SILowerControlFlow.cpp 22.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass lowers the pseudo control flow instructions to real
/// machine instructions.
///
/// All control flow is handled using predicated instructions and
/// a predicate stack.  Each Scalar ALU controls the operations of 64 Vector
/// ALUs.  The Scalar ALU can update the predicate for any of the Vector ALUs
/// by writting to the 64-bit EXEC register (each bit corresponds to a
/// single vector ALU).  Typically, for predicates, a vector ALU will write
/// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each
/// Vector ALU) and then the ScalarALU will AND the VCC register with the
/// EXEC to update the predicates.
///
/// For example:
/// %vcc = V_CMP_GT_F32 %vgpr1, %vgpr2
/// %sgpr0 = SI_IF %vcc
///   %vgpr0 = V_ADD_F32 %vgpr0, %vgpr0
/// %sgpr0 = SI_ELSE %sgpr0
///   %vgpr0 = V_SUB_F32 %vgpr0, %vgpr0
/// SI_END_CF %sgpr0
///
/// becomes:
///
/// %sgpr0 = S_AND_SAVEEXEC_B64 %vcc  // Save and update the exec mask
/// %sgpr0 = S_XOR_B64 %sgpr0, %exec  // Clear live bits from saved exec mask
/// S_CBRANCH_EXECZ label0            // This instruction is an optional
///                                   // optimization which allows us to
///                                   // branch if all the bits of
///                                   // EXEC are zero.
/// %vgpr0 = V_ADD_F32 %vgpr0, %vgpr0 // Do the IF block of the branch
///
/// label0:
/// %sgpr0 = S_OR_SAVEEXEC_B64 %sgpr0  // Restore the exec mask for the Then block
/// %exec = S_XOR_B64 %sgpr0, %exec    // Update the exec mask
/// S_BRANCH_EXECZ label1              // Use our branch optimization
///                                    // instruction again.
/// %vgpr0 = V_SUB_F32 %vgpr0, %vgpr   // Do the THEN block
/// label1:
/// %exec = S_OR_B64 %exec, %sgpr0     // Re-enable saved exec mask bits
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include <cassert>
#include <iterator>

using namespace llvm;

#define DEBUG_TYPE "si-lower-control-flow"

static cl::opt<bool>
RemoveRedundantEndcf("amdgpu-remove-redundant-endcf",
    cl::init(true), cl::ReallyHidden);

namespace {

class SILowerControlFlow : public MachineFunctionPass {
private:
  const SIRegisterInfo *TRI = nullptr;
  const SIInstrInfo *TII = nullptr;
  LiveIntervals *LIS = nullptr;
  MachineRegisterInfo *MRI = nullptr;
  SetVector<MachineInstr*> LoweredEndCf;
  DenseSet<Register> LoweredIf;
  SmallSet<MachineInstr *, 16> NeedsKillCleanup;

  const TargetRegisterClass *BoolRC = nullptr;
  bool InsertKillCleanups;
  unsigned AndOpc;
  unsigned OrOpc;
  unsigned XorOpc;
  unsigned MovTermOpc;
  unsigned Andn2TermOpc;
  unsigned XorTermrOpc;
  unsigned OrSaveExecOpc;
  unsigned Exec;

  void emitIf(MachineInstr &MI);
  void emitElse(MachineInstr &MI);
  void emitIfBreak(MachineInstr &MI);
  void emitLoop(MachineInstr &MI);
  void emitEndCf(MachineInstr &MI);

  void findMaskOperands(MachineInstr &MI, unsigned OpNo,
                        SmallVectorImpl<MachineOperand> &Src) const;

  void combineMasks(MachineInstr &MI);

  void process(MachineInstr &MI);

  // Skip to the next instruction, ignoring debug instructions, and trivial
  // block boundaries (blocks that have one (typically fallthrough) successor,
  // and the successor has one predecessor.
  MachineBasicBlock::iterator
  skipIgnoreExecInstsTrivialSucc(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator It) const;

  // Remove redundant SI_END_CF instructions.
  void optimizeEndCf();

public:
  static char ID;

  SILowerControlFlow() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override {
    return "SI Lower control flow pseudo instructions";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    // Should preserve the same set that TwoAddressInstructions does.
    AU.addPreserved<SlotIndexes>();
    AU.addPreserved<LiveIntervals>();
    AU.addPreservedID(LiveVariablesID);
    AU.addPreservedID(MachineLoopInfoID);
    AU.addPreservedID(MachineDominatorsID);
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char SILowerControlFlow::ID = 0;

INITIALIZE_PASS(SILowerControlFlow, DEBUG_TYPE,
               "SI lower control flow", false, false)

static void setImpSCCDefDead(MachineInstr &MI, bool IsDead) {
  MachineOperand &ImpDefSCC = MI.getOperand(3);
  assert(ImpDefSCC.getReg() == AMDGPU::SCC && ImpDefSCC.isDef());

  ImpDefSCC.setIsDead(IsDead);
}

char &llvm::SILowerControlFlowID = SILowerControlFlow::ID;

static bool hasKill(const MachineBasicBlock *Begin,
                    const MachineBasicBlock *End, const SIInstrInfo *TII) {
  DenseSet<const MachineBasicBlock*> Visited;
  SmallVector<MachineBasicBlock *, 4> Worklist(Begin->succ_begin(),
                                               Begin->succ_end());

  while (!Worklist.empty()) {
    MachineBasicBlock *MBB = Worklist.pop_back_val();

    if (MBB == End || !Visited.insert(MBB).second)
      continue;
    for (auto &Term : MBB->terminators())
      if (TII->isKillTerminator(Term.getOpcode()))
        return true;

    Worklist.append(MBB->succ_begin(), MBB->succ_end());
  }

  return false;
}

static bool isSimpleIf(const MachineInstr &MI, const MachineRegisterInfo *MRI) {
  Register SaveExecReg = MI.getOperand(0).getReg();
  auto U = MRI->use_instr_nodbg_begin(SaveExecReg);

  if (U == MRI->use_instr_nodbg_end() ||
      std::next(U) != MRI->use_instr_nodbg_end() ||
      U->getOpcode() != AMDGPU::SI_END_CF)
    return false;

  return true;
}

void SILowerControlFlow::emitIf(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();
  MachineBasicBlock::iterator I(&MI);
  Register SaveExecReg = MI.getOperand(0).getReg();
  MachineOperand& Cond = MI.getOperand(1);
  assert(Cond.getSubReg() == AMDGPU::NoSubRegister);

  MachineOperand &ImpDefSCC = MI.getOperand(4);
  assert(ImpDefSCC.getReg() == AMDGPU::SCC && ImpDefSCC.isDef());

  // If there is only one use of save exec register and that use is SI_END_CF,
  // we can optimize SI_IF by returning the full saved exec mask instead of
  // just cleared bits.
  bool SimpleIf = isSimpleIf(MI, MRI);

  if (InsertKillCleanups) {
    // Check for SI_KILL_*_TERMINATOR on full path of control flow and
    // flag the associated SI_END_CF for insertion of a kill cleanup.
    auto UseMI = MRI->use_instr_nodbg_begin(SaveExecReg);
    while (UseMI->getOpcode() != AMDGPU::SI_END_CF) {
      assert(std::next(UseMI) == MRI->use_instr_nodbg_end());
      assert(UseMI->getOpcode() == AMDGPU::SI_ELSE);
      MachineOperand &NextExec = UseMI->getOperand(0);
      Register NextExecReg = NextExec.getReg();
      if (NextExec.isDead()) {
        assert(!SimpleIf);
        break;
      }
      UseMI = MRI->use_instr_nodbg_begin(NextExecReg);
    }
    if (UseMI->getOpcode() == AMDGPU::SI_END_CF) {
      if (hasKill(MI.getParent(), UseMI->getParent(), TII)) {
        NeedsKillCleanup.insert(&*UseMI);
        SimpleIf = false;
      }
    }
  } else if (SimpleIf) {
    // Check for SI_KILL_*_TERMINATOR on path from if to endif.
    // if there is any such terminator simplifications are not safe.
    auto UseMI = MRI->use_instr_nodbg_begin(SaveExecReg);
    SimpleIf = !hasKill(MI.getParent(), UseMI->getParent(), TII);
  }

  // Add an implicit def of exec to discourage scheduling VALU after this which
  // will interfere with trying to form s_and_saveexec_b64 later.
  Register CopyReg = SimpleIf ? SaveExecReg
                       : MRI->createVirtualRegister(BoolRC);
  MachineInstr *CopyExec =
    BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), CopyReg)
    .addReg(Exec)
    .addReg(Exec, RegState::ImplicitDefine);
  LoweredIf.insert(CopyReg);

  Register Tmp = MRI->createVirtualRegister(BoolRC);

  MachineInstr *And =
    BuildMI(MBB, I, DL, TII->get(AndOpc), Tmp)
    .addReg(CopyReg)
    .add(Cond);

  setImpSCCDefDead(*And, true);

  MachineInstr *Xor = nullptr;
  if (!SimpleIf) {
    Xor =
      BuildMI(MBB, I, DL, TII->get(XorOpc), SaveExecReg)
      .addReg(Tmp)
      .addReg(CopyReg);
    setImpSCCDefDead(*Xor, ImpDefSCC.isDead());
  }

  // Use a copy that is a terminator to get correct spill code placement it with
  // fast regalloc.
  MachineInstr *SetExec =
    BuildMI(MBB, I, DL, TII->get(MovTermOpc), Exec)
    .addReg(Tmp, RegState::Kill);

  // Insert the S_CBRANCH_EXECZ instruction which will be optimized later
  // during SIRemoveShortExecBranches.
  MachineInstr *NewBr = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
                            .add(MI.getOperand(2));

  if (!LIS) {
    MI.eraseFromParent();
    return;
  }

  LIS->InsertMachineInstrInMaps(*CopyExec);

  // Replace with and so we don't need to fix the live interval for condition
  // register.
  LIS->ReplaceMachineInstrInMaps(MI, *And);

  if (!SimpleIf)
    LIS->InsertMachineInstrInMaps(*Xor);
  LIS->InsertMachineInstrInMaps(*SetExec);
  LIS->InsertMachineInstrInMaps(*NewBr);

  LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC);
  MI.eraseFromParent();

  // FIXME: Is there a better way of adjusting the liveness? It shouldn't be
  // hard to add another def here but I'm not sure how to correctly update the
  // valno.
  LIS->removeInterval(SaveExecReg);
  LIS->createAndComputeVirtRegInterval(SaveExecReg);
  LIS->createAndComputeVirtRegInterval(Tmp);
  if (!SimpleIf)
    LIS->createAndComputeVirtRegInterval(CopyReg);
}

void SILowerControlFlow::emitElse(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();

  Register DstReg = MI.getOperand(0).getReg();

  bool ExecModified = MI.getOperand(3).getImm() != 0;
  MachineBasicBlock::iterator Start = MBB.begin();

  // We are running before TwoAddressInstructions, and si_else's operands are
  // tied. In order to correctly tie the registers, split this into a copy of
  // the src like it does.
  Register CopyReg = MRI->createVirtualRegister(BoolRC);
  MachineInstr *CopyExec =
    BuildMI(MBB, Start, DL, TII->get(AMDGPU::COPY), CopyReg)
      .add(MI.getOperand(1)); // Saved EXEC

  // This must be inserted before phis and any spill code inserted before the
  // else.
  Register SaveReg = ExecModified ?
    MRI->createVirtualRegister(BoolRC) : DstReg;
  MachineInstr *OrSaveExec =
    BuildMI(MBB, Start, DL, TII->get(OrSaveExecOpc), SaveReg)
    .addReg(CopyReg);

  MachineBasicBlock *DestBB = MI.getOperand(2).getMBB();

  MachineBasicBlock::iterator ElsePt(MI);

  if (ExecModified) {
    MachineInstr *And =
      BuildMI(MBB, ElsePt, DL, TII->get(AndOpc), DstReg)
      .addReg(Exec)
      .addReg(SaveReg);

    if (LIS)
      LIS->InsertMachineInstrInMaps(*And);
  }

  MachineInstr *Xor =
    BuildMI(MBB, ElsePt, DL, TII->get(XorTermrOpc), Exec)
    .addReg(Exec)
    .addReg(DstReg);

  MachineInstr *Branch =
      BuildMI(MBB, ElsePt, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
          .addMBB(DestBB);

  if (!LIS) {
    MI.eraseFromParent();
    return;
  }

  LIS->RemoveMachineInstrFromMaps(MI);
  MI.eraseFromParent();

  LIS->InsertMachineInstrInMaps(*CopyExec);
  LIS->InsertMachineInstrInMaps(*OrSaveExec);

  LIS->InsertMachineInstrInMaps(*Xor);
  LIS->InsertMachineInstrInMaps(*Branch);

  // src reg is tied to dst reg.
  LIS->removeInterval(DstReg);
  LIS->createAndComputeVirtRegInterval(DstReg);
  LIS->createAndComputeVirtRegInterval(CopyReg);
  if (ExecModified)
    LIS->createAndComputeVirtRegInterval(SaveReg);

  // Let this be recomputed.
  LIS->removeAllRegUnitsForPhysReg(AMDGPU::EXEC);
}

void SILowerControlFlow::emitIfBreak(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();
  auto Dst = MI.getOperand(0).getReg();

  // Skip ANDing with exec if the break condition is already masked by exec
  // because it is a V_CMP in the same basic block. (We know the break
  // condition operand was an i1 in IR, so if it is a VALU instruction it must
  // be one with a carry-out.)
  bool SkipAnding = false;
  if (MI.getOperand(1).isReg()) {
    if (MachineInstr *Def = MRI->getUniqueVRegDef(MI.getOperand(1).getReg())) {
      SkipAnding = Def->getParent() == MI.getParent()
          && SIInstrInfo::isVALU(*Def);
    }
  }

  // AND the break condition operand with exec, then OR that into the "loop
  // exit" mask.
  MachineInstr *And = nullptr, *Or = nullptr;
  if (!SkipAnding) {
    Register AndReg = MRI->createVirtualRegister(BoolRC);
    And = BuildMI(MBB, &MI, DL, TII->get(AndOpc), AndReg)
             .addReg(Exec)
             .add(MI.getOperand(1));
    Or = BuildMI(MBB, &MI, DL, TII->get(OrOpc), Dst)
             .addReg(AndReg)
             .add(MI.getOperand(2));
    if (LIS)
      LIS->createAndComputeVirtRegInterval(AndReg);
  } else
    Or = BuildMI(MBB, &MI, DL, TII->get(OrOpc), Dst)
             .add(MI.getOperand(1))
             .add(MI.getOperand(2));

  if (LIS) {
    if (And)
      LIS->InsertMachineInstrInMaps(*And);
    LIS->ReplaceMachineInstrInMaps(MI, *Or);
  }

  MI.eraseFromParent();
}

void SILowerControlFlow::emitLoop(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();

  MachineInstr *AndN2 =
      BuildMI(MBB, &MI, DL, TII->get(Andn2TermOpc), Exec)
          .addReg(Exec)
          .add(MI.getOperand(0));

  MachineInstr *Branch =
      BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
          .add(MI.getOperand(1));

  if (LIS) {
    LIS->ReplaceMachineInstrInMaps(MI, *AndN2);
    LIS->InsertMachineInstrInMaps(*Branch);
  }

  MI.eraseFromParent();
}

MachineBasicBlock::iterator
SILowerControlFlow::skipIgnoreExecInstsTrivialSucc(
  MachineBasicBlock &MBB, MachineBasicBlock::iterator It) const {

  SmallSet<const MachineBasicBlock *, 4> Visited;
  MachineBasicBlock *B = &MBB;
  do {
    if (!Visited.insert(B).second)
      return MBB.end();

    auto E = B->end();
    for ( ; It != E; ++It) {
      if (It->getOpcode() == AMDGPU::SI_KILL_CLEANUP)
        continue;
      if (TII->mayReadEXEC(*MRI, *It))
        break;
    }

    if (It != E)
      return It;

    if (B->succ_size() != 1)
      return MBB.end();

    // If there is one trivial successor, advance to the next block.
    MachineBasicBlock *Succ = *B->succ_begin();

    It = Succ->begin();
    B = Succ;
  } while (true);
}

void SILowerControlFlow::emitEndCf(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  unsigned CFMask = MI.getOperand(0).getReg();
  MachineInstr *Def = MRI.getUniqueVRegDef(CFMask);
  const DebugLoc &DL = MI.getDebugLoc();

  MachineBasicBlock::iterator InsPt =
      Def && Def->getParent() == &MBB ? std::next(MachineBasicBlock::iterator(Def))
                               : MBB.begin();
  MachineInstr *NewMI = BuildMI(MBB, InsPt, DL, TII->get(OrOpc), Exec)
                            .addReg(Exec)
                            .add(MI.getOperand(0));

  LoweredEndCf.insert(NewMI);

  // If this ends control flow which contains kills (as flagged in emitIf)
  // then insert an SI_KILL_CLEANUP immediately following the exec mask
  // manipulation.  This can be lowered to early termination if appropriate.
  MachineInstr *CleanUpMI = nullptr;
  if (NeedsKillCleanup.count(&MI))
    CleanUpMI = BuildMI(MBB, InsPt, DL, TII->get(AMDGPU::SI_KILL_CLEANUP));

  if (LIS) {
    LIS->ReplaceMachineInstrInMaps(MI, *NewMI);
    if (CleanUpMI)
      LIS->InsertMachineInstrInMaps(*CleanUpMI);
  }

  MI.eraseFromParent();

  if (LIS)
    LIS->handleMove(*NewMI);
}

// Returns replace operands for a logical operation, either single result
// for exec or two operands if source was another equivalent operation.
void SILowerControlFlow::findMaskOperands(MachineInstr &MI, unsigned OpNo,
       SmallVectorImpl<MachineOperand> &Src) const {
  MachineOperand &Op = MI.getOperand(OpNo);
  if (!Op.isReg() || !Register::isVirtualRegister(Op.getReg())) {
    Src.push_back(Op);
    return;
  }

  MachineInstr *Def = MRI->getUniqueVRegDef(Op.getReg());
  if (!Def || Def->getParent() != MI.getParent() ||
      !(Def->isFullCopy() || (Def->getOpcode() == MI.getOpcode())))
    return;

  // Make sure we do not modify exec between def and use.
  // A copy with implcitly defined exec inserted earlier is an exclusion, it
  // does not really modify exec.
  for (auto I = Def->getIterator(); I != MI.getIterator(); ++I)
    if (I->modifiesRegister(AMDGPU::EXEC, TRI) &&
        !(I->isCopy() && I->getOperand(0).getReg() != Exec))
      return;

  for (const auto &SrcOp : Def->explicit_operands())
    if (SrcOp.isReg() && SrcOp.isUse() &&
        (Register::isVirtualRegister(SrcOp.getReg()) || SrcOp.getReg() == Exec))
      Src.push_back(SrcOp);
}

// Search and combine pairs of equivalent instructions, like
// S_AND_B64 x, (S_AND_B64 x, y) => S_AND_B64 x, y
// S_OR_B64  x, (S_OR_B64  x, y) => S_OR_B64  x, y
// One of the operands is exec mask.
void SILowerControlFlow::combineMasks(MachineInstr &MI) {
  assert(MI.getNumExplicitOperands() == 3);
  SmallVector<MachineOperand, 4> Ops;
  unsigned OpToReplace = 1;
  findMaskOperands(MI, 1, Ops);
  if (Ops.size() == 1) OpToReplace = 2; // First operand can be exec or its copy
  findMaskOperands(MI, 2, Ops);
  if (Ops.size() != 3) return;

  unsigned UniqueOpndIdx;
  if (Ops[0].isIdenticalTo(Ops[1])) UniqueOpndIdx = 2;
  else if (Ops[0].isIdenticalTo(Ops[2])) UniqueOpndIdx = 1;
  else if (Ops[1].isIdenticalTo(Ops[2])) UniqueOpndIdx = 1;
  else return;

  Register Reg = MI.getOperand(OpToReplace).getReg();
  MI.RemoveOperand(OpToReplace);
  MI.addOperand(Ops[UniqueOpndIdx]);
  if (MRI->use_empty(Reg))
    MRI->getUniqueVRegDef(Reg)->eraseFromParent();
}

void SILowerControlFlow::optimizeEndCf() {
  // If the only instruction immediately following this END_CF is an another
  // END_CF in the only successor we can avoid emitting exec mask restore here.
  if (!RemoveRedundantEndcf)
    return;

  for (MachineInstr *MI : LoweredEndCf) {
    MachineBasicBlock &MBB = *MI->getParent();
    auto Next =
      skipIgnoreExecInstsTrivialSucc(MBB, std::next(MI->getIterator()));
    if (Next == MBB.end() || !LoweredEndCf.count(&*Next))
      continue;
    // Only skip inner END_CF if outer ENDCF belongs to SI_IF.
    // If that belongs to SI_ELSE then saved mask has an inverted value.
    Register SavedExec
      = TII->getNamedOperand(*Next, AMDGPU::OpName::src1)->getReg();
    assert(SavedExec.isVirtual() && "Expected saved exec to be src1!");

    const MachineInstr *Def = MRI->getUniqueVRegDef(SavedExec);
    if (Def && LoweredIf.count(SavedExec)) {
      LLVM_DEBUG(dbgs() << "Skip redundant "; MI->dump());
      if (LIS)
        LIS->RemoveMachineInstrFromMaps(*MI);
      MI->eraseFromParent();
    }
  }
}

void SILowerControlFlow::process(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineBasicBlock::iterator I(MI);
  MachineInstr *Prev = (I != MBB.begin()) ? &*(std::prev(I)) : nullptr;

  switch (MI.getOpcode()) {
  case AMDGPU::SI_IF:
    emitIf(MI);
    break;

  case AMDGPU::SI_ELSE:
    emitElse(MI);
    break;

  case AMDGPU::SI_IF_BREAK:
    emitIfBreak(MI);
    break;

  case AMDGPU::SI_LOOP:
    emitLoop(MI);
    break;

  case AMDGPU::SI_END_CF:
    emitEndCf(MI);
    break;

  default:
    assert(false && "Attempt to process unsupported instruction");
    break;
  }

  MachineBasicBlock::iterator Next;
  for (I = Prev ? Prev->getIterator() : MBB.begin(); I != MBB.end(); I = Next) {
    Next = std::next(I);
    MachineInstr &MaskMI = *I;
    switch (MaskMI.getOpcode()) {
    case AMDGPU::S_AND_B64:
    case AMDGPU::S_OR_B64:
    case AMDGPU::S_AND_B32:
    case AMDGPU::S_OR_B32:
      // Cleanup bit manipulations on exec mask
      combineMasks(MaskMI);
      break;
    default:
      I = MBB.end();
      break;
    }
  }
}

bool SILowerControlFlow::runOnMachineFunction(MachineFunction &MF) {
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  TII = ST.getInstrInfo();
  TRI = &TII->getRegisterInfo();

  // This doesn't actually need LiveIntervals, but we can preserve them.
  LIS = getAnalysisIfAvailable<LiveIntervals>();
  MRI = &MF.getRegInfo();
  BoolRC = TRI->getBoolRC();
  InsertKillCleanups =
      MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS;

  if (ST.isWave32()) {
    AndOpc = AMDGPU::S_AND_B32;
    OrOpc = AMDGPU::S_OR_B32;
    XorOpc = AMDGPU::S_XOR_B32;
    MovTermOpc = AMDGPU::S_MOV_B32_term;
    Andn2TermOpc = AMDGPU::S_ANDN2_B32_term;
    XorTermrOpc = AMDGPU::S_XOR_B32_term;
    OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B32;
    Exec = AMDGPU::EXEC_LO;
  } else {
    AndOpc = AMDGPU::S_AND_B64;
    OrOpc = AMDGPU::S_OR_B64;
    XorOpc = AMDGPU::S_XOR_B64;
    MovTermOpc = AMDGPU::S_MOV_B64_term;
    Andn2TermOpc = AMDGPU::S_ANDN2_B64_term;
    XorTermrOpc = AMDGPU::S_XOR_B64_term;
    OrSaveExecOpc = AMDGPU::S_OR_SAVEEXEC_B64;
    Exec = AMDGPU::EXEC;
  }

  SmallVector<MachineInstr *, 32> Worklist;

  MachineFunction::iterator NextBB;
  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
       BI != BE; BI = NextBB) {
    NextBB = std::next(BI);
    MachineBasicBlock &MBB = *BI;

    MachineBasicBlock::iterator I, Next;
    for (I = MBB.begin(); I != MBB.end(); I = Next) {
      Next = std::next(I);
      MachineInstr &MI = *I;

      switch (MI.getOpcode()) {
      case AMDGPU::SI_IF:
        process(MI);
        break;

      case AMDGPU::SI_ELSE:
      case AMDGPU::SI_IF_BREAK:
      case AMDGPU::SI_LOOP:
      case AMDGPU::SI_END_CF:
        // Only build worklist if SI_IF instructions must be processed first.
        if (InsertKillCleanups)
          Worklist.push_back(&MI);
        else
          process(MI);
        break;

      default:
        break;
      }
    }
  }

  for (MachineInstr *MI : Worklist)
    process(*MI);

  optimizeEndCf();

  LoweredEndCf.clear();
  LoweredIf.clear();
  NeedsKillCleanup.clear();

  return true;
}