R600Packetizer.cpp 13.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
//===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass implements instructions packetization for R600. It unsets isLast
/// bit of instructions inside a bundle and substitutes src register with
/// PreviousVector when applicable.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "R600InstrInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "packets"

namespace {

class R600Packetizer : public MachineFunctionPass {

public:
  static char ID;
  R600Packetizer() : MachineFunctionPass(ID) {}

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<MachineDominatorTree>();
    AU.addPreserved<MachineDominatorTree>();
    AU.addRequired<MachineLoopInfo>();
    AU.addPreserved<MachineLoopInfo>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  StringRef getPassName() const override { return "R600 Packetizer"; }

  bool runOnMachineFunction(MachineFunction &Fn) override;
};

class R600PacketizerList : public VLIWPacketizerList {
private:
  const R600InstrInfo *TII;
  const R600RegisterInfo &TRI;
  bool VLIW5;
  bool ConsideredInstUsesAlreadyWrittenVectorElement;

  unsigned getSlot(const MachineInstr &MI) const {
    return TRI.getHWRegChan(MI.getOperand(0).getReg());
  }

  /// \returns register to PV chan mapping for bundle/single instructions that
  /// immediately precedes I.
  DenseMap<unsigned, unsigned> getPreviousVector(MachineBasicBlock::iterator I)
      const {
    DenseMap<unsigned, unsigned> Result;
    I--;
    if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle())
      return Result;
    MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
    if (I->isBundle())
      BI++;
    int LastDstChan = -1;
    do {
      bool isTrans = false;
      int BISlot = getSlot(*BI);
      if (LastDstChan >= BISlot)
        isTrans = true;
      LastDstChan = BISlot;
      if (TII->isPredicated(*BI))
        continue;
      int OperandIdx = TII->getOperandIdx(BI->getOpcode(), R600::OpName::write);
      if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm() == 0)
        continue;
      int DstIdx = TII->getOperandIdx(BI->getOpcode(), R600::OpName::dst);
      if (DstIdx == -1) {
        continue;
      }
      Register Dst = BI->getOperand(DstIdx).getReg();
      if (isTrans || TII->isTransOnly(*BI)) {
        Result[Dst] = R600::PS;
        continue;
      }
      if (BI->getOpcode() == R600::DOT4_r600 ||
          BI->getOpcode() == R600::DOT4_eg) {
        Result[Dst] = R600::PV_X;
        continue;
      }
      if (Dst == R600::OQAP) {
        continue;
      }
      unsigned PVReg = 0;
      switch (TRI.getHWRegChan(Dst)) {
      case 0:
        PVReg = R600::PV_X;
        break;
      case 1:
        PVReg = R600::PV_Y;
        break;
      case 2:
        PVReg = R600::PV_Z;
        break;
      case 3:
        PVReg = R600::PV_W;
        break;
      default:
        llvm_unreachable("Invalid Chan");
      }
      Result[Dst] = PVReg;
    } while ((++BI)->isBundledWithPred());
    return Result;
  }

  void substitutePV(MachineInstr &MI, const DenseMap<unsigned, unsigned> &PVs)
      const {
    unsigned Ops[] = {
      R600::OpName::src0,
      R600::OpName::src1,
      R600::OpName::src2
    };
    for (unsigned i = 0; i < 3; i++) {
      int OperandIdx = TII->getOperandIdx(MI.getOpcode(), Ops[i]);
      if (OperandIdx < 0)
        continue;
      Register Src = MI.getOperand(OperandIdx).getReg();
      const DenseMap<unsigned, unsigned>::const_iterator It = PVs.find(Src);
      if (It != PVs.end())
        MI.getOperand(OperandIdx).setReg(It->second);
    }
  }
public:
  // Ctor.
  R600PacketizerList(MachineFunction &MF, const R600Subtarget &ST,
                     MachineLoopInfo &MLI)
      : VLIWPacketizerList(MF, MLI, nullptr),
        TII(ST.getInstrInfo()),
        TRI(TII->getRegisterInfo()) {
    VLIW5 = !ST.hasCaymanISA();
  }

  // initPacketizerState - initialize some internal flags.
  void initPacketizerState() override {
    ConsideredInstUsesAlreadyWrittenVectorElement = false;
  }

  // ignorePseudoInstruction - Ignore bundling of pseudo instructions.
  bool ignorePseudoInstruction(const MachineInstr &MI,
                               const MachineBasicBlock *MBB) override {
    return false;
  }

  // isSoloInstruction - return true if instruction MI can not be packetized
  // with any other instruction, which means that MI itself is a packet.
  bool isSoloInstruction(const MachineInstr &MI) override {
    if (TII->isVector(MI))
      return true;
    if (!TII->isALUInstr(MI.getOpcode()))
      return true;
    if (MI.getOpcode() == R600::GROUP_BARRIER)
      return true;
    // XXX: This can be removed once the packetizer properly handles all the
    // LDS instruction group restrictions.
    return TII->isLDSInstr(MI.getOpcode());
  }

  // isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
  // together.
  bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) override {
    MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr();
    if (getSlot(*MII) == getSlot(*MIJ))
      ConsideredInstUsesAlreadyWrittenVectorElement = true;
    // Does MII and MIJ share the same pred_sel ?
    int OpI = TII->getOperandIdx(MII->getOpcode(), R600::OpName::pred_sel),
        OpJ = TII->getOperandIdx(MIJ->getOpcode(), R600::OpName::pred_sel);
    Register PredI = (OpI > -1)?MII->getOperand(OpI).getReg() : Register(),
      PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg() : Register();
    if (PredI != PredJ)
      return false;
    if (SUJ->isSucc(SUI)) {
      for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) {
        const SDep &Dep = SUJ->Succs[i];
        if (Dep.getSUnit() != SUI)
          continue;
        if (Dep.getKind() == SDep::Anti)
          continue;
        if (Dep.getKind() == SDep::Output)
          if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg())
            continue;
        return false;
      }
    }

    bool ARDef =
        TII->definesAddressRegister(*MII) || TII->definesAddressRegister(*MIJ);
    bool ARUse =
        TII->usesAddressRegister(*MII) || TII->usesAddressRegister(*MIJ);

    return !ARDef || !ARUse;
  }

  // isLegalToPruneDependencies - Is it legal to prune dependece between SUI
  // and SUJ.
  bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) override {
    return false;
  }

  void setIsLastBit(MachineInstr *MI, unsigned Bit) const {
    unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), R600::OpName::last);
    MI->getOperand(LastOp).setImm(Bit);
  }

  bool isBundlableWithCurrentPMI(MachineInstr &MI,
                                 const DenseMap<unsigned, unsigned> &PV,
                                 std::vector<R600InstrInfo::BankSwizzle> &BS,
                                 bool &isTransSlot) {
    isTransSlot = TII->isTransOnly(MI);
    assert (!isTransSlot || VLIW5);

    // Is the dst reg sequence legal ?
    if (!isTransSlot && !CurrentPacketMIs.empty()) {
      if (getSlot(MI) <= getSlot(*CurrentPacketMIs.back())) {
        if (ConsideredInstUsesAlreadyWrittenVectorElement &&
            !TII->isVectorOnly(MI) && VLIW5) {
          isTransSlot = true;
          LLVM_DEBUG({
            dbgs() << "Considering as Trans Inst :";
            MI.dump();
          });
        }
        else
          return false;
      }
    }

    // Are the Constants limitations met ?
    CurrentPacketMIs.push_back(&MI);
    if (!TII->fitsConstReadLimitations(CurrentPacketMIs)) {
      LLVM_DEBUG({
        dbgs() << "Couldn't pack :\n";
        MI.dump();
        dbgs() << "with the following packets :\n";
        for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
          CurrentPacketMIs[i]->dump();
          dbgs() << "\n";
        }
        dbgs() << "because of Consts read limitations\n";
      });
      CurrentPacketMIs.pop_back();
      return false;
    }

    // Is there a BankSwizzle set that meet Read Port limitations ?
    if (!TII->fitsReadPortLimitations(CurrentPacketMIs,
            PV, BS, isTransSlot)) {
      LLVM_DEBUG({
        dbgs() << "Couldn't pack :\n";
        MI.dump();
        dbgs() << "with the following packets :\n";
        for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
          CurrentPacketMIs[i]->dump();
          dbgs() << "\n";
        }
        dbgs() << "because of Read port limitations\n";
      });
      CurrentPacketMIs.pop_back();
      return false;
    }

    // We cannot read LDS source registers from the Trans slot.
    if (isTransSlot && TII->readsLDSSrcReg(MI))
      return false;

    CurrentPacketMIs.pop_back();
    return true;
  }

  MachineBasicBlock::iterator addToPacket(MachineInstr &MI) override {
    MachineBasicBlock::iterator FirstInBundle =
        CurrentPacketMIs.empty() ? &MI : CurrentPacketMIs.front();
    const DenseMap<unsigned, unsigned> &PV =
        getPreviousVector(FirstInBundle);
    std::vector<R600InstrInfo::BankSwizzle> BS;
    bool isTransSlot;

    if (isBundlableWithCurrentPMI(MI, PV, BS, isTransSlot)) {
      for (unsigned i = 0, e = CurrentPacketMIs.size(); i < e; i++) {
        MachineInstr *MI = CurrentPacketMIs[i];
        unsigned Op = TII->getOperandIdx(MI->getOpcode(),
            R600::OpName::bank_swizzle);
        MI->getOperand(Op).setImm(BS[i]);
      }
      unsigned Op =
          TII->getOperandIdx(MI.getOpcode(), R600::OpName::bank_swizzle);
      MI.getOperand(Op).setImm(BS.back());
      if (!CurrentPacketMIs.empty())
        setIsLastBit(CurrentPacketMIs.back(), 0);
      substitutePV(MI, PV);
      MachineBasicBlock::iterator It = VLIWPacketizerList::addToPacket(MI);
      if (isTransSlot) {
        endPacket(std::next(It)->getParent(), std::next(It));
      }
      return It;
    }
    endPacket(MI.getParent(), MI);
    if (TII->isTransOnly(MI))
      return MI;
    return VLIWPacketizerList::addToPacket(MI);
  }
};

bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
  const R600Subtarget &ST = Fn.getSubtarget<R600Subtarget>();
  const R600InstrInfo *TII = ST.getInstrInfo();

  MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();

  // Instantiate the packetizer.
  R600PacketizerList Packetizer(Fn, ST, MLI);

  // DFA state table should not be empty.
  assert(Packetizer.getResourceTracker() && "Empty DFA table!");
  assert(Packetizer.getResourceTracker()->getInstrItins());

  if (Packetizer.getResourceTracker()->getInstrItins()->isEmpty())
    return false;

  //
  // Loop over all basic blocks and remove KILL pseudo-instructions
  // These instructions confuse the dependence analysis. Consider:
  // D0 = ...   (Insn 0)
  // R0 = KILL R0, D0 (Insn 1)
  // R0 = ... (Insn 2)
  // Here, Insn 1 will result in the dependence graph not emitting an output
  // dependence between Insn 0 and Insn 2. This can lead to incorrect
  // packetization
  //
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB) {
    MachineBasicBlock::iterator End = MBB->end();
    MachineBasicBlock::iterator MI = MBB->begin();
    while (MI != End) {
      if (MI->isKill() || MI->getOpcode() == R600::IMPLICIT_DEF ||
          (MI->getOpcode() == R600::CF_ALU && !MI->getOperand(8).getImm())) {
        MachineBasicBlock::iterator DeleteMI = MI;
        ++MI;
        MBB->erase(DeleteMI);
        End = MBB->end();
        continue;
      }
      ++MI;
    }
  }

  // Loop over all of the basic blocks.
  for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
       MBB != MBBe; ++MBB) {
    // Find scheduling regions and schedule / packetize each region.
    unsigned RemainingCount = MBB->size();
    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
        RegionEnd != MBB->begin();) {
      // The next region starts above the previous region. Look backward in the
      // instruction stream until we find the nearest boundary.
      MachineBasicBlock::iterator I = RegionEnd;
      for(;I != MBB->begin(); --I, --RemainingCount) {
        if (TII->isSchedulingBoundary(*std::prev(I), &*MBB, Fn))
          break;
      }
      I = MBB->begin();

      // Skip empty scheduling regions.
      if (I == RegionEnd) {
        RegionEnd = std::prev(RegionEnd);
        --RemainingCount;
        continue;
      }
      // Skip regions with one instruction.
      if (I == std::prev(RegionEnd)) {
        RegionEnd = std::prev(RegionEnd);
        continue;
      }

      Packetizer.PacketizeMIs(&*MBB, &*I, RegionEnd);
      RegionEnd = I;
    }
  }

  return true;

}

} // end anonymous namespace

INITIALIZE_PASS_BEGIN(R600Packetizer, DEBUG_TYPE,
                     "R600 Packetizer", false, false)
INITIALIZE_PASS_END(R600Packetizer, DEBUG_TYPE,
                    "R600 Packetizer", false, false)

char R600Packetizer::ID = 0;

char &llvm::R600PacketizerID = R600Packetizer::ID;

llvm::FunctionPass *llvm::createR600Packetizer() {
  return new R600Packetizer();
}