SIInstrInfo.h 41.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
//===- SIInstrInfo.h - SI Instruction Info Interface ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Interface definition for SIInstrInfo.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_AMDGPU_SIINSTRINFO_H
#define LLVM_LIB_TARGET_AMDGPU_SIINSTRINFO_H

#include "AMDGPUInstrInfo.h"
#include "SIDefines.h"
#include "SIRegisterInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Compiler.h"
#include <cassert>
#include <cstdint>

#define GET_INSTRINFO_HEADER
#include "AMDGPUGenInstrInfo.inc"

namespace llvm {

class APInt;
class MachineDominatorTree;
class MachineRegisterInfo;
class RegScavenger;
class GCNSubtarget;
class TargetRegisterClass;

class SIInstrInfo final : public AMDGPUGenInstrInfo {
private:
  const SIRegisterInfo RI;
  const GCNSubtarget &ST;
  TargetSchedModel SchedModel;

  // The inverse predicate should have the negative value.
  enum BranchPredicate {
    INVALID_BR = 0,
    SCC_TRUE = 1,
    SCC_FALSE = -1,
    VCCNZ = 2,
    VCCZ = -2,
    EXECNZ = -3,
    EXECZ = 3
  };

  using SetVectorType = SmallSetVector<MachineInstr *, 32>;

  static unsigned getBranchOpcode(BranchPredicate Cond);
  static BranchPredicate getBranchPredicate(unsigned Opcode);

public:
  unsigned buildExtractSubReg(MachineBasicBlock::iterator MI,
                              MachineRegisterInfo &MRI,
                              MachineOperand &SuperReg,
                              const TargetRegisterClass *SuperRC,
                              unsigned SubIdx,
                              const TargetRegisterClass *SubRC) const;
  MachineOperand buildExtractSubRegOrImm(MachineBasicBlock::iterator MI,
                                         MachineRegisterInfo &MRI,
                                         MachineOperand &SuperReg,
                                         const TargetRegisterClass *SuperRC,
                                         unsigned SubIdx,
                                         const TargetRegisterClass *SubRC) const;
private:
  void swapOperands(MachineInstr &Inst) const;

  bool moveScalarAddSub(SetVectorType &Worklist, MachineInstr &Inst,
                        MachineDominatorTree *MDT = nullptr) const;

  void lowerSelect(SetVectorType &Worklist, MachineInstr &Inst,
                   MachineDominatorTree *MDT = nullptr) const;

  void lowerScalarAbs(SetVectorType &Worklist,
                      MachineInstr &Inst) const;

  void lowerScalarXnor(SetVectorType &Worklist,
                       MachineInstr &Inst) const;

  void splitScalarNotBinop(SetVectorType &Worklist,
                           MachineInstr &Inst,
                           unsigned Opcode) const;

  void splitScalarBinOpN2(SetVectorType &Worklist,
                          MachineInstr &Inst,
                          unsigned Opcode) const;

  void splitScalar64BitUnaryOp(SetVectorType &Worklist,
                               MachineInstr &Inst, unsigned Opcode) const;

  void splitScalar64BitAddSub(SetVectorType &Worklist, MachineInstr &Inst,
                              MachineDominatorTree *MDT = nullptr) const;

  void splitScalar64BitBinaryOp(SetVectorType &Worklist, MachineInstr &Inst,
                                unsigned Opcode,
                                MachineDominatorTree *MDT = nullptr) const;

  void splitScalar64BitXnor(SetVectorType &Worklist, MachineInstr &Inst,
                                MachineDominatorTree *MDT = nullptr) const;

  void splitScalar64BitBCNT(SetVectorType &Worklist,
                            MachineInstr &Inst) const;
  void splitScalar64BitBFE(SetVectorType &Worklist,
                           MachineInstr &Inst) const;
  void movePackToVALU(SetVectorType &Worklist,
                      MachineRegisterInfo &MRI,
                      MachineInstr &Inst) const;

  void addUsersToMoveToVALUWorklist(Register Reg, MachineRegisterInfo &MRI,
                                    SetVectorType &Worklist) const;

  void addSCCDefUsersToVALUWorklist(MachineOperand &Op,
                                    MachineInstr &SCCDefInst,
                                    SetVectorType &Worklist) const;

  const TargetRegisterClass *
  getDestEquivalentVGPRClass(const MachineInstr &Inst) const;

  bool checkInstOffsetsDoNotOverlap(const MachineInstr &MIa,
                                    const MachineInstr &MIb) const;

  Register findUsedSGPR(const MachineInstr &MI, int OpIndices[3]) const;

protected:
  bool swapSourceModifiers(MachineInstr &MI,
                           MachineOperand &Src0, unsigned Src0OpName,
                           MachineOperand &Src1, unsigned Src1OpName) const;

  MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
                                       unsigned OpIdx0,
                                       unsigned OpIdx1) const override;

public:
  enum TargetOperandFlags {
    MO_MASK = 0xf,

    MO_NONE = 0,
    // MO_GOTPCREL -> symbol@GOTPCREL -> R_AMDGPU_GOTPCREL.
    MO_GOTPCREL = 1,
    // MO_GOTPCREL32_LO -> symbol@gotpcrel32@lo -> R_AMDGPU_GOTPCREL32_LO.
    MO_GOTPCREL32 = 2,
    MO_GOTPCREL32_LO = 2,
    // MO_GOTPCREL32_HI -> symbol@gotpcrel32@hi -> R_AMDGPU_GOTPCREL32_HI.
    MO_GOTPCREL32_HI = 3,
    // MO_REL32_LO -> symbol@rel32@lo -> R_AMDGPU_REL32_LO.
    MO_REL32 = 4,
    MO_REL32_LO = 4,
    // MO_REL32_HI -> symbol@rel32@hi -> R_AMDGPU_REL32_HI.
    MO_REL32_HI = 5,

    MO_LONG_BRANCH_FORWARD = 6,
    MO_LONG_BRANCH_BACKWARD = 7,

    MO_ABS32_LO = 8,
    MO_ABS32_HI = 9,
  };

  explicit SIInstrInfo(const GCNSubtarget &ST);

  const SIRegisterInfo &getRegisterInfo() const {
    return RI;
  }

  bool isReallyTriviallyReMaterializable(const MachineInstr &MI,
                                         AAResults *AA) const override;

  bool areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
                               int64_t &Offset1,
                               int64_t &Offset2) const override;

  bool getMemOperandsWithOffsetWidth(
      const MachineInstr &LdSt,
      SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
      bool &OffsetIsScalable, unsigned &Width,
      const TargetRegisterInfo *TRI) const final;

  bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
                           ArrayRef<const MachineOperand *> BaseOps2,
                           unsigned NumLoads, unsigned NumBytes) const override;

  bool shouldScheduleLoadsNear(SDNode *Load0, SDNode *Load1, int64_t Offset0,
                               int64_t Offset1, unsigned NumLoads) const override;

  void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
                   const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
                   bool KillSrc) const override;

  unsigned calculateLDSSpillAddress(MachineBasicBlock &MBB, MachineInstr &MI,
                                    RegScavenger *RS, unsigned TmpReg,
                                    unsigned Offset, unsigned Size) const;

  void materializeImmediate(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI,
                            const DebugLoc &DL,
                            unsigned DestReg,
                            int64_t Value) const;

  const TargetRegisterClass *getPreferredSelectRegClass(
                               unsigned Size) const;

  Register insertNE(MachineBasicBlock *MBB,
                    MachineBasicBlock::iterator I, const DebugLoc &DL,
                    Register SrcReg, int Value) const;

  Register insertEQ(MachineBasicBlock *MBB,
                    MachineBasicBlock::iterator I, const DebugLoc &DL,
                    Register SrcReg, int Value)  const;

  void storeRegToStackSlot(MachineBasicBlock &MBB,
                           MachineBasicBlock::iterator MI, Register SrcReg,
                           bool isKill, int FrameIndex,
                           const TargetRegisterClass *RC,
                           const TargetRegisterInfo *TRI) const override;

  void loadRegFromStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MI, Register DestReg,
                            int FrameIndex, const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;

  bool expandPostRAPseudo(MachineInstr &MI) const override;

  // Splits a V_MOV_B64_DPP_PSEUDO opcode into a pair of v_mov_b32_dpp
  // instructions. Returns a pair of generated instructions.
  // Can split either post-RA with physical registers or pre-RA with
  // virtual registers. In latter case IR needs to be in SSA form and
  // and a REG_SEQUENCE is produced to define original register.
  std::pair<MachineInstr*, MachineInstr*>
  expandMovDPP64(MachineInstr &MI) const;

  // Returns an opcode that can be used to move a value to a \p DstRC
  // register.  If there is no hardware instruction that can store to \p
  // DstRC, then AMDGPU::COPY is returned.
  unsigned getMovOpcode(const TargetRegisterClass *DstRC) const;

  const MCInstrDesc &getIndirectRegWritePseudo(
    unsigned VecSize, unsigned EltSize, bool IsSGPR) const;

  LLVM_READONLY
  int commuteOpcode(unsigned Opc) const;

  LLVM_READONLY
  inline int commuteOpcode(const MachineInstr &MI) const {
    return commuteOpcode(MI.getOpcode());
  }

  bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
                             unsigned &SrcOpIdx2) const override;

  bool findCommutedOpIndices(MCInstrDesc Desc, unsigned & SrcOpIdx0,
   unsigned & SrcOpIdx1) const;

  bool isBranchOffsetInRange(unsigned BranchOpc,
                             int64_t BrOffset) const override;

  MachineBasicBlock *getBranchDestBlock(const MachineInstr &MI) const override;

  unsigned insertIndirectBranch(MachineBasicBlock &MBB,
                                MachineBasicBlock &NewDestBB,
                                const DebugLoc &DL,
                                int64_t BrOffset,
                                RegScavenger *RS = nullptr) const override;

  bool analyzeBranchImpl(MachineBasicBlock &MBB,
                         MachineBasicBlock::iterator I,
                         MachineBasicBlock *&TBB,
                         MachineBasicBlock *&FBB,
                         SmallVectorImpl<MachineOperand> &Cond,
                         bool AllowModify) const;

  bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
                     MachineBasicBlock *&FBB,
                     SmallVectorImpl<MachineOperand> &Cond,
                     bool AllowModify = false) const override;

  unsigned removeBranch(MachineBasicBlock &MBB,
                        int *BytesRemoved = nullptr) const override;

  unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                        MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                        const DebugLoc &DL,
                        int *BytesAdded = nullptr) const override;

  bool reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const override;

  bool canInsertSelect(const MachineBasicBlock &MBB,
                       ArrayRef<MachineOperand> Cond, Register DstReg,
                       Register TrueReg, Register FalseReg, int &CondCycles,
                       int &TrueCycles, int &FalseCycles) const override;

  void insertSelect(MachineBasicBlock &MBB,
                    MachineBasicBlock::iterator I, const DebugLoc &DL,
                    Register DstReg, ArrayRef<MachineOperand> Cond,
                    Register TrueReg, Register FalseReg) const override;

  void insertVectorSelect(MachineBasicBlock &MBB,
                          MachineBasicBlock::iterator I, const DebugLoc &DL,
                          Register DstReg, ArrayRef<MachineOperand> Cond,
                          Register TrueReg, Register FalseReg) const;

  unsigned getAddressSpaceForPseudoSourceKind(
             unsigned Kind) const override;

  bool
  areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
                                  const MachineInstr &MIb) const override;

  bool isFoldableCopy(const MachineInstr &MI) const;

  bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
                     MachineRegisterInfo *MRI) const final;

  unsigned getMachineCSELookAheadLimit() const override { return 500; }

  MachineInstr *convertToThreeAddress(MachineFunction::iterator &MBB,
                                      MachineInstr &MI,
                                      LiveVariables *LV) const override;

  bool isSchedulingBoundary(const MachineInstr &MI,
                            const MachineBasicBlock *MBB,
                            const MachineFunction &MF) const override;

  static bool isSALU(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SALU;
  }

  bool isSALU(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SALU;
  }

  static bool isVALU(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::VALU;
  }

  bool isVALU(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::VALU;
  }

  static bool isVMEM(const MachineInstr &MI) {
    return isMUBUF(MI) || isMTBUF(MI) || isMIMG(MI);
  }

  bool isVMEM(uint16_t Opcode) const {
    return isMUBUF(Opcode) || isMTBUF(Opcode) || isMIMG(Opcode);
  }

  static bool isSOP1(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SOP1;
  }

  bool isSOP1(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SOP1;
  }

  static bool isSOP2(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SOP2;
  }

  bool isSOP2(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SOP2;
  }

  static bool isSOPC(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SOPC;
  }

  bool isSOPC(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SOPC;
  }

  static bool isSOPK(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SOPK;
  }

  bool isSOPK(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SOPK;
  }

  static bool isSOPP(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SOPP;
  }

  bool isSOPP(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SOPP;
  }

  static bool isPacked(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::IsPacked;
  }

  bool isPacked(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::IsPacked;
  }

  static bool isVOP1(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::VOP1;
  }

  bool isVOP1(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::VOP1;
  }

  static bool isVOP2(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::VOP2;
  }

  bool isVOP2(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::VOP2;
  }

  static bool isVOP3(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::VOP3;
  }

  bool isVOP3(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::VOP3;
  }

  static bool isSDWA(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SDWA;
  }

  bool isSDWA(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SDWA;
  }

  static bool isVOPC(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::VOPC;
  }

  bool isVOPC(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::VOPC;
  }

  static bool isMUBUF(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::MUBUF;
  }

  bool isMUBUF(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::MUBUF;
  }

  static bool isMTBUF(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::MTBUF;
  }

  bool isMTBUF(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::MTBUF;
  }

  static bool isSMRD(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SMRD;
  }

  bool isSMRD(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SMRD;
  }

  bool isBufferSMRD(const MachineInstr &MI) const;

  static bool isDS(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::DS;
  }

  bool isDS(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::DS;
  }

  bool isAlwaysGDS(uint16_t Opcode) const;

  static bool isMIMG(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::MIMG;
  }

  bool isMIMG(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::MIMG;
  }

  static bool isGather4(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::Gather4;
  }

  bool isGather4(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::Gather4;
  }

  static bool isFLAT(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::FLAT;
  }

  // Is a FLAT encoded instruction which accesses a specific segment,
  // i.e. global_* or scratch_*.
  static bool isSegmentSpecificFLAT(const MachineInstr &MI) {
    auto Flags = MI.getDesc().TSFlags;
    return (Flags & SIInstrFlags::FLAT) && !(Flags & SIInstrFlags::LGKM_CNT);
  }

  // FIXME: Make this more precise
  static bool isFLATScratch(const MachineInstr &MI) {
    return isSegmentSpecificFLAT(MI);
  }

  // Any FLAT encoded instruction, including global_* and scratch_*.
  bool isFLAT(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::FLAT;
  }

  static bool isEXP(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::EXP;
  }

  bool isEXP(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::EXP;
  }

  static bool isWQM(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::WQM;
  }

  bool isWQM(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::WQM;
  }

  static bool isDisableWQM(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::DisableWQM;
  }

  bool isDisableWQM(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::DisableWQM;
  }

  static bool isVGPRSpill(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::VGPRSpill;
  }

  bool isVGPRSpill(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::VGPRSpill;
  }

  static bool isSGPRSpill(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SGPRSpill;
  }

  bool isSGPRSpill(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SGPRSpill;
  }

  static bool isDPP(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::DPP;
  }

  bool isDPP(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::DPP;
  }

  static bool isVOP3P(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::VOP3P;
  }

  bool isVOP3P(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::VOP3P;
  }

  static bool isVINTRP(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::VINTRP;
  }

  bool isVINTRP(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::VINTRP;
  }

  static bool isMAI(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::IsMAI;
  }

  bool isMAI(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::IsMAI;
  }

  static bool isDOT(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::IsDOT;
  }

  bool isDOT(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::IsDOT;
  }

  static bool isScalarUnit(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & (SIInstrFlags::SALU | SIInstrFlags::SMRD);
  }

  static bool usesVM_CNT(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::VM_CNT;
  }

  static bool usesLGKM_CNT(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::LGKM_CNT;
  }

  static bool sopkIsZext(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SOPK_ZEXT;
  }

  bool sopkIsZext(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SOPK_ZEXT;
  }

  /// \returns true if this is an s_store_dword* instruction. This is more
  /// specific than than isSMEM && mayStore.
  static bool isScalarStore(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::SCALAR_STORE;
  }

  bool isScalarStore(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::SCALAR_STORE;
  }

  static bool isFixedSize(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::FIXED_SIZE;
  }

  bool isFixedSize(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::FIXED_SIZE;
  }

  static bool hasFPClamp(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::FPClamp;
  }

  bool hasFPClamp(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::FPClamp;
  }

  static bool hasIntClamp(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::IntClamp;
  }

  uint64_t getClampMask(const MachineInstr &MI) const {
    const uint64_t ClampFlags = SIInstrFlags::FPClamp |
                                SIInstrFlags::IntClamp |
                                SIInstrFlags::ClampLo |
                                SIInstrFlags::ClampHi;
      return MI.getDesc().TSFlags & ClampFlags;
  }

  static bool usesFPDPRounding(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::FPDPRounding;
  }

  bool usesFPDPRounding(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::FPDPRounding;
  }

  static bool isFPAtomic(const MachineInstr &MI) {
    return MI.getDesc().TSFlags & SIInstrFlags::FPAtomic;
  }

  bool isFPAtomic(uint16_t Opcode) const {
    return get(Opcode).TSFlags & SIInstrFlags::FPAtomic;
  }

  bool isVGPRCopy(const MachineInstr &MI) const {
    assert(MI.isCopy());
    unsigned Dest = MI.getOperand(0).getReg();
    const MachineFunction &MF = *MI.getParent()->getParent();
    const MachineRegisterInfo &MRI = MF.getRegInfo();
    return !RI.isSGPRReg(MRI, Dest);
  }

  bool hasVGPRUses(const MachineInstr &MI) const {
    const MachineFunction &MF = *MI.getParent()->getParent();
    const MachineRegisterInfo &MRI = MF.getRegInfo();
    return llvm::any_of(MI.explicit_uses(),
                        [&MRI, this](const MachineOperand &MO) {
      return MO.isReg() && RI.isVGPR(MRI, MO.getReg());});
  }

  /// Return true if the instruction modifies the mode register.q
  static bool modifiesModeRegister(const MachineInstr &MI);

  /// Whether we must prevent this instruction from executing with EXEC = 0.
  bool hasUnwantedEffectsWhenEXECEmpty(const MachineInstr &MI) const;

  /// Returns true if the instruction could potentially depend on the value of
  /// exec. If false, exec dependencies may safely be ignored.
  bool mayReadEXEC(const MachineRegisterInfo &MRI, const MachineInstr &MI) const;

  bool isInlineConstant(const APInt &Imm) const;

  bool isInlineConstant(const APFloat &Imm) const {
    return isInlineConstant(Imm.bitcastToAPInt());
  }

  bool isInlineConstant(const MachineOperand &MO, uint8_t OperandType) const;

  bool isInlineConstant(const MachineOperand &MO,
                        const MCOperandInfo &OpInfo) const {
    return isInlineConstant(MO, OpInfo.OperandType);
  }

  /// \p returns true if \p UseMO is substituted with \p DefMO in \p MI it would
  /// be an inline immediate.
  bool isInlineConstant(const MachineInstr &MI,
                        const MachineOperand &UseMO,
                        const MachineOperand &DefMO) const {
    assert(UseMO.getParent() == &MI);
    int OpIdx = MI.getOperandNo(&UseMO);
    if (!MI.getDesc().OpInfo || OpIdx >= MI.getDesc().NumOperands) {
      return false;
    }

    return isInlineConstant(DefMO, MI.getDesc().OpInfo[OpIdx]);
  }

  /// \p returns true if the operand \p OpIdx in \p MI is a valid inline
  /// immediate.
  bool isInlineConstant(const MachineInstr &MI, unsigned OpIdx) const {
    const MachineOperand &MO = MI.getOperand(OpIdx);
    return isInlineConstant(MO, MI.getDesc().OpInfo[OpIdx].OperandType);
  }

  bool isInlineConstant(const MachineInstr &MI, unsigned OpIdx,
                        const MachineOperand &MO) const {
    if (!MI.getDesc().OpInfo || OpIdx >= MI.getDesc().NumOperands)
      return false;

    if (MI.isCopy()) {
      unsigned Size = getOpSize(MI, OpIdx);
      assert(Size == 8 || Size == 4);

      uint8_t OpType = (Size == 8) ?
        AMDGPU::OPERAND_REG_IMM_INT64 : AMDGPU::OPERAND_REG_IMM_INT32;
      return isInlineConstant(MO, OpType);
    }

    return isInlineConstant(MO, MI.getDesc().OpInfo[OpIdx].OperandType);
  }

  bool isInlineConstant(const MachineOperand &MO) const {
    const MachineInstr *Parent = MO.getParent();
    return isInlineConstant(*Parent, Parent->getOperandNo(&MO));
  }

  bool isLiteralConstant(const MachineOperand &MO,
                         const MCOperandInfo &OpInfo) const {
    return MO.isImm() && !isInlineConstant(MO, OpInfo.OperandType);
  }

  bool isLiteralConstant(const MachineInstr &MI, int OpIdx) const {
    const MachineOperand &MO = MI.getOperand(OpIdx);
    return MO.isImm() && !isInlineConstant(MI, OpIdx);
  }

  // Returns true if this operand could potentially require a 32-bit literal
  // operand, but not necessarily. A FrameIndex for example could resolve to an
  // inline immediate value that will not require an additional 4-bytes; this
  // assumes that it will.
  bool isLiteralConstantLike(const MachineOperand &MO,
                             const MCOperandInfo &OpInfo) const;

  bool isImmOperandLegal(const MachineInstr &MI, unsigned OpNo,
                         const MachineOperand &MO) const;

  /// Return true if this 64-bit VALU instruction has a 32-bit encoding.
  /// This function will return false if you pass it a 32-bit instruction.
  bool hasVALU32BitEncoding(unsigned Opcode) const;

  /// Returns true if this operand uses the constant bus.
  bool usesConstantBus(const MachineRegisterInfo &MRI,
                       const MachineOperand &MO,
                       const MCOperandInfo &OpInfo) const;

  /// Return true if this instruction has any modifiers.
  ///  e.g. src[012]_mod, omod, clamp.
  bool hasModifiers(unsigned Opcode) const;

  bool hasModifiersSet(const MachineInstr &MI,
                       unsigned OpName) const;
  bool hasAnyModifiersSet(const MachineInstr &MI) const;

  bool canShrink(const MachineInstr &MI,
                 const MachineRegisterInfo &MRI) const;

  MachineInstr *buildShrunkInst(MachineInstr &MI,
                                unsigned NewOpcode) const;

  bool verifyInstruction(const MachineInstr &MI,
                         StringRef &ErrInfo) const override;

  unsigned getVALUOp(const MachineInstr &MI) const;

  /// Return the correct register class for \p OpNo.  For target-specific
  /// instructions, this will return the register class that has been defined
  /// in tablegen.  For generic instructions, like REG_SEQUENCE it will return
  /// the register class of its machine operand.
  /// to infer the correct register class base on the other operands.
  const TargetRegisterClass *getOpRegClass(const MachineInstr &MI,
                                           unsigned OpNo) const;

  /// Return the size in bytes of the operand OpNo on the given
  // instruction opcode.
  unsigned getOpSize(uint16_t Opcode, unsigned OpNo) const {
    const MCOperandInfo &OpInfo = get(Opcode).OpInfo[OpNo];

    if (OpInfo.RegClass == -1) {
      // If this is an immediate operand, this must be a 32-bit literal.
      assert(OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE);
      return 4;
    }

    return RI.getRegSizeInBits(*RI.getRegClass(OpInfo.RegClass)) / 8;
  }

  /// This form should usually be preferred since it handles operands
  /// with unknown register classes.
  unsigned getOpSize(const MachineInstr &MI, unsigned OpNo) const {
    const MachineOperand &MO = MI.getOperand(OpNo);
    if (MO.isReg()) {
      if (unsigned SubReg = MO.getSubReg()) {
        return RI.getSubRegIdxSize(SubReg) / 8;
      }
    }
    return RI.getRegSizeInBits(*getOpRegClass(MI, OpNo)) / 8;
  }

  /// Legalize the \p OpIndex operand of this instruction by inserting
  /// a MOV.  For example:
  /// ADD_I32_e32 VGPR0, 15
  /// to
  /// MOV VGPR1, 15
  /// ADD_I32_e32 VGPR0, VGPR1
  ///
  /// If the operand being legalized is a register, then a COPY will be used
  /// instead of MOV.
  void legalizeOpWithMove(MachineInstr &MI, unsigned OpIdx) const;

  /// Check if \p MO is a legal operand if it was the \p OpIdx Operand
  /// for \p MI.
  bool isOperandLegal(const MachineInstr &MI, unsigned OpIdx,
                      const MachineOperand *MO = nullptr) const;

  /// Check if \p MO would be a valid operand for the given operand
  /// definition \p OpInfo. Note this does not attempt to validate constant bus
  /// restrictions (e.g. literal constant usage).
  bool isLegalVSrcOperand(const MachineRegisterInfo &MRI,
                          const MCOperandInfo &OpInfo,
                          const MachineOperand &MO) const;

  /// Check if \p MO (a register operand) is a legal register for the
  /// given operand description.
  bool isLegalRegOperand(const MachineRegisterInfo &MRI,
                         const MCOperandInfo &OpInfo,
                         const MachineOperand &MO) const;

  /// Legalize operands in \p MI by either commuting it or inserting a
  /// copy of src1.
  void legalizeOperandsVOP2(MachineRegisterInfo &MRI, MachineInstr &MI) const;

  /// Fix operands in \p MI to satisfy constant bus requirements.
  void legalizeOperandsVOP3(MachineRegisterInfo &MRI, MachineInstr &MI) const;

  /// Copy a value from a VGPR (\p SrcReg) to SGPR.  This function can only
  /// be used when it is know that the value in SrcReg is same across all
  /// threads in the wave.
  /// \returns The SGPR register that \p SrcReg was copied to.
  Register readlaneVGPRToSGPR(Register SrcReg, MachineInstr &UseMI,
                              MachineRegisterInfo &MRI) const;

  void legalizeOperandsSMRD(MachineRegisterInfo &MRI, MachineInstr &MI) const;

  void legalizeGenericOperand(MachineBasicBlock &InsertMBB,
                              MachineBasicBlock::iterator I,
                              const TargetRegisterClass *DstRC,
                              MachineOperand &Op, MachineRegisterInfo &MRI,
                              const DebugLoc &DL) const;

  /// Legalize all operands in this instruction.  This function may create new
  /// instructions and control-flow around \p MI.  If present, \p MDT is
  /// updated.
  void legalizeOperands(MachineInstr &MI,
                        MachineDominatorTree *MDT = nullptr) const;

  /// Replace this instruction's opcode with the equivalent VALU
  /// opcode.  This function will also move the users of \p MI to the
  /// VALU if necessary. If present, \p MDT is updated.
  void moveToVALU(MachineInstr &MI, MachineDominatorTree *MDT = nullptr) const;

  void insertWaitStates(MachineBasicBlock &MBB,MachineBasicBlock::iterator MI,
                        int Count) const;

  void insertNoop(MachineBasicBlock &MBB,
                  MachineBasicBlock::iterator MI) const override;

  void insertReturn(MachineBasicBlock &MBB) const;
  /// Return the number of wait states that result from executing this
  /// instruction.
  static unsigned getNumWaitStates(const MachineInstr &MI);

  /// Returns the operand named \p Op.  If \p MI does not have an
  /// operand named \c Op, this function returns nullptr.
  LLVM_READONLY
  MachineOperand *getNamedOperand(MachineInstr &MI, unsigned OperandName) const;

  LLVM_READONLY
  const MachineOperand *getNamedOperand(const MachineInstr &MI,
                                        unsigned OpName) const {
    return getNamedOperand(const_cast<MachineInstr &>(MI), OpName);
  }

  /// Get required immediate operand
  int64_t getNamedImmOperand(const MachineInstr &MI, unsigned OpName) const {
    int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OpName);
    return MI.getOperand(Idx).getImm();
  }

  uint64_t getDefaultRsrcDataFormat() const;
  uint64_t getScratchRsrcWords23() const;

  bool isLowLatencyInstruction(const MachineInstr &MI) const;
  bool isHighLatencyDef(int Opc) const override;

  /// Return the descriptor of the target-specific machine instruction
  /// that corresponds to the specified pseudo or native opcode.
  const MCInstrDesc &getMCOpcodeFromPseudo(unsigned Opcode) const {
    return get(pseudoToMCOpcode(Opcode));
  }

  unsigned isStackAccess(const MachineInstr &MI, int &FrameIndex) const;
  unsigned isSGPRStackAccess(const MachineInstr &MI, int &FrameIndex) const;

  unsigned isLoadFromStackSlot(const MachineInstr &MI,
                               int &FrameIndex) const override;
  unsigned isStoreToStackSlot(const MachineInstr &MI,
                              int &FrameIndex) const override;

  unsigned getInstBundleSize(const MachineInstr &MI) const;
  unsigned getInstSizeInBytes(const MachineInstr &MI) const override;

  bool mayAccessFlatAddressSpace(const MachineInstr &MI) const;

  bool isNonUniformBranchInstr(MachineInstr &Instr) const;

  void convertNonUniformIfRegion(MachineBasicBlock *IfEntry,
                                 MachineBasicBlock *IfEnd) const;

  void convertNonUniformLoopRegion(MachineBasicBlock *LoopEntry,
                                   MachineBasicBlock *LoopEnd) const;

  std::pair<unsigned, unsigned>
  decomposeMachineOperandsTargetFlags(unsigned TF) const override;

  ArrayRef<std::pair<int, const char *>>
  getSerializableTargetIndices() const override;

  ArrayRef<std::pair<unsigned, const char *>>
  getSerializableDirectMachineOperandTargetFlags() const override;

  ScheduleHazardRecognizer *
  CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
                                 const ScheduleDAG *DAG) const override;

  ScheduleHazardRecognizer *
  CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const override;

  bool isBasicBlockPrologue(const MachineInstr &MI) const override;

  MachineInstr *createPHIDestinationCopy(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator InsPt,
                                         const DebugLoc &DL, Register Src,
                                         Register Dst) const override;

  MachineInstr *createPHISourceCopy(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator InsPt,
                                    const DebugLoc &DL, Register Src,
                                    unsigned SrcSubReg,
                                    Register Dst) const override;

  bool isWave32() const;

  /// Return a partially built integer add instruction without carry.
  /// Caller must add source operands.
  /// For pre-GFX9 it will generate unused carry destination operand.
  /// TODO: After GFX9 it should return a no-carry operation.
  MachineInstrBuilder getAddNoCarry(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator I,
                                    const DebugLoc &DL,
                                    Register DestReg) const;

  MachineInstrBuilder getAddNoCarry(MachineBasicBlock &MBB,
                                    MachineBasicBlock::iterator I,
                                    const DebugLoc &DL,
                                    Register DestReg,
                                    RegScavenger &RS) const;

  static bool isKillTerminator(unsigned Opcode);
  const MCInstrDesc &getKillTerminatorFromPseudo(unsigned Opcode) const;

  static bool isLegalMUBUFImmOffset(unsigned Imm) {
    return isUInt<12>(Imm);
  }

  unsigned getNumFlatOffsetBits(unsigned AddrSpace, bool Signed) const;

  /// Returns if \p Offset is legal for the subtarget as the offset to a FLAT
  /// encoded instruction. If \p Signed, this is for an instruction that
  /// interprets the offset as signed.
  bool isLegalFLATOffset(int64_t Offset, unsigned AddrSpace,
                         bool Signed) const;

  /// \brief Return a target-specific opcode if Opcode is a pseudo instruction.
  /// Return -1 if the target-specific opcode for the pseudo instruction does
  /// not exist. If Opcode is not a pseudo instruction, this is identity.
  int pseudoToMCOpcode(int Opcode) const;

  /// \brief Check if this instruction should only be used by assembler.
  /// Return true if this opcode should not be used by codegen.
  bool isAsmOnlyOpcode(int MCOp) const;

  const TargetRegisterClass *getRegClass(const MCInstrDesc &TID, unsigned OpNum,
                                         const TargetRegisterInfo *TRI,
                                         const MachineFunction &MF)
    const override {
    if (OpNum >= TID.getNumOperands())
      return nullptr;
    return RI.getRegClass(TID.OpInfo[OpNum].RegClass);
  }

  void fixImplicitOperands(MachineInstr &MI) const;

  MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr &MI,
                                      ArrayRef<unsigned> Ops,
                                      MachineBasicBlock::iterator InsertPt,
                                      int FrameIndex,
                                      LiveIntervals *LIS = nullptr,
                                      VirtRegMap *VRM = nullptr) const override;

  unsigned getInstrLatency(const InstrItineraryData *ItinData,
                           const MachineInstr &MI,
                           unsigned *PredCost = nullptr) const override;
};

/// \brief Returns true if a reg:subreg pair P has a TRC class
inline bool isOfRegClass(const TargetInstrInfo::RegSubRegPair &P,
                         const TargetRegisterClass &TRC,
                         MachineRegisterInfo &MRI) {
  auto *RC = MRI.getRegClass(P.Reg);
  if (!P.SubReg)
    return RC == &TRC;
  auto *TRI = MRI.getTargetRegisterInfo();
  return RC == TRI->getMatchingSuperRegClass(RC, &TRC, P.SubReg);
}

/// \brief Create RegSubRegPair from a register MachineOperand
inline
TargetInstrInfo::RegSubRegPair getRegSubRegPair(const MachineOperand &O) {
  assert(O.isReg());
  return TargetInstrInfo::RegSubRegPair(O.getReg(), O.getSubReg());
}

/// \brief Return the SubReg component from REG_SEQUENCE
TargetInstrInfo::RegSubRegPair getRegSequenceSubReg(MachineInstr &MI,
                                                    unsigned SubReg);

/// \brief Return the defining instruction for a given reg:subreg pair
/// skipping copy like instructions and subreg-manipulation pseudos.
/// Following another subreg of a reg:subreg isn't supported.
MachineInstr *getVRegSubRegDef(const TargetInstrInfo::RegSubRegPair &P,
                               MachineRegisterInfo &MRI);

/// \brief Return false if EXEC is not changed between the def of \p VReg at \p
/// DefMI and the use at \p UseMI. Should be run on SSA. Currently does not
/// attempt to track between blocks.
bool execMayBeModifiedBeforeUse(const MachineRegisterInfo &MRI,
                                Register VReg,
                                const MachineInstr &DefMI,
                                const MachineInstr &UseMI);

/// \brief Return false if EXEC is not changed between the def of \p VReg at \p
/// DefMI and all its uses. Should be run on SSA. Currently does not attempt to
/// track between blocks.
bool execMayBeModifiedBeforeAnyUse(const MachineRegisterInfo &MRI,
                                   Register VReg,
                                   const MachineInstr &DefMI);

namespace AMDGPU {

  LLVM_READONLY
  int getVOPe64(uint16_t Opcode);

  LLVM_READONLY
  int getVOPe32(uint16_t Opcode);

  LLVM_READONLY
  int getSDWAOp(uint16_t Opcode);

  LLVM_READONLY
  int getDPPOp32(uint16_t Opcode);

  LLVM_READONLY
  int getBasicFromSDWAOp(uint16_t Opcode);

  LLVM_READONLY
  int getCommuteRev(uint16_t Opcode);

  LLVM_READONLY
  int getCommuteOrig(uint16_t Opcode);

  LLVM_READONLY
  int getAddr64Inst(uint16_t Opcode);

  /// Check if \p Opcode is an Addr64 opcode.
  ///
  /// \returns \p Opcode if it is an Addr64 opcode, otherwise -1.
  LLVM_READONLY
  int getIfAddr64Inst(uint16_t Opcode);

  LLVM_READONLY
  int getMUBUFNoLdsInst(uint16_t Opcode);

  LLVM_READONLY
  int getAtomicRetOp(uint16_t Opcode);

  LLVM_READONLY
  int getAtomicNoRetOp(uint16_t Opcode);

  LLVM_READONLY
  int getSOPKOp(uint16_t Opcode);

  LLVM_READONLY
  int getGlobalSaddrOp(uint16_t Opcode);

  LLVM_READONLY
  int getVCMPXNoSDstOp(uint16_t Opcode);

  const uint64_t RSRC_DATA_FORMAT = 0xf00000000000LL;
  const uint64_t RSRC_ELEMENT_SIZE_SHIFT = (32 + 19);
  const uint64_t RSRC_INDEX_STRIDE_SHIFT = (32 + 21);
  const uint64_t RSRC_TID_ENABLE = UINT64_C(1) << (32 + 23);

} // end namespace AMDGPU

namespace SI {
namespace KernelInputOffsets {

/// Offsets in bytes from the start of the input buffer
enum Offsets {
  NGROUPS_X = 0,
  NGROUPS_Y = 4,
  NGROUPS_Z = 8,
  GLOBAL_SIZE_X = 12,
  GLOBAL_SIZE_Y = 16,
  GLOBAL_SIZE_Z = 20,
  LOCAL_SIZE_X = 24,
  LOCAL_SIZE_Y = 28,
  LOCAL_SIZE_Z = 32
};

} // end namespace KernelInputOffsets
} // end namespace SI

} // end namespace llvm

#endif // LLVM_LIB_TARGET_AMDGPU_SIINSTRINFO_H