R600MachineScheduler.cpp 13.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
//===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// R600 Machine Scheduler interface
//
//===----------------------------------------------------------------------===//

#include "R600MachineScheduler.h"
#include "AMDGPUSubtarget.h"
#include "R600InstrInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Pass.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "machine-scheduler"

void R600SchedStrategy::initialize(ScheduleDAGMI *dag) {
  assert(dag->hasVRegLiveness() && "R600SchedStrategy needs vreg liveness");
  DAG = static_cast<ScheduleDAGMILive*>(dag);
  const R600Subtarget &ST = DAG->MF.getSubtarget<R600Subtarget>();
  TII = static_cast<const R600InstrInfo*>(DAG->TII);
  TRI = static_cast<const R600RegisterInfo*>(DAG->TRI);
  VLIW5 = !ST.hasCaymanISA();
  MRI = &DAG->MRI;
  CurInstKind = IDOther;
  CurEmitted = 0;
  OccupedSlotsMask = 31;
  InstKindLimit[IDAlu] = TII->getMaxAlusPerClause();
  InstKindLimit[IDOther] = 32;
  InstKindLimit[IDFetch] = ST.getTexVTXClauseSize();
  AluInstCount = 0;
  FetchInstCount = 0;
}

void R600SchedStrategy::MoveUnits(std::vector<SUnit *> &QSrc,
                                  std::vector<SUnit *> &QDst)
{
  QDst.insert(QDst.end(), QSrc.begin(), QSrc.end());
  QSrc.clear();
}

static unsigned getWFCountLimitedByGPR(unsigned GPRCount) {
  assert (GPRCount && "GPRCount cannot be 0");
  return 248 / GPRCount;
}

SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) {
  SUnit *SU = nullptr;
  NextInstKind = IDOther;

  IsTopNode = false;

  // check if we might want to switch current clause type
  bool AllowSwitchToAlu = (CurEmitted >= InstKindLimit[CurInstKind]) ||
      (Available[CurInstKind].empty());
  bool AllowSwitchFromAlu = (CurEmitted >= InstKindLimit[CurInstKind]) &&
      (!Available[IDFetch].empty() || !Available[IDOther].empty());

  if (CurInstKind == IDAlu && !Available[IDFetch].empty()) {
    // We use the heuristic provided by AMD Accelerated Parallel Processing
    // OpenCL Programming Guide :
    // The approx. number of WF that allows TEX inst to hide ALU inst is :
    // 500 (cycles for TEX) / (AluFetchRatio * 8 (cycles for ALU))
    float ALUFetchRationEstimate =
        (AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) /
        (FetchInstCount + Available[IDFetch].size());
    if (ALUFetchRationEstimate == 0) {
      AllowSwitchFromAlu = true;
    } else {
      unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
      LLVM_DEBUG(dbgs() << NeededWF << " approx. Wavefronts Required\n");
      // We assume the local GPR requirements to be "dominated" by the requirement
      // of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
      // after TEX are indeed likely to consume or generate values from/for the
      // TEX clause.
      // Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
      // We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
      // one GPR) or TmXYZW = TnXYZW (need 2 GPR).
      // (TODO : use RegisterPressure)
      // If we are going too use too many GPR, we flush Fetch instruction to lower
      // register pressure on 128 bits regs.
      unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
      if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
        AllowSwitchFromAlu = true;
    }
  }

  if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) ||
      (!AllowSwitchFromAlu && CurInstKind == IDAlu))) {
    // try to pick ALU
    SU = pickAlu();
    if (!SU && !PhysicalRegCopy.empty()) {
      SU = PhysicalRegCopy.front();
      PhysicalRegCopy.erase(PhysicalRegCopy.begin());
    }
    if (SU) {
      if (CurEmitted >= InstKindLimit[IDAlu])
        CurEmitted = 0;
      NextInstKind = IDAlu;
    }
  }

  if (!SU) {
    // try to pick FETCH
    SU = pickOther(IDFetch);
    if (SU)
      NextInstKind = IDFetch;
  }

  // try to pick other
  if (!SU) {
    SU = pickOther(IDOther);
    if (SU)
      NextInstKind = IDOther;
  }

  LLVM_DEBUG(if (SU) {
    dbgs() << " ** Pick node **\n";
    DAG->dumpNode(*SU);
  } else {
    dbgs() << "NO NODE \n";
    for (unsigned i = 0; i < DAG->SUnits.size(); i++) {
      const SUnit &S = DAG->SUnits[i];
      if (!S.isScheduled)
        DAG->dumpNode(S);
    }
  });

  return SU;
}

void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
  if (NextInstKind != CurInstKind) {
    LLVM_DEBUG(dbgs() << "Instruction Type Switch\n");
    if (NextInstKind != IDAlu)
      OccupedSlotsMask |= 31;
    CurEmitted = 0;
    CurInstKind = NextInstKind;
  }

  if (CurInstKind == IDAlu) {
    AluInstCount ++;
    switch (getAluKind(SU)) {
    case AluT_XYZW:
      CurEmitted += 4;
      break;
    case AluDiscarded:
      break;
    default: {
      ++CurEmitted;
      for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(),
          E = SU->getInstr()->operands_end(); It != E; ++It) {
        MachineOperand &MO = *It;
        if (MO.isReg() && MO.getReg() == R600::ALU_LITERAL_X)
          ++CurEmitted;
      }
    }
    }
  } else {
    ++CurEmitted;
  }

  LLVM_DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n");

  if (CurInstKind != IDFetch) {
    MoveUnits(Pending[IDFetch], Available[IDFetch]);
  } else
    FetchInstCount++;
}

static bool
isPhysicalRegCopy(MachineInstr *MI) {
  if (MI->getOpcode() != R600::COPY)
    return false;

  return !Register::isVirtualRegister(MI->getOperand(1).getReg());
}

void R600SchedStrategy::releaseTopNode(SUnit *SU) {
  LLVM_DEBUG(dbgs() << "Top Releasing "; DAG->dumpNode(*SU));
}

void R600SchedStrategy::releaseBottomNode(SUnit *SU) {
  LLVM_DEBUG(dbgs() << "Bottom Releasing "; DAG->dumpNode(*SU));
  if (isPhysicalRegCopy(SU->getInstr())) {
    PhysicalRegCopy.push_back(SU);
    return;
  }

  int IK = getInstKind(SU);

  // There is no export clause, we can schedule one as soon as its ready
  if (IK == IDOther)
    Available[IDOther].push_back(SU);
  else
    Pending[IK].push_back(SU);

}

bool R600SchedStrategy::regBelongsToClass(unsigned Reg,
                                          const TargetRegisterClass *RC) const {
  if (!Register::isVirtualRegister(Reg)) {
    return RC->contains(Reg);
  } else {
    return MRI->getRegClass(Reg) == RC;
  }
}

R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const {
  MachineInstr *MI = SU->getInstr();

  if (TII->isTransOnly(*MI))
    return AluTrans;

  switch (MI->getOpcode()) {
  case R600::PRED_X:
    return AluPredX;
  case R600::INTERP_PAIR_XY:
  case R600::INTERP_PAIR_ZW:
  case R600::INTERP_VEC_LOAD:
  case R600::DOT_4:
    return AluT_XYZW;
  case R600::COPY:
    if (MI->getOperand(1).isUndef()) {
      // MI will become a KILL, don't considers it in scheduling
      return AluDiscarded;
    }
    break;
  default:
    break;
  }

  // Does the instruction take a whole IG ?
  // XXX: Is it possible to add a helper function in R600InstrInfo that can
  // be used here and in R600PacketizerList::isSoloInstruction() ?
  if(TII->isVector(*MI) ||
     TII->isCubeOp(MI->getOpcode()) ||
     TII->isReductionOp(MI->getOpcode()) ||
     MI->getOpcode() == R600::GROUP_BARRIER) {
    return AluT_XYZW;
  }

  if (TII->isLDSInstr(MI->getOpcode())) {
    return AluT_X;
  }

  // Is the result already assigned to a channel ?
  unsigned DestSubReg = MI->getOperand(0).getSubReg();
  switch (DestSubReg) {
  case R600::sub0:
    return AluT_X;
  case R600::sub1:
    return AluT_Y;
  case R600::sub2:
    return AluT_Z;
  case R600::sub3:
    return AluT_W;
  default:
    break;
  }

  // Is the result already member of a X/Y/Z/W class ?
  Register DestReg = MI->getOperand(0).getReg();
  if (regBelongsToClass(DestReg, &R600::R600_TReg32_XRegClass) ||
      regBelongsToClass(DestReg, &R600::R600_AddrRegClass))
    return AluT_X;
  if (regBelongsToClass(DestReg, &R600::R600_TReg32_YRegClass))
    return AluT_Y;
  if (regBelongsToClass(DestReg, &R600::R600_TReg32_ZRegClass))
    return AluT_Z;
  if (regBelongsToClass(DestReg, &R600::R600_TReg32_WRegClass))
    return AluT_W;
  if (regBelongsToClass(DestReg, &R600::R600_Reg128RegClass))
    return AluT_XYZW;

  // LDS src registers cannot be used in the Trans slot.
  if (TII->readsLDSSrcReg(*MI))
    return AluT_XYZW;

  return AluAny;
}

int R600SchedStrategy::getInstKind(SUnit* SU) {
  int Opcode = SU->getInstr()->getOpcode();

  if (TII->usesTextureCache(Opcode) || TII->usesVertexCache(Opcode))
    return IDFetch;

  if (TII->isALUInstr(Opcode)) {
    return IDAlu;
  }

  switch (Opcode) {
  case R600::PRED_X:
  case R600::COPY:
  case R600::CONST_COPY:
  case R600::INTERP_PAIR_XY:
  case R600::INTERP_PAIR_ZW:
  case R600::INTERP_VEC_LOAD:
  case R600::DOT_4:
    return IDAlu;
  default:
    return IDOther;
  }
}

SUnit *R600SchedStrategy::PopInst(std::vector<SUnit *> &Q, bool AnyALU) {
  if (Q.empty())
    return nullptr;
  for (std::vector<SUnit *>::reverse_iterator It = Q.rbegin(), E = Q.rend();
      It != E; ++It) {
    SUnit *SU = *It;
    InstructionsGroupCandidate.push_back(SU->getInstr());
    if (TII->fitsConstReadLimitations(InstructionsGroupCandidate) &&
        (!AnyALU || !TII->isVectorOnly(*SU->getInstr()))) {
      InstructionsGroupCandidate.pop_back();
      Q.erase((It + 1).base());
      return SU;
    } else {
      InstructionsGroupCandidate.pop_back();
    }
  }
  return nullptr;
}

void R600SchedStrategy::LoadAlu() {
  std::vector<SUnit *> &QSrc = Pending[IDAlu];
  for (unsigned i = 0, e = QSrc.size(); i < e; ++i) {
    AluKind AK = getAluKind(QSrc[i]);
    AvailableAlus[AK].push_back(QSrc[i]);
  }
  QSrc.clear();
}

void R600SchedStrategy::PrepareNextSlot() {
  LLVM_DEBUG(dbgs() << "New Slot\n");
  assert (OccupedSlotsMask && "Slot wasn't filled");
  OccupedSlotsMask = 0;
//  if (HwGen == AMDGPUSubtarget::NORTHERN_ISLANDS)
//    OccupedSlotsMask |= 16;
  InstructionsGroupCandidate.clear();
  LoadAlu();
}

void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) {
  int DstIndex = TII->getOperandIdx(MI->getOpcode(), R600::OpName::dst);
  if (DstIndex == -1) {
    return;
  }
  Register DestReg = MI->getOperand(DstIndex).getReg();
  // PressureRegister crashes if an operand is def and used in the same inst
  // and we try to constraint its regclass
  for (MachineInstr::mop_iterator It = MI->operands_begin(),
      E = MI->operands_end(); It != E; ++It) {
    MachineOperand &MO = *It;
    if (MO.isReg() && !MO.isDef() &&
        MO.getReg() == DestReg)
      return;
  }
  // Constrains the regclass of DestReg to assign it to Slot
  switch (Slot) {
  case 0:
    MRI->constrainRegClass(DestReg, &R600::R600_TReg32_XRegClass);
    break;
  case 1:
    MRI->constrainRegClass(DestReg, &R600::R600_TReg32_YRegClass);
    break;
  case 2:
    MRI->constrainRegClass(DestReg, &R600::R600_TReg32_ZRegClass);
    break;
  case 3:
    MRI->constrainRegClass(DestReg, &R600::R600_TReg32_WRegClass);
    break;
  }
}

SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot, bool AnyAlu) {
  static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W};
  SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]], AnyAlu);
  if (SlotedSU)
    return SlotedSU;
  SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny], AnyAlu);
  if (UnslotedSU)
    AssignSlot(UnslotedSU->getInstr(), Slot);
  return UnslotedSU;
}

unsigned R600SchedStrategy::AvailablesAluCount() const {
  return AvailableAlus[AluAny].size() + AvailableAlus[AluT_XYZW].size() +
      AvailableAlus[AluT_X].size() + AvailableAlus[AluT_Y].size() +
      AvailableAlus[AluT_Z].size() + AvailableAlus[AluT_W].size() +
      AvailableAlus[AluTrans].size() + AvailableAlus[AluDiscarded].size() +
      AvailableAlus[AluPredX].size();
}

SUnit* R600SchedStrategy::pickAlu() {
  while (AvailablesAluCount() || !Pending[IDAlu].empty()) {
    if (!OccupedSlotsMask) {
      // Bottom up scheduling : predX must comes first
      if (!AvailableAlus[AluPredX].empty()) {
        OccupedSlotsMask |= 31;
        return PopInst(AvailableAlus[AluPredX], false);
      }
      // Flush physical reg copies (RA will discard them)
      if (!AvailableAlus[AluDiscarded].empty()) {
        OccupedSlotsMask |= 31;
        return PopInst(AvailableAlus[AluDiscarded], false);
      }
      // If there is a T_XYZW alu available, use it
      if (!AvailableAlus[AluT_XYZW].empty()) {
        OccupedSlotsMask |= 15;
        return PopInst(AvailableAlus[AluT_XYZW], false);
      }
    }
    bool TransSlotOccuped = OccupedSlotsMask & 16;
    if (!TransSlotOccuped && VLIW5) {
      if (!AvailableAlus[AluTrans].empty()) {
        OccupedSlotsMask |= 16;
        return PopInst(AvailableAlus[AluTrans], false);
      }
      SUnit *SU = AttemptFillSlot(3, true);
      if (SU) {
        OccupedSlotsMask |= 16;
        return SU;
      }
    }
    for (int Chan = 3; Chan > -1; --Chan) {
      bool isOccupied = OccupedSlotsMask & (1 << Chan);
      if (!isOccupied) {
        SUnit *SU = AttemptFillSlot(Chan, false);
        if (SU) {
          OccupedSlotsMask |= (1 << Chan);
          InstructionsGroupCandidate.push_back(SU->getInstr());
          return SU;
        }
      }
    }
    PrepareNextSlot();
  }
  return nullptr;
}

SUnit* R600SchedStrategy::pickOther(int QID) {
  SUnit *SU = nullptr;
  std::vector<SUnit *> &AQ = Available[QID];

  if (AQ.empty()) {
    MoveUnits(Pending[QID], AQ);
  }
  if (!AQ.empty()) {
    SU = AQ.back();
    AQ.pop_back();
  }
  return SU;
}