SIMachineFunctionInfo.h 26.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
//==- SIMachineFunctionInfo.h - SIMachineFunctionInfo interface --*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
#define LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H

#include "AMDGPUArgumentUsageInfo.h"
#include "AMDGPUMachineFunction.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <array>
#include <cassert>
#include <utility>
#include <vector>

namespace llvm {

class MachineFrameInfo;
class MachineFunction;
class TargetRegisterClass;

class AMDGPUPseudoSourceValue : public PseudoSourceValue {
public:
  enum AMDGPUPSVKind : unsigned {
    PSVBuffer = PseudoSourceValue::TargetCustom,
    PSVImage,
    GWSResource
  };

protected:
  AMDGPUPseudoSourceValue(unsigned Kind, const TargetInstrInfo &TII)
      : PseudoSourceValue(Kind, TII) {}

public:
  bool isConstant(const MachineFrameInfo *) const override {
    // This should probably be true for most images, but we will start by being
    // conservative.
    return false;
  }

  bool isAliased(const MachineFrameInfo *) const override {
    return true;
  }

  bool mayAlias(const MachineFrameInfo *) const override {
    return true;
  }
};

class AMDGPUBufferPseudoSourceValue final : public AMDGPUPseudoSourceValue {
public:
  explicit AMDGPUBufferPseudoSourceValue(const TargetInstrInfo &TII)
      : AMDGPUPseudoSourceValue(PSVBuffer, TII) {}

  static bool classof(const PseudoSourceValue *V) {
    return V->kind() == PSVBuffer;
  }
};

class AMDGPUImagePseudoSourceValue final : public AMDGPUPseudoSourceValue {
public:
  // TODO: Is the img rsrc useful?
  explicit AMDGPUImagePseudoSourceValue(const TargetInstrInfo &TII)
      : AMDGPUPseudoSourceValue(PSVImage, TII) {}

  static bool classof(const PseudoSourceValue *V) {
    return V->kind() == PSVImage;
  }
};

class AMDGPUGWSResourcePseudoSourceValue final : public AMDGPUPseudoSourceValue {
public:
  explicit AMDGPUGWSResourcePseudoSourceValue(const TargetInstrInfo &TII)
      : AMDGPUPseudoSourceValue(GWSResource, TII) {}

  static bool classof(const PseudoSourceValue *V) {
    return V->kind() == GWSResource;
  }

  // These are inaccessible memory from IR.
  bool isAliased(const MachineFrameInfo *) const override {
    return false;
  }

  // These are inaccessible memory from IR.
  bool mayAlias(const MachineFrameInfo *) const override {
    return false;
  }

  void printCustom(raw_ostream &OS) const override {
    OS << "GWSResource";
  }
};

namespace yaml {

struct SIArgument {
  bool IsRegister;
  union {
    StringValue RegisterName;
    unsigned StackOffset;
  };
  Optional<unsigned> Mask;

  // Default constructor, which creates a stack argument.
  SIArgument() : IsRegister(false), StackOffset(0) {}
  SIArgument(const SIArgument &Other) {
    IsRegister = Other.IsRegister;
    if (IsRegister) {
      ::new ((void *)std::addressof(RegisterName))
          StringValue(Other.RegisterName);
    } else
      StackOffset = Other.StackOffset;
    Mask = Other.Mask;
  }
  SIArgument &operator=(const SIArgument &Other) {
    IsRegister = Other.IsRegister;
    if (IsRegister) {
      ::new ((void *)std::addressof(RegisterName))
          StringValue(Other.RegisterName);
    } else
      StackOffset = Other.StackOffset;
    Mask = Other.Mask;
    return *this;
  }
  ~SIArgument() {
    if (IsRegister)
      RegisterName.~StringValue();
  }

  // Helper to create a register or stack argument.
  static inline SIArgument createArgument(bool IsReg) {
    if (IsReg)
      return SIArgument(IsReg);
    return SIArgument();
  }

private:
  // Construct a register argument.
  SIArgument(bool) : IsRegister(true), RegisterName() {}
};

template <> struct MappingTraits<SIArgument> {
  static void mapping(IO &YamlIO, SIArgument &A) {
    if (YamlIO.outputting()) {
      if (A.IsRegister)
        YamlIO.mapRequired("reg", A.RegisterName);
      else
        YamlIO.mapRequired("offset", A.StackOffset);
    } else {
      auto Keys = YamlIO.keys();
      if (is_contained(Keys, "reg")) {
        A = SIArgument::createArgument(true);
        YamlIO.mapRequired("reg", A.RegisterName);
      } else if (is_contained(Keys, "offset"))
        YamlIO.mapRequired("offset", A.StackOffset);
      else
        YamlIO.setError("missing required key 'reg' or 'offset'");
    }
    YamlIO.mapOptional("mask", A.Mask);
  }
  static const bool flow = true;
};

struct SIArgumentInfo {
  Optional<SIArgument> PrivateSegmentBuffer;
  Optional<SIArgument> DispatchPtr;
  Optional<SIArgument> QueuePtr;
  Optional<SIArgument> KernargSegmentPtr;
  Optional<SIArgument> DispatchID;
  Optional<SIArgument> FlatScratchInit;
  Optional<SIArgument> PrivateSegmentSize;

  Optional<SIArgument> WorkGroupIDX;
  Optional<SIArgument> WorkGroupIDY;
  Optional<SIArgument> WorkGroupIDZ;
  Optional<SIArgument> WorkGroupInfo;
  Optional<SIArgument> PrivateSegmentWaveByteOffset;

  Optional<SIArgument> ImplicitArgPtr;
  Optional<SIArgument> ImplicitBufferPtr;

  Optional<SIArgument> WorkItemIDX;
  Optional<SIArgument> WorkItemIDY;
  Optional<SIArgument> WorkItemIDZ;
};

template <> struct MappingTraits<SIArgumentInfo> {
  static void mapping(IO &YamlIO, SIArgumentInfo &AI) {
    YamlIO.mapOptional("privateSegmentBuffer", AI.PrivateSegmentBuffer);
    YamlIO.mapOptional("dispatchPtr", AI.DispatchPtr);
    YamlIO.mapOptional("queuePtr", AI.QueuePtr);
    YamlIO.mapOptional("kernargSegmentPtr", AI.KernargSegmentPtr);
    YamlIO.mapOptional("dispatchID", AI.DispatchID);
    YamlIO.mapOptional("flatScratchInit", AI.FlatScratchInit);
    YamlIO.mapOptional("privateSegmentSize", AI.PrivateSegmentSize);

    YamlIO.mapOptional("workGroupIDX", AI.WorkGroupIDX);
    YamlIO.mapOptional("workGroupIDY", AI.WorkGroupIDY);
    YamlIO.mapOptional("workGroupIDZ", AI.WorkGroupIDZ);
    YamlIO.mapOptional("workGroupInfo", AI.WorkGroupInfo);
    YamlIO.mapOptional("privateSegmentWaveByteOffset",
                       AI.PrivateSegmentWaveByteOffset);

    YamlIO.mapOptional("implicitArgPtr", AI.ImplicitArgPtr);
    YamlIO.mapOptional("implicitBufferPtr", AI.ImplicitBufferPtr);

    YamlIO.mapOptional("workItemIDX", AI.WorkItemIDX);
    YamlIO.mapOptional("workItemIDY", AI.WorkItemIDY);
    YamlIO.mapOptional("workItemIDZ", AI.WorkItemIDZ);
  }
};

// Default to default mode for default calling convention.
struct SIMode {
  bool IEEE = true;
  bool DX10Clamp = true;
  bool FP32InputDenormals = true;
  bool FP32OutputDenormals = true;
  bool FP64FP16InputDenormals = true;
  bool FP64FP16OutputDenormals = true;

  SIMode() = default;

  SIMode(const AMDGPU::SIModeRegisterDefaults &Mode) {
    IEEE = Mode.IEEE;
    DX10Clamp = Mode.DX10Clamp;
    FP32InputDenormals = Mode.FP32InputDenormals;
    FP32OutputDenormals = Mode.FP32OutputDenormals;
    FP64FP16InputDenormals = Mode.FP64FP16InputDenormals;
    FP64FP16OutputDenormals = Mode.FP64FP16OutputDenormals;
  }

  bool operator ==(const SIMode Other) const {
    return IEEE == Other.IEEE &&
           DX10Clamp == Other.DX10Clamp &&
           FP32InputDenormals == Other.FP32InputDenormals &&
           FP32OutputDenormals == Other.FP32OutputDenormals &&
           FP64FP16InputDenormals == Other.FP64FP16InputDenormals &&
           FP64FP16OutputDenormals == Other.FP64FP16OutputDenormals;
  }
};

template <> struct MappingTraits<SIMode> {
  static void mapping(IO &YamlIO, SIMode &Mode) {
    YamlIO.mapOptional("ieee", Mode.IEEE, true);
    YamlIO.mapOptional("dx10-clamp", Mode.DX10Clamp, true);
    YamlIO.mapOptional("fp32-input-denormals", Mode.FP32InputDenormals, true);
    YamlIO.mapOptional("fp32-output-denormals", Mode.FP32OutputDenormals, true);
    YamlIO.mapOptional("fp64-fp16-input-denormals", Mode.FP64FP16InputDenormals, true);
    YamlIO.mapOptional("fp64-fp16-output-denormals", Mode.FP64FP16OutputDenormals, true);
  }
};

struct SIMachineFunctionInfo final : public yaml::MachineFunctionInfo {
  uint64_t ExplicitKernArgSize = 0;
  unsigned MaxKernArgAlign = 0;
  unsigned LDSSize = 0;
  bool IsEntryFunction = false;
  bool NoSignedZerosFPMath = false;
  bool MemoryBound = false;
  bool WaveLimiter = false;
  uint32_t HighBitsOf32BitAddress = 0;

  StringValue ScratchRSrcReg = "$private_rsrc_reg";
  StringValue FrameOffsetReg = "$fp_reg";
  StringValue StackPtrOffsetReg = "$sp_reg";

  Optional<SIArgumentInfo> ArgInfo;
  SIMode Mode;

  SIMachineFunctionInfo() = default;
  SIMachineFunctionInfo(const llvm::SIMachineFunctionInfo &,
                        const TargetRegisterInfo &TRI);

  void mappingImpl(yaml::IO &YamlIO) override;
  ~SIMachineFunctionInfo() = default;
};

template <> struct MappingTraits<SIMachineFunctionInfo> {
  static void mapping(IO &YamlIO, SIMachineFunctionInfo &MFI) {
    YamlIO.mapOptional("explicitKernArgSize", MFI.ExplicitKernArgSize,
                       UINT64_C(0));
    YamlIO.mapOptional("maxKernArgAlign", MFI.MaxKernArgAlign, 0u);
    YamlIO.mapOptional("ldsSize", MFI.LDSSize, 0u);
    YamlIO.mapOptional("isEntryFunction", MFI.IsEntryFunction, false);
    YamlIO.mapOptional("noSignedZerosFPMath", MFI.NoSignedZerosFPMath, false);
    YamlIO.mapOptional("memoryBound", MFI.MemoryBound, false);
    YamlIO.mapOptional("waveLimiter", MFI.WaveLimiter, false);
    YamlIO.mapOptional("scratchRSrcReg", MFI.ScratchRSrcReg,
                       StringValue("$private_rsrc_reg"));
    YamlIO.mapOptional("frameOffsetReg", MFI.FrameOffsetReg,
                       StringValue("$fp_reg"));
    YamlIO.mapOptional("stackPtrOffsetReg", MFI.StackPtrOffsetReg,
                       StringValue("$sp_reg"));
    YamlIO.mapOptional("argumentInfo", MFI.ArgInfo);
    YamlIO.mapOptional("mode", MFI.Mode, SIMode());
    YamlIO.mapOptional("highBitsOf32BitAddress",
                       MFI.HighBitsOf32BitAddress, 0u);
  }
};

} // end namespace yaml

/// This class keeps track of the SPI_SP_INPUT_ADDR config register, which
/// tells the hardware which interpolation parameters to load.
class SIMachineFunctionInfo final : public AMDGPUMachineFunction {
  friend class GCNTargetMachine;

  Register TIDReg = AMDGPU::NoRegister;

  // Registers that may be reserved for spilling purposes. These may be the same
  // as the input registers.
  Register ScratchRSrcReg = AMDGPU::PRIVATE_RSRC_REG;

  // This is the the unswizzled offset from the current dispatch's scratch wave
  // base to the beginning of the current function's frame.
  Register FrameOffsetReg = AMDGPU::FP_REG;

  // This is an ABI register used in the non-entry calling convention to
  // communicate the unswizzled offset from the current dispatch's scratch wave
  // base to the beginning of the new function's frame.
  Register StackPtrOffsetReg = AMDGPU::SP_REG;

  AMDGPUFunctionArgInfo ArgInfo;

  // Graphics info.
  unsigned PSInputAddr = 0;
  unsigned PSInputEnable = 0;

  /// Number of bytes of arguments this function has on the stack. If the callee
  /// is expected to restore the argument stack this should be a multiple of 16,
  /// all usable during a tail call.
  ///
  /// The alternative would forbid tail call optimisation in some cases: if we
  /// want to transfer control from a function with 8-bytes of stack-argument
  /// space to a function with 16-bytes then misalignment of this value would
  /// make a stack adjustment necessary, which could not be undone by the
  /// callee.
  unsigned BytesInStackArgArea = 0;

  bool ReturnsVoid = true;

  // A pair of default/requested minimum/maximum flat work group sizes.
  // Minimum - first, maximum - second.
  std::pair<unsigned, unsigned> FlatWorkGroupSizes = {0, 0};

  // A pair of default/requested minimum/maximum number of waves per execution
  // unit. Minimum - first, maximum - second.
  std::pair<unsigned, unsigned> WavesPerEU = {0, 0};

  DenseMap<const Value *,
           std::unique_ptr<const AMDGPUBufferPseudoSourceValue>> BufferPSVs;
  DenseMap<const Value *,
           std::unique_ptr<const AMDGPUImagePseudoSourceValue>> ImagePSVs;
  std::unique_ptr<const AMDGPUGWSResourcePseudoSourceValue> GWSResourcePSV;

private:
  unsigned LDSWaveSpillSize = 0;
  unsigned NumUserSGPRs = 0;
  unsigned NumSystemSGPRs = 0;

  bool HasSpilledSGPRs = false;
  bool HasSpilledVGPRs = false;
  bool HasNonSpillStackObjects = false;
  bool IsStackRealigned = false;

  unsigned NumSpilledSGPRs = 0;
  unsigned NumSpilledVGPRs = 0;

  // Feature bits required for inputs passed in user SGPRs.
  bool PrivateSegmentBuffer : 1;
  bool DispatchPtr : 1;
  bool QueuePtr : 1;
  bool KernargSegmentPtr : 1;
  bool DispatchID : 1;
  bool FlatScratchInit : 1;

  // Feature bits required for inputs passed in system SGPRs.
  bool WorkGroupIDX : 1; // Always initialized.
  bool WorkGroupIDY : 1;
  bool WorkGroupIDZ : 1;
  bool WorkGroupInfo : 1;
  bool PrivateSegmentWaveByteOffset : 1;

  bool WorkItemIDX : 1; // Always initialized.
  bool WorkItemIDY : 1;
  bool WorkItemIDZ : 1;

  // Private memory buffer
  // Compute directly in sgpr[0:1]
  // Other shaders indirect 64-bits at sgpr[0:1]
  bool ImplicitBufferPtr : 1;

  // Pointer to where the ABI inserts special kernel arguments separate from the
  // user arguments. This is an offset from the KernargSegmentPtr.
  bool ImplicitArgPtr : 1;

  // The hard-wired high half of the address of the global information table
  // for AMDPAL OS type. 0xffffffff represents no hard-wired high half, since
  // current hardware only allows a 16 bit value.
  unsigned GITPtrHigh;

  unsigned HighBitsOf32BitAddress;
  unsigned GDSSize;

  // Current recorded maximum possible occupancy.
  unsigned Occupancy;

  MCPhysReg getNextUserSGPR() const;

  MCPhysReg getNextSystemSGPR() const;

public:
  struct SpilledReg {
    Register VGPR;
    int Lane = -1;

    SpilledReg() = default;
    SpilledReg(Register R, int L) : VGPR (R), Lane (L) {}

    bool hasLane() { return Lane != -1;}
    bool hasReg() { return VGPR != 0;}
  };

  struct SGPRSpillVGPRCSR {
    // VGPR used for SGPR spills
    Register VGPR;

    // If the VGPR is a CSR, the stack slot used to save/restore it in the
    // prolog/epilog.
    Optional<int> FI;

    SGPRSpillVGPRCSR(Register V, Optional<int> F) : VGPR(V), FI(F) {}
  };

  struct VGPRSpillToAGPR {
    SmallVector<MCPhysReg, 32> Lanes;
    bool FullyAllocated = false;
  };

  SparseBitVector<> WWMReservedRegs;

  void ReserveWWMRegister(Register Reg) { WWMReservedRegs.set(Reg); }

private:
  // Track VGPR + wave index for each subregister of the SGPR spilled to
  // frameindex key.
  DenseMap<int, std::vector<SpilledReg>> SGPRToVGPRSpills;
  unsigned NumVGPRSpillLanes = 0;
  SmallVector<SGPRSpillVGPRCSR, 2> SpillVGPRs;

  DenseMap<int, VGPRSpillToAGPR> VGPRToAGPRSpills;

  // AGPRs used for VGPR spills.
  SmallVector<MCPhysReg, 32> SpillAGPR;

  // VGPRs used for AGPR spills.
  SmallVector<MCPhysReg, 32> SpillVGPR;

public: // FIXME
  /// If this is set, an SGPR used for save/restore of the register used for the
  /// frame pointer.
  Register SGPRForFPSaveRestoreCopy;
  Optional<int> FramePointerSaveIndex;

  /// If this is set, an SGPR used for save/restore of the register used for the
  /// base pointer.
  Register SGPRForBPSaveRestoreCopy;
  Optional<int> BasePointerSaveIndex;

  Register VGPRReservedForSGPRSpill;
  bool isCalleeSavedReg(const MCPhysReg *CSRegs, MCPhysReg Reg);

public:
  SIMachineFunctionInfo(const MachineFunction &MF);

  bool initializeBaseYamlFields(const yaml::SIMachineFunctionInfo &YamlMFI);

  ArrayRef<SpilledReg> getSGPRToVGPRSpills(int FrameIndex) const {
    auto I = SGPRToVGPRSpills.find(FrameIndex);
    return (I == SGPRToVGPRSpills.end()) ?
      ArrayRef<SpilledReg>() : makeArrayRef(I->second);
  }

  ArrayRef<SGPRSpillVGPRCSR> getSGPRSpillVGPRs() const {
    return SpillVGPRs;
  }

  void setSGPRSpillVGPRs(Register NewVGPR, Optional<int> newFI, int Index) {
    SpillVGPRs[Index].VGPR = NewVGPR;
    SpillVGPRs[Index].FI = newFI;
    VGPRReservedForSGPRSpill = NewVGPR;
  }

  bool removeVGPRForSGPRSpill(Register ReservedVGPR, MachineFunction &MF);

  ArrayRef<MCPhysReg> getAGPRSpillVGPRs() const {
    return SpillAGPR;
  }

  ArrayRef<MCPhysReg> getVGPRSpillAGPRs() const {
    return SpillVGPR;
  }

  MCPhysReg getVGPRToAGPRSpill(int FrameIndex, unsigned Lane) const {
    auto I = VGPRToAGPRSpills.find(FrameIndex);
    return (I == VGPRToAGPRSpills.end()) ? (MCPhysReg)AMDGPU::NoRegister
                                         : I->second.Lanes[Lane];
  }

  bool haveFreeLanesForSGPRSpill(const MachineFunction &MF,
                                 unsigned NumLane) const;
  bool allocateSGPRSpillToVGPR(MachineFunction &MF, int FI);
  bool reserveVGPRforSGPRSpills(MachineFunction &MF);
  bool allocateVGPRSpillToAGPR(MachineFunction &MF, int FI, bool isAGPRtoVGPR);
  void removeDeadFrameIndices(MachineFrameInfo &MFI);

  bool hasCalculatedTID() const { return TIDReg != 0; };
  Register getTIDReg() const { return TIDReg; };
  void setTIDReg(Register Reg) { TIDReg = Reg; }

  unsigned getBytesInStackArgArea() const {
    return BytesInStackArgArea;
  }

  void setBytesInStackArgArea(unsigned Bytes) {
    BytesInStackArgArea = Bytes;
  }

  // Add user SGPRs.
  Register addPrivateSegmentBuffer(const SIRegisterInfo &TRI);
  Register addDispatchPtr(const SIRegisterInfo &TRI);
  Register addQueuePtr(const SIRegisterInfo &TRI);
  Register addKernargSegmentPtr(const SIRegisterInfo &TRI);
  Register addDispatchID(const SIRegisterInfo &TRI);
  Register addFlatScratchInit(const SIRegisterInfo &TRI);
  Register addImplicitBufferPtr(const SIRegisterInfo &TRI);

  // Add system SGPRs.
  Register addWorkGroupIDX() {
    ArgInfo.WorkGroupIDX = ArgDescriptor::createRegister(getNextSystemSGPR());
    NumSystemSGPRs += 1;
    return ArgInfo.WorkGroupIDX.getRegister();
  }

  Register addWorkGroupIDY() {
    ArgInfo.WorkGroupIDY = ArgDescriptor::createRegister(getNextSystemSGPR());
    NumSystemSGPRs += 1;
    return ArgInfo.WorkGroupIDY.getRegister();
  }

  Register addWorkGroupIDZ() {
    ArgInfo.WorkGroupIDZ = ArgDescriptor::createRegister(getNextSystemSGPR());
    NumSystemSGPRs += 1;
    return ArgInfo.WorkGroupIDZ.getRegister();
  }

  Register addWorkGroupInfo() {
    ArgInfo.WorkGroupInfo = ArgDescriptor::createRegister(getNextSystemSGPR());
    NumSystemSGPRs += 1;
    return ArgInfo.WorkGroupInfo.getRegister();
  }

  // Add special VGPR inputs
  void setWorkItemIDX(ArgDescriptor Arg) {
    ArgInfo.WorkItemIDX = Arg;
  }

  void setWorkItemIDY(ArgDescriptor Arg) {
    ArgInfo.WorkItemIDY = Arg;
  }

  void setWorkItemIDZ(ArgDescriptor Arg) {
    ArgInfo.WorkItemIDZ = Arg;
  }

  Register addPrivateSegmentWaveByteOffset() {
    ArgInfo.PrivateSegmentWaveByteOffset
      = ArgDescriptor::createRegister(getNextSystemSGPR());
    NumSystemSGPRs += 1;
    return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
  }

  void setPrivateSegmentWaveByteOffset(Register Reg) {
    ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(Reg);
  }

  bool hasPrivateSegmentBuffer() const {
    return PrivateSegmentBuffer;
  }

  bool hasDispatchPtr() const {
    return DispatchPtr;
  }

  bool hasQueuePtr() const {
    return QueuePtr;
  }

  bool hasKernargSegmentPtr() const {
    return KernargSegmentPtr;
  }

  bool hasDispatchID() const {
    return DispatchID;
  }

  bool hasFlatScratchInit() const {
    return FlatScratchInit;
  }

  bool hasWorkGroupIDX() const {
    return WorkGroupIDX;
  }

  bool hasWorkGroupIDY() const {
    return WorkGroupIDY;
  }

  bool hasWorkGroupIDZ() const {
    return WorkGroupIDZ;
  }

  bool hasWorkGroupInfo() const {
    return WorkGroupInfo;
  }

  bool hasPrivateSegmentWaveByteOffset() const {
    return PrivateSegmentWaveByteOffset;
  }

  bool hasWorkItemIDX() const {
    return WorkItemIDX;
  }

  bool hasWorkItemIDY() const {
    return WorkItemIDY;
  }

  bool hasWorkItemIDZ() const {
    return WorkItemIDZ;
  }

  bool hasImplicitArgPtr() const {
    return ImplicitArgPtr;
  }

  bool hasImplicitBufferPtr() const {
    return ImplicitBufferPtr;
  }

  AMDGPUFunctionArgInfo &getArgInfo() {
    return ArgInfo;
  }

  const AMDGPUFunctionArgInfo &getArgInfo() const {
    return ArgInfo;
  }

  std::tuple<const ArgDescriptor *, const TargetRegisterClass *, LLT>
  getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
    return ArgInfo.getPreloadedValue(Value);
  }

  Register getPreloadedReg(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
    auto Arg = std::get<0>(ArgInfo.getPreloadedValue(Value));
    return Arg ? Arg->getRegister() : Register();
  }

  unsigned getGITPtrHigh() const {
    return GITPtrHigh;
  }

  Register getGITPtrLoReg(const MachineFunction &MF) const;

  uint32_t get32BitAddressHighBits() const {
    return HighBitsOf32BitAddress;
  }

  unsigned getGDSSize() const {
    return GDSSize;
  }

  unsigned getNumUserSGPRs() const {
    return NumUserSGPRs;
  }

  unsigned getNumPreloadedSGPRs() const {
    return NumUserSGPRs + NumSystemSGPRs;
  }

  Register getPrivateSegmentWaveByteOffsetSystemSGPR() const {
    return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
  }

  /// Returns the physical register reserved for use as the resource
  /// descriptor for scratch accesses.
  Register getScratchRSrcReg() const {
    return ScratchRSrcReg;
  }

  void setScratchRSrcReg(Register Reg) {
    assert(Reg != 0 && "Should never be unset");
    ScratchRSrcReg = Reg;
  }

  Register getFrameOffsetReg() const {
    return FrameOffsetReg;
  }

  void setFrameOffsetReg(Register Reg) {
    assert(Reg != 0 && "Should never be unset");
    FrameOffsetReg = Reg;
  }

  void setStackPtrOffsetReg(Register Reg) {
    assert(Reg != 0 && "Should never be unset");
    StackPtrOffsetReg = Reg;
  }

  // Note the unset value for this is AMDGPU::SP_REG rather than
  // NoRegister. This is mostly a workaround for MIR tests where state that
  // can't be directly computed from the function is not preserved in serialized
  // MIR.
  Register getStackPtrOffsetReg() const {
    return StackPtrOffsetReg;
  }

  Register getQueuePtrUserSGPR() const {
    return ArgInfo.QueuePtr.getRegister();
  }

  Register getImplicitBufferPtrUserSGPR() const {
    return ArgInfo.ImplicitBufferPtr.getRegister();
  }

  bool hasSpilledSGPRs() const {
    return HasSpilledSGPRs;
  }

  void setHasSpilledSGPRs(bool Spill = true) {
    HasSpilledSGPRs = Spill;
  }

  bool hasSpilledVGPRs() const {
    return HasSpilledVGPRs;
  }

  void setHasSpilledVGPRs(bool Spill = true) {
    HasSpilledVGPRs = Spill;
  }

  bool hasNonSpillStackObjects() const {
    return HasNonSpillStackObjects;
  }

  void setHasNonSpillStackObjects(bool StackObject = true) {
    HasNonSpillStackObjects = StackObject;
  }

  bool isStackRealigned() const {
    return IsStackRealigned;
  }

  void setIsStackRealigned(bool Realigned = true) {
    IsStackRealigned = Realigned;
  }

  unsigned getNumSpilledSGPRs() const {
    return NumSpilledSGPRs;
  }

  unsigned getNumSpilledVGPRs() const {
    return NumSpilledVGPRs;
  }

  void addToSpilledSGPRs(unsigned num) {
    NumSpilledSGPRs += num;
  }

  void addToSpilledVGPRs(unsigned num) {
    NumSpilledVGPRs += num;
  }

  unsigned getPSInputAddr() const {
    return PSInputAddr;
  }

  unsigned getPSInputEnable() const {
    return PSInputEnable;
  }

  bool isPSInputAllocated(unsigned Index) const {
    return PSInputAddr & (1 << Index);
  }

  void markPSInputAllocated(unsigned Index) {
    PSInputAddr |= 1 << Index;
  }

  void markPSInputEnabled(unsigned Index) {
    PSInputEnable |= 1 << Index;
  }

  bool returnsVoid() const {
    return ReturnsVoid;
  }

  void setIfReturnsVoid(bool Value) {
    ReturnsVoid = Value;
  }

  /// \returns A pair of default/requested minimum/maximum flat work group sizes
  /// for this function.
  std::pair<unsigned, unsigned> getFlatWorkGroupSizes() const {
    return FlatWorkGroupSizes;
  }

  /// \returns Default/requested minimum flat work group size for this function.
  unsigned getMinFlatWorkGroupSize() const {
    return FlatWorkGroupSizes.first;
  }

  /// \returns Default/requested maximum flat work group size for this function.
  unsigned getMaxFlatWorkGroupSize() const {
    return FlatWorkGroupSizes.second;
  }

  /// \returns A pair of default/requested minimum/maximum number of waves per
  /// execution unit.
  std::pair<unsigned, unsigned> getWavesPerEU() const {
    return WavesPerEU;
  }

  /// \returns Default/requested minimum number of waves per execution unit.
  unsigned getMinWavesPerEU() const {
    return WavesPerEU.first;
  }

  /// \returns Default/requested maximum number of waves per execution unit.
  unsigned getMaxWavesPerEU() const {
    return WavesPerEU.second;
  }

  /// \returns SGPR used for \p Dim's work group ID.
  Register getWorkGroupIDSGPR(unsigned Dim) const {
    switch (Dim) {
    case 0:
      assert(hasWorkGroupIDX());
      return ArgInfo.WorkGroupIDX.getRegister();
    case 1:
      assert(hasWorkGroupIDY());
      return ArgInfo.WorkGroupIDY.getRegister();
    case 2:
      assert(hasWorkGroupIDZ());
      return ArgInfo.WorkGroupIDZ.getRegister();
    }
    llvm_unreachable("unexpected dimension");
  }

  unsigned getLDSWaveSpillSize() const {
    return LDSWaveSpillSize;
  }

  const AMDGPUBufferPseudoSourceValue *getBufferPSV(const SIInstrInfo &TII,
                                                    const Value *BufferRsrc) {
    assert(BufferRsrc);
    auto PSV = BufferPSVs.try_emplace(
      BufferRsrc,
      std::make_unique<AMDGPUBufferPseudoSourceValue>(TII));
    return PSV.first->second.get();
  }

  const AMDGPUImagePseudoSourceValue *getImagePSV(const SIInstrInfo &TII,
                                                  const Value *ImgRsrc) {
    assert(ImgRsrc);
    auto PSV = ImagePSVs.try_emplace(
      ImgRsrc,
      std::make_unique<AMDGPUImagePseudoSourceValue>(TII));
    return PSV.first->second.get();
  }

  const AMDGPUGWSResourcePseudoSourceValue *getGWSPSV(const SIInstrInfo &TII) {
    if (!GWSResourcePSV) {
      GWSResourcePSV =
          std::make_unique<AMDGPUGWSResourcePseudoSourceValue>(TII);
    }

    return GWSResourcePSV.get();
  }

  unsigned getOccupancy() const {
    return Occupancy;
  }

  unsigned getMinAllowedOccupancy() const {
    if (!isMemoryBound() && !needsWaveLimiter())
      return Occupancy;
    return (Occupancy < 4) ? Occupancy : 4;
  }

  void limitOccupancy(const MachineFunction &MF);

  void limitOccupancy(unsigned Limit) {
    if (Occupancy > Limit)
      Occupancy = Limit;
  }

  void increaseOccupancy(const MachineFunction &MF, unsigned Limit) {
    if (Occupancy < Limit)
      Occupancy = Limit;
    limitOccupancy(MF);
  }
};

} // end namespace llvm

#endif // LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H