SIFormMemoryClauses.cpp 12.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
//===-- SIFormMemoryClauses.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass creates bundles of SMEM and VMEM instructions forming memory
/// clauses if XNACK is enabled. Def operands of clauses are marked as early
/// clobber to make sure we will not override any source within a clause.
///
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "GCNRegPressure.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/InitializePasses.h"

using namespace llvm;

#define DEBUG_TYPE "si-form-memory-clauses"

// Clauses longer then 15 instructions would overflow one of the counters
// and stall. They can stall even earlier if there are outstanding counters.
static cl::opt<unsigned>
MaxClause("amdgpu-max-memory-clause", cl::Hidden, cl::init(15),
          cl::desc("Maximum length of a memory clause, instructions"));

namespace {

class SIFormMemoryClauses : public MachineFunctionPass {
  typedef DenseMap<unsigned, std::pair<unsigned, LaneBitmask>> RegUse;

public:
  static char ID;

public:
  SIFormMemoryClauses() : MachineFunctionPass(ID) {
    initializeSIFormMemoryClausesPass(*PassRegistry::getPassRegistry());
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override {
    return "SI Form memory clauses";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<LiveIntervals>();
    AU.setPreservesAll();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

private:
  template <typename Callable>
  void forAllLanes(unsigned Reg, LaneBitmask LaneMask, Callable Func) const;

  bool canBundle(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const;
  bool checkPressure(const MachineInstr &MI, GCNDownwardRPTracker &RPT);
  void collectRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses) const;
  bool processRegUses(const MachineInstr &MI, RegUse &Defs, RegUse &Uses,
                      GCNDownwardRPTracker &RPT);

  const GCNSubtarget *ST;
  const SIRegisterInfo *TRI;
  const MachineRegisterInfo *MRI;
  SIMachineFunctionInfo *MFI;

  unsigned LastRecordedOccupancy;
  unsigned MaxVGPRs;
  unsigned MaxSGPRs;
};

} // End anonymous namespace.

INITIALIZE_PASS_BEGIN(SIFormMemoryClauses, DEBUG_TYPE,
                      "SI Form memory clauses", false, false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(SIFormMemoryClauses, DEBUG_TYPE,
                    "SI Form memory clauses", false, false)


char SIFormMemoryClauses::ID = 0;

char &llvm::SIFormMemoryClausesID = SIFormMemoryClauses::ID;

FunctionPass *llvm::createSIFormMemoryClausesPass() {
  return new SIFormMemoryClauses();
}

static bool isVMEMClauseInst(const MachineInstr &MI) {
  return SIInstrInfo::isFLAT(MI) || SIInstrInfo::isVMEM(MI);
}

static bool isSMEMClauseInst(const MachineInstr &MI) {
  return SIInstrInfo::isSMRD(MI);
}

// There no sense to create store clauses, they do not define anything,
// thus there is nothing to set early-clobber.
static bool isValidClauseInst(const MachineInstr &MI, bool IsVMEMClause) {
  if (MI.isDebugValue() || MI.isBundled())
    return false;
  if (!MI.mayLoad() || MI.mayStore())
    return false;
  if (AMDGPU::getAtomicNoRetOp(MI.getOpcode()) != -1 ||
      AMDGPU::getAtomicRetOp(MI.getOpcode()) != -1)
    return false;
  if (IsVMEMClause && !isVMEMClauseInst(MI))
    return false;
  if (!IsVMEMClause && !isSMEMClauseInst(MI))
    return false;
  // If this is a load instruction where the result has been coalesced with an operand, then we cannot clause it.
  for (const MachineOperand &ResMO : MI.defs()) {
    Register ResReg = ResMO.getReg();
    for (const MachineOperand &MO : MI.uses()) {
      if (!MO.isReg() || MO.isDef())
        continue;
      if (MO.getReg() == ResReg)
        return false;
    }
    break; // Only check the first def.
  }
  return true;
}

static unsigned getMopState(const MachineOperand &MO) {
  unsigned S = 0;
  if (MO.isImplicit())
    S |= RegState::Implicit;
  if (MO.isDead())
    S |= RegState::Dead;
  if (MO.isUndef())
    S |= RegState::Undef;
  if (MO.isKill())
    S |= RegState::Kill;
  if (MO.isEarlyClobber())
    S |= RegState::EarlyClobber;
  if (Register::isPhysicalRegister(MO.getReg()) && MO.isRenamable())
    S |= RegState::Renamable;
  return S;
}

template <typename Callable>
void SIFormMemoryClauses::forAllLanes(unsigned Reg, LaneBitmask LaneMask,
                                      Callable Func) const {
  if (LaneMask.all() || Register::isPhysicalRegister(Reg) ||
      LaneMask == MRI->getMaxLaneMaskForVReg(Reg)) {
    Func(0);
    return;
  }

  const TargetRegisterClass *RC = MRI->getRegClass(Reg);
  unsigned E = TRI->getNumSubRegIndices();
  SmallVector<unsigned, AMDGPU::NUM_TARGET_SUBREGS> CoveringSubregs;
  for (unsigned Idx = 1; Idx < E; ++Idx) {
    // Is this index even compatible with the given class?
    if (TRI->getSubClassWithSubReg(RC, Idx) != RC)
      continue;
    LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(Idx);
    // Early exit if we found a perfect match.
    if (SubRegMask == LaneMask) {
      Func(Idx);
      return;
    }

    if ((SubRegMask & ~LaneMask).any() || (SubRegMask & LaneMask).none())
      continue;

    CoveringSubregs.push_back(Idx);
  }

  llvm::sort(CoveringSubregs, [this](unsigned A, unsigned B) {
    LaneBitmask MaskA = TRI->getSubRegIndexLaneMask(A);
    LaneBitmask MaskB = TRI->getSubRegIndexLaneMask(B);
    unsigned NA = MaskA.getNumLanes();
    unsigned NB = MaskB.getNumLanes();
    if (NA != NB)
      return NA > NB;
    return MaskA.getHighestLane() > MaskB.getHighestLane();
  });

  for (unsigned Idx : CoveringSubregs) {
    LaneBitmask SubRegMask = TRI->getSubRegIndexLaneMask(Idx);
    if ((SubRegMask & ~LaneMask).any() || (SubRegMask & LaneMask).none())
      continue;

    Func(Idx);
    LaneMask &= ~SubRegMask;
    if (LaneMask.none())
      return;
  }

  llvm_unreachable("Failed to find all subregs to cover lane mask");
}

// Returns false if there is a use of a def already in the map.
// In this case we must break the clause.
bool SIFormMemoryClauses::canBundle(const MachineInstr &MI,
                                    RegUse &Defs, RegUse &Uses) const {
  // Check interference with defs.
  for (const MachineOperand &MO : MI.operands()) {
    // TODO: Prologue/Epilogue Insertion pass does not process bundled
    //       instructions.
    if (MO.isFI())
      return false;

    if (!MO.isReg())
      continue;

    Register Reg = MO.getReg();

    // If it is tied we will need to write same register as we read.
    if (MO.isTied())
      return false;

    RegUse &Map = MO.isDef() ? Uses : Defs;
    auto Conflict = Map.find(Reg);
    if (Conflict == Map.end())
      continue;

    if (Register::isPhysicalRegister(Reg))
      return false;

    LaneBitmask Mask = TRI->getSubRegIndexLaneMask(MO.getSubReg());
    if ((Conflict->second.second & Mask).any())
      return false;
  }

  return true;
}

// Since all defs in the clause are early clobber we can run out of registers.
// Function returns false if pressure would hit the limit if instruction is
// bundled into a memory clause.
bool SIFormMemoryClauses::checkPressure(const MachineInstr &MI,
                                        GCNDownwardRPTracker &RPT) {
  // NB: skip advanceBeforeNext() call. Since all defs will be marked
  // early-clobber they will all stay alive at least to the end of the
  // clause. Therefor we should not decrease pressure even if load
  // pointer becomes dead and could otherwise be reused for destination.
  RPT.advanceToNext();
  GCNRegPressure MaxPressure = RPT.moveMaxPressure();
  unsigned Occupancy = MaxPressure.getOccupancy(*ST);
  if (Occupancy >= MFI->getMinAllowedOccupancy() &&
      MaxPressure.getVGPRNum() <= MaxVGPRs &&
      MaxPressure.getSGPRNum() <= MaxSGPRs) {
    LastRecordedOccupancy = Occupancy;
    return true;
  }
  return false;
}

// Collect register defs and uses along with their lane masks and states.
void SIFormMemoryClauses::collectRegUses(const MachineInstr &MI,
                                         RegUse &Defs, RegUse &Uses) const {
  for (const MachineOperand &MO : MI.operands()) {
    if (!MO.isReg())
      continue;
    Register Reg = MO.getReg();
    if (!Reg)
      continue;

    LaneBitmask Mask = Register::isVirtualRegister(Reg)
                           ? TRI->getSubRegIndexLaneMask(MO.getSubReg())
                           : LaneBitmask::getAll();
    RegUse &Map = MO.isDef() ? Defs : Uses;

    auto Loc = Map.find(Reg);
    unsigned State = getMopState(MO);
    if (Loc == Map.end()) {
      Map[Reg] = std::make_pair(State, Mask);
    } else {
      Loc->second.first |= State;
      Loc->second.second |= Mask;
    }
  }
}

// Check register def/use conflicts, occupancy limits and collect def/use maps.
// Return true if instruction can be bundled with previous. It it cannot
// def/use maps are not updated.
bool SIFormMemoryClauses::processRegUses(const MachineInstr &MI,
                                         RegUse &Defs, RegUse &Uses,
                                         GCNDownwardRPTracker &RPT) {
  if (!canBundle(MI, Defs, Uses))
    return false;

  if (!checkPressure(MI, RPT))
    return false;

  collectRegUses(MI, Defs, Uses);
  return true;
}

bool SIFormMemoryClauses::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  ST = &MF.getSubtarget<GCNSubtarget>();
  if (!ST->isXNACKEnabled())
    return false;

  const SIInstrInfo *TII = ST->getInstrInfo();
  TRI = ST->getRegisterInfo();
  MRI = &MF.getRegInfo();
  MFI = MF.getInfo<SIMachineFunctionInfo>();
  LiveIntervals *LIS = &getAnalysis<LiveIntervals>();
  SlotIndexes *Ind = LIS->getSlotIndexes();
  bool Changed = false;

  MaxVGPRs = TRI->getAllocatableSet(MF, &AMDGPU::VGPR_32RegClass).count();
  MaxSGPRs = TRI->getAllocatableSet(MF, &AMDGPU::SGPR_32RegClass).count();
  unsigned FuncMaxClause = AMDGPU::getIntegerAttribute(
      MF.getFunction(), "amdgpu-max-memory-clause", MaxClause);

  for (MachineBasicBlock &MBB : MF) {
    MachineBasicBlock::instr_iterator Next;
    for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; I = Next) {
      MachineInstr &MI = *I;
      Next = std::next(I);

      bool IsVMEM = isVMEMClauseInst(MI);

      if (!isValidClauseInst(MI, IsVMEM))
        continue;

      RegUse Defs, Uses;
      GCNDownwardRPTracker RPT(*LIS);
      RPT.reset(MI);

      if (!processRegUses(MI, Defs, Uses, RPT))
        continue;

      unsigned Length = 1;
      for ( ; Next != E && Length < FuncMaxClause; ++Next) {
        if (!isValidClauseInst(*Next, IsVMEM))
          break;

        // A load from pointer which was loaded inside the same bundle is an
        // impossible clause because we will need to write and read the same
        // register inside. In this case processRegUses will return false.
        if (!processRegUses(*Next, Defs, Uses, RPT))
          break;

        ++Length;
      }
      if (Length < 2)
        continue;

      Changed = true;
      MFI->limitOccupancy(LastRecordedOccupancy);

      auto B = BuildMI(MBB, I, DebugLoc(), TII->get(TargetOpcode::BUNDLE));
      Ind->insertMachineInstrInMaps(*B);

      for (auto BI = I; BI != Next; ++BI) {
        BI->bundleWithPred();
        Ind->removeSingleMachineInstrFromMaps(*BI);

        for (MachineOperand &MO : BI->defs())
          if (MO.readsReg())
            MO.setIsInternalRead(true);
      }

      for (auto &&R : Defs) {
        forAllLanes(R.first, R.second.second, [&R, &B](unsigned SubReg) {
          unsigned S = R.second.first | RegState::EarlyClobber;
          if (!SubReg)
            S &= ~(RegState::Undef | RegState::Dead);
          B.addDef(R.first, S, SubReg);
        });
      }

      for (auto &&R : Uses) {
        forAllLanes(R.first, R.second.second, [&R, &B](unsigned SubReg) {
          B.addUse(R.first, R.second.first & ~RegState::Kill, SubReg);
        });
      }

      for (auto &&R : Defs) {
        unsigned Reg = R.first;
        Uses.erase(Reg);
        if (Register::isPhysicalRegister(Reg))
          continue;
        LIS->removeInterval(Reg);
        LIS->createAndComputeVirtRegInterval(Reg);
      }

      for (auto &&R : Uses) {
        unsigned Reg = R.first;
        if (Register::isPhysicalRegister(Reg))
          continue;
        LIS->removeInterval(Reg);
        LIS->createAndComputeVirtRegInterval(Reg);
      }
    }
  }

  return Changed;
}