SIInstructions.td 77.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
//===-- SIInstructions.td - SI Instruction Definitions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file was originally auto-generated from a GPU register header file and
// all the instruction definitions were originally commented out.  Instructions
// that are not yet supported remain commented out.
//===----------------------------------------------------------------------===//

class GCNPat<dag pattern, dag result> : Pat<pattern, result>, GCNPredicateControl {

}

include "SOPInstructions.td"
include "VOPInstructions.td"
include "SMInstructions.td"
include "FLATInstructions.td"
include "BUFInstructions.td"

//===----------------------------------------------------------------------===//
// EXP Instructions
//===----------------------------------------------------------------------===//

defm EXP : EXP_m<0>;
defm EXP_DONE : EXP_m<1>;

class ExpPattern<ValueType vt, Instruction Inst, int done_val> : GCNPat<
  (int_amdgcn_exp timm:$tgt, timm:$en,
                  (vt ExpSrc0:$src0), (vt ExpSrc1:$src1),
                  (vt ExpSrc2:$src2), (vt ExpSrc3:$src3),
                  done_val, timm:$vm),
  (Inst timm:$tgt, ExpSrc0:$src0, ExpSrc1:$src1,
        ExpSrc2:$src2, ExpSrc3:$src3, timm:$vm, 0, timm:$en)
>;

class ExpComprPattern<ValueType vt, Instruction Inst, int done_val> : GCNPat<
  (int_amdgcn_exp_compr timm:$tgt, timm:$en,
                        (vt ExpSrc0:$src0), (vt ExpSrc1:$src1),
                        done_val, timm:$vm),
  (Inst timm:$tgt, ExpSrc0:$src0, ExpSrc1:$src1,
        (IMPLICIT_DEF), (IMPLICIT_DEF), timm:$vm, 1, timm:$en)
>;

// FIXME: The generated DAG matcher seems to have strange behavior
// with a 1-bit literal to match, so use a -1 for checking a true
// 1-bit value.
def : ExpPattern<i32, EXP, 0>;
def : ExpPattern<i32, EXP_DONE, -1>;
def : ExpPattern<f32, EXP, 0>;
def : ExpPattern<f32, EXP_DONE, -1>;

def : ExpComprPattern<v2i16, EXP, 0>;
def : ExpComprPattern<v2i16, EXP_DONE, -1>;
def : ExpComprPattern<v2f16, EXP, 0>;
def : ExpComprPattern<v2f16, EXP_DONE, -1>;

//===----------------------------------------------------------------------===//
// VINTRP Instructions
//===----------------------------------------------------------------------===//

// Used to inject printing of "_e32" suffix for VI (there are "_e64" variants for VI)
def VINTRPDst : VINTRPDstOperand <VGPR_32>;

let Uses = [MODE, M0, EXEC] in {

// FIXME: Specify SchedRW for VINTRP instructions.

multiclass V_INTERP_P1_F32_m : VINTRP_m <
  0x00000000,
  (outs VINTRPDst:$vdst),
  (ins VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
  "v_interp_p1_f32$vdst, $vsrc, $attr$attrchan",
  [(set f32:$vdst, (int_amdgcn_interp_p1 f32:$vsrc,
                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]
>;

let OtherPredicates = [has32BankLDS] in {

defm V_INTERP_P1_F32 : V_INTERP_P1_F32_m;

} // End OtherPredicates = [has32BankLDS]

let OtherPredicates = [has16BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1 in {

defm V_INTERP_P1_F32_16bank : V_INTERP_P1_F32_m;

} // End OtherPredicates = [has32BankLDS], Constraints = "@earlyclobber $vdst", isAsmParserOnly=1

let DisableEncoding = "$src0", Constraints = "$src0 = $vdst" in {

defm V_INTERP_P2_F32 : VINTRP_m <
  0x00000001,
  (outs VINTRPDst:$vdst),
  (ins VGPR_32:$src0, VGPR_32:$vsrc, Attr:$attr, AttrChan:$attrchan),
  "v_interp_p2_f32$vdst, $vsrc, $attr$attrchan",
  [(set f32:$vdst, (int_amdgcn_interp_p2 f32:$src0, f32:$vsrc,
                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;

} // End DisableEncoding = "$src0", Constraints = "$src0 = $vdst"

defm V_INTERP_MOV_F32 : VINTRP_m <
  0x00000002,
  (outs VINTRPDst:$vdst),
  (ins InterpSlot:$vsrc, Attr:$attr, AttrChan:$attrchan),
  "v_interp_mov_f32$vdst, $vsrc, $attr$attrchan",
  [(set f32:$vdst, (int_amdgcn_interp_mov (i32 timm:$vsrc),
                   (i32 timm:$attrchan), (i32 timm:$attr), M0))]>;

} // End Uses = [MODE, M0, EXEC]

//===----------------------------------------------------------------------===//
// Pseudo Instructions
//===----------------------------------------------------------------------===//
def ATOMIC_FENCE : SPseudoInstSI<
  (outs), (ins i32imm:$ordering, i32imm:$scope),
  [(atomic_fence (i32 timm:$ordering), (i32 timm:$scope))],
  "ATOMIC_FENCE $ordering, $scope"> {
  let hasSideEffects = 1;
  let maybeAtomic = 1;
}

def VOP_I64_I64_DPP : VOPProfile <[i64, i64, untyped, untyped]> {
  let HasExt = 1;
  let HasExtDPP = 1;
}

let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC] in {

// For use in patterns
def V_CNDMASK_B64_PSEUDO : VOP3Common <(outs VReg_64:$vdst),
  (ins VSrc_b64:$src0, VSrc_b64:$src1, SSrc_b64:$src2), "", []> {
  let isPseudo = 1;
  let isCodeGenOnly = 1;
  let usesCustomInserter = 1;
}

// 64-bit vector move instruction. This is mainly used by the
// SIFoldOperands pass to enable folding of inline immediates.
def V_MOV_B64_PSEUDO : VPseudoInstSI <(outs VReg_64:$vdst),
                                      (ins VSrc_b64:$src0)>;

// 64-bit vector move with dpp. Expanded post-RA.
def V_MOV_B64_DPP_PSEUDO : VOP_DPP_Pseudo <"v_mov_b64_dpp", VOP_I64_I64_DPP> {
  let Size = 16; // Requires two 8-byte v_mov_b32_dpp to complete.
}

// Pseudoinstruction for @llvm.amdgcn.wqm. It is turned into a copy after the
// WQM pass processes it.
def WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;

// Pseudoinstruction for @llvm.amdgcn.softwqm. Like @llvm.amdgcn.wqm it is
// turned into a copy by WQM pass, but does not seed WQM requirements.
def SOFT_WQM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;

// Pseudoinstruction for @llvm.amdgcn.wwm. It is turned into a copy post-RA, so
// that the @earlyclobber is respected. The @earlyclobber is to make sure that
// the instruction that defines $src0 (which is run in WWM) doesn't
// accidentally clobber inactive channels of $vdst.
let Constraints = "@earlyclobber $vdst" in {
def WWM : PseudoInstSI <(outs unknown:$vdst), (ins unknown:$src0)>;
}

} // End let hasSideEffects = 0, mayLoad = 0, mayStore = 0, Uses = [EXEC]

def ENTER_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins i64imm:$src0)> {
  let Uses = [EXEC];
  let Defs = [EXEC, SCC];
  let hasSideEffects = 0;
  let mayLoad = 0;
  let mayStore = 0;
}

def EXIT_WWM : SPseudoInstSI <(outs SReg_1:$sdst), (ins SReg_1:$src0)> {
  let hasSideEffects = 0;
  let mayLoad = 0;
  let mayStore = 0;
}

// Invert the exec mask and overwrite the inactive lanes of dst with inactive,
// restoring it after we're done.
def V_SET_INACTIVE_B32 : VPseudoInstSI <(outs VGPR_32:$vdst),
  (ins VGPR_32: $src, VSrc_b32:$inactive),
  [(set i32:$vdst, (int_amdgcn_set_inactive i32:$src, i32:$inactive))]> {
  let Constraints = "$src = $vdst";
}

def V_SET_INACTIVE_B64 : VPseudoInstSI <(outs VReg_64:$vdst),
  (ins VReg_64: $src, VSrc_b64:$inactive),
  [(set i64:$vdst, (int_amdgcn_set_inactive i64:$src, i64:$inactive))]> {
  let Constraints = "$src = $vdst";
}

let usesCustomInserter = 1, Defs = [VCC, EXEC] in {
def V_ADD_U64_PSEUDO : VPseudoInstSI <
  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
  [(set VReg_64:$vdst, (getDivergentFrag<add>.ret i64:$src0, i64:$src1))]
>;

def V_SUB_U64_PSEUDO : VPseudoInstSI <
  (outs VReg_64:$vdst), (ins VSrc_b64:$src0, VSrc_b64:$src1),
  [(set VReg_64:$vdst, (getDivergentFrag<sub>.ret i64:$src0, i64:$src1))]
>;
} // End usesCustomInserter = 1, Defs = [VCC, EXEC]

let usesCustomInserter = 1, Defs = [SCC] in {
def S_ADD_U64_PSEUDO : SPseudoInstSI <
  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
  [(set SReg_64:$sdst, (UniformBinFrag<add> i64:$src0, i64:$src1))]
>;

def S_SUB_U64_PSEUDO : SPseudoInstSI <
  (outs SReg_64:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1),
  [(set SReg_64:$sdst, (UniformBinFrag<sub> i64:$src0, i64:$src1))]
>;

def S_ADD_U64_CO_PSEUDO : SPseudoInstSI <
  (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
>;

def S_SUB_U64_CO_PSEUDO : SPseudoInstSI <
  (outs SReg_64:$vdst, VOPDstS64orS32:$sdst), (ins SSrc_b64:$src0, SSrc_b64:$src1)
>;

def S_ADD_CO_PSEUDO : SPseudoInstSI <
  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
>;

def S_SUB_CO_PSEUDO : SPseudoInstSI <
  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1, SSrc_i1:$scc_in)
>;

def S_UADDO_PSEUDO : SPseudoInstSI <
  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
>;

def S_USUBO_PSEUDO : SPseudoInstSI <
  (outs SReg_32:$sdst, SSrc_i1:$scc_out), (ins SSrc_b32:$src0, SSrc_b32:$src1)
>;

} // End usesCustomInserter = 1, Defs = [SCC]

let usesCustomInserter = 1 in {
def GET_GROUPSTATICSIZE : SPseudoInstSI <(outs SReg_32:$sdst), (ins),
  [(set SReg_32:$sdst, (int_amdgcn_groupstaticsize))]>;
} // End let usesCustomInserter = 1, SALU = 1

// Wrap an instruction by duplicating it, except for setting isTerminator.
class WrapTerminatorInst<SOP_Pseudo base_inst> : SPseudoInstSI<
      base_inst.OutOperandList,
      base_inst.InOperandList> {
  let Uses = base_inst.Uses;
  let Defs = base_inst.Defs;
  let isTerminator = 1;
  let isAsCheapAsAMove = base_inst.isAsCheapAsAMove;
  let hasSideEffects = base_inst.hasSideEffects;
  let UseNamedOperandTable = base_inst.UseNamedOperandTable;
  let CodeSize = base_inst.CodeSize;
  let SchedRW = base_inst.SchedRW;
}

let WaveSizePredicate = isWave64 in {
def S_MOV_B64_term : WrapTerminatorInst<S_MOV_B64>;
def S_XOR_B64_term : WrapTerminatorInst<S_XOR_B64>;
def S_ANDN2_B64_term : WrapTerminatorInst<S_ANDN2_B64>;
}

let WaveSizePredicate = isWave32 in {
def S_MOV_B32_term : WrapTerminatorInst<S_MOV_B32>;
def S_XOR_B32_term : WrapTerminatorInst<S_XOR_B32>;
def S_OR_B32_term : WrapTerminatorInst<S_OR_B32>;
def S_ANDN2_B32_term : WrapTerminatorInst<S_ANDN2_B32>;
}


def WAVE_BARRIER : SPseudoInstSI<(outs), (ins),
  [(int_amdgcn_wave_barrier)]> {
  let SchedRW = [];
  let hasNoSchedulingInfo = 1;
  let hasSideEffects = 1;
  let mayLoad = 0;
  let mayStore = 0;
  let isConvergent = 1;
  let FixedSize = 1;
  let Size = 0;
}

// SI pseudo instructions. These are used by the CFG structurizer pass
// and should be lowered to ISA instructions prior to codegen.

// Dummy terminator instruction to use after control flow instructions
// replaced with exec mask operations.
def SI_MASK_BRANCH : VPseudoInstSI <
  (outs), (ins brtarget:$target)> {
  let isBranch = 0;
  let isTerminator = 1;
  let isBarrier = 0;
  let SchedRW = [];
  let hasNoSchedulingInfo = 1;
  let FixedSize = 1;
  let Size = 0;
}

let isTerminator = 1 in {

let OtherPredicates = [EnableLateCFGStructurize] in {
 def SI_NON_UNIFORM_BRCOND_PSEUDO : CFPseudoInstSI <
  (outs),
  (ins SReg_1:$vcc, brtarget:$target),
  [(brcond i1:$vcc, bb:$target)]> {
    let Size = 12;
}
}

def SI_IF: CFPseudoInstSI <
  (outs SReg_1:$dst), (ins SReg_1:$vcc, brtarget:$target),
  [(set i1:$dst, (AMDGPUif i1:$vcc, bb:$target))], 1, 1> {
  let Constraints = "";
  let Size = 12;
  let hasSideEffects = 1;
}

def SI_ELSE : CFPseudoInstSI <
  (outs SReg_1:$dst),
  (ins SReg_1:$src, brtarget:$target, i1imm:$execfix), [], 1, 1> {
  let Size = 12;
  let hasSideEffects = 1;
}

def SI_LOOP : CFPseudoInstSI <
  (outs), (ins SReg_1:$saved, brtarget:$target),
  [(AMDGPUloop i1:$saved, bb:$target)], 1, 1> {
  let Size = 8;
  let isBranch = 1;
  let hasSideEffects = 1;
}

} // End isTerminator = 1

def SI_END_CF : CFPseudoInstSI <
  (outs), (ins SReg_1:$saved), [], 1, 1> {
  let Size = 4;
  let isAsCheapAsAMove = 1;
  let isReMaterializable = 1;
  let hasSideEffects = 1;
  let mayLoad = 1; // FIXME: Should not need memory flags
  let mayStore = 1;
}

def SI_IF_BREAK : CFPseudoInstSI <
  (outs SReg_1:$dst), (ins SReg_1:$vcc, SReg_1:$src), []> {
  let Size = 4;
  let isAsCheapAsAMove = 1;
  let isReMaterializable = 1;
}

let Uses = [EXEC] in {

multiclass PseudoInstKill <dag ins> {
  // Even though this pseudo can usually be expanded without an SCC def, we
  // conservatively assume that it has an SCC def, both because it is sometimes
  // required in degenerate cases (when V_CMPX cannot be used due to constant
  // bus limitations) and because it allows us to avoid having to track SCC
  // liveness across basic blocks.
  let Defs = [EXEC,VCC,SCC] in
  def _PSEUDO : PseudoInstSI <(outs), ins> {
    let isConvergent = 1;
    let usesCustomInserter = 1;
  }

  let Defs = [EXEC,VCC,SCC] in
  def _TERMINATOR : SPseudoInstSI <(outs), ins> {
    let isTerminator = 1;
  }
}

defm SI_KILL_I1 : PseudoInstKill <(ins SCSrc_i1:$src, i1imm:$killvalue)>;
defm SI_KILL_F32_COND_IMM : PseudoInstKill <(ins VSrc_b32:$src0, i32imm:$src1, i32imm:$cond)>;

let Defs = [EXEC] in
def SI_KILL_CLEANUP : SPseudoInstSI <(outs), (ins)>;

let Defs = [EXEC,VCC] in
def SI_ILLEGAL_COPY : SPseudoInstSI <
  (outs unknown:$dst), (ins unknown:$src),
  [], " ; illegal copy $src to $dst">;

} // End Uses = [EXEC], Defs = [EXEC,VCC]

// Branch on undef scc. Used to avoid intermediate copy from
// IMPLICIT_DEF to SCC.
def SI_BR_UNDEF : SPseudoInstSI <(outs), (ins sopp_brtarget:$simm16)> {
  let isTerminator = 1;
  let usesCustomInserter = 1;
  let isBranch = 1;
}

def SI_PS_LIVE : PseudoInstSI <
  (outs SReg_1:$dst), (ins),
  [(set i1:$dst, (int_amdgcn_ps_live))]> {
  let SALU = 1;
}

def SI_MASKED_UNREACHABLE : SPseudoInstSI <(outs), (ins),
  [(int_amdgcn_unreachable)],
  "; divergent unreachable"> {
  let Size = 0;
  let hasNoSchedulingInfo = 1;
  let FixedSize = 1;
}

// Used as an isel pseudo to directly emit initialization with an
// s_mov_b32 rather than a copy of another initialized
// register. MachineCSE skips copies, and we don't want to have to
// fold operands before it runs.
def SI_INIT_M0 : SPseudoInstSI <(outs), (ins SSrc_b32:$src)> {
  let Defs = [M0];
  let usesCustomInserter = 1;
  let isAsCheapAsAMove = 1;
  let isReMaterializable = 1;
}

def SI_INIT_EXEC : SPseudoInstSI <
  (outs), (ins i64imm:$src),
  [(int_amdgcn_init_exec (i64 timm:$src))]> {
  let Defs = [EXEC];
  let usesCustomInserter = 1;
  let isAsCheapAsAMove = 1;
  let WaveSizePredicate = isWave64;
}

// FIXME: Intrinsic should be mangled for wave size.
def SI_INIT_EXEC_LO : SPseudoInstSI <
  (outs), (ins i32imm:$src), []> {
  let Defs = [EXEC_LO];
  let usesCustomInserter = 1;
  let isAsCheapAsAMove = 1;
  let WaveSizePredicate = isWave32;
}

// FIXME: Wave32 version
def SI_INIT_EXEC_FROM_INPUT : SPseudoInstSI <
  (outs), (ins SSrc_b32:$input, i32imm:$shift),
  [(int_amdgcn_init_exec_from_input i32:$input, (i32 timm:$shift))]> {
  let Defs = [EXEC];
  let usesCustomInserter = 1;
}

def : GCNPat <
  (int_amdgcn_init_exec timm:$src),
  (SI_INIT_EXEC_LO (as_i32timm timm:$src))> {
  let WaveSizePredicate = isWave32;
}

// Return for returning shaders to a shader variant epilog.
def SI_RETURN_TO_EPILOG : SPseudoInstSI <
  (outs), (ins variable_ops), [(AMDGPUreturn_to_epilog)]> {
  let isTerminator = 1;
  let isBarrier = 1;
  let isReturn = 1;
  let hasNoSchedulingInfo = 1;
  let DisableWQM = 1;
  let FixedSize = 1;
}

// Return for returning function calls.
def SI_RETURN : SPseudoInstSI <
  (outs), (ins), [],
  "; return"> {
  let isTerminator = 1;
  let isBarrier = 1;
  let isReturn = 1;
  let SchedRW = [WriteBranch];
}

// Return for returning function calls without output register.
//
// This version is only needed so we can fill in the output register
// in the custom inserter.
def SI_CALL_ISEL : SPseudoInstSI <
  (outs), (ins SSrc_b64:$src0, unknown:$callee),
  [(AMDGPUcall i64:$src0, tglobaladdr:$callee)]> {
  let Size = 4;
  let isCall = 1;
  let SchedRW = [WriteBranch];
  let usesCustomInserter = 1;
  // TODO: Should really base this on the call target
  let isConvergent = 1;
}

def : GCNPat<
  (AMDGPUcall i64:$src0, (i64 0)),
  (SI_CALL_ISEL $src0, (i64 0))
>;

// Wrapper around s_swappc_b64 with extra $callee parameter to track
// the called function after regalloc.
def SI_CALL : SPseudoInstSI <
  (outs SReg_64:$dst), (ins SSrc_b64:$src0, unknown:$callee)> {
  let Size = 4;
  let isCall = 1;
  let UseNamedOperandTable = 1;
  let SchedRW = [WriteBranch];
  // TODO: Should really base this on the call target
  let isConvergent = 1;
}

// Tail call handling pseudo
def SI_TCRETURN : SPseudoInstSI <(outs),
  (ins SSrc_b64:$src0, unknown:$callee, i32imm:$fpdiff),
  [(AMDGPUtc_return i64:$src0, tglobaladdr:$callee, i32:$fpdiff)]> {
  let Size = 4;
  let isCall = 1;
  let isTerminator = 1;
  let isReturn = 1;
  let isBarrier = 1;
  let UseNamedOperandTable = 1;
  let SchedRW = [WriteBranch];
  // TODO: Should really base this on the call target
  let isConvergent = 1;
}


def ADJCALLSTACKUP : SPseudoInstSI<
  (outs), (ins i32imm:$amt0, i32imm:$amt1),
  [(callseq_start timm:$amt0, timm:$amt1)],
  "; adjcallstackup $amt0 $amt1"> {
  let Size = 8; // Worst case. (s_add_u32 + constant)
  let FixedSize = 1;
  let hasSideEffects = 1;
  let usesCustomInserter = 1;
  let SchedRW = [WriteSALU];
  let Defs = [SCC];
}

def ADJCALLSTACKDOWN : SPseudoInstSI<
  (outs), (ins i32imm:$amt1, i32imm:$amt2),
  [(callseq_end timm:$amt1, timm:$amt2)],
  "; adjcallstackdown $amt1"> {
  let Size = 8; // Worst case. (s_add_u32 + constant)
  let hasSideEffects = 1;
  let usesCustomInserter = 1;
  let SchedRW = [WriteSALU];
  let Defs = [SCC];
}

let Defs = [M0, EXEC, SCC],
  UseNamedOperandTable = 1 in {

// SI_INDIRECT_SRC/DST are only used by legacy SelectionDAG indirect
// addressing implementation.
class SI_INDIRECT_SRC<RegisterClass rc> : VPseudoInstSI <
  (outs VGPR_32:$vdst),
  (ins rc:$src, VS_32:$idx, i32imm:$offset)> {
  let usesCustomInserter = 1;
}

class SI_INDIRECT_DST<RegisterClass rc> : VPseudoInstSI <
  (outs rc:$vdst),
  (ins rc:$src, VS_32:$idx, i32imm:$offset, VGPR_32:$val)> {
  let Constraints = "$src = $vdst";
  let usesCustomInserter = 1;
}

def SI_INDIRECT_SRC_V1 : SI_INDIRECT_SRC<VGPR_32>;
def SI_INDIRECT_SRC_V2 : SI_INDIRECT_SRC<VReg_64>;
def SI_INDIRECT_SRC_V4 : SI_INDIRECT_SRC<VReg_128>;
def SI_INDIRECT_SRC_V8 : SI_INDIRECT_SRC<VReg_256>;
def SI_INDIRECT_SRC_V16 : SI_INDIRECT_SRC<VReg_512>;
def SI_INDIRECT_SRC_V32 : SI_INDIRECT_SRC<VReg_1024>;

def SI_INDIRECT_DST_V1 : SI_INDIRECT_DST<VGPR_32>;
def SI_INDIRECT_DST_V2 : SI_INDIRECT_DST<VReg_64>;
def SI_INDIRECT_DST_V4 : SI_INDIRECT_DST<VReg_128>;
def SI_INDIRECT_DST_V8 : SI_INDIRECT_DST<VReg_256>;
def SI_INDIRECT_DST_V16 : SI_INDIRECT_DST<VReg_512>;
def SI_INDIRECT_DST_V32 : SI_INDIRECT_DST<VReg_1024>;

} // End Uses = [EXEC], Defs = [M0, EXEC]


// This is a pseudo variant of the v_movreld_b32 (or v_mov_b32
// expecting to be executed with gpr indexing mode enabled)
// instruction in which the vector operand appears only twice, once as
// def and once as use. Using this pseudo avoids problems with the Two
// Address instructions pass.
class INDIRECT_REG_WRITE_pseudo<RegisterClass rc,
                                RegisterOperand val_ty> : PseudoInstSI <
  (outs rc:$vdst), (ins rc:$vsrc, val_ty:$val, i32imm:$subreg)> {
  let Constraints = "$vsrc = $vdst";
  let Uses = [M0];
}

class V_INDIRECT_REG_WRITE_B32_pseudo<RegisterClass rc> :
  INDIRECT_REG_WRITE_pseudo<rc, VSrc_b32> {
  let VALU = 1;
  let VOP1 = 1;
  let Uses = [M0, EXEC];
}

class S_INDIRECT_REG_WRITE_pseudo<RegisterClass rc,
                                  RegisterOperand val_ty> :
  INDIRECT_REG_WRITE_pseudo<rc, val_ty> {
  let SALU = 1;
  let SOP1 = 1;
  let Uses = [M0];
}

class S_INDIRECT_REG_WRITE_B32_pseudo<RegisterClass rc> :
  S_INDIRECT_REG_WRITE_pseudo<rc, SSrc_b32>;
class S_INDIRECT_REG_WRITE_B64_pseudo<RegisterClass rc> :
  S_INDIRECT_REG_WRITE_pseudo<rc, SSrc_b64>;


def V_INDIRECT_REG_WRITE_B32_V1 : V_INDIRECT_REG_WRITE_B32_pseudo<VGPR_32>;
def V_INDIRECT_REG_WRITE_B32_V2 : V_INDIRECT_REG_WRITE_B32_pseudo<VReg_64>;
def V_INDIRECT_REG_WRITE_B32_V3 : V_INDIRECT_REG_WRITE_B32_pseudo<VReg_96>;
def V_INDIRECT_REG_WRITE_B32_V4 : V_INDIRECT_REG_WRITE_B32_pseudo<VReg_128>;
def V_INDIRECT_REG_WRITE_B32_V5 : V_INDIRECT_REG_WRITE_B32_pseudo<VReg_160>;
def V_INDIRECT_REG_WRITE_B32_V8 : V_INDIRECT_REG_WRITE_B32_pseudo<VReg_256>;
def V_INDIRECT_REG_WRITE_B32_V16 : V_INDIRECT_REG_WRITE_B32_pseudo<VReg_512>;
def V_INDIRECT_REG_WRITE_B32_V32 : V_INDIRECT_REG_WRITE_B32_pseudo<VReg_1024>;

def S_INDIRECT_REG_WRITE_B32_V1 : S_INDIRECT_REG_WRITE_B32_pseudo<SReg_32>;
def S_INDIRECT_REG_WRITE_B32_V2 : S_INDIRECT_REG_WRITE_B32_pseudo<SReg_64>;
def S_INDIRECT_REG_WRITE_B32_V3 : S_INDIRECT_REG_WRITE_B32_pseudo<SReg_96>;
def S_INDIRECT_REG_WRITE_B32_V4 : S_INDIRECT_REG_WRITE_B32_pseudo<SReg_128>;
def S_INDIRECT_REG_WRITE_B32_V5 : S_INDIRECT_REG_WRITE_B32_pseudo<SReg_160>;
def S_INDIRECT_REG_WRITE_B32_V8 : S_INDIRECT_REG_WRITE_B32_pseudo<SReg_256>;
def S_INDIRECT_REG_WRITE_B32_V16 : S_INDIRECT_REG_WRITE_B32_pseudo<SReg_512>;
def S_INDIRECT_REG_WRITE_B32_V32 : S_INDIRECT_REG_WRITE_B32_pseudo<SReg_1024>;

def S_INDIRECT_REG_WRITE_B64_V1 : S_INDIRECT_REG_WRITE_B64_pseudo<SReg_64>;
def S_INDIRECT_REG_WRITE_B64_V2 : S_INDIRECT_REG_WRITE_B64_pseudo<SReg_128>;
def S_INDIRECT_REG_WRITE_B64_V4 : S_INDIRECT_REG_WRITE_B64_pseudo<SReg_256>;
def S_INDIRECT_REG_WRITE_B64_V8 : S_INDIRECT_REG_WRITE_B64_pseudo<SReg_512>;
def S_INDIRECT_REG_WRITE_B64_V16 : S_INDIRECT_REG_WRITE_B64_pseudo<SReg_1024>;


multiclass SI_SPILL_SGPR <RegisterClass sgpr_class> {
  let UseNamedOperandTable = 1, SGPRSpill = 1, Uses = [EXEC] in {
    def _SAVE : PseudoInstSI <
      (outs),
      (ins sgpr_class:$data, i32imm:$addr)> {
      let mayStore = 1;
      let mayLoad = 0;
    }

    def _RESTORE : PseudoInstSI <
      (outs sgpr_class:$data),
      (ins i32imm:$addr)> {
      let mayStore = 0;
      let mayLoad = 1;
    }
  } // End UseNamedOperandTable = 1
}

// You cannot use M0 as the output of v_readlane_b32 instructions or
// use it in the sdata operand of SMEM instructions. We still need to
// be able to spill the physical register m0, so allow it for
// SI_SPILL_32_* instructions.
defm SI_SPILL_S32  : SI_SPILL_SGPR <SReg_32>;
defm SI_SPILL_S64  : SI_SPILL_SGPR <SReg_64>;
defm SI_SPILL_S96  : SI_SPILL_SGPR <SReg_96>;
defm SI_SPILL_S128 : SI_SPILL_SGPR <SReg_128>;
defm SI_SPILL_S160 : SI_SPILL_SGPR <SReg_160>;
defm SI_SPILL_S192 : SI_SPILL_SGPR <SReg_192>;
defm SI_SPILL_S256 : SI_SPILL_SGPR <SReg_256>;
defm SI_SPILL_S512 : SI_SPILL_SGPR <SReg_512>;
defm SI_SPILL_S1024 : SI_SPILL_SGPR <SReg_1024>;

multiclass SI_SPILL_VGPR <RegisterClass vgpr_class> {
  let UseNamedOperandTable = 1, VGPRSpill = 1,
       SchedRW = [WriteVMEM] in {
    def _SAVE : VPseudoInstSI <
      (outs),
      (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc,
           SReg_32:$soffset, i32imm:$offset)> {
      let mayStore = 1;
      let mayLoad = 0;
      // (2 * 4) + (8 * num_subregs) bytes maximum
      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8);
      // Size field is unsigned char and cannot fit more.
      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
    }

    def _RESTORE : VPseudoInstSI <
      (outs vgpr_class:$vdata),
      (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset,
           i32imm:$offset)> {
      let mayStore = 0;
      let mayLoad = 1;

      // (2 * 4) + (8 * num_subregs) bytes maximum
      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 3), 8);
      // Size field is unsigned char and cannot fit more.
      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
    }
  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
}

defm SI_SPILL_V32  : SI_SPILL_VGPR <VGPR_32>;
defm SI_SPILL_V64  : SI_SPILL_VGPR <VReg_64>;
defm SI_SPILL_V96  : SI_SPILL_VGPR <VReg_96>;
defm SI_SPILL_V128 : SI_SPILL_VGPR <VReg_128>;
defm SI_SPILL_V160 : SI_SPILL_VGPR <VReg_160>;
defm SI_SPILL_V192 : SI_SPILL_VGPR <VReg_192>;
defm SI_SPILL_V256 : SI_SPILL_VGPR <VReg_256>;
defm SI_SPILL_V512 : SI_SPILL_VGPR <VReg_512>;
defm SI_SPILL_V1024 : SI_SPILL_VGPR <VReg_1024>;

multiclass SI_SPILL_AGPR <RegisterClass vgpr_class> {
  let UseNamedOperandTable = 1, VGPRSpill = 1,
      Constraints = "@earlyclobber $tmp",
      SchedRW = [WriteVMEM] in {
    def _SAVE : VPseudoInstSI <
      (outs VGPR_32:$tmp),
      (ins vgpr_class:$vdata, i32imm:$vaddr, SReg_128:$srsrc,
           SReg_32:$soffset, i32imm:$offset)> {
      let mayStore = 1;
      let mayLoad = 0;
      // (2 * 4) + (16 * num_subregs) bytes maximum
      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 4), 8);
      // Size field is unsigned char and cannot fit more.
      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
    }

    def _RESTORE : VPseudoInstSI <
      (outs vgpr_class:$vdata, VGPR_32:$tmp),
      (ins i32imm:$vaddr, SReg_128:$srsrc, SReg_32:$soffset,
           i32imm:$offset)> {
      let mayStore = 0;
      let mayLoad = 1;

      // (2 * 4) + (16 * num_subregs) bytes maximum
      int MaxSize = !add(!shl(!srl(vgpr_class.Size, 5), 4), 8);
      // Size field is unsigned char and cannot fit more.
      let Size = !if(!le(MaxSize, 256), MaxSize, 252);
    }
  } // End UseNamedOperandTable = 1, VGPRSpill = 1, SchedRW = [WriteVMEM]
}

defm SI_SPILL_A32  : SI_SPILL_AGPR <AGPR_32>;
defm SI_SPILL_A64  : SI_SPILL_AGPR <AReg_64>;
defm SI_SPILL_A128 : SI_SPILL_AGPR <AReg_128>;
defm SI_SPILL_A512 : SI_SPILL_AGPR <AReg_512>;
defm SI_SPILL_A1024 : SI_SPILL_AGPR <AReg_1024>;

def SI_PC_ADD_REL_OFFSET : SPseudoInstSI <
  (outs SReg_64:$dst),
  (ins si_ga:$ptr_lo, si_ga:$ptr_hi),
  [(set SReg_64:$dst,
      (i64 (SIpc_add_rel_offset tglobaladdr:$ptr_lo, tglobaladdr:$ptr_hi)))]> {
  let Defs = [SCC];
}

def : GCNPat <
  (SIpc_add_rel_offset tglobaladdr:$ptr_lo, 0),
  (SI_PC_ADD_REL_OFFSET $ptr_lo, (i32 0))
>;

def : GCNPat<
  (AMDGPUtrap timm:$trapid),
  (S_TRAP $trapid)
>;

def : GCNPat<
  (AMDGPUelse i1:$src, bb:$target),
  (SI_ELSE $src, $target, 0)
>;

def : Pat <
  (int_amdgcn_kill i1:$src),
  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, 0)
>;

def : Pat <
  (int_amdgcn_kill (i1 (not i1:$src))),
  (SI_KILL_I1_PSEUDO SCSrc_i1:$src, -1)
>;

def : Pat <
  (int_amdgcn_kill (i1 (setcc f32:$src, InlineImmFP32:$imm, cond:$cond))),
  (SI_KILL_F32_COND_IMM_PSEUDO VSrc_b32:$src, (bitcast_fpimm_to_i32 $imm), (cond_as_i32imm $cond))
>;

  // TODO: we could add more variants for other types of conditionals

def : Pat <
  (i64 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
  (COPY $src) // Return the SGPRs representing i1 src
>;

def : Pat <
  (i32 (int_amdgcn_icmp i1:$src, (i1 0), (i32 33))),
  (COPY $src) // Return the SGPRs representing i1 src
>;

//===----------------------------------------------------------------------===//
// VOP1 Patterns
//===----------------------------------------------------------------------===//

let OtherPredicates = [UnsafeFPMath] in {

//def : RcpPat<V_RCP_F64_e32, f64>;
//defm : RsqPat<V_RSQ_F64_e32, f64>;
//defm : RsqPat<V_RSQ_F32_e32, f32>;

def : RsqPat<V_RSQ_F32_e32, f32>;
def : RsqPat<V_RSQ_F64_e32, f64>;

// Convert (x - floor(x)) to fract(x)
def : GCNPat <
  (f32 (fsub (f32 (VOP3Mods f32:$x, i32:$mods)),
             (f32 (ffloor (f32 (VOP3Mods f32:$x, i32:$mods)))))),
  (V_FRACT_F32_e64 $mods, $x)
>;

// Convert (x + (-floor(x))) to fract(x)
def : GCNPat <
  (f64 (fadd (f64 (VOP3Mods f64:$x, i32:$mods)),
             (f64 (fneg (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))))))),
  (V_FRACT_F64_e64 $mods, $x)
>;

} // End OtherPredicates = [UnsafeFPMath]


// f16_to_fp patterns
def : GCNPat <
  (f32 (f16_to_fp i32:$src0)),
  (V_CVT_F32_F16_e64 SRCMODS.NONE, $src0)
>;

def : GCNPat <
  (f32 (f16_to_fp (and_oneuse i32:$src0, 0x7fff))),
  (V_CVT_F32_F16_e64 SRCMODS.ABS, $src0)
>;

def : GCNPat <
  (f32 (f16_to_fp (i32 (srl_oneuse (and_oneuse i32:$src0, 0x7fff0000), (i32 16))))),
  (V_CVT_F32_F16_e64 SRCMODS.ABS, (i32 (V_LSHRREV_B32_e64 (i32 16), i32:$src0)))
>;

def : GCNPat <
  (f32 (f16_to_fp (or_oneuse i32:$src0, 0x8000))),
  (V_CVT_F32_F16_e64 SRCMODS.NEG_ABS, $src0)
>;

def : GCNPat <
  (f32 (f16_to_fp (xor_oneuse i32:$src0, 0x8000))),
  (V_CVT_F32_F16_e64 SRCMODS.NEG, $src0)
>;

def : GCNPat <
  (f64 (fpextend f16:$src)),
  (V_CVT_F64_F32_e32 (V_CVT_F32_F16_e32 $src))
>;

// fp_to_fp16 patterns
def : GCNPat <
  (i32 (AMDGPUfp_to_f16 (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)))),
  (V_CVT_F16_F32_e64 $src0_modifiers, f32:$src0)
>;

def : GCNPat <
  (i32 (fp_to_sint f16:$src)),
  (V_CVT_I32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
>;

def : GCNPat <
  (i32 (fp_to_uint f16:$src)),
  (V_CVT_U32_F32_e32 (V_CVT_F32_F16_e32 VSrc_b32:$src))
>;

def : GCNPat <
  (f16 (sint_to_fp i32:$src)),
  (V_CVT_F16_F32_e32 (V_CVT_F32_I32_e32 VSrc_b32:$src))
>;

def : GCNPat <
  (f16 (uint_to_fp i32:$src)),
  (V_CVT_F16_F32_e32 (V_CVT_F32_U32_e32 VSrc_b32:$src))
>;

//===----------------------------------------------------------------------===//
// VOP2 Patterns
//===----------------------------------------------------------------------===//

// TODO: Check only no src2 mods?
class FMADPat <ValueType vt, Instruction inst, SDPatternOperator node>
  : GCNPat <(vt (node (vt (VOP3NoMods vt:$src0)),
                      (vt (VOP3NoMods vt:$src1)),
                      (vt (VOP3NoMods vt:$src2)))),
    (inst SRCMODS.NONE, $src0, SRCMODS.NONE, $src1,
          SRCMODS.NONE, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;


// Prefer mac form when there are no modifiers.
let AddedComplexity = 9 in {
def : FMADPat <f32, V_MAC_F32_e64, fmad>;
def : FMADPat <f32, V_MAC_F32_e64, AMDGPUfmad_ftz>;

let SubtargetPredicate = Has16BitInsts in {
def : FMADPat <f16, V_MAC_F16_e64, fmad>;
def : FMADPat <f16, V_MAC_F16_e64, AMDGPUfmad_ftz>;
}

}

class FMADModsPat<ValueType Ty, Instruction inst, SDPatternOperator mad_opr>
  : GCNPat<
  (Ty (mad_opr (Ty (VOP3Mods Ty:$src0, i32:$src0_mod)),
               (Ty (VOP3Mods Ty:$src1, i32:$src1_mod)),
               (Ty (VOP3Mods Ty:$src2, i32:$src2_mod)))),
  (inst $src0_mod, $src0, $src1_mod, $src1,
  $src2_mod, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;

let SubtargetPredicate = HasMadMacF32Insts in
def : FMADModsPat<f32, V_MAD_F32, AMDGPUfmad_ftz>;
def : FMADModsPat<f16, V_MAD_F16, AMDGPUfmad_ftz> {
  let SubtargetPredicate = Has16BitInsts;
}

class VOPSelectModsPat <ValueType vt> : GCNPat <
  (vt (select i1:$src0, (VOP3Mods vt:$src1, i32:$src1_mods),
                        (VOP3Mods vt:$src2, i32:$src2_mods))),
  (V_CNDMASK_B32_e64 FP32InputMods:$src2_mods, VSrc_b32:$src2,
                     FP32InputMods:$src1_mods, VSrc_b32:$src1, SSrc_i1:$src0)
>;

class VOPSelectPat <ValueType vt> : GCNPat <
  (vt (select i1:$src0, vt:$src1, vt:$src2)),
  (V_CNDMASK_B32_e64 0, VSrc_b32:$src2, 0, VSrc_b32:$src1, SSrc_i1:$src0)
>;

def : VOPSelectModsPat <i32>;
def : VOPSelectModsPat <f32>;
def : VOPSelectPat <f16>;
def : VOPSelectPat <i16>;

let AddedComplexity = 1 in {
def : GCNPat <
  (i32 (add (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)), i32:$val)),
  (V_BCNT_U32_B32_e64 $popcnt, $val)
>;
}

def : GCNPat <
  (i32 (ctpop i32:$popcnt)),
  (V_BCNT_U32_B32_e64 VSrc_b32:$popcnt, (i32 0))
>;

def : GCNPat <
  (i16 (add (i16 (trunc (i32 (getDivergentFrag<ctpop>.ret i32:$popcnt)))), i16:$val)),
  (V_BCNT_U32_B32_e64 $popcnt, $val)
>;

/********** ============================================ **********/
/********** Extraction, Insertion, Building and Casting  **********/
/********** ============================================ **********/

foreach Index = 0-2 in {
  def Extract_Element_v2i32_#Index : Extract_Element <
    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v2i32_#Index : Insert_Element <
    i32, v2i32, Index, !cast<SubRegIndex>(sub#Index)
  >;

  def Extract_Element_v2f32_#Index : Extract_Element <
    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v2f32_#Index : Insert_Element <
    f32, v2f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
}

foreach Index = 0-2 in {
  def Extract_Element_v3i32_#Index : Extract_Element <
    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v3i32_#Index : Insert_Element <
    i32, v3i32, Index, !cast<SubRegIndex>(sub#Index)
  >;

  def Extract_Element_v3f32_#Index : Extract_Element <
    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v3f32_#Index : Insert_Element <
    f32, v3f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
}

foreach Index = 0-3 in {
  def Extract_Element_v4i32_#Index : Extract_Element <
    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v4i32_#Index : Insert_Element <
    i32, v4i32, Index, !cast<SubRegIndex>(sub#Index)
  >;

  def Extract_Element_v4f32_#Index : Extract_Element <
    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v4f32_#Index : Insert_Element <
    f32, v4f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
}

foreach Index = 0-4 in {
  def Extract_Element_v5i32_#Index : Extract_Element <
    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v5i32_#Index : Insert_Element <
    i32, v5i32, Index, !cast<SubRegIndex>(sub#Index)
  >;

  def Extract_Element_v5f32_#Index : Extract_Element <
    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v5f32_#Index : Insert_Element <
    f32, v5f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
}

foreach Index = 0-7 in {
  def Extract_Element_v8i32_#Index : Extract_Element <
    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v8i32_#Index : Insert_Element <
    i32, v8i32, Index, !cast<SubRegIndex>(sub#Index)
  >;

  def Extract_Element_v8f32_#Index : Extract_Element <
    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v8f32_#Index : Insert_Element <
    f32, v8f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
}

foreach Index = 0-15 in {
  def Extract_Element_v16i32_#Index : Extract_Element <
    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v16i32_#Index : Insert_Element <
    i32, v16i32, Index, !cast<SubRegIndex>(sub#Index)
  >;

  def Extract_Element_v16f32_#Index : Extract_Element <
    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
  def Insert_Element_v16f32_#Index : Insert_Element <
    f32, v16f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
}


def : Pat <
  (extract_subvector v4i16:$vec, (i32 0)),
  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub0))
>;

def : Pat <
  (extract_subvector v4i16:$vec, (i32 2)),
  (v2i16 (EXTRACT_SUBREG v4i16:$vec, sub1))
>;

def : Pat <
  (extract_subvector v4f16:$vec, (i32 0)),
  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub0))
>;

def : Pat <
  (extract_subvector v4f16:$vec, (i32 2)),
  (v2f16 (EXTRACT_SUBREG v4f16:$vec, sub1))
>;

foreach Index = 0-31 in {
  def Extract_Element_v32i32_#Index : Extract_Element <
    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
  >;

  def Insert_Element_v32i32_#Index : Insert_Element <
    i32, v32i32, Index, !cast<SubRegIndex>(sub#Index)
  >;

  def Extract_Element_v32f32_#Index : Extract_Element <
    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
  >;

  def Insert_Element_v32f32_#Index : Insert_Element <
    f32, v32f32, Index, !cast<SubRegIndex>(sub#Index)
  >;
}

// FIXME: Why do only some of these type combinations for SReg and
// VReg?
// 16-bit bitcast
def : BitConvert <i16, f16, VGPR_32>;
def : BitConvert <f16, i16, VGPR_32>;
def : BitConvert <i16, f16, SReg_32>;
def : BitConvert <f16, i16, SReg_32>;

// 32-bit bitcast
def : BitConvert <i32, f32, VGPR_32>;
def : BitConvert <f32, i32, VGPR_32>;
def : BitConvert <i32, f32, SReg_32>;
def : BitConvert <f32, i32, SReg_32>;
def : BitConvert <v2i16, i32, SReg_32>;
def : BitConvert <i32, v2i16, SReg_32>;
def : BitConvert <v2f16, i32, SReg_32>;
def : BitConvert <i32, v2f16, SReg_32>;
def : BitConvert <v2i16, v2f16, SReg_32>;
def : BitConvert <v2f16, v2i16, SReg_32>;
def : BitConvert <v2f16, f32, SReg_32>;
def : BitConvert <f32, v2f16, SReg_32>;
def : BitConvert <v2i16, f32, SReg_32>;
def : BitConvert <f32, v2i16, SReg_32>;

// 64-bit bitcast
def : BitConvert <i64, f64, VReg_64>;
def : BitConvert <f64, i64, VReg_64>;
def : BitConvert <v2i32, v2f32, VReg_64>;
def : BitConvert <v2f32, v2i32, VReg_64>;
def : BitConvert <i64, v2i32, VReg_64>;
def : BitConvert <v2i32, i64, VReg_64>;
def : BitConvert <i64, v2f32, VReg_64>;
def : BitConvert <v2f32, i64, VReg_64>;
def : BitConvert <f64, v2f32, VReg_64>;
def : BitConvert <v2f32, f64, VReg_64>;
def : BitConvert <f64, v2i32, VReg_64>;
def : BitConvert <v2i32, f64, VReg_64>;
def : BitConvert <v4i16, v4f16, VReg_64>;
def : BitConvert <v4f16, v4i16, VReg_64>;

// FIXME: Make SGPR
def : BitConvert <v2i32, v4f16, VReg_64>;
def : BitConvert <v4f16, v2i32, VReg_64>;
def : BitConvert <v2i32, v4f16, VReg_64>;
def : BitConvert <v2i32, v4i16, VReg_64>;
def : BitConvert <v4i16, v2i32, VReg_64>;
def : BitConvert <v2f32, v4f16, VReg_64>;
def : BitConvert <v4f16, v2f32, VReg_64>;
def : BitConvert <v2f32, v4i16, VReg_64>;
def : BitConvert <v4i16, v2f32, VReg_64>;
def : BitConvert <v4i16, f64, VReg_64>;
def : BitConvert <v4f16, f64, VReg_64>;
def : BitConvert <f64, v4i16, VReg_64>;
def : BitConvert <f64, v4f16, VReg_64>;
def : BitConvert <v4i16, i64, VReg_64>;
def : BitConvert <v4f16, i64, VReg_64>;
def : BitConvert <i64, v4i16, VReg_64>;
def : BitConvert <i64, v4f16, VReg_64>;

def : BitConvert <v4i32, v4f32, VReg_128>;
def : BitConvert <v4f32, v4i32, VReg_128>;

// 96-bit bitcast
def : BitConvert <v3i32, v3f32, SGPR_96>;
def : BitConvert <v3f32, v3i32, SGPR_96>;

// 128-bit bitcast
def : BitConvert <v2i64, v4i32, SReg_128>;
def : BitConvert <v4i32, v2i64, SReg_128>;
def : BitConvert <v2f64, v4f32, VReg_128>;
def : BitConvert <v2f64, v4i32, VReg_128>;
def : BitConvert <v4f32, v2f64, VReg_128>;
def : BitConvert <v4i32, v2f64, VReg_128>;
def : BitConvert <v2i64, v2f64, VReg_128>;
def : BitConvert <v2f64, v2i64, VReg_128>;
def : BitConvert <v4f32, v2i64, VReg_128>;
def : BitConvert <v2i64, v4f32, VReg_128>;

// 160-bit bitcast
def : BitConvert <v5i32, v5f32, SGPR_160>;
def : BitConvert <v5f32, v5i32, SGPR_160>;

// 256-bit bitcast
def : BitConvert <v8i32, v8f32, SReg_256>;
def : BitConvert <v8f32, v8i32, SReg_256>;
def : BitConvert <v8i32, v8f32, VReg_256>;
def : BitConvert <v8f32, v8i32, VReg_256>;
def : BitConvert <v4i64, v4f64, VReg_256>;
def : BitConvert <v4f64, v4i64, VReg_256>;
def : BitConvert <v4i64, v8i32, VReg_256>;
def : BitConvert <v4i64, v8f32, VReg_256>;
def : BitConvert <v4f64, v8i32, VReg_256>;
def : BitConvert <v4f64, v8f32, VReg_256>;
def : BitConvert <v8i32, v4i64, VReg_256>;
def : BitConvert <v8f32, v4i64, VReg_256>;
def : BitConvert <v8i32, v4f64, VReg_256>;
def : BitConvert <v8f32, v4f64, VReg_256>;


// 512-bit bitcast
def : BitConvert <v16i32, v16f32, VReg_512>;
def : BitConvert <v16f32, v16i32, VReg_512>;
def : BitConvert <v8i64,  v8f64,  VReg_512>;
def : BitConvert <v8f64,  v8i64,  VReg_512>;
def : BitConvert <v8i64,  v16i32, VReg_512>;
def : BitConvert <v8f64,  v16i32, VReg_512>;
def : BitConvert <v16i32, v8i64,  VReg_512>;
def : BitConvert <v16i32, v8f64,  VReg_512>;
def : BitConvert <v8i64,  v16f32, VReg_512>;
def : BitConvert <v8f64,  v16f32, VReg_512>;
def : BitConvert <v16f32, v8i64,  VReg_512>;
def : BitConvert <v16f32, v8f64,  VReg_512>;

// 1024-bit bitcast
def : BitConvert <v32i32, v32f32, VReg_1024>;
def : BitConvert <v32f32, v32i32, VReg_1024>;
def : BitConvert <v16i64, v16f64, VReg_1024>;
def : BitConvert <v16f64, v16i64, VReg_1024>;
def : BitConvert <v16i64, v32i32, VReg_1024>;
def : BitConvert <v32i32, v16i64, VReg_1024>;
def : BitConvert <v16f64, v32f32, VReg_1024>;
def : BitConvert <v32f32, v16f64, VReg_1024>;
def : BitConvert <v16i64, v32f32, VReg_1024>;
def : BitConvert <v32i32, v16f64, VReg_1024>;
def : BitConvert <v16f64, v32i32, VReg_1024>;
def : BitConvert <v32f32, v16i64, VReg_1024>;


/********** =================== **********/
/********** Src & Dst modifiers **********/
/********** =================== **********/


// If denormals are not enabled, it only impacts the compare of the
// inputs. The output result is not flushed.
class ClampPat<Instruction inst, ValueType vt> : GCNPat <
  (vt (AMDGPUclamp (VOP3Mods vt:$src0, i32:$src0_modifiers))),
  (inst i32:$src0_modifiers, vt:$src0,
        i32:$src0_modifiers, vt:$src0, DSTCLAMP.ENABLE, DSTOMOD.NONE)
>;

def : ClampPat<V_MAX_F32_e64, f32>;
def : ClampPat<V_MAX_F64, f64>;
def : ClampPat<V_MAX_F16_e64, f16>;

let SubtargetPredicate = HasVOP3PInsts in {
def : GCNPat <
  (v2f16 (AMDGPUclamp (VOP3PMods v2f16:$src0, i32:$src0_modifiers))),
  (V_PK_MAX_F16 $src0_modifiers, $src0,
                $src0_modifiers, $src0, DSTCLAMP.ENABLE)
>;
}

/********** ================================ **********/
/********** Floating point absolute/negative **********/
/********** ================================ **********/

// Prevent expanding both fneg and fabs.
// TODO: Add IgnoredBySelectionDAG bit?
let AddedComplexity = 1 in { // Prefer SALU to VALU patterns for DAG

def : GCNPat <
  (fneg (fabs (f32 SReg_32:$src))),
  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000))) // Set sign bit
>;

def : GCNPat <
  (fabs (f32 SReg_32:$src)),
  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fffffff)))
>;

def : GCNPat <
  (fneg (f32 SReg_32:$src)),
  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80000000)))
>;

def : GCNPat <
  (fneg (f16 SReg_32:$src)),
  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000)))
>;

def : GCNPat <
  (fneg (f16 VGPR_32:$src)),
  (V_XOR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src)
>;

def : GCNPat <
  (fabs (f16 SReg_32:$src)),
  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00007fff)))
>;

def : GCNPat <
  (fneg (fabs (f16 SReg_32:$src))),
  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x00008000))) // Set sign bit
>;

def : GCNPat <
  (fneg (fabs (f16 VGPR_32:$src))),
  (V_OR_B32_e32 (S_MOV_B32 (i32 0x00008000)), VGPR_32:$src) // Set sign bit
>;

def : GCNPat <
  (fneg (v2f16 SReg_32:$src)),
  (S_XOR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000)))
>;

def : GCNPat <
  (fabs (v2f16 SReg_32:$src)),
  (S_AND_B32 SReg_32:$src, (S_MOV_B32 (i32 0x7fff7fff)))
>;

// This is really (fneg (fabs v2f16:$src))
//
// fabs is not reported as free because there is modifier for it in
// VOP3P instructions, so it is turned into the bit op.
def : GCNPat <
  (fneg (v2f16 (bitconvert (and_oneuse (i32 SReg_32:$src), 0x7fff7fff)))),
  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
>;

def : GCNPat <
  (fneg (v2f16 (fabs SReg_32:$src))),
  (S_OR_B32 SReg_32:$src, (S_MOV_B32 (i32 0x80008000))) // Set sign bit
>;

// FIXME: The implicit-def of scc from S_[X]OR/AND_B32 is mishandled
 // def : GCNPat <
//   (fneg (f64 SReg_64:$src)),
//   (REG_SEQUENCE SReg_64,
//     (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
//     sub0,
//     (S_XOR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
//                (i32 (S_MOV_B32 (i32 0x80000000)))),
//     sub1)
// >;

// def : GCNPat <
//   (fneg (fabs (f64 SReg_64:$src))),
//   (REG_SEQUENCE SReg_64,
//     (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
//     sub0,
//     (S_OR_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
//               (S_MOV_B32 (i32 0x80000000))), // Set sign bit.
//     sub1)
// >;

// FIXME: Use S_BITSET0_B32/B64?
// def : GCNPat <
//   (fabs (f64 SReg_64:$src)),
//   (REG_SEQUENCE SReg_64,
//     (i32 (EXTRACT_SUBREG SReg_64:$src, sub0)),
//     sub0,
//     (S_AND_B32 (i32 (EXTRACT_SUBREG SReg_64:$src, sub1)),
//                (i32 (S_MOV_B32 (i32 0x7fffffff)))),
//     sub1)
// >;

} // End let AddedComplexity = 1

def : GCNPat <
  (fabs (f32 VGPR_32:$src)),
  (V_AND_B32_e32 (S_MOV_B32 (i32 0x7fffffff)), VGPR_32:$src)
>;

def : GCNPat <
  (fneg (f32 VGPR_32:$src)),
  (V_XOR_B32_e32 (S_MOV_B32 (i32 0x80000000)), VGPR_32:$src)
>;

def : GCNPat <
  (fabs (f16 VGPR_32:$src)),
  (V_AND_B32_e32 (S_MOV_B32 (i32 0x00007fff)), VGPR_32:$src)
>;

def : GCNPat <
  (fneg (v2f16 VGPR_32:$src)),
  (V_XOR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src)
>;

def : GCNPat <
  (fabs (v2f16 VGPR_32:$src)),
  (V_AND_B32_e32 (S_MOV_B32 (i32 0x7fff7fff)), VGPR_32:$src)
>;

def : GCNPat <
  (fneg (v2f16 (fabs VGPR_32:$src))),
  (V_OR_B32_e32 (S_MOV_B32 (i32 0x80008000)), VGPR_32:$src) // Set sign bit
>;

def : GCNPat <
  (fabs (f64 VReg_64:$src)),
  (REG_SEQUENCE VReg_64,
    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
    sub0,
    (V_AND_B32_e64 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)),
                   (V_MOV_B32_e32 (i32 0x7fffffff))), // Set sign bit.
     sub1)
>;

// TODO: Use SGPR for constant
def : GCNPat <
  (fneg (f64 VReg_64:$src)),
  (REG_SEQUENCE VReg_64,
    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
    sub0,
    (V_XOR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)),
                   (i32 (V_MOV_B32_e32 (i32 0x80000000)))),
    sub1)
>;

// TODO: Use SGPR for constant
def : GCNPat <
  (fneg (fabs (f64 VReg_64:$src))),
  (REG_SEQUENCE VReg_64,
    (i32 (EXTRACT_SUBREG VReg_64:$src, sub0)),
    sub0,
    (V_OR_B32_e32 (i32 (EXTRACT_SUBREG VReg_64:$src, sub1)),
                  (V_MOV_B32_e32 (i32 0x80000000))), // Set sign bit.
    sub1)
>;

def : GCNPat <
  (fcopysign f16:$src0, f16:$src1),
  (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0, $src1)
>;

def : GCNPat <
  (fcopysign f32:$src0, f16:$src1),
  (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), $src0,
             (V_LSHLREV_B32_e64 (i32 16), $src1))
>;

def : GCNPat <
  (fcopysign f64:$src0, f16:$src1),
  (REG_SEQUENCE SReg_64,
    (i32 (EXTRACT_SUBREG $src0, sub0)), sub0,
    (V_BFI_B32 (S_MOV_B32 (i32 0x7fffffff)), (i32 (EXTRACT_SUBREG $src0, sub1)),
               (V_LSHLREV_B32_e64 (i32 16), $src1)), sub1)
>;

def : GCNPat <
  (fcopysign f16:$src0, f32:$src1),
  (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0,
             (V_LSHRREV_B32_e64 (i32 16), $src1))
>;

def : GCNPat <
  (fcopysign f16:$src0, f64:$src1),
  (V_BFI_B32 (S_MOV_B32 (i32 0x00007fff)), $src0,
             (V_LSHRREV_B32_e64 (i32 16), (EXTRACT_SUBREG $src1, sub1)))
>;

/********** ================== **********/
/********** Immediate Patterns **********/
/********** ================== **********/

def : GCNPat <
  (VGPRImm<(i32 imm)>:$imm),
  (V_MOV_B32_e32 imm:$imm)
>;

def : GCNPat <
  (VGPRImm<(f32 fpimm)>:$imm),
  (V_MOV_B32_e32 (f32 (bitcast_fpimm_to_i32 $imm)))
>;

def : GCNPat <
  (i32 imm:$imm),
  (S_MOV_B32 imm:$imm)
>;

def : GCNPat <
  (VGPRImm<(SIlds tglobaladdr:$ga)>),
  (V_MOV_B32_e32 $ga)
>;

def : GCNPat <
  (SIlds tglobaladdr:$ga),
  (S_MOV_B32 $ga)
>;

// FIXME: Workaround for ordering issue with peephole optimizer where
// a register class copy interferes with immediate folding.  Should
// use s_mov_b32, which can be shrunk to s_movk_i32
def : GCNPat <
  (VGPRImm<(f16 fpimm)>:$imm),
  (V_MOV_B32_e32 (f16 (bitcast_fpimm_to_i32 $imm)))
>;

def : GCNPat <
  (f32 fpimm:$imm),
  (S_MOV_B32 (f32 (bitcast_fpimm_to_i32 $imm)))
>;

def : GCNPat <
  (f16 fpimm:$imm),
  (S_MOV_B32 (i32 (bitcast_fpimm_to_i32 $imm)))
>;

def : GCNPat <
 (i32 frameindex:$fi),
 (V_MOV_B32_e32 (i32 (frameindex_to_targetframeindex $fi)))
>;

def : GCNPat <
  (i64 InlineImm64:$imm),
  (S_MOV_B64 InlineImm64:$imm)
>;

// XXX - Should this use a s_cmp to set SCC?

// Set to sign-extended 64-bit value (true = -1, false = 0)
def : GCNPat <
  (i1 imm:$imm),
  (S_MOV_B64 (i64 (as_i64imm $imm)))
> {
  let WaveSizePredicate = isWave64;
}

def : GCNPat <
  (i1 imm:$imm),
  (S_MOV_B32 (i32 (as_i32imm $imm)))
> {
  let WaveSizePredicate = isWave32;
}

def : GCNPat <
  (f64 InlineImmFP64:$imm),
  (S_MOV_B64 (f64 (bitcast_fpimm_to_i64 InlineImmFP64:$imm)))
>;

/********** ================== **********/
/********** Intrinsic Patterns **********/
/********** ================== **********/

// FIXME: Should use _e64 and select source modifiers.
def : POW_Common <V_LOG_F32_e32, V_EXP_F32_e32, V_MUL_LEGACY_F32_e32>;

def : GCNPat <
  (i32 (sext i1:$src0)),
  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                     /*src1mod*/(i32 0), /*src1*/(i32 -1), $src0)
>;

class Ext32Pat <SDNode ext> : GCNPat <
  (i32 (ext i1:$src0)),
  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                     /*src1mod*/(i32 0), /*src1*/(i32 1), $src0)
>;

def : Ext32Pat <zext>;
def : Ext32Pat <anyext>;

// The multiplication scales from [0,1) to the unsigned integer range,
// rounding down a bit to avoid unwanted overflow.
def : GCNPat <
  (AMDGPUurecip i32:$src0),
  (V_CVT_U32_F32_e32
    (V_MUL_F32_e32 (i32 CONST.FP_4294966784),
                   (V_RCP_IFLAG_F32_e32 (V_CVT_F32_U32_e32 $src0))))
>;

//===----------------------------------------------------------------------===//
// VOP3 Patterns
//===----------------------------------------------------------------------===//

def : IMad24Pat<V_MAD_I32_I24, 1>;
def : UMad24Pat<V_MAD_U32_U24, 1>;

// FIXME: This should only be done for VALU inputs
defm : BFIPatterns <V_BFI_B32, S_MOV_B32, SReg_64>;
def : ROTRPattern <V_ALIGNBIT_B32>;

def : GCNPat<(i32 (trunc (srl i64:$src0, (and i32:$src1, (i32 31))))),
          (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;

def : GCNPat<(i32 (trunc (srl i64:$src0, (i32 ShiftAmt32Imm:$src1)))),
          (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG (i64 $src0), sub1)),
                          (i32 (EXTRACT_SUBREG (i64 $src0), sub0)), $src1)>;

/********** ====================== **********/
/**********   Indirect addressing  **********/
/********** ====================== **********/

multiclass SI_INDIRECT_Pattern <ValueType vt, ValueType eltvt, string VecSize> {
  // Extract with offset
  def : GCNPat<
    (eltvt (extractelt vt:$src, (MOVRELOffset i32:$idx, (i32 imm:$offset)))),
    (!cast<Instruction>("SI_INDIRECT_SRC_"#VecSize) $src, $idx, imm:$offset)
  >;

  // Insert with offset
  def : GCNPat<
    (insertelt vt:$src, eltvt:$val, (MOVRELOffset i32:$idx, (i32 imm:$offset))),
    (!cast<Instruction>("SI_INDIRECT_DST_"#VecSize) $src, $idx, imm:$offset, $val)
  >;
}

defm : SI_INDIRECT_Pattern <v2f32, f32, "V2">;
defm : SI_INDIRECT_Pattern <v4f32, f32, "V4">;
defm : SI_INDIRECT_Pattern <v8f32, f32, "V8">;
defm : SI_INDIRECT_Pattern <v16f32, f32, "V16">;
defm : SI_INDIRECT_Pattern <v32f32, f32, "V32">;

defm : SI_INDIRECT_Pattern <v2i32, i32, "V2">;
defm : SI_INDIRECT_Pattern <v4i32, i32, "V4">;
defm : SI_INDIRECT_Pattern <v8i32, i32, "V8">;
defm : SI_INDIRECT_Pattern <v16i32, i32, "V16">;
defm : SI_INDIRECT_Pattern <v32i32, i32, "V32">;

//===----------------------------------------------------------------------===//
// SAD Patterns
//===----------------------------------------------------------------------===//

def : GCNPat <
  (add (sub_oneuse (umax i32:$src0, i32:$src1),
                   (umin i32:$src0, i32:$src1)),
       i32:$src2),
  (V_SAD_U32 $src0, $src1, $src2, (i1 0))
>;

def : GCNPat <
  (add (select_oneuse (i1 (setugt i32:$src0, i32:$src1)),
                      (sub i32:$src0, i32:$src1),
                      (sub i32:$src1, i32:$src0)),
       i32:$src2),
  (V_SAD_U32 $src0, $src1, $src2, (i1 0))
>;

//===----------------------------------------------------------------------===//
// Conversion Patterns
//===----------------------------------------------------------------------===//

def : GCNPat<(i32 (sext_inreg i32:$src, i1)),
  (S_BFE_I32 i32:$src, (i32 65536))>; // 0 | 1 << 16

// Handle sext_inreg in i64
def : GCNPat <
  (i64 (sext_inreg i64:$src, i1)),
  (S_BFE_I64 i64:$src, (i32 0x10000)) // 0 | 1 << 16
>;

def : GCNPat <
  (i16 (sext_inreg i16:$src, i1)),
  (S_BFE_I32 $src, (i32 0x00010000)) // 0 | 1 << 16
>;

def : GCNPat <
  (i16 (sext_inreg i16:$src, i8)),
  (S_BFE_I32 $src, (i32 0x80000)) // 0 | 8 << 16
>;

def : GCNPat <
  (i64 (sext_inreg i64:$src, i8)),
  (S_BFE_I64 i64:$src, (i32 0x80000)) // 0 | 8 << 16
>;

def : GCNPat <
  (i64 (sext_inreg i64:$src, i16)),
  (S_BFE_I64 i64:$src, (i32 0x100000)) // 0 | 16 << 16
>;

def : GCNPat <
  (i64 (sext_inreg i64:$src, i32)),
  (S_BFE_I64 i64:$src, (i32 0x200000)) // 0 | 32 << 16
>;

def : GCNPat <
  (i64 (zext i32:$src)),
  (REG_SEQUENCE SReg_64, $src, sub0, (S_MOV_B32 (i32 0)), sub1)
>;

def : GCNPat <
  (i64 (anyext i32:$src)),
  (REG_SEQUENCE SReg_64, $src, sub0, (i32 (IMPLICIT_DEF)), sub1)
>;

class ZExt_i64_i1_Pat <SDNode ext> : GCNPat <
  (i64 (ext i1:$src)),
    (REG_SEQUENCE VReg_64,
      (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                         /*src1mod*/(i32 0), /*src1*/(i32 1), $src),
      sub0, (S_MOV_B32 (i32 0)), sub1)
>;


def : ZExt_i64_i1_Pat<zext>;
def : ZExt_i64_i1_Pat<anyext>;

// FIXME: We need to use COPY_TO_REGCLASS to work-around the fact that
// REG_SEQUENCE patterns don't support instructions with multiple outputs.
def : GCNPat <
  (i64 (sext i32:$src)),
    (REG_SEQUENCE SReg_64, $src, sub0,
    (i32 (COPY_TO_REGCLASS (S_ASHR_I32 $src, (i32 31)), SReg_32_XM0)), sub1)
>;

def : GCNPat <
  (i64 (sext i1:$src)),
  (REG_SEQUENCE VReg_64,
    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub0,
    (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                       /*src1mod*/(i32 0), /*src1*/(i32 -1), $src), sub1)
>;

class FPToI1Pat<Instruction Inst, int KOne, ValueType kone_type, ValueType vt, SDPatternOperator fp_to_int> : GCNPat <
  (i1 (fp_to_int (vt (VOP3Mods vt:$src0, i32:$src0_modifiers)))),
  (i1 (Inst 0, (kone_type KOne), $src0_modifiers, $src0, DSTCLAMP.NONE))
>;

def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_ONE, i32, f32, fp_to_uint>;
def : FPToI1Pat<V_CMP_EQ_F32_e64, CONST.FP32_NEG_ONE, i32, f32, fp_to_sint>;
def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_ONE, i64, f64, fp_to_uint>;
def : FPToI1Pat<V_CMP_EQ_F64_e64, CONST.FP64_NEG_ONE, i64, f64, fp_to_sint>;

// If we need to perform a logical operation on i1 values, we need to
// use vector comparisons since there is only one SCC register. Vector
// comparisons may write to a pair of SGPRs or a single SGPR, so treat
// these as 32 or 64-bit comparisons. When legalizing SGPR copies,
// instructions resulting in the copies from SCC to these instructions
// will be moved to the VALU.

let WaveSizePredicate = isWave64 in {
def : GCNPat <
  (i1 (and i1:$src0, i1:$src1)),
  (S_AND_B64 $src0, $src1)
>;

def : GCNPat <
  (i1 (or i1:$src0, i1:$src1)),
  (S_OR_B64 $src0, $src1)
>;

def : GCNPat <
  (i1 (xor i1:$src0, i1:$src1)),
  (S_XOR_B64 $src0, $src1)
>;

def : GCNPat <
  (i1 (add i1:$src0, i1:$src1)),
  (S_XOR_B64 $src0, $src1)
>;

def : GCNPat <
  (i1 (sub i1:$src0, i1:$src1)),
  (S_XOR_B64 $src0, $src1)
>;

let AddedComplexity = 1 in {
def : GCNPat <
  (i1 (add i1:$src0, (i1 -1))),
  (S_NOT_B64 $src0)
>;

def : GCNPat <
  (i1 (sub i1:$src0, (i1 -1))),
  (S_NOT_B64 $src0)
>;
}
} // end isWave64

let WaveSizePredicate = isWave32 in {
def : GCNPat <
  (i1 (and i1:$src0, i1:$src1)),
  (S_AND_B32 $src0, $src1)
>;

def : GCNPat <
  (i1 (or i1:$src0, i1:$src1)),
  (S_OR_B32 $src0, $src1)
>;

def : GCNPat <
  (i1 (xor i1:$src0, i1:$src1)),
  (S_XOR_B32 $src0, $src1)
>;

def : GCNPat <
  (i1 (add i1:$src0, i1:$src1)),
  (S_XOR_B32 $src0, $src1)
>;

def : GCNPat <
  (i1 (sub i1:$src0, i1:$src1)),
  (S_XOR_B32 $src0, $src1)
>;

let AddedComplexity = 1 in {
def : GCNPat <
  (i1 (add i1:$src0, (i1 -1))),
  (S_NOT_B32 $src0)
>;

def : GCNPat <
  (i1 (sub i1:$src0, (i1 -1))),
  (S_NOT_B32 $src0)
>;
}
} // end isWave32

def : GCNPat <
  (f16 (sint_to_fp i1:$src)),
  (V_CVT_F16_F32_e32 (
      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
                        SSrc_i1:$src))
>;

def : GCNPat <
  (f16 (uint_to_fp i1:$src)),
  (V_CVT_F16_F32_e32 (
      V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
                        SSrc_i1:$src))
>;

def : GCNPat <
  (f32 (sint_to_fp i1:$src)),
  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_NEG_ONE),
                        SSrc_i1:$src)
>;

def : GCNPat <
  (f32 (uint_to_fp i1:$src)),
  (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                        /*src1mod*/(i32 0), /*src1*/(i32 CONST.FP32_ONE),
                        SSrc_i1:$src)
>;

def : GCNPat <
  (f64 (sint_to_fp i1:$src)),
  (V_CVT_F64_I32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                                        /*src1mod*/(i32 0), /*src1*/(i32 -1),
                                        SSrc_i1:$src))
>;

def : GCNPat <
  (f64 (uint_to_fp i1:$src)),
  (V_CVT_F64_U32_e32 (V_CNDMASK_B32_e64 /*src0mod*/(i32 0), /*src0*/(i32 0),
                                        /*src1mod*/(i32 0), /*src1*/(i32 1),
                                        SSrc_i1:$src))
>;

//===----------------------------------------------------------------------===//
// Miscellaneous Patterns
//===----------------------------------------------------------------------===//
def : GCNPat <
  (i32 (AMDGPUfp16_zext f16:$src)),
  (COPY $src)
>;


def : GCNPat <
  (i32 (trunc i64:$a)),
  (EXTRACT_SUBREG $a, sub0)
>;

def : GCNPat <
  (i1 (trunc i32:$a)),
  (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1))
>;

def : GCNPat <
  (i1 (trunc i16:$a)),
  (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1), $a), (i32 1))
>;

def : GCNPat <
  (i1 (trunc i64:$a)),
  (V_CMP_EQ_U32_e64 (S_AND_B32 (i32 1),
                    (i32 (EXTRACT_SUBREG $a, sub0))), (i32 1))
>;

def : GCNPat <
  (i32 (bswap i32:$a)),
  (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)),
             (V_ALIGNBIT_B32 VSrc_b32:$a, VSrc_b32:$a, (i32 24)),
             (V_ALIGNBIT_B32 VSrc_b32:$a, VSrc_b32:$a, (i32 8)))
>;

// FIXME: This should have been narrowed to i32 during legalization.
// This pattern should also be skipped for GlobalISel
def : GCNPat <
  (i64 (bswap i64:$a)),
  (REG_SEQUENCE VReg_64,
  (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)),
             (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
                             (i32 24)),
             (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub1)),
                             (i32 8))),
  sub0,
  (V_BFI_B32 (S_MOV_B32 (i32 0x00ff00ff)),
             (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
                             (i32 24)),
             (V_ALIGNBIT_B32 (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
                             (i32 (EXTRACT_SUBREG VReg_64:$a, sub0)),
                             (i32 8))),
  sub1)
>;

// FIXME: The AddedComplexity should not be needed, but in GlobalISel
// the BFI pattern ends up taking precedence without it.
let SubtargetPredicate = isGFX8Plus, AddedComplexity = 1 in {
// Magic number: 3 | (2 << 8) | (1 << 16) | (0 << 24)
//
// My reading of the manual suggests we should be using src0 for the
// register value, but this is what seems to work.
def : GCNPat <
  (i32 (bswap i32:$a)),
  (V_PERM_B32 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x00010203)))
>;

// FIXME: This should have been narrowed to i32 during legalization.
// This pattern should also be skipped for GlobalISel
def : GCNPat <
  (i64 (bswap i64:$a)),
  (REG_SEQUENCE VReg_64,
  (V_PERM_B32 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub1),
              (S_MOV_B32 (i32 0x00010203))),
  sub0,
  (V_PERM_B32 (i32 0), (EXTRACT_SUBREG VReg_64:$a, sub0),
              (S_MOV_B32 (i32 0x00010203))),
  sub1)
>;

// Magic number: 1 | (0 << 8) | (12 << 16) | (12 << 24)
// The 12s emit 0s.
def : GCNPat <
  (i16 (bswap i16:$a)),
  (V_PERM_B32 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
>;

def : GCNPat <
  (i32 (zext (bswap i16:$a))),
  (V_PERM_B32 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x0c0c0001)))
>;

// Magic number: 1 | (0 << 8) | (3 << 16) | (2 << 24)
def : GCNPat <
  (v2i16 (bswap v2i16:$a)),
  (V_PERM_B32 (i32 0), VSrc_b32:$a, (S_MOV_B32 (i32 0x02030001)))
>;

}


// Prefer selecting to max when legal, but using mul is always valid.
let AddedComplexity = -5 in {
def : GCNPat<
  (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
  (V_MUL_F16_e64 0, (i32 CONST.FP16_ONE), $src_mods, $src)
>;

def : GCNPat<
  (fcanonicalize (f16 (fneg (VOP3Mods f16:$src, i32:$src_mods)))),
  (V_MUL_F16_e64 0, (i32 CONST.FP16_NEG_ONE), $src_mods, $src)
>;

def : GCNPat<
  (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
  (V_PK_MUL_F16 0, (i32 CONST.FP16_ONE), $src_mods, $src, DSTCLAMP.NONE)
>;

def : GCNPat<
  (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
  (V_MUL_F32_e64 0, (i32 CONST.FP32_ONE), $src_mods, $src)
>;

def : GCNPat<
  (fcanonicalize (f32 (fneg (VOP3Mods f32:$src, i32:$src_mods)))),
  (V_MUL_F32_e64 0, (i32 CONST.FP32_NEG_ONE), $src_mods, $src)
>;

// TODO: Handle fneg like other types.
def : GCNPat<
  (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
  (V_MUL_F64 0, CONST.FP64_ONE, $src_mods, $src)
>;
} // End AddedComplexity = -5

multiclass SelectCanonicalizeAsMax<
  list<Predicate> f32_preds = [],
  list<Predicate> f64_preds = [],
  list<Predicate> f16_preds = []> {
  def : GCNPat<
    (fcanonicalize (f32 (VOP3Mods f32:$src, i32:$src_mods))),
    (V_MAX_F32_e64 $src_mods, $src, $src_mods, $src)> {
    let OtherPredicates = f32_preds;
  }

  def : GCNPat<
    (fcanonicalize (f64 (VOP3Mods f64:$src, i32:$src_mods))),
    (V_MAX_F64 $src_mods, $src, $src_mods, $src)> {
    let OtherPredicates = f64_preds;
  }

  def : GCNPat<
    (fcanonicalize (f16 (VOP3Mods f16:$src, i32:$src_mods))),
    (V_MAX_F16_e64 $src_mods, $src, $src_mods, $src, 0, 0)> {
    // FIXME: Should have 16-bit inst subtarget predicate
    let OtherPredicates = f16_preds;
  }

  def : GCNPat<
    (fcanonicalize (v2f16 (VOP3PMods v2f16:$src, i32:$src_mods))),
    (V_PK_MAX_F16 $src_mods, $src, $src_mods, $src, DSTCLAMP.NONE)> {
    // FIXME: Should have VOP3P subtarget predicate
    let OtherPredicates = f16_preds;
  }
}

// On pre-gfx9 targets, v_max_*/v_min_* did not respect the denormal
// mode, and would never flush. For f64, it's faster to do implement
// this with a max. For f16/f32 it's a wash, but prefer max when
// valid.
//
// FIXME: Lowering f32/f16 with max is worse since we can use a
// smaller encoding if the input is fneg'd. It also adds an extra
// register use.
let SubtargetPredicate = HasMinMaxDenormModes in {
  defm : SelectCanonicalizeAsMax<[], [], []>;
} // End SubtargetPredicate = HasMinMaxDenormModes

let SubtargetPredicate = NotHasMinMaxDenormModes in {
  // Use the max lowering if we don't need to flush.

  // FIXME: We don't do use this for f32 as a workaround for the
  // library being compiled with the default ieee mode, but
  // potentially being called from flushing kernels. Really we should
  // not be mixing code expecting different default FP modes, but mul
  // works in any FP environment.
  defm : SelectCanonicalizeAsMax<[FalsePredicate], [FP64Denormals], [FP16Denormals]>;
} // End SubtargetPredicate = NotHasMinMaxDenormModes


let OtherPredicates = [HasDLInsts] in {
def : GCNPat <
  (fma (f32 (VOP3Mods f32:$src0, i32:$src0_modifiers)),
       (f32 (VOP3Mods f32:$src1, i32:$src1_modifiers)),
       (f32 (VOP3NoMods f32:$src2))),
  (V_FMAC_F32_e64 $src0_modifiers, $src0, $src1_modifiers, $src1,
                  SRCMODS.NONE, $src2)
>;
} // End OtherPredicates = [HasDLInsts]

let SubtargetPredicate = isGFX10Plus in
def : GCNPat <
  (fma (f16 (VOP3Mods f32:$src0, i32:$src0_modifiers)),
       (f16 (VOP3Mods f32:$src1, i32:$src1_modifiers)),
       (f16 (VOP3NoMods f32:$src2))),
  (V_FMAC_F16_e64 $src0_modifiers, $src0, $src1_modifiers, $src1,
                  SRCMODS.NONE, $src2)
>;

// COPY is workaround tablegen bug from multiple outputs
// from S_LSHL_B32's multiple outputs from implicit scc def.
def : GCNPat <
  (v2i16 (build_vector (i16 0), (i16 SReg_32:$src1))),
  (S_LSHL_B32 SReg_32:$src1, (i16 16))
>;

def : GCNPat <
  (v2i16 (build_vector (i16 SReg_32:$src0), (i16 undef))),
  (COPY_TO_REGCLASS SReg_32:$src0, SReg_32)
>;

def : GCNPat <
  (v2i16 (build_vector (i16 VGPR_32:$src0), (i16 undef))),
  (COPY_TO_REGCLASS VGPR_32:$src0, VGPR_32)
>;

def : GCNPat <
  (v2f16 (build_vector f16:$src0, (f16 undef))),
  (COPY $src0)
>;

def : GCNPat <
  (v2i16 (build_vector (i16 undef), (i16 SReg_32:$src1))),
  (S_LSHL_B32 SReg_32:$src1, (i32 16))
>;

def : GCNPat <
  (v2f16 (build_vector (f16 undef), (f16 SReg_32:$src1))),
  (S_LSHL_B32 SReg_32:$src1, (i32 16))
>;

let SubtargetPredicate = HasVOP3PInsts in {
def : GCNPat <
  (v2i16 (build_vector (i16 SReg_32:$src0), (i16 SReg_32:$src1))),
  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
>;

// With multiple uses of the shift, this will duplicate the shift and
// increase register pressure.
def : GCNPat <
  (v2i16 (build_vector (i16 SReg_32:$src0), (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
  (v2i16 (S_PACK_LH_B32_B16 SReg_32:$src0, SReg_32:$src1))
>;


def : GCNPat <
  (v2i16 (build_vector (i16 (trunc (srl_oneuse SReg_32:$src0, (i32 16)))),
                       (i16 (trunc (srl_oneuse SReg_32:$src1, (i32 16)))))),
  (S_PACK_HH_B32_B16 SReg_32:$src0, SReg_32:$src1)
>;

// TODO: Should source modifiers be matched to v_pack_b32_f16?
def : GCNPat <
  (v2f16 (build_vector (f16 SReg_32:$src0), (f16 SReg_32:$src1))),
  (S_PACK_LL_B32_B16 SReg_32:$src0, SReg_32:$src1)
>;

} // End SubtargetPredicate = HasVOP3PInsts


def : GCNPat <
  (v2f16 (scalar_to_vector f16:$src0)),
  (COPY $src0)
>;

def : GCNPat <
  (v2i16 (scalar_to_vector i16:$src0)),
  (COPY $src0)
>;

def : GCNPat <
  (v4i16 (scalar_to_vector i16:$src0)),
  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
>;

def : GCNPat <
  (v4f16 (scalar_to_vector f16:$src0)),
  (INSERT_SUBREG (IMPLICIT_DEF), $src0, sub0)
>;

def : GCNPat <
  (i64 (int_amdgcn_mov_dpp i64:$src, timm:$dpp_ctrl, timm:$row_mask,
                           timm:$bank_mask, timm:$bound_ctrl)),
  (V_MOV_B64_DPP_PSEUDO VReg_64:$src, VReg_64:$src,
                        (as_i32timm $dpp_ctrl), (as_i32timm $row_mask),
                        (as_i32timm $bank_mask),
                        (as_i1timm $bound_ctrl))
>;

def : GCNPat <
  (i64 (int_amdgcn_update_dpp i64:$old, i64:$src, timm:$dpp_ctrl, timm:$row_mask,
                              timm:$bank_mask, timm:$bound_ctrl)),
  (V_MOV_B64_DPP_PSEUDO VReg_64:$old, VReg_64:$src, (as_i32timm $dpp_ctrl),
                        (as_i32timm $row_mask), (as_i32timm $bank_mask),
                        (as_i1timm $bound_ctrl))
>;

//===----------------------------------------------------------------------===//
// Fract Patterns
//===----------------------------------------------------------------------===//

let SubtargetPredicate = isGFX6 in {

// V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x)) is
// used instead. However, SI doesn't have V_FLOOR_F64, so the most efficient
// way to implement it is using V_FRACT_F64.
// The workaround for the V_FRACT bug is:
//    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)

// Convert floor(x) to (x - fract(x))

// Don't bother handling this for GlobalISel, it's handled during
// lowering.
//
// FIXME: DAG should also custom lower this.
def : GCNPat <
  (f64 (ffloor (f64 (VOP3Mods f64:$x, i32:$mods)))),
  (V_ADD_F64
      $mods,
      $x,
      SRCMODS.NEG,
      (V_CNDMASK_B64_PSEUDO
         (V_MIN_F64
             SRCMODS.NONE,
             (V_FRACT_F64_e64 $mods, $x),
             SRCMODS.NONE,
             (V_MOV_B64_PSEUDO 0x3fefffffffffffff)),
         $x,
         (V_CMP_CLASS_F64_e64 SRCMODS.NONE, $x, (i32 3 /*NaN*/))))
>;

} // End SubtargetPredicates = isGFX6

//============================================================================//
// Miscellaneous Optimization Patterns
//============================================================================//

// Undo sub x, c -> add x, -c canonicalization since c is more likely
// an inline immediate than -c.
// TODO: Also do for 64-bit.
def : GCNPat<
  (add i32:$src0, (i32 NegSubInlineConst32:$src1)),
  (S_SUB_I32 SReg_32:$src0, NegSubInlineConst32:$src1)
>;

def : GCNPat<
  (add i32:$src0, (i32 NegSubInlineConst32:$src1)),
  (V_SUB_U32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
  let SubtargetPredicate = HasAddNoCarryInsts;
}

def : GCNPat<
  (add i32:$src0, (i32 NegSubInlineConst32:$src1)),
  (V_SUB_I32_e64 VS_32:$src0, NegSubInlineConst32:$src1)> {
  let SubtargetPredicate = NotHasAddNoCarryInsts;
}


// Avoid pointlessly materializing a constant in VGPR.
// FIXME: Should also do this for readlane, but tablegen crashes on
// the ignored src1.
def : GCNPat<
  (int_amdgcn_readfirstlane (i32 imm:$src)),
  (S_MOV_B32 SReg_32:$src)
>;

multiclass BFMPatterns <ValueType vt, InstSI BFM, InstSI MOV> {
  def : GCNPat <
    (vt (shl (vt (add (vt (shl 1, vt:$a)), -1)), vt:$b)),
    (BFM $a, $b)
  >;

  def : GCNPat <
    (vt (add (vt (shl 1, vt:$a)), -1)),
    (BFM $a, (MOV (i32 0)))
  >;
}

defm : BFMPatterns <i32, S_BFM_B32, S_MOV_B32>;
// FIXME: defm : BFMPatterns <i64, S_BFM_B64, S_MOV_B64>;

defm : BFEPattern <V_BFE_U32, V_BFE_I32, S_MOV_B32>;
defm : SHA256MaPattern <V_BFI_B32, V_XOR_B32_e64, SReg_64>;

multiclass IntMed3Pat<Instruction med3Inst,
                 SDPatternOperator min,
                 SDPatternOperator max,
                 SDPatternOperator min_oneuse,
                 SDPatternOperator max_oneuse> {

  // This matches 16 permutations of
  // min(max(a, b), max(min(a, b), c))
  def : AMDGPUPat <
  (min (max_oneuse i32:$src0, i32:$src1),
       (max_oneuse (min_oneuse i32:$src0, i32:$src1), i32:$src2)),
  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
>;

  // This matches 16 permutations of
  // max(min(x, y), min(max(x, y), z))
  def : AMDGPUPat <
  (max (min_oneuse i32:$src0, i32:$src1),
       (min_oneuse (max_oneuse i32:$src0, i32:$src1), i32:$src2)),
  (med3Inst VSrc_b32:$src0, VSrc_b32:$src1, VSrc_b32:$src2)
>;
}

defm : IntMed3Pat<V_MED3_I32, smin, smax, smin_oneuse, smax_oneuse>;
defm : IntMed3Pat<V_MED3_U32, umin, umax, umin_oneuse, umax_oneuse>;

// This matches 16 permutations of
// max(min(x, y), min(max(x, y), z))
class FPMed3Pat<ValueType vt,
                //SDPatternOperator max, SDPatternOperator min,
                Instruction med3Inst> : GCNPat<
  (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
                           (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
           (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
                                           (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
                           (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE, DSTOMOD.NONE)
>;

class FP16Med3Pat<ValueType vt,
                Instruction med3Inst> : GCNPat<
  (fmaxnum_like (fminnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
                                     (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
           (fminnum_like_oneuse (fmaxnum_like_oneuse (VOP3Mods_nnan vt:$src0, i32:$src0_mods),
                                                     (VOP3Mods_nnan vt:$src1, i32:$src1_mods)),
                           (vt (VOP3Mods_nnan vt:$src2, i32:$src2_mods)))),
  (med3Inst $src0_mods, $src0, $src1_mods, $src1, $src2_mods, $src2, DSTCLAMP.NONE)
>;

multiclass Int16Med3Pat<Instruction med3Inst,
                   SDPatternOperator min,
                   SDPatternOperator max,
                   SDPatternOperator max_oneuse,
                   SDPatternOperator min_oneuse> {
  // This matches 16 permutations of
  // max(min(x, y), min(max(x, y), z))
  def : GCNPat <
  (max (min_oneuse i16:$src0, i16:$src1),
       (min_oneuse (max_oneuse i16:$src0, i16:$src1), i16:$src2)),
  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
>;

  // This matches 16 permutations of
  // min(max(a, b), max(min(a, b), c))
  def : GCNPat <
  (min (max_oneuse i16:$src0, i16:$src1),
      (max_oneuse (min_oneuse i16:$src0, i16:$src1), i16:$src2)),
  (med3Inst SRCMODS.NONE, VSrc_b16:$src0, SRCMODS.NONE, VSrc_b16:$src1, SRCMODS.NONE, VSrc_b16:$src2, DSTCLAMP.NONE)
>;
}

def : FPMed3Pat<f32, V_MED3_F32>;

let OtherPredicates = [isGFX9Plus] in {
def : FP16Med3Pat<f16, V_MED3_F16>;
defm : Int16Med3Pat<V_MED3_I16, smin, smax, smax_oneuse, smin_oneuse>;
defm : Int16Med3Pat<V_MED3_U16, umin, umax, umax_oneuse, umin_oneuse>;
} // End Predicates = [isGFX9Plus]

class AMDGPUGenericInstruction : GenericInstruction {
  let Namespace = "AMDGPU";
}

def G_AMDGPU_FFBH_U32 : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type1:$src);
  let hasSideEffects = 0;
}

def G_AMDGPU_RCP_IFLAG : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type1:$src);
  let hasSideEffects = 0;
}

class BufferLoadGenericInstruction : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
                           type2:$soffset, untyped_imm_0:$offset,
                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
  let hasSideEffects = 0;
  let mayLoad = 1;
}

class TBufferLoadGenericInstruction : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type1:$rsrc, type2:$vindex, type2:$voffset,
                           type2:$soffset, untyped_imm_0:$offset, untyped_imm_0:$format,
                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
  let hasSideEffects = 0;
  let mayLoad = 1;
}

def G_AMDGPU_BUFFER_LOAD_UBYTE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_SBYTE : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_USHORT : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_SSHORT : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_FORMAT : BufferLoadGenericInstruction;
def G_AMDGPU_BUFFER_LOAD_FORMAT_D16 : BufferLoadGenericInstruction;
def G_AMDGPU_TBUFFER_LOAD_FORMAT : TBufferLoadGenericInstruction;
def G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 : TBufferLoadGenericInstruction;

class BufferStoreGenericInstruction : AMDGPUGenericInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
                           type2:$soffset, untyped_imm_0:$offset,
                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
  let hasSideEffects = 0;
  let mayStore = 1;
}

class TBufferStoreGenericInstruction : AMDGPUGenericInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
                           type2:$soffset, untyped_imm_0:$offset,
                           untyped_imm_0:$format,
                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
  let hasSideEffects = 0;
  let mayStore = 1;
}

def G_AMDGPU_BUFFER_STORE : BufferStoreGenericInstruction;
def G_AMDGPU_BUFFER_STORE_BYTE : BufferStoreGenericInstruction;
def G_AMDGPU_BUFFER_STORE_SHORT : BufferStoreGenericInstruction;
def G_AMDGPU_BUFFER_STORE_FORMAT : BufferStoreGenericInstruction;
def G_AMDGPU_BUFFER_STORE_FORMAT_D16 : BufferStoreGenericInstruction;
def G_AMDGPU_TBUFFER_STORE_FORMAT : TBufferStoreGenericInstruction;
def G_AMDGPU_TBUFFER_STORE_FORMAT_D16 : TBufferStoreGenericInstruction;

def G_AMDGPU_FMIN_LEGACY : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type0:$src0, type0:$src1);
  let hasSideEffects = 0;
}

def G_AMDGPU_FMAX_LEGACY : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type0:$src0, type0:$src1);
  let hasSideEffects = 0;
}

foreach N = 0-3 in {
def G_AMDGPU_CVT_F32_UBYTE#N : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type0:$src0);
  let hasSideEffects = 0;
}
}

// Atomic cmpxchg. $cmpval ad $newval are packed in a single vector
// operand Expects a MachineMemOperand in addition to explicit
// operands.
def G_AMDGPU_ATOMIC_CMPXCHG : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$oldval);
  let InOperandList = (ins ptype1:$addr, type0:$cmpval_newval);
  let hasSideEffects = 0;
  let mayLoad = 1;
  let mayStore = 1;
}

let Namespace = "AMDGPU" in {
def G_AMDGPU_ATOMIC_INC : G_ATOMICRMW_OP;
def G_AMDGPU_ATOMIC_DEC : G_ATOMICRMW_OP;
}

class BufferAtomicGenericInstruction : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type0:$vdata, type1:$rsrc, type2:$vindex, type2:$voffset,
                           type2:$soffset, untyped_imm_0:$offset,
                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
  let hasSideEffects = 0;
  let mayLoad = 1;
  let mayStore = 1;
}

def G_AMDGPU_BUFFER_ATOMIC_SWAP : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_ADD : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_SUB : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_SMIN : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_UMIN : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_SMAX : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_UMAX : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_AND : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_OR : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_XOR : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_INC : BufferAtomicGenericInstruction;
def G_AMDGPU_BUFFER_ATOMIC_DEC : BufferAtomicGenericInstruction;

def G_AMDGPU_BUFFER_ATOMIC_CMPSWAP : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type0:$vdata, type0:$cmp, type1:$rsrc, type2:$vindex,
                           type2:$voffset, type2:$soffset, untyped_imm_0:$offset,
                           untyped_imm_0:$cachepolicy, untyped_imm_0:$idxen);
  let hasSideEffects = 0;
  let mayLoad = 1;
  let mayStore = 1;
}

// Wrapper around llvm.amdgcn.s.buffer.load. This is mostly needed as
// a workaround for the intrinsic being defined as readnone, but
// really needs a memory operand.
def G_AMDGPU_S_BUFFER_LOAD : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins type1:$rsrc, type2:$offset, untyped_imm_0:$cachepolicy);
  let hasSideEffects = 0;
  let mayLoad = 1;
  let mayStore = 0;
}

// This is equivalent to the G_INTRINSIC*, but the operands may have
// been legalized depending on the subtarget requirements.
def G_AMDGPU_INTRIN_IMAGE_LOAD : AMDGPUGenericInstruction {
  let OutOperandList = (outs type0:$dst);
  let InOperandList = (ins unknown:$intrin, variable_ops);
  let hasSideEffects = 0;
  let mayLoad = 1;

  // FIXME: Use separate opcode for atomics.
  let mayStore = 1;
}

// This is equivalent to the G_INTRINSIC*, but the operands may have
// been legalized depending on the subtarget requirements.
def G_AMDGPU_INTRIN_IMAGE_STORE : AMDGPUGenericInstruction {
  let OutOperandList = (outs);
  let InOperandList = (ins unknown:$intrin, variable_ops);
  let hasSideEffects = 0;
  let mayStore = 1;
}