SIWholeQuadMode.cpp 30.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass adds instructions to enable whole quad mode for pixel
/// shaders, and whole wavefront mode for all programs.
///
/// Whole quad mode is required for derivative computations, but it interferes
/// with shader side effects (stores and atomics). This pass is run on the
/// scheduled machine IR but before register coalescing, so that machine SSA is
/// available for analysis. It ensures that WQM is enabled when necessary, but
/// disabled around stores and atomics.
///
/// When necessary, this pass creates a function prolog
///
///   S_MOV_B64 LiveMask, EXEC
///   S_WQM_B64 EXEC, EXEC
///
/// to enter WQM at the top of the function and surrounds blocks of Exact
/// instructions by
///
///   S_AND_SAVEEXEC_B64 Tmp, LiveMask
///   ...
///   S_MOV_B64 EXEC, Tmp
///
/// We also compute when a sequence of instructions requires Whole Wavefront
/// Mode (WWM) and insert instructions to save and restore it:
///
/// S_OR_SAVEEXEC_B64 Tmp, -1
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// In order to avoid excessive switching during sequences of Exact
/// instructions, the pass first analyzes which instructions must be run in WQM
/// (aka which instructions produce values that lead to derivative
/// computations).
///
/// Basic blocks are always exited in WQM as long as some successor needs WQM.
///
/// There is room for improvement given better control flow analysis:
///
///  (1) at the top level (outside of control flow statements, and as long as
///      kill hasn't been used), one SGPR can be saved by recovering WQM from
///      the LiveMask (this is implemented for the entry block).
///
///  (2) when entire regions (e.g. if-else blocks or entire loops) only
///      consist of exact and don't-care instructions, the switch only has to
///      be done at the entry and exit points rather than potentially in each
///      block of the region.
///
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "si-wqm"

namespace {

enum {
  StateWQM = 0x1,
  StateWWM = 0x2,
  StateExact = 0x4,
};

struct PrintState {
public:
  int State;

  explicit PrintState(int State) : State(State) {}
};

#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) {
  if (PS.State & StateWQM)
    OS << "WQM";
  if (PS.State & StateWWM) {
    if (PS.State & StateWQM)
      OS << '|';
    OS << "WWM";
  }
  if (PS.State & StateExact) {
    if (PS.State & (StateWQM | StateWWM))
      OS << '|';
    OS << "Exact";
  }

  return OS;
}
#endif

struct InstrInfo {
  char Needs = 0;
  char Disabled = 0;
  char OutNeeds = 0;
};

struct BlockInfo {
  char Needs = 0;
  char InNeeds = 0;
  char OutNeeds = 0;
};

struct WorkItem {
  MachineBasicBlock *MBB = nullptr;
  MachineInstr *MI = nullptr;

  WorkItem() = default;
  WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
  WorkItem(MachineInstr *MI) : MI(MI) {}
};

class SIWholeQuadMode : public MachineFunctionPass {
private:
  CallingConv::ID CallingConv;
  const SIInstrInfo *TII;
  const SIRegisterInfo *TRI;
  const GCNSubtarget *ST;
  MachineRegisterInfo *MRI;
  LiveIntervals *LIS;

  DenseMap<const MachineInstr *, InstrInfo> Instructions;
  MapVector<MachineBasicBlock *, BlockInfo> Blocks;
  SmallVector<MachineInstr *, 1> LiveMaskQueries;
  SmallVector<MachineInstr *, 4> LowerToMovInstrs;
  SmallVector<MachineInstr *, 4> LowerToCopyInstrs;

  void printInfo();

  void markInstruction(MachineInstr &MI, char Flag,
                       std::vector<WorkItem> &Worklist);
  void markInstructionUses(const MachineInstr &MI, char Flag,
                           std::vector<WorkItem> &Worklist);
  char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
  void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
  void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
  char analyzeFunction(MachineFunction &MF);

  MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB,
                                      MachineBasicBlock::iterator Before);
  MachineBasicBlock::iterator
  prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
                   MachineBasicBlock::iterator Last, bool PreferLast,
                   bool SaveSCC);
  void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
               unsigned SaveWQM, unsigned LiveMaskReg);
  void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
             unsigned SavedWQM);
  void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
             unsigned SaveOrig);
  void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
               unsigned SavedOrig);
  void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry);

  void lowerLiveMaskQueries(unsigned LiveMaskReg);
  void lowerCopyInstrs();

public:
  static char ID;

  SIWholeQuadMode() :
    MachineFunctionPass(ID) { }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return "SI Whole Quad Mode"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<LiveIntervals>();
    AU.addPreserved<SlotIndexes>();
    AU.addPreserved<LiveIntervals>();
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char SIWholeQuadMode::ID = 0;

INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
                    false)

char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;

FunctionPass *llvm::createSIWholeQuadModePass() {
  return new SIWholeQuadMode;
}

#ifndef NDEBUG
LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() {
  for (const auto &BII : Blocks) {
    dbgs() << "\n"
           << printMBBReference(*BII.first) << ":\n"
           << "  InNeeds = " << PrintState(BII.second.InNeeds)
           << ", Needs = " << PrintState(BII.second.Needs)
           << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n";

    for (const MachineInstr &MI : *BII.first) {
      auto III = Instructions.find(&MI);
      if (III == Instructions.end())
        continue;

      dbgs() << "  " << MI << "    Needs = " << PrintState(III->second.Needs)
             << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n';
    }
  }
}
#endif

void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
                                      std::vector<WorkItem> &Worklist) {
  InstrInfo &II = Instructions[&MI];

  assert(!(Flag & StateExact) && Flag != 0);

  // Remove any disabled states from the flag. The user that required it gets
  // an undefined value in the helper lanes. For example, this can happen if
  // the result of an atomic is used by instruction that requires WQM, where
  // ignoring the request for WQM is correct as per the relevant specs.
  Flag &= ~II.Disabled;

  // Ignore if the flag is already encompassed by the existing needs, or we
  // just disabled everything.
  if ((II.Needs & Flag) == Flag)
    return;

  II.Needs |= Flag;
  Worklist.push_back(&MI);
}

/// Mark all instructions defining the uses in \p MI with \p Flag.
void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag,
                                          std::vector<WorkItem> &Worklist) {
  for (const MachineOperand &Use : MI.uses()) {
    if (!Use.isReg() || !Use.isUse())
      continue;

    Register Reg = Use.getReg();

    // Handle physical registers that we need to track; this is mostly relevant
    // for VCC, which can appear as the (implicit) input of a uniform branch,
    // e.g. when a loop counter is stored in a VGPR.
    if (!Register::isVirtualRegister(Reg)) {
      if (Reg == AMDGPU::EXEC || Reg == AMDGPU::EXEC_LO)
        continue;

      for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) {
        LiveRange &LR = LIS->getRegUnit(*RegUnit);
        const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
        if (!Value)
          continue;

        // Since we're in machine SSA, we do not need to track physical
        // registers across basic blocks.
        if (Value->isPHIDef())
          continue;

        markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag,
                        Worklist);
      }

      continue;
    }

    for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg()))
      markInstruction(DefMI, Flag, Worklist);
  }
}

// Scan instructions to determine which ones require an Exact execmask and
// which ones seed WQM requirements.
char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
                                       std::vector<WorkItem> &Worklist) {
  char GlobalFlags = 0;
  bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs");
  SmallVector<MachineInstr *, 4> SetInactiveInstrs;
  SmallVector<MachineInstr *, 4> SoftWQMInstrs;

  // We need to visit the basic blocks in reverse post-order so that we visit
  // defs before uses, in particular so that we don't accidentally mark an
  // instruction as needing e.g. WQM before visiting it and realizing it needs
  // WQM disabled.
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) {
    MachineBasicBlock &MBB = **BI;
    BlockInfo &BBI = Blocks[&MBB];

    for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) {
      MachineInstr &MI = *II;
      InstrInfo &III = Instructions[&MI];
      unsigned Opcode = MI.getOpcode();
      char Flags = 0;

      if (TII->isWQM(Opcode)) {
        // Sampling instructions don't need to produce results for all pixels
        // in a quad, they just require all inputs of a quad to have been
        // computed for derivatives.
        markInstructionUses(MI, StateWQM, Worklist);
        GlobalFlags |= StateWQM;
        continue;
      } else if (Opcode == AMDGPU::WQM) {
        // The WQM intrinsic requires its output to have all the helper lanes
        // correct, so we need it to be in WQM.
        Flags = StateWQM;
        LowerToCopyInstrs.push_back(&MI);
      } else if (Opcode == AMDGPU::SOFT_WQM) {
        LowerToCopyInstrs.push_back(&MI);
        SoftWQMInstrs.push_back(&MI);
        continue;
      } else if (Opcode == AMDGPU::WWM) {
        // The WWM intrinsic doesn't make the same guarantee, and plus it needs
        // to be executed in WQM or Exact so that its copy doesn't clobber
        // inactive lanes.
        markInstructionUses(MI, StateWWM, Worklist);
        GlobalFlags |= StateWWM;
        LowerToMovInstrs.push_back(&MI);
        continue;
      } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 ||
                 Opcode == AMDGPU::V_SET_INACTIVE_B64) {
        III.Disabled = StateWWM;
        MachineOperand &Inactive = MI.getOperand(2);
        if (Inactive.isReg()) {
          if (Inactive.isUndef()) {
            LowerToCopyInstrs.push_back(&MI);
          } else {
            Register Reg = Inactive.getReg();
            if (Register::isVirtualRegister(Reg)) {
              for (MachineInstr &DefMI : MRI->def_instructions(Reg))
                markInstruction(DefMI, StateWWM, Worklist);
            }
          }
        }
        SetInactiveInstrs.push_back(&MI);
        continue;
      } else if (TII->isDisableWQM(MI)) {
        BBI.Needs |= StateExact;
        if (!(BBI.InNeeds & StateExact)) {
          BBI.InNeeds |= StateExact;
          Worklist.push_back(&MBB);
        }
        GlobalFlags |= StateExact;
        III.Disabled = StateWQM | StateWWM;
        continue;
      } else {
        if (Opcode == AMDGPU::SI_PS_LIVE) {
          LiveMaskQueries.push_back(&MI);
        } else if (WQMOutputs) {
          // The function is in machine SSA form, which means that physical
          // VGPRs correspond to shader inputs and outputs. Inputs are
          // only used, outputs are only defined.
          for (const MachineOperand &MO : MI.defs()) {
            if (!MO.isReg())
              continue;

            Register Reg = MO.getReg();

            if (!Register::isVirtualRegister(Reg) &&
                TRI->hasVectorRegisters(TRI->getPhysRegClass(Reg))) {
              Flags = StateWQM;
              break;
            }
          }
        }

        if (!Flags)
          continue;
      }

      markInstruction(MI, Flags, Worklist);
      GlobalFlags |= Flags;
    }
  }

  // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is
  // ever used anywhere in the function. This implements the corresponding
  // semantics of @llvm.amdgcn.set.inactive.
  // Similarly for SOFT_WQM instructions, implementing @llvm.amdgcn.softwqm.
  if (GlobalFlags & StateWQM) {
    for (MachineInstr *MI : SetInactiveInstrs)
      markInstruction(*MI, StateWQM, Worklist);
    for (MachineInstr *MI : SoftWQMInstrs)
      markInstruction(*MI, StateWQM, Worklist);
  }

  return GlobalFlags;
}

void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
                                           std::vector<WorkItem>& Worklist) {
  MachineBasicBlock *MBB = MI.getParent();
  InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
  BlockInfo &BI = Blocks[MBB];

  // Control flow-type instructions and stores to temporary memory that are
  // followed by WQM computations must themselves be in WQM.
  if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) &&
      (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
    Instructions[&MI].Needs = StateWQM;
    II.Needs = StateWQM;
  }

  // Propagate to block level
  if (II.Needs & StateWQM) {
    BI.Needs |= StateWQM;
    if (!(BI.InNeeds & StateWQM)) {
      BI.InNeeds |= StateWQM;
      Worklist.push_back(MBB);
    }
  }

  // Propagate backwards within block
  if (MachineInstr *PrevMI = MI.getPrevNode()) {
    char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds;
    if (!PrevMI->isPHI()) {
      InstrInfo &PrevII = Instructions[PrevMI];
      if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
        PrevII.OutNeeds |= InNeeds;
        Worklist.push_back(PrevMI);
      }
    }
  }

  // Propagate WQM flag to instruction inputs
  assert(!(II.Needs & StateExact));

  if (II.Needs != 0)
    markInstructionUses(MI, II.Needs, Worklist);

  // Ensure we process a block containing WWM, even if it does not require any
  // WQM transitions.
  if (II.Needs & StateWWM)
    BI.Needs |= StateWWM;
}

void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
                                     std::vector<WorkItem>& Worklist) {
  BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.

  // Propagate through instructions
  if (!MBB.empty()) {
    MachineInstr *LastMI = &*MBB.rbegin();
    InstrInfo &LastII = Instructions[LastMI];
    if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
      LastII.OutNeeds |= BI.OutNeeds;
      Worklist.push_back(LastMI);
    }
  }

  // Predecessor blocks must provide for our WQM/Exact needs.
  for (MachineBasicBlock *Pred : MBB.predecessors()) {
    BlockInfo &PredBI = Blocks[Pred];
    if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
      continue;

    PredBI.OutNeeds |= BI.InNeeds;
    PredBI.InNeeds |= BI.InNeeds;
    Worklist.push_back(Pred);
  }

  // All successors must be prepared to accept the same set of WQM/Exact data.
  for (MachineBasicBlock *Succ : MBB.successors()) {
    BlockInfo &SuccBI = Blocks[Succ];
    if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
      continue;

    SuccBI.InNeeds |= BI.OutNeeds;
    Worklist.push_back(Succ);
  }
}

char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
  std::vector<WorkItem> Worklist;
  char GlobalFlags = scanInstructions(MF, Worklist);

  while (!Worklist.empty()) {
    WorkItem WI = Worklist.back();
    Worklist.pop_back();

    if (WI.MI)
      propagateInstruction(*WI.MI, Worklist);
    else
      propagateBlock(*WI.MBB, Worklist);
  }

  return GlobalFlags;
}

MachineBasicBlock::iterator
SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB,
                         MachineBasicBlock::iterator Before) {
  Register SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);

  MachineInstr *Save =
      BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg)
          .addReg(AMDGPU::SCC);
  MachineInstr *Restore =
      BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC)
          .addReg(SaveReg);

  LIS->InsertMachineInstrInMaps(*Save);
  LIS->InsertMachineInstrInMaps(*Restore);
  LIS->createAndComputeVirtRegInterval(SaveReg);

  return Restore;
}

// Return an iterator in the (inclusive) range [First, Last] at which
// instructions can be safely inserted, keeping in mind that some of the
// instructions we want to add necessarily clobber SCC.
MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
    MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) {
  if (!SaveSCC)
    return PreferLast ? Last : First;

  LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));
  auto MBBE = MBB.end();
  SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First)
                                     : LIS->getMBBEndIdx(&MBB);
  SlotIndex LastIdx =
      Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB);
  SlotIndex Idx = PreferLast ? LastIdx : FirstIdx;
  const LiveRange::Segment *S;

  for (;;) {
    S = LR.getSegmentContaining(Idx);
    if (!S)
      break;

    if (PreferLast) {
      SlotIndex Next = S->start.getBaseIndex();
      if (Next < FirstIdx)
        break;
      Idx = Next;
    } else {
      SlotIndex Next = S->end.getNextIndex().getBaseIndex();
      if (Next > LastIdx)
        break;
      Idx = Next;
    }
  }

  MachineBasicBlock::iterator MBBI;

  if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx))
    MBBI = MI;
  else {
    assert(Idx == LIS->getMBBEndIdx(&MBB));
    MBBI = MBB.end();
  }

  if (S)
    MBBI = saveSCC(MBB, MBBI);

  return MBBI;
}

void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator Before,
                              unsigned SaveWQM, unsigned LiveMaskReg) {
  MachineInstr *MI;

  if (SaveWQM) {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ?
                   AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64),
                 SaveWQM)
             .addReg(LiveMaskReg);
  } else {
    unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ?
                   AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64),
                 Exec)
             .addReg(Exec)
             .addReg(LiveMaskReg);
  }

  LIS->InsertMachineInstrInMaps(*MI);
}

void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator Before,
                            unsigned SavedWQM) {
  MachineInstr *MI;

  unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
  if (SavedWQM) {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), Exec)
             .addReg(SavedWQM);
  } else {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(ST->isWave32() ?
                   AMDGPU::S_WQM_B32 : AMDGPU::S_WQM_B64),
                 Exec)
             .addReg(Exec);
  }

  LIS->InsertMachineInstrInMaps(*MI);
}

void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator Before,
                            unsigned SaveOrig) {
  MachineInstr *MI;

  assert(SaveOrig);
  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_WWM), SaveOrig)
           .addImm(-1);
  LIS->InsertMachineInstrInMaps(*MI);
}

void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator Before,
                              unsigned SavedOrig) {
  MachineInstr *MI;

  assert(SavedOrig);
  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM),
               ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC)
           .addReg(SavedOrig);
  LIS->InsertMachineInstrInMaps(*MI);
}

void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
                                   bool isEntry) {
  auto BII = Blocks.find(&MBB);
  if (BII == Blocks.end())
    return;

  const BlockInfo &BI = BII->second;

  // This is a non-entry block that is WQM throughout, so no need to do
  // anything.
  if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact)
    return;

  LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB)
                    << ":\n");

  unsigned SavedWQMReg = 0;
  unsigned SavedNonWWMReg = 0;
  bool WQMFromExec = isEntry;
  char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM;
  char NonWWMState = 0;
  const TargetRegisterClass *BoolRC = TRI->getBoolRC();

  auto II = MBB.getFirstNonPHI(), IE = MBB.end();
  if (isEntry)
    ++II; // Skip the instruction that saves LiveMask

  // This stores the first instruction where it's safe to switch from WQM to
  // Exact or vice versa.
  MachineBasicBlock::iterator FirstWQM = IE;

  // This stores the first instruction where it's safe to switch from WWM to
  // Exact/WQM or to switch to WWM. It must always be the same as, or after,
  // FirstWQM since if it's safe to switch to/from WWM, it must be safe to
  // switch to/from WQM as well.
  MachineBasicBlock::iterator FirstWWM = IE;
  for (;;) {
    MachineBasicBlock::iterator Next = II;
    char Needs = StateExact | StateWQM; // WWM is disabled by default
    char OutNeeds = 0;

    if (FirstWQM == IE)
      FirstWQM = II;

    if (FirstWWM == IE)
      FirstWWM = II;

    // First, figure out the allowed states (Needs) based on the propagated
    // flags.
    if (II != IE) {
      MachineInstr &MI = *II;

      if (MI.isTerminator() || TII->mayReadEXEC(*MRI, MI)) {
        auto III = Instructions.find(&MI);
        if (III != Instructions.end()) {
          if (III->second.Needs & StateWWM)
            Needs = StateWWM;
          else if (III->second.Needs & StateWQM)
            Needs = StateWQM;
          else
            Needs &= ~III->second.Disabled;
          OutNeeds = III->second.OutNeeds;
        }
      } else {
        // If the instruction doesn't actually need a correct EXEC, then we can
        // safely leave WWM enabled.
        Needs = StateExact | StateWQM | StateWWM;
      }

      if (MI.isTerminator() && OutNeeds == StateExact)
        Needs = StateExact;

      if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact)
        MI.getOperand(3).setImm(1);

      ++Next;
    } else {
      // End of basic block
      if (BI.OutNeeds & StateWQM)
        Needs = StateWQM;
      else if (BI.OutNeeds == StateExact)
        Needs = StateExact;
      else
        Needs = StateWQM | StateExact;
    }

    // Now, transition if necessary.
    if (!(Needs & State)) {
      MachineBasicBlock::iterator First;
      if (State == StateWWM || Needs == StateWWM) {
        // We must switch to or from WWM
        First = FirstWWM;
      } else {
        // We only need to switch to/from WQM, so we can use FirstWQM
        First = FirstWQM;
      }

      MachineBasicBlock::iterator Before =
          prepareInsertion(MBB, First, II, Needs == StateWQM,
                           Needs == StateExact || WQMFromExec);

      if (State == StateWWM) {
        assert(SavedNonWWMReg);
        fromWWM(MBB, Before, SavedNonWWMReg);
        LIS->createAndComputeVirtRegInterval(SavedNonWWMReg);
        SavedNonWWMReg = 0;
        State = NonWWMState;
      }

      if (Needs == StateWWM) {
        NonWWMState = State;
        assert(!SavedNonWWMReg);
        SavedNonWWMReg = MRI->createVirtualRegister(BoolRC);
        toWWM(MBB, Before, SavedNonWWMReg);
        State = StateWWM;
      } else {
        if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) {
          if (!WQMFromExec && (OutNeeds & StateWQM)) {
            assert(!SavedWQMReg);
            SavedWQMReg = MRI->createVirtualRegister(BoolRC);
          }

          toExact(MBB, Before, SavedWQMReg, LiveMaskReg);
          State = StateExact;
        } else if (State == StateExact && (Needs & StateWQM) &&
                   !(Needs & StateExact)) {
          assert(WQMFromExec == (SavedWQMReg == 0));

          toWQM(MBB, Before, SavedWQMReg);

          if (SavedWQMReg) {
            LIS->createAndComputeVirtRegInterval(SavedWQMReg);
            SavedWQMReg = 0;
          }
          State = StateWQM;
        } else {
          // We can get here if we transitioned from WWM to a non-WWM state that
          // already matches our needs, but we shouldn't need to do anything.
          assert(Needs & State);
        }
      }
    }

    if (Needs != (StateExact | StateWQM | StateWWM)) {
      if (Needs != (StateExact | StateWQM))
        FirstWQM = IE;
      FirstWWM = IE;
    }

    if (II == IE)
      break;
    II = Next;
  }
  assert(!SavedWQMReg);
  assert(!SavedNonWWMReg);
}

void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) {
  for (MachineInstr *MI : LiveMaskQueries) {
    const DebugLoc &DL = MI->getDebugLoc();
    Register Dest = MI->getOperand(0).getReg();
    MachineInstr *Copy =
        BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
            .addReg(LiveMaskReg);

    LIS->ReplaceMachineInstrInMaps(*MI, *Copy);
    MI->eraseFromParent();
  }
}

void SIWholeQuadMode::lowerCopyInstrs() {
  for (MachineInstr *MI : LowerToMovInstrs) {
    assert(MI->getNumExplicitOperands() == 2);

    const Register Reg = MI->getOperand(0).getReg();

    if (TRI->isVGPR(*MRI, Reg)) {
      const TargetRegisterClass *regClass = Register::isVirtualRegister(Reg)
                                                ? MRI->getRegClass(Reg)
                                                : TRI->getPhysRegClass(Reg);

      const unsigned MovOp = TII->getMovOpcode(regClass);
      MI->setDesc(TII->get(MovOp));

      // And make it implicitly depend on exec (like all VALU movs should do).
      MI->addOperand(MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
    } else {
      MI->setDesc(TII->get(AMDGPU::COPY));
    }
  }
  for (MachineInstr *MI : LowerToCopyInstrs) {
    if (MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B32 ||
        MI->getOpcode() == AMDGPU::V_SET_INACTIVE_B64) {
      assert(MI->getNumExplicitOperands() == 3);
      // the only reason we should be here is V_SET_INACTIVE has
      // an undef input so it is being replaced by a simple copy.
      // There should be a second undef source that we should remove.
      assert(MI->getOperand(2).isUndef());
      MI->RemoveOperand(2);
      MI->untieRegOperand(1);
    } else {
      assert(MI->getNumExplicitOperands() == 2);
    }

    MI->setDesc(TII->get(AMDGPU::COPY));
  }
}

bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
  Instructions.clear();
  Blocks.clear();
  LiveMaskQueries.clear();
  LowerToCopyInstrs.clear();
  LowerToMovInstrs.clear();
  CallingConv = MF.getFunction().getCallingConv();

  ST = &MF.getSubtarget<GCNSubtarget>();

  TII = ST->getInstrInfo();
  TRI = &TII->getRegisterInfo();
  MRI = &MF.getRegInfo();
  LIS = &getAnalysis<LiveIntervals>();

  char GlobalFlags = analyzeFunction(MF);
  unsigned LiveMaskReg = 0;
  unsigned Exec = ST->isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
  if (!(GlobalFlags & StateWQM)) {
    lowerLiveMaskQueries(Exec);
    if (!(GlobalFlags & StateWWM) && LowerToCopyInstrs.empty() && LowerToMovInstrs.empty())
      return !LiveMaskQueries.empty();
  } else {
    // Store a copy of the original live mask when required
    MachineBasicBlock &Entry = MF.front();
    MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI();

    if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) {
      LiveMaskReg = MRI->createVirtualRegister(TRI->getBoolRC());
      MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(),
                                 TII->get(AMDGPU::COPY), LiveMaskReg)
                             .addReg(Exec);
      LIS->InsertMachineInstrInMaps(*MI);
    }

    lowerLiveMaskQueries(LiveMaskReg);

    if (GlobalFlags == StateWQM) {
      // For a shader that needs only WQM, we can just set it once.
      auto MI = BuildMI(Entry, EntryMI, DebugLoc(),
                        TII->get(ST->isWave32() ? AMDGPU::S_WQM_B32
                                                : AMDGPU::S_WQM_B64),
                        Exec)
                    .addReg(Exec);
      LIS->InsertMachineInstrInMaps(*MI);

      lowerCopyInstrs();
      // EntryMI may become invalid here
      return true;
    }
  }

  LLVM_DEBUG(printInfo());

  lowerCopyInstrs();

  // Handle the general case
  for (auto BII : Blocks)
    processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin());

  if (LiveMaskReg)
    LIS->createAndComputeVirtRegInterval(LiveMaskReg);

  // Physical registers like SCC aren't tracked by default anyway, so just
  // removing the ranges we computed is the simplest option for maintaining
  // the analysis results.
  LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));

  return true;
}