      if (DSrc == DDst) {
        // Destination can be:
        //     %DDst = VDUPLN32d %DDst, Lane, 14, %noreg (; implicits)
        MI.setDesc(get(ARM::VDUPLN32d));
        MIB.addReg(DDst, RegState::Define)
            .addReg(DDst, getUndefRegState(!MI.readsRegister(DDst, TRI)))
            .addImm(SrcLane)
            .add(predOps(ARMCC::AL));

        // Neither the source or the destination are naturally represented any
        // more, so add them in manually.
        MIB.addReg(DstReg, RegState::Implicit | RegState::Define);
        MIB.addReg(SrcReg, RegState::Implicit);
        if (ImplicitSReg != 0)
          MIB.addReg(ImplicitSReg, RegState::Implicit);
        break;
      }

      // In general there's no single instruction that can perform an S <-> S
      // move in NEON space, but a pair of VEXT instructions *can* do the
      // job. It turns out that the VEXTs needed will only use DSrc once, with
      // the position based purely on the combination of lane-0 and lane-1
      // involved. For example
      //     vmov s0, s2 -> vext.32 d0, d0, d1, #1  vext.32 d0, d0, d0, #1
      //     vmov s1, s3 -> vext.32 d0, d1, d0, #1  vext.32 d0, d0, d0, #1
      //     vmov s0, s3 -> vext.32 d0, d0, d0, #1  vext.32 d0, d1, d0, #1
      //     vmov s1, s2 -> vext.32 d0, d0, d0, #1  vext.32 d0, d0, d1, #1
      //
      // Pattern of the MachineInstrs is:
      //     %DDst = VEXTd32 %DSrc1, %DSrc2, Lane, 14, %noreg (;implicits)
      MachineInstrBuilder NewMIB;
      NewMIB = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::VEXTd32),
                       DDst);

      // On the first instruction, both DSrc and DDst may be undef if present.
      // Specifically when the original instruction didn't have them as an
      // <imp-use>.
      unsigned CurReg = SrcLane == 1 && DstLane == 1 ? DSrc : DDst;
      bool CurUndef = !MI.readsRegister(CurReg, TRI);
      NewMIB.addReg(CurReg, getUndefRegState(CurUndef));

      CurReg = SrcLane == 0 && DstLane == 0 ? DSrc : DDst;
      CurUndef = !MI.readsRegister(CurReg, TRI);
      NewMIB.addReg(CurReg, getUndefRegState(CurUndef))
            .addImm(1)
            .add(predOps(ARMCC::AL));

      if (SrcLane == DstLane)
        NewMIB.addReg(SrcReg, RegState::Implicit);

      MI.setDesc(get(ARM::VEXTd32));
      MIB.addReg(DDst, RegState::Define);

      // On the second instruction, DDst has definitely been defined above, so
      // it is not undef. DSrc, if present, can be undef as above.
      CurReg = SrcLane == 1 && DstLane == 0 ? DSrc : DDst;
      CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
      MIB.addReg(CurReg, getUndefRegState(CurUndef));

      CurReg = SrcLane == 0 && DstLane == 1 ? DSrc : DDst;
      CurUndef = CurReg == DSrc && !MI.readsRegister(CurReg, TRI);
      MIB.addReg(CurReg, getUndefRegState(CurUndef))
         .addImm(1)
         .add(predOps(ARMCC::AL));

      if (SrcLane != DstLane)
        MIB.addReg(SrcReg, RegState::Implicit);

      // As before, the original destination is no longer represented, add it
      // implicitly.
      MIB.addReg(DstReg, RegState::Define | RegState::Implicit);
      if (ImplicitSReg != 0)
        MIB.addReg(ImplicitSReg, RegState::Implicit);
      break;
    }
  }
}

//===----------------------------------------------------------------------===//
// Partial register updates
//===----------------------------------------------------------------------===//
//
// Swift renames NEON registers with 64-bit granularity.  That means any
// instruction writing an S-reg implicitly reads the containing D-reg.  The
// problem is mostly avoided by translating f32 operations to v2f32 operations
// on D-registers, but f32 loads are still a problem.
//
// These instructions can load an f32 into a NEON register:
//
// VLDRS - Only writes S, partial D update.
// VLD1LNd32 - Writes all D-regs, explicit partial D update, 2 uops.
// VLD1DUPd32 - Writes all D-regs, no partial reg update, 2 uops.
//
// FCONSTD can be used as a dependency-breaking instruction.
unsigned ARMBaseInstrInfo::getPartialRegUpdateClearance(
    const MachineInstr &MI, unsigned OpNum,
    const TargetRegisterInfo *TRI) const {
  auto PartialUpdateClearance = Subtarget.getPartialUpdateClearance();
  if (!PartialUpdateClearance)
    return 0;

  assert(TRI && "Need TRI instance");

  const MachineOperand &MO = MI.getOperand(OpNum);
  if (MO.readsReg())
    return 0;
  Register Reg = MO.getReg();
  int UseOp = -1;

  switch (MI.getOpcode()) {
  // Normal instructions writing only an S-register.
  case ARM::VLDRS:
  case ARM::FCONSTS:
  case ARM::VMOVSR:
  case ARM::VMOVv8i8:
  case ARM::VMOVv4i16:
  case ARM::VMOVv2i32:
  case ARM::VMOVv2f32:
  case ARM::VMOVv1i64:
    UseOp = MI.findRegisterUseOperandIdx(Reg, false, TRI);
    break;

    // Explicitly reads the dependency.
  case ARM::VLD1LNd32:
    UseOp = 3;
    break;
  default:
    return 0;
  }

  // If this instruction actually reads a value from Reg, there is no unwanted
  // dependency.
  if (UseOp != -1 && MI.getOperand(UseOp).readsReg())
    return 0;

  // We must be able to clobber the whole D-reg.
  if (Register::isVirtualRegister(Reg)) {
    // Virtual register must be a def undef foo:ssub_0 operand.
    if (!MO.getSubReg() || MI.readsVirtualRegister(Reg))
      return 0;
  } else if (ARM::SPRRegClass.contains(Reg)) {
    // Physical register: MI must define the full D-reg.
    unsigned DReg = TRI->getMatchingSuperReg(Reg, ARM::ssub_0,
                                             &ARM::DPRRegClass);
    if (!DReg || !MI.definesRegister(DReg, TRI))
      return 0;
  }

  // MI has an unwanted D-register dependency.
  // Avoid defs in the previous N instructrions.
  return PartialUpdateClearance;
}

// Break a partial register dependency after getPartialRegUpdateClearance
// returned non-zero.
void ARMBaseInstrInfo::breakPartialRegDependency(
    MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const {
  assert(OpNum < MI.getDesc().getNumDefs() && "OpNum is not a def");
  assert(TRI && "Need TRI instance");

  const MachineOperand &MO = MI.getOperand(OpNum);
  Register Reg = MO.getReg();
  assert(Register::isPhysicalRegister(Reg) &&
         "Can't break virtual register dependencies.");
  unsigned DReg = Reg;

  // If MI defines an S-reg, find the corresponding D super-register.
  if (ARM::SPRRegClass.contains(Reg)) {
    DReg = ARM::D0 + (Reg - ARM::S0) / 2;
    assert(TRI->isSuperRegister(Reg, DReg) && "Register enums broken");
  }

  assert(ARM::DPRRegClass.contains(DReg) && "Can only break D-reg deps");
  assert(MI.definesRegister(DReg, TRI) && "MI doesn't clobber full D-reg");

  // FIXME: In some cases, VLDRS can be changed to a VLD1DUPd32 which defines
  // the full D-register by loading the same value to both lanes.  The
  // instruction is micro-coded with 2 uops, so don't do this until we can
  // properly schedule micro-coded instructions.  The dispatcher stalls cause
  // too big regressions.

  // Insert the dependency-breaking FCONSTD before MI.
  // 96 is the encoding of 0.5, but the actual value doesn't matter here.
  BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(ARM::FCONSTD), DReg)
      .addImm(96)
      .add(predOps(ARMCC::AL));
  MI.addRegisterKilled(DReg, TRI, true);
}

bool ARMBaseInstrInfo::hasNOP() const {
  return Subtarget.getFeatureBits()[ARM::HasV6KOps];
}

bool ARMBaseInstrInfo::isSwiftFastImmShift(const MachineInstr *MI) const {
  if (MI->getNumOperands() < 4)
    return true;
  unsigned ShOpVal = MI->getOperand(3).getImm();
  unsigned ShImm = ARM_AM::getSORegOffset(ShOpVal);
  // Swift supports faster shifts for: lsl 2, lsl 1, and lsr 1.
  if ((ShImm == 1 && ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsr) ||
      ((ShImm == 1 || ShImm == 2) &&
       ARM_AM::getSORegShOp(ShOpVal) == ARM_AM::lsl))
    return true;

  return false;
}

bool ARMBaseInstrInfo::getRegSequenceLikeInputs(
    const MachineInstr &MI, unsigned DefIdx,
    SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
  assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
  assert(MI.isRegSequenceLike() && "Invalid kind of instruction");

  switch (MI.getOpcode()) {
  case ARM::VMOVDRR:
    // dX = VMOVDRR rY, rZ
    // is the same as:
    // dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1
    // Populate the InputRegs accordingly.
    // rY
    const MachineOperand *MOReg = &MI.getOperand(1);
    if (!MOReg->isUndef())
      InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
                                              MOReg->getSubReg(), ARM::ssub_0));
    // rZ
    MOReg = &MI.getOperand(2);
    if (!MOReg->isUndef())
      InputRegs.push_back(RegSubRegPairAndIdx(MOReg->getReg(),
                                              MOReg->getSubReg(), ARM::ssub_1));
    return true;
  }
  llvm_unreachable("Target dependent opcode missing");
}

bool ARMBaseInstrInfo::getExtractSubregLikeInputs(
    const MachineInstr &MI, unsigned DefIdx,
    RegSubRegPairAndIdx &InputReg) const {
  assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
  assert(MI.isExtractSubregLike() && "Invalid kind of instruction");

  switch (MI.getOpcode()) {
  case ARM::VMOVRRD:
    // rX, rY = VMOVRRD dZ
    // is the same as:
    // rX = EXTRACT_SUBREG dZ, ssub_0
    // rY = EXTRACT_SUBREG dZ, ssub_1
    const MachineOperand &MOReg = MI.getOperand(2);
    if (MOReg.isUndef())
      return false;
    InputReg.Reg = MOReg.getReg();
    InputReg.SubReg = MOReg.getSubReg();
    InputReg.SubIdx = DefIdx == 0 ? ARM::ssub_0 : ARM::ssub_1;
    return true;
  }
  llvm_unreachable("Target dependent opcode missing");
}

bool ARMBaseInstrInfo::getInsertSubregLikeInputs(
    const MachineInstr &MI, unsigned DefIdx, RegSubRegPair &BaseReg,
    RegSubRegPairAndIdx &InsertedReg) const {
  assert(DefIdx < MI.getDesc().getNumDefs() && "Invalid definition index");
  assert(MI.isInsertSubregLike() && "Invalid kind of instruction");

  switch (MI.getOpcode()) {
  case ARM::VSETLNi32:
    // dX = VSETLNi32 dY, rZ, imm
    const MachineOperand &MOBaseReg = MI.getOperand(1);
    const MachineOperand &MOInsertedReg = MI.getOperand(2);
    if (MOInsertedReg.isUndef())
      return false;
    const MachineOperand &MOIndex = MI.getOperand(3);
    BaseReg.Reg = MOBaseReg.getReg();
    BaseReg.SubReg = MOBaseReg.getSubReg();

    InsertedReg.Reg = MOInsertedReg.getReg();
    InsertedReg.SubReg = MOInsertedReg.getSubReg();
    InsertedReg.SubIdx = MOIndex.getImm() == 0 ? ARM::ssub_0 : ARM::ssub_1;
    return true;
  }
  llvm_unreachable("Target dependent opcode missing");
}

std::pair<unsigned, unsigned>
ARMBaseInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
  const unsigned Mask = ARMII::MO_OPTION_MASK;
  return std::make_pair(TF & Mask, TF & ~Mask);
}

ArrayRef<std::pair<unsigned, const char *>>
ARMBaseInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
  using namespace ARMII;

  static const std::pair<unsigned, const char *> TargetFlags[] = {
      {MO_LO16, "arm-lo16"}, {MO_HI16, "arm-hi16"}};
  return makeArrayRef(TargetFlags);
}

ArrayRef<std::pair<unsigned, const char *>>
ARMBaseInstrInfo::getSerializableBitmaskMachineOperandTargetFlags() const {
  using namespace ARMII;

  static const std::pair<unsigned, const char *> TargetFlags[] = {
      {MO_COFFSTUB, "arm-coffstub"},
      {MO_GOT, "arm-got"},
      {MO_SBREL, "arm-sbrel"},
      {MO_DLLIMPORT, "arm-dllimport"},
      {MO_SECREL, "arm-secrel"},
      {MO_NONLAZY, "arm-nonlazy"}};
  return makeArrayRef(TargetFlags);
}

Optional<RegImmPair> ARMBaseInstrInfo::isAddImmediate(const MachineInstr &MI,
                                                      Register Reg) const {
  int Sign = 1;
  unsigned Opcode = MI.getOpcode();
  int64_t Offset = 0;

  // TODO: Handle cases where Reg is a super- or sub-register of the
  // destination register.
  const MachineOperand &Op0 = MI.getOperand(0);
  if (!Op0.isReg() || Reg != Op0.getReg())
    return None;

  // We describe SUBri or ADDri instructions.
  if (Opcode == ARM::SUBri)
    Sign = -1;
  else if (Opcode != ARM::ADDri)
    return None;

  // TODO: Third operand can be global address (usually some string). Since
  //       strings can be relocated we cannot calculate their offsets for
  //       now.
  if (!MI.getOperand(1).isReg() || !MI.getOperand(2).isImm())
    return None;

  Offset = MI.getOperand(2).getImm() * Sign;
  return RegImmPair{MI.getOperand(1).getReg(), Offset};
}

bool llvm::registerDefinedBetween(unsigned Reg,
                                  MachineBasicBlock::iterator From,
                                  MachineBasicBlock::iterator To,
                                  const TargetRegisterInfo *TRI) {
  for (auto I = From; I != To; ++I)
    if (I->modifiesRegister(Reg, TRI))
      return true;
  return false;
}

MachineInstr *llvm::findCMPToFoldIntoCBZ(MachineInstr *Br,
                                         const TargetRegisterInfo *TRI) {
  // Search backwards to the instruction that defines CSPR. This may or not
  // be a CMP, we check that after this loop. If we find another instruction
  // that reads cpsr, we return nullptr.
  MachineBasicBlock::iterator CmpMI = Br;
  while (CmpMI != Br->getParent()->begin()) {
    --CmpMI;
    if (CmpMI->modifiesRegister(ARM::CPSR, TRI))
      break;
    if (CmpMI->readsRegister(ARM::CPSR, TRI))
      break;
  }

  // Check that this inst is a CMP r[0-7], #0 and that the register
  // is not redefined between the cmp and the br.
  if (CmpMI->getOpcode() != ARM::tCMPi8 && CmpMI->getOpcode() != ARM::t2CMPri)
    return nullptr;
  Register Reg = CmpMI->getOperand(0).getReg();
  Register PredReg;
  ARMCC::CondCodes Pred = getInstrPredicate(*CmpMI, PredReg);
  if (Pred != ARMCC::AL || CmpMI->getOperand(1).getImm() != 0)
    return nullptr;
  if (!isARMLowRegister(Reg))
    return nullptr;
  if (registerDefinedBetween(Reg, CmpMI->getNextNode(), Br, TRI))
    return nullptr;

  return &*CmpMI;
}

unsigned llvm::ConstantMaterializationCost(unsigned Val,
                                           const ARMSubtarget *Subtarget,
                                           bool ForCodesize) {
  if (Subtarget->isThumb()) {
    if (Val <= 255) // MOV
      return ForCodesize ? 2 : 1;
    if (Subtarget->hasV6T2Ops() && (Val <= 0xffff ||                    // MOV
                                    ARM_AM::getT2SOImmVal(Val) != -1 || // MOVW
                                    ARM_AM::getT2SOImmVal(~Val) != -1)) // MVN
      return ForCodesize ? 4 : 1;
    if (Val <= 510) // MOV + ADDi8
      return ForCodesize ? 4 : 2;
    if (~Val <= 255) // MOV + MVN
      return ForCodesize ? 4 : 2;
    if (ARM_AM::isThumbImmShiftedVal(Val)) // MOV + LSL
      return ForCodesize ? 4 : 2;
  } else {
    if (ARM_AM::getSOImmVal(Val) != -1) // MOV
      return ForCodesize ? 4 : 1;
    if (ARM_AM::getSOImmVal(~Val) != -1) // MVN
      return ForCodesize ? 4 : 1;
    if (Subtarget->hasV6T2Ops() && Val <= 0xffff) // MOVW
      return ForCodesize ? 4 : 1;
    if (ARM_AM::isSOImmTwoPartVal(Val)) // two instrs
      return ForCodesize ? 8 : 2;
  }
  if (Subtarget->useMovt()) // MOVW + MOVT
    return ForCodesize ? 8 : 2;
  return ForCodesize ? 8 : 3; // Literal pool load
}

bool llvm::HasLowerConstantMaterializationCost(unsigned Val1, unsigned Val2,
                                               const ARMSubtarget *Subtarget,
                                               bool ForCodesize) {
  // Check with ForCodesize
  unsigned Cost1 = ConstantMaterializationCost(Val1, Subtarget, ForCodesize);
  unsigned Cost2 = ConstantMaterializationCost(Val2, Subtarget, ForCodesize);
  if (Cost1 < Cost2)
    return true;
  if (Cost1 > Cost2)
    return false;

  // If they are equal, try with !ForCodesize
  return ConstantMaterializationCost(Val1, Subtarget, !ForCodesize) <
         ConstantMaterializationCost(Val2, Subtarget, !ForCodesize);
}

/// Constants defining how certain sequences should be outlined.
/// This encompasses how an outlined function should be called, and what kind of
/// frame should be emitted for that outlined function.
///
/// \p MachineOutlinerTailCall implies that the function is being created from
/// a sequence of instructions ending in a return.
///
/// That is,
///
/// I1                                OUTLINED_FUNCTION:
/// I2    --> B OUTLINED_FUNCTION     I1
/// BX LR                             I2
///                                   BX LR
///
/// +-------------------------+--------+-----+
/// |                         | Thumb2 | ARM |
/// +-------------------------+--------+-----+
/// | Call overhead in Bytes  |      4 |   4 |
/// | Frame overhead in Bytes |      0 |   0 |
/// | Stack fixup required    |     No |  No |
/// +-------------------------+--------+-----+
///
/// \p MachineOutlinerThunk implies that the function is being created from
/// a sequence of instructions ending in a call. The outlined function is
/// called with a BL instruction, and the outlined function tail-calls the
/// original call destination.
///
/// That is,
///
/// I1                                OUTLINED_FUNCTION:
/// I2   --> BL OUTLINED_FUNCTION     I1
/// BL f                              I2
///                                   B f
///
/// +-------------------------+--------+-----+
/// |                         | Thumb2 | ARM |
/// +-------------------------+--------+-----+
/// | Call overhead in Bytes  |      4 |   4 |
/// | Frame overhead in Bytes |      0 |   0 |
/// | Stack fixup required    |     No |  No |
/// +-------------------------+--------+-----+
///
/// \p MachineOutlinerNoLRSave implies that the function should be called using
/// a BL instruction, but doesn't require LR to be saved and restored. This
/// happens when LR is known to be dead.
///
/// That is,
///
/// I1                                OUTLINED_FUNCTION:
/// I2 --> BL OUTLINED_FUNCTION       I1
/// I3                                I2
///                                   I3
///                                   BX LR
///
/// +-------------------------+--------+-----+
/// |                         | Thumb2 | ARM |
/// +-------------------------+--------+-----+
/// | Call overhead in Bytes  |      4 |   4 |
/// | Frame overhead in Bytes |      4 |   4 |
/// | Stack fixup required    |     No |  No |
/// +-------------------------+--------+-----+
///
/// \p MachineOutlinerRegSave implies that the function should be called with a
/// save and restore of LR to an available register. This allows us to avoid
/// stack fixups. Note that this outlining variant is compatible with the
/// NoLRSave case.
///
/// That is,
///
/// I1     Save LR                    OUTLINED_FUNCTION:
/// I2 --> BL OUTLINED_FUNCTION       I1
/// I3     Restore LR                 I2
///                                   I3
///                                   BX LR
///
/// +-------------------------+--------+-----+
/// |                         | Thumb2 | ARM |
/// +-------------------------+--------+-----+
/// | Call overhead in Bytes  |      8 |  12 |
/// | Frame overhead in Bytes |      2 |   4 |
/// | Stack fixup required    |     No |  No |
/// +-------------------------+--------+-----+

enum MachineOutlinerClass {
  MachineOutlinerTailCall,
  MachineOutlinerThunk,
  MachineOutlinerNoLRSave,
  MachineOutlinerRegSave
};

enum MachineOutlinerMBBFlags {
  LRUnavailableSomewhere = 0x2,
  HasCalls = 0x4,
  UnsafeRegsDead = 0x8
};

struct OutlinerCosts {
  const int CallTailCall;
  const int FrameTailCall;
  const int CallThunk;
  const int FrameThunk;
  const int CallNoLRSave;
  const int FrameNoLRSave;
  const int CallRegSave;
  const int FrameRegSave;

  OutlinerCosts(const ARMSubtarget &target)
      : CallTailCall(target.isThumb() ? 4 : 4),
        FrameTailCall(target.isThumb() ? 0 : 0),
        CallThunk(target.isThumb() ? 4 : 4),
        FrameThunk(target.isThumb() ? 0 : 0),
        CallNoLRSave(target.isThumb() ? 4 : 4),
        FrameNoLRSave(target.isThumb() ? 4 : 4),
        CallRegSave(target.isThumb() ? 8 : 12),
        FrameRegSave(target.isThumb() ? 2 : 4) {}
};

unsigned
ARMBaseInstrInfo::findRegisterToSaveLRTo(const outliner::Candidate &C) const {
  assert(C.LRUWasSet && "LRU wasn't set?");
  MachineFunction *MF = C.getMF();
  const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo *>(
      MF->getSubtarget().getRegisterInfo());

  BitVector regsReserved = ARI->getReservedRegs(*MF);
  // Check if there is an available register across the sequence that we can
  // use.
  for (unsigned Reg : ARM::rGPRRegClass) {
    if (!(Reg < regsReserved.size() && regsReserved.test(Reg)) &&
        Reg != ARM::LR &&  // LR is not reserved, but don't use it.
        Reg != ARM::R12 && // R12 is not guaranteed to be preserved.
        C.LRU.available(Reg) && C.UsedInSequence.available(Reg))
      return Reg;
  }

  // No suitable register. Return 0.
  return 0u;
}

outliner::OutlinedFunction ARMBaseInstrInfo::getOutliningCandidateInfo(
    std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
  outliner::Candidate &FirstCand = RepeatedSequenceLocs[0];
  unsigned SequenceSize =
      std::accumulate(FirstCand.front(), std::next(FirstCand.back()), 0,
                      [this](unsigned Sum, const MachineInstr &MI) {
                        return Sum + getInstSizeInBytes(MI);
                      });

  // Properties about candidate MBBs that hold for all of them.
  unsigned FlagsSetInAll = 0xF;

  // Compute liveness information for each candidate, and set FlagsSetInAll.
  const TargetRegisterInfo &TRI = getRegisterInfo();
  std::for_each(
      RepeatedSequenceLocs.begin(), RepeatedSequenceLocs.end(),
      [&FlagsSetInAll](outliner::Candidate &C) { FlagsSetInAll &= C.Flags; });

  // According to the ARM Procedure Call Standard, the following are
  // undefined on entry/exit from a function call:
  //
  // * Register R12(IP),
  // * Condition codes (and thus the CPSR register)
  //
  // Since we control the instructions which are part of the outlined regions
  // we don't need to be fully compliant with the AAPCS, but we have to
  // guarantee that if a veneer is inserted at link time the code is still
  // correct.  Because of this, we can't outline any sequence of instructions
  // where one of these registers is live into/across it. Thus, we need to
  // delete those candidates.
  auto CantGuaranteeValueAcrossCall = [&TRI](outliner::Candidate &C) {
    // If the unsafe registers in this block are all dead, then we don't need
    // to compute liveness here.
    if (C.Flags & UnsafeRegsDead)
      return false;
    C.initLRU(TRI);
    LiveRegUnits LRU = C.LRU;
    return (!LRU.available(ARM::R12) || !LRU.available(ARM::CPSR));
  };

  // Are there any candidates where those registers are live?
  if (!(FlagsSetInAll & UnsafeRegsDead)) {
    // Erase every candidate that violates the restrictions above. (It could be
    // true that we have viable candidates, so it's not worth bailing out in
    // the case that, say, 1 out of 20 candidates violate the restructions.)
    RepeatedSequenceLocs.erase(std::remove_if(RepeatedSequenceLocs.begin(),
                                              RepeatedSequenceLocs.end(),
                                              CantGuaranteeValueAcrossCall),
                               RepeatedSequenceLocs.end());

    // If the sequence doesn't have enough candidates left, then we're done.
    if (RepeatedSequenceLocs.size() < 2)
      return outliner::OutlinedFunction();
  }

  // At this point, we have only "safe" candidates to outline. Figure out
  // frame + call instruction information.

  unsigned LastInstrOpcode = RepeatedSequenceLocs[0].back()->getOpcode();

  // Helper lambda which sets call information for every candidate.
  auto SetCandidateCallInfo =
      [&RepeatedSequenceLocs](unsigned CallID, unsigned NumBytesForCall) {
        for (outliner::Candidate &C : RepeatedSequenceLocs)
          C.setCallInfo(CallID, NumBytesForCall);
      };

  OutlinerCosts Costs(Subtarget);
  unsigned FrameID = 0;
  unsigned NumBytesToCreateFrame = 0;

  // If the last instruction in any candidate is a terminator, then we should
  // tail call all of the candidates.
  if (RepeatedSequenceLocs[0].back()->isTerminator()) {
    FrameID = MachineOutlinerTailCall;
    NumBytesToCreateFrame = Costs.FrameTailCall;
    SetCandidateCallInfo(MachineOutlinerTailCall, Costs.CallTailCall);
  } else if (LastInstrOpcode == ARM::BL || LastInstrOpcode == ARM::BLX ||
             LastInstrOpcode == ARM::tBL || LastInstrOpcode == ARM::tBLXr ||
             LastInstrOpcode == ARM::tBLXi) {
    FrameID = MachineOutlinerThunk;
    NumBytesToCreateFrame = Costs.FrameThunk;
    SetCandidateCallInfo(MachineOutlinerThunk, Costs.CallThunk);
  } else {
    // We need to decide how to emit calls + frames. We can always emit the same
    // frame if we don't need to save to the stack.
    unsigned NumBytesNoStackCalls = 0;
    std::vector<outliner::Candidate> CandidatesWithoutStackFixups;

    for (outliner::Candidate &C : RepeatedSequenceLocs) {
      C.initLRU(TRI);

      // Is LR available? If so, we don't need a save.
      if (C.LRU.available(ARM::LR)) {
        FrameID = MachineOutlinerNoLRSave;
        NumBytesNoStackCalls += Costs.CallNoLRSave;
        C.setCallInfo(MachineOutlinerNoLRSave, Costs.CallNoLRSave);
        CandidatesWithoutStackFixups.push_back(C);
      }

      // Is an unused register available? If so, we won't modify the stack, so
      // we can outline with the same frame type as those that don't save LR.
      else if (findRegisterToSaveLRTo(C)) {
        FrameID = MachineOutlinerRegSave;
        NumBytesNoStackCalls += Costs.CallRegSave;
        C.setCallInfo(MachineOutlinerRegSave, Costs.CallRegSave);
        CandidatesWithoutStackFixups.push_back(C);
      }
    }

    if (!CandidatesWithoutStackFixups.empty()) {
      RepeatedSequenceLocs = CandidatesWithoutStackFixups;
    } else
      return outliner::OutlinedFunction();
  }

  return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
                                    NumBytesToCreateFrame, FrameID);
}

bool ARMBaseInstrInfo::isFunctionSafeToOutlineFrom(
    MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
  const Function &F = MF.getFunction();

  // Can F be deduplicated by the linker? If it can, don't outline from it.
  if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
    return false;

  // Don't outline from functions with section markings; the program could
  // expect that all the code is in the named section.
  // FIXME: Allow outlining from multiple functions with the same section
  // marking.
  if (F.hasSection())
    return false;

  // FIXME: Thumb1 outlining is not handled
  if (MF.getInfo<ARMFunctionInfo>()->isThumb1OnlyFunction())
    return false;

  // It's safe to outline from MF.
  return true;
}

bool ARMBaseInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
                                              unsigned &Flags) const {
  // Check if LR is available through all of the MBB. If it's not, then set
  // a flag.
  assert(MBB.getParent()->getRegInfo().tracksLiveness() &&
         "Suitable Machine Function for outlining must track liveness");

  LiveRegUnits LRU(getRegisterInfo());

  std::for_each(MBB.rbegin(), MBB.rend(),
                [&LRU](MachineInstr &MI) { LRU.accumulate(MI); });

  // Check if each of the unsafe registers are available...
  bool R12AvailableInBlock = LRU.available(ARM::R12);
  bool CPSRAvailableInBlock = LRU.available(ARM::CPSR);

  // If all of these are dead (and not live out), we know we don't have to check
  // them later.
  if (R12AvailableInBlock && CPSRAvailableInBlock)
    Flags |= MachineOutlinerMBBFlags::UnsafeRegsDead;

  // Now, add the live outs to the set.
  LRU.addLiveOuts(MBB);

  // If any of these registers is available in the MBB, but also a live out of
  // the block, then we know outlining is unsafe.
  if (R12AvailableInBlock && !LRU.available(ARM::R12))
    return false;
  if (CPSRAvailableInBlock && !LRU.available(ARM::CPSR))
    return false;

  // Check if there's a call inside this MachineBasicBlock.  If there is, then
  // set a flag.
  if (any_of(MBB, [](MachineInstr &MI) { return MI.isCall(); }))
    Flags |= MachineOutlinerMBBFlags::HasCalls;

  if (!LRU.available(ARM::LR))
    Flags |= MachineOutlinerMBBFlags::LRUnavailableSomewhere;

  return true;
}

outliner::InstrType
ARMBaseInstrInfo::getOutliningType(MachineBasicBlock::iterator &MIT,
                                   unsigned Flags) const {
  MachineInstr &MI = *MIT;
  const TargetRegisterInfo *TRI = &getRegisterInfo();

  // Be conservative with inline ASM
  if (MI.isInlineAsm())
    return outliner::InstrType::Illegal;

  // Don't allow debug values to impact outlining type.
  if (MI.isDebugInstr() || MI.isIndirectDebugValue())
    return outliner::InstrType::Invisible;

  // At this point, KILL or IMPLICIT_DEF instructions don't really tell us much
  // so we can go ahead and skip over them.
  if (MI.isKill() || MI.isImplicitDef())
    return outliner::InstrType::Invisible;

  // PIC instructions contain labels, outlining them would break offset
  // computing.  unsigned Opc = MI.getOpcode();
  unsigned Opc = MI.getOpcode();
  if (Opc == ARM::tPICADD || Opc == ARM::PICADD || Opc == ARM::PICSTR ||
      Opc == ARM::PICSTRB || Opc == ARM::PICSTRH || Opc == ARM::PICLDR ||
      Opc == ARM::PICLDRB || Opc == ARM::PICLDRH || Opc == ARM::PICLDRSB ||
      Opc == ARM::PICLDRSH || Opc == ARM::t2LDRpci_pic ||
      Opc == ARM::t2MOVi16_ga_pcrel || Opc == ARM::t2MOVTi16_ga_pcrel ||
      Opc == ARM::t2MOV_ga_pcrel)
    return outliner::InstrType::Illegal;

  // Be conservative with ARMv8.1 MVE instructions.
  if (Opc == ARM::t2BF_LabelPseudo || Opc == ARM::t2DoLoopStart ||
      Opc == ARM::t2WhileLoopStart || Opc == ARM::t2LoopDec ||
      Opc == ARM::t2LoopEnd)
    return outliner::InstrType::Illegal;

  const MCInstrDesc &MCID = MI.getDesc();
  uint64_t MIFlags = MCID.TSFlags;
  if ((MIFlags & ARMII::DomainMask) == ARMII::DomainMVE)
    return outliner::InstrType::Illegal;

  // Is this a terminator for a basic block?
  if (MI.isTerminator()) {
    // Don't outline if the branch is not unconditional.
    if (isPredicated(MI))
      return outliner::InstrType::Illegal;

    // Is this the end of a function?
    if (MI.getParent()->succ_empty())
      return outliner::InstrType::Legal;

    // It's not, so don't outline it.
    return outliner::InstrType::Illegal;
  }

  // Make sure none of the operands are un-outlinable.
  for (const MachineOperand &MOP : MI.operands()) {
    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
        MOP.isTargetIndex())
      return outliner::InstrType::Illegal;
  }

  // Don't outline if link register or program counter value are used.
  if (MI.readsRegister(ARM::LR, TRI) || MI.readsRegister(ARM::PC, TRI))
    return outliner::InstrType::Illegal;

  if (MI.isCall()) {
    // If we don't know anything about the callee, assume it depends on the
    // stack layout of the caller. In that case, it's only legal to outline
    // as a tail-call. Explicitly list the call instructions we know about so
    // we don't get unexpected results with call pseudo-instructions.
    auto UnknownCallOutlineType = outliner::InstrType::Illegal;
    if (Opc == ARM::BL || Opc == ARM::tBL || Opc == ARM::BLX ||
        Opc == ARM::tBLXr || Opc == ARM::tBLXi)
      UnknownCallOutlineType = outliner::InstrType::LegalTerminator;

    return UnknownCallOutlineType;
  }

  // Since calls are handled, don't touch LR or PC
  if (MI.modifiesRegister(ARM::LR, TRI) || MI.modifiesRegister(ARM::PC, TRI))
    return outliner::InstrType::Illegal;

  // Does this use the stack?
  if (MI.modifiesRegister(ARM::SP, TRI) || MI.readsRegister(ARM::SP, TRI)) {
    // True if there is no chance that any outlined candidate from this range
    // could require stack fixups. That is, both
    // * LR is available in the range (No save/restore around call)
    // * The range doesn't include calls (No save/restore in outlined frame)
    // are true.
    // FIXME: This is very restrictive; the flags check the whole block,
    // not just the bit we will try to outline.
    bool MightNeedStackFixUp =
        (Flags & (MachineOutlinerMBBFlags::LRUnavailableSomewhere |
                  MachineOutlinerMBBFlags::HasCalls));

    if (!MightNeedStackFixUp)
      return outliner::InstrType::Legal;

    return outliner::InstrType::Illegal;
  }

  // Be conservative with IT blocks.
  if (MI.readsRegister(ARM::ITSTATE, TRI) ||
      MI.modifiesRegister(ARM::ITSTATE, TRI))
    return outliner::InstrType::Illegal;

  // Don't outline positions.
  if (MI.isPosition())
    return outliner::InstrType::Illegal;

  return outliner::InstrType::Legal;
}

void ARMBaseInstrInfo::buildOutlinedFrame(
    MachineBasicBlock &MBB, MachineFunction &MF,
    const outliner::OutlinedFunction &OF) const {
  // Nothing is needed for tail-calls.
  if (OF.FrameConstructionID == MachineOutlinerTailCall)
    return;

  // For thunk outlining, rewrite the last instruction from a call to a
  // tail-call.
  if (OF.FrameConstructionID == MachineOutlinerThunk) {
    MachineInstr *Call = &*--MBB.instr_end();
    bool isThumb = Subtarget.isThumb();
    unsigned FuncOp = isThumb ? 2 : 0;
    unsigned Opc = Call->getOperand(FuncOp).isReg()
                       ? isThumb ? ARM::tTAILJMPr : ARM::TAILJMPr
                       : isThumb ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd
                                                             : ARM::tTAILJMPdND
                                 : ARM::TAILJMPd;
    MachineInstrBuilder MIB = BuildMI(MBB, MBB.end(), DebugLoc(), get(Opc))
                                  .add(Call->getOperand(FuncOp));
    if (isThumb && !Call->getOperand(FuncOp).isReg())
      MIB.add(predOps(ARMCC::AL));
    Call->eraseFromParent();
    return;
  }

  // Here we have to insert the return ourselves.  Get the correct opcode from
  // current feature set.
  BuildMI(MBB, MBB.end(), DebugLoc(), get(Subtarget.getReturnOpcode()))
      .add(predOps(ARMCC::AL));
}

MachineBasicBlock::iterator ARMBaseInstrInfo::insertOutlinedCall(
    Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
    MachineFunction &MF, const outliner::Candidate &C) const {
  MachineInstrBuilder MIB;
  MachineBasicBlock::iterator CallPt;
  unsigned Opc;
  bool isThumb = Subtarget.isThumb();

  // Are we tail calling?
  if (C.CallConstructionID == MachineOutlinerTailCall) {
    // If yes, then we can just branch to the label.
    Opc = isThumb
              ? Subtarget.isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND
              : ARM::TAILJMPd;
    MIB = BuildMI(MF, DebugLoc(), get(Opc))
              .addGlobalAddress(M.getNamedValue(MF.getName()));
    if (isThumb)
      MIB.add(predOps(ARMCC::AL));
    It = MBB.insert(It, MIB);
    return It;
  }

  // Create the call instruction.
  Opc = isThumb ? ARM::tBL : ARM::BL;
  MachineInstrBuilder CallMIB = BuildMI(MF, DebugLoc(), get(Opc));
  if (isThumb)
    CallMIB.add(predOps(ARMCC::AL));
  CallMIB.addGlobalAddress(M.getNamedValue(MF.getName()));

  // Can we save to a register?
  if (C.CallConstructionID == MachineOutlinerRegSave) {
    unsigned Reg = findRegisterToSaveLRTo(C);
    assert(Reg != 0 && "No callee-saved register available?");

    // Save and restore LR from that register.
    if (!MBB.isLiveIn(ARM::LR))
      MBB.addLiveIn(ARM::LR);
    copyPhysReg(MBB, It, DebugLoc(), Reg, ARM::LR, true);
    CallPt = MBB.insert(It, CallMIB);
    copyPhysReg(MBB, It, DebugLoc(), ARM::LR, Reg, true);
    It--;
    return CallPt;
  }
  // Insert the call.
  It = MBB.insert(It, CallMIB);
  return It;
}