R600ISelLowering.cpp 81.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
//===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Custom DAG lowering for R600
//
//===----------------------------------------------------------------------===//

#include "R600ISelLowering.h"
#include "AMDGPUFrameLowering.h"
#include "AMDGPUSubtarget.h"
#include "R600Defines.h"
#include "R600FrameLowering.h"
#include "R600InstrInfo.h"
#include "R600MachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#include "R600GenCallingConv.inc"

R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
                                       const R600Subtarget &STI)
    : AMDGPUTargetLowering(TM, STI), Subtarget(&STI), Gen(STI.getGeneration()) {
  addRegisterClass(MVT::f32, &R600::R600_Reg32RegClass);
  addRegisterClass(MVT::i32, &R600::R600_Reg32RegClass);
  addRegisterClass(MVT::v2f32, &R600::R600_Reg64RegClass);
  addRegisterClass(MVT::v2i32, &R600::R600_Reg64RegClass);
  addRegisterClass(MVT::v4f32, &R600::R600_Reg128RegClass);
  addRegisterClass(MVT::v4i32, &R600::R600_Reg128RegClass);

  setBooleanContents(ZeroOrNegativeOneBooleanContent);
  setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);

  computeRegisterProperties(Subtarget->getRegisterInfo());

  // Legalize loads and stores to the private address space.
  setOperationAction(ISD::LOAD, MVT::i32, Custom);
  setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
  setOperationAction(ISD::LOAD, MVT::v4i32, Custom);

  // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
  // spaces, so it is custom lowered to handle those where it isn't.
  for (MVT VT : MVT::integer_valuetypes()) {
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
    setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);

    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
    setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);

    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
    setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
  }

  // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
  setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
  setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);

  setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
  setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
  setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);

  setOperationAction(ISD::STORE, MVT::i8, Custom);
  setOperationAction(ISD::STORE, MVT::i32, Custom);
  setOperationAction(ISD::STORE, MVT::v2i32, Custom);
  setOperationAction(ISD::STORE, MVT::v4i32, Custom);

  setTruncStoreAction(MVT::i32, MVT::i8, Custom);
  setTruncStoreAction(MVT::i32, MVT::i16, Custom);
  // We need to include these since trunc STORES to PRIVATE need
  // special handling to accommodate RMW
  setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
  setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
  setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
  setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
  setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
  setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
  setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
  setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
  setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
  setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);

  // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
  setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
  setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);

  // Set condition code actions
  setCondCodeAction(ISD::SETO,   MVT::f32, Expand);
  setCondCodeAction(ISD::SETUO,  MVT::f32, Expand);
  setCondCodeAction(ISD::SETLT,  MVT::f32, Expand);
  setCondCodeAction(ISD::SETLE,  MVT::f32, Expand);
  setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
  setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
  setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
  setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
  setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
  setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
  setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
  setCondCodeAction(ISD::SETULE, MVT::f32, Expand);

  setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
  setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
  setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
  setCondCodeAction(ISD::SETULT, MVT::i32, Expand);

  setOperationAction(ISD::FCOS, MVT::f32, Custom);
  setOperationAction(ISD::FSIN, MVT::f32, Custom);

  setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
  setOperationAction(ISD::SETCC, MVT::v2i32, Expand);

  setOperationAction(ISD::BR_CC, MVT::i32, Expand);
  setOperationAction(ISD::BR_CC, MVT::f32, Expand);
  setOperationAction(ISD::BRCOND, MVT::Other, Custom);

  setOperationAction(ISD::FSUB, MVT::f32, Expand);

  setOperationAction(ISD::FCEIL, MVT::f64, Custom);
  setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
  setOperationAction(ISD::FRINT, MVT::f64, Custom);
  setOperationAction(ISD::FFLOOR, MVT::f64, Custom);

  setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
  setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);

  setOperationAction(ISD::SETCC, MVT::i32, Expand);
  setOperationAction(ISD::SETCC, MVT::f32, Expand);
  setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
  setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
  setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
  setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);

  setOperationAction(ISD::SELECT, MVT::i32, Expand);
  setOperationAction(ISD::SELECT, MVT::f32, Expand);
  setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
  setOperationAction(ISD::SELECT, MVT::v4i32, Expand);

  // ADD, SUB overflow.
  // TODO: turn these into Legal?
  if (Subtarget->hasCARRY())
    setOperationAction(ISD::UADDO, MVT::i32, Custom);

  if (Subtarget->hasBORROW())
    setOperationAction(ISD::USUBO, MVT::i32, Custom);

  // Expand sign extension of vectors
  if (!Subtarget->hasBFE())
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);

  if (!Subtarget->hasBFE())
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);

  if (!Subtarget->hasBFE())
    setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);

  setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);

  setOperationAction(ISD::FrameIndex, MVT::i32, Custom);

  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
  setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);

  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
  setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);

  // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
  //  to be Legal/Custom in order to avoid library calls.
  setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
  setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
  setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);

  if (!Subtarget->hasFMA()) {
    setOperationAction(ISD::FMA, MVT::f32, Expand);
    setOperationAction(ISD::FMA, MVT::f64, Expand);
  }

  // FIXME: May need no denormals check
  setOperationAction(ISD::FMAD, MVT::f32, Legal);

  if (!Subtarget->hasBFI()) {
    // fcopysign can be done in a single instruction with BFI.
    setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
  }

  if (!Subtarget->hasBCNT(32))
    setOperationAction(ISD::CTPOP, MVT::i32, Expand);

  if (!Subtarget->hasBCNT(64))
    setOperationAction(ISD::CTPOP, MVT::i64, Expand);

  if (Subtarget->hasFFBH())
    setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);

  if (Subtarget->hasFFBL())
    setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);

  // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
  // need it for R600.
  if (Subtarget->hasBFE())
    setHasExtractBitsInsn(true);

  setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);

  const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
  for (MVT VT : ScalarIntVTs) {
    setOperationAction(ISD::ADDC, VT, Expand);
    setOperationAction(ISD::SUBC, VT, Expand);
    setOperationAction(ISD::ADDE, VT, Expand);
    setOperationAction(ISD::SUBE, VT, Expand);
  }

  // LLVM will expand these to atomic_cmp_swap(0)
  // and atomic_swap, respectively.
  setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
  setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);

  // We need to custom lower some of the intrinsics
  setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
  setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);

  setSchedulingPreference(Sched::Source);

  setTargetDAGCombine(ISD::FP_ROUND);
  setTargetDAGCombine(ISD::FP_TO_SINT);
  setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
  setTargetDAGCombine(ISD::SELECT_CC);
  setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
  setTargetDAGCombine(ISD::LOAD);
}

static inline bool isEOP(MachineBasicBlock::iterator I) {
  if (std::next(I) == I->getParent()->end())
    return false;
  return std::next(I)->getOpcode() == R600::RETURN;
}

MachineBasicBlock *
R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
                                                MachineBasicBlock *BB) const {
  MachineFunction *MF = BB->getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  MachineBasicBlock::iterator I = MI;
  const R600InstrInfo *TII = Subtarget->getInstrInfo();

  switch (MI.getOpcode()) {
  default:
    // Replace LDS_*_RET instruction that don't have any uses with the
    // equivalent LDS_*_NORET instruction.
    if (TII->isLDSRetInstr(MI.getOpcode())) {
      int DstIdx = TII->getOperandIdx(MI.getOpcode(), R600::OpName::dst);
      assert(DstIdx != -1);
      MachineInstrBuilder NewMI;
      // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
      //        LDS_1A2D support and remove this special case.
      if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
          MI.getOpcode() == R600::LDS_CMPST_RET)
        return BB;

      NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
                      TII->get(R600::getLDSNoRetOp(MI.getOpcode())));
      for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
        NewMI.add(MI.getOperand(i));
      }
    } else {
      return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
    }
    break;

  case R600::FABS_R600: {
    MachineInstr *NewMI = TII->buildDefaultInstruction(
        *BB, I, R600::MOV, MI.getOperand(0).getReg(),
        MI.getOperand(1).getReg());
    TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
    break;
  }

  case R600::FNEG_R600: {
    MachineInstr *NewMI = TII->buildDefaultInstruction(
        *BB, I, R600::MOV, MI.getOperand(0).getReg(),
        MI.getOperand(1).getReg());
    TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
    break;
  }

  case R600::MASK_WRITE: {
    Register maskedRegister = MI.getOperand(0).getReg();
    assert(Register::isVirtualRegister(maskedRegister));
    MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
    TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
    break;
  }

  case R600::MOV_IMM_F32:
    TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
                                                            .getFPImm()
                                                            ->getValueAPF()
                                                            .bitcastToAPInt()
                                                            .getZExtValue());
    break;

  case R600::MOV_IMM_I32:
    TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
                     MI.getOperand(1).getImm());
    break;

  case R600::MOV_IMM_GLOBAL_ADDR: {
    //TODO: Perhaps combine this instruction with the next if possible
    auto MIB = TII->buildDefaultInstruction(
        *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_LITERAL_X);
    int Idx = TII->getOperandIdx(*MIB, R600::OpName::literal);
    //TODO: Ugh this is rather ugly
    MIB->getOperand(Idx) = MI.getOperand(1);
    break;
  }

  case R600::CONST_COPY: {
    MachineInstr *NewMI = TII->buildDefaultInstruction(
        *BB, MI, R600::MOV, MI.getOperand(0).getReg(), R600::ALU_CONST);
    TII->setImmOperand(*NewMI, R600::OpName::src0_sel,
                       MI.getOperand(1).getImm());
    break;
  }

  case R600::RAT_WRITE_CACHELESS_32_eg:
  case R600::RAT_WRITE_CACHELESS_64_eg:
  case R600::RAT_WRITE_CACHELESS_128_eg:
    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
        .add(MI.getOperand(0))
        .add(MI.getOperand(1))
        .addImm(isEOP(I)); // Set End of program bit
    break;

  case R600::RAT_STORE_TYPED_eg:
    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
        .add(MI.getOperand(0))
        .add(MI.getOperand(1))
        .add(MI.getOperand(2))
        .addImm(isEOP(I)); // Set End of program bit
    break;

  case R600::BRANCH:
    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP))
        .add(MI.getOperand(0));
    break;

  case R600::BRANCH_COND_f32: {
    MachineInstr *NewMI =
        BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
                R600::PREDICATE_BIT)
            .add(MI.getOperand(1))
            .addImm(R600::PRED_SETNE)
            .addImm(0); // Flags
    TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
        .add(MI.getOperand(0))
        .addReg(R600::PREDICATE_BIT, RegState::Kill);
    break;
  }

  case R600::BRANCH_COND_i32: {
    MachineInstr *NewMI =
        BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::PRED_X),
                R600::PREDICATE_BIT)
            .add(MI.getOperand(1))
            .addImm(R600::PRED_SETNE_INT)
            .addImm(0); // Flags
    TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(R600::JUMP_COND))
        .add(MI.getOperand(0))
        .addReg(R600::PREDICATE_BIT, RegState::Kill);
    break;
  }

  case R600::EG_ExportSwz:
  case R600::R600_ExportSwz: {
    // Instruction is left unmodified if its not the last one of its type
    bool isLastInstructionOfItsType = true;
    unsigned InstExportType = MI.getOperand(1).getImm();
    for (MachineBasicBlock::iterator NextExportInst = std::next(I),
         EndBlock = BB->end(); NextExportInst != EndBlock;
         NextExportInst = std::next(NextExportInst)) {
      if (NextExportInst->getOpcode() == R600::EG_ExportSwz ||
          NextExportInst->getOpcode() == R600::R600_ExportSwz) {
        unsigned CurrentInstExportType = NextExportInst->getOperand(1)
            .getImm();
        if (CurrentInstExportType == InstExportType) {
          isLastInstructionOfItsType = false;
          break;
        }
      }
    }
    bool EOP = isEOP(I);
    if (!EOP && !isLastInstructionOfItsType)
      return BB;
    unsigned CfInst = (MI.getOpcode() == R600::EG_ExportSwz) ? 84 : 40;
    BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
        .add(MI.getOperand(0))
        .add(MI.getOperand(1))
        .add(MI.getOperand(2))
        .add(MI.getOperand(3))
        .add(MI.getOperand(4))
        .add(MI.getOperand(5))
        .add(MI.getOperand(6))
        .addImm(CfInst)
        .addImm(EOP);
    break;
  }
  case R600::RETURN: {
    return BB;
  }
  }

  MI.eraseFromParent();
  return BB;
}

//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//

SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
  switch (Op.getOpcode()) {
  default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
  case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
  case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
  case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
  case ISD::SRA_PARTS:
  case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
  case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
  case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
  case ISD::FCOS:
  case ISD::FSIN: return LowerTrig(Op, DAG);
  case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
  case ISD::STORE: return LowerSTORE(Op, DAG);
  case ISD::LOAD: {
    SDValue Result = LowerLOAD(Op, DAG);
    assert((!Result.getNode() ||
            Result.getNode()->getNumValues() == 2) &&
           "Load should return a value and a chain");
    return Result;
  }

  case ISD::BRCOND: return LowerBRCOND(Op, DAG);
  case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
  case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
  case ISD::INTRINSIC_VOID: {
    SDValue Chain = Op.getOperand(0);
    unsigned IntrinsicID =
                         cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
    switch (IntrinsicID) {
    case Intrinsic::r600_store_swizzle: {
      SDLoc DL(Op);
      const SDValue Args[8] = {
        Chain,
        Op.getOperand(2), // Export Value
        Op.getOperand(3), // ArrayBase
        Op.getOperand(4), // Type
        DAG.getConstant(0, DL, MVT::i32), // SWZ_X
        DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
        DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
        DAG.getConstant(3, DL, MVT::i32) // SWZ_W
      };
      return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
    }

    // default for switch(IntrinsicID)
    default: break;
    }
    // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
    break;
  }
  case ISD::INTRINSIC_WO_CHAIN: {
    unsigned IntrinsicID =
                         cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    EVT VT = Op.getValueType();
    SDLoc DL(Op);
    switch (IntrinsicID) {
    case Intrinsic::r600_tex:
    case Intrinsic::r600_texc: {
      unsigned TextureOp;
      switch (IntrinsicID) {
      case Intrinsic::r600_tex:
        TextureOp = 0;
        break;
      case Intrinsic::r600_texc:
        TextureOp = 1;
        break;
      default:
        llvm_unreachable("unhandled texture operation");
      }

      SDValue TexArgs[19] = {
        DAG.getConstant(TextureOp, DL, MVT::i32),
        Op.getOperand(1),
        DAG.getConstant(0, DL, MVT::i32),
        DAG.getConstant(1, DL, MVT::i32),
        DAG.getConstant(2, DL, MVT::i32),
        DAG.getConstant(3, DL, MVT::i32),
        Op.getOperand(2),
        Op.getOperand(3),
        Op.getOperand(4),
        DAG.getConstant(0, DL, MVT::i32),
        DAG.getConstant(1, DL, MVT::i32),
        DAG.getConstant(2, DL, MVT::i32),
        DAG.getConstant(3, DL, MVT::i32),
        Op.getOperand(5),
        Op.getOperand(6),
        Op.getOperand(7),
        Op.getOperand(8),
        Op.getOperand(9),
        Op.getOperand(10)
      };
      return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
    }
    case Intrinsic::r600_dot4: {
      SDValue Args[8] = {
      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
          DAG.getConstant(0, DL, MVT::i32)),
      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
          DAG.getConstant(0, DL, MVT::i32)),
      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
          DAG.getConstant(1, DL, MVT::i32)),
      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
          DAG.getConstant(1, DL, MVT::i32)),
      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
          DAG.getConstant(2, DL, MVT::i32)),
      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
          DAG.getConstant(2, DL, MVT::i32)),
      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
          DAG.getConstant(3, DL, MVT::i32)),
      DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
          DAG.getConstant(3, DL, MVT::i32))
      };
      return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
    }

    case Intrinsic::r600_implicitarg_ptr: {
      MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS);
      uint32_t ByteOffset = getImplicitParameterOffset(MF, FIRST_IMPLICIT);
      return DAG.getConstant(ByteOffset, DL, PtrVT);
    }
    case Intrinsic::r600_read_ngroups_x:
      return LowerImplicitParameter(DAG, VT, DL, 0);
    case Intrinsic::r600_read_ngroups_y:
      return LowerImplicitParameter(DAG, VT, DL, 1);
    case Intrinsic::r600_read_ngroups_z:
      return LowerImplicitParameter(DAG, VT, DL, 2);
    case Intrinsic::r600_read_global_size_x:
      return LowerImplicitParameter(DAG, VT, DL, 3);
    case Intrinsic::r600_read_global_size_y:
      return LowerImplicitParameter(DAG, VT, DL, 4);
    case Intrinsic::r600_read_global_size_z:
      return LowerImplicitParameter(DAG, VT, DL, 5);
    case Intrinsic::r600_read_local_size_x:
      return LowerImplicitParameter(DAG, VT, DL, 6);
    case Intrinsic::r600_read_local_size_y:
      return LowerImplicitParameter(DAG, VT, DL, 7);
    case Intrinsic::r600_read_local_size_z:
      return LowerImplicitParameter(DAG, VT, DL, 8);

    case Intrinsic::r600_read_tgid_x:
    case Intrinsic::amdgcn_workgroup_id_x:
      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
                                     R600::T1_X, VT);
    case Intrinsic::r600_read_tgid_y:
    case Intrinsic::amdgcn_workgroup_id_y:
      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
                                     R600::T1_Y, VT);
    case Intrinsic::r600_read_tgid_z:
    case Intrinsic::amdgcn_workgroup_id_z:
      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
                                     R600::T1_Z, VT);
    case Intrinsic::r600_read_tidig_x:
    case Intrinsic::amdgcn_workitem_id_x:
      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
                                     R600::T0_X, VT);
    case Intrinsic::r600_read_tidig_y:
    case Intrinsic::amdgcn_workitem_id_y:
      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
                                     R600::T0_Y, VT);
    case Intrinsic::r600_read_tidig_z:
    case Intrinsic::amdgcn_workitem_id_z:
      return CreateLiveInRegisterRaw(DAG, &R600::R600_TReg32RegClass,
                                     R600::T0_Z, VT);

    case Intrinsic::r600_recipsqrt_ieee:
      return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));

    case Intrinsic::r600_recipsqrt_clamped:
      return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
    default:
      return Op;
    }

    // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
    break;
  }
  } // end switch(Op.getOpcode())
  return SDValue();
}

void R600TargetLowering::ReplaceNodeResults(SDNode *N,
                                            SmallVectorImpl<SDValue> &Results,
                                            SelectionDAG &DAG) const {
  switch (N->getOpcode()) {
  default:
    AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
    return;
  case ISD::FP_TO_UINT:
    if (N->getValueType(0) == MVT::i1) {
      Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
      return;
    }
    // Since we don't care about out of bounds values we can use FP_TO_SINT for
    // uints too. The DAGLegalizer code for uint considers some extra cases
    // which are not necessary here.
    LLVM_FALLTHROUGH;
  case ISD::FP_TO_SINT: {
    if (N->getValueType(0) == MVT::i1) {
      Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
      return;
    }

    SDValue Result;
    if (expandFP_TO_SINT(N, Result, DAG))
      Results.push_back(Result);
    return;
  }
  case ISD::SDIVREM: {
    SDValue Op = SDValue(N, 1);
    SDValue RES = LowerSDIVREM(Op, DAG);
    Results.push_back(RES);
    Results.push_back(RES.getValue(1));
    break;
  }
  case ISD::UDIVREM: {
    SDValue Op = SDValue(N, 0);
    LowerUDIVREM64(Op, DAG, Results);
    break;
  }
  }
}

SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
                                                   SDValue Vector) const {
  SDLoc DL(Vector);
  EVT VecVT = Vector.getValueType();
  EVT EltVT = VecVT.getVectorElementType();
  SmallVector<SDValue, 8> Args;

  for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
    Args.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
                               DAG.getVectorIdxConstant(i, DL)));
  }

  return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
}

SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
                                                    SelectionDAG &DAG) const {
  SDLoc DL(Op);
  SDValue Vector = Op.getOperand(0);
  SDValue Index = Op.getOperand(1);

  if (isa<ConstantSDNode>(Index) ||
      Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
    return Op;

  Vector = vectorToVerticalVector(DAG, Vector);
  return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
                     Vector, Index);
}

SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
                                                   SelectionDAG &DAG) const {
  SDLoc DL(Op);
  SDValue Vector = Op.getOperand(0);
  SDValue Value = Op.getOperand(1);
  SDValue Index = Op.getOperand(2);

  if (isa<ConstantSDNode>(Index) ||
      Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
    return Op;

  Vector = vectorToVerticalVector(DAG, Vector);
  SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
                               Vector, Value, Index);
  return vectorToVerticalVector(DAG, Insert);
}

SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
                                               SDValue Op,
                                               SelectionDAG &DAG) const {
  GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
  if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
    return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);

  const DataLayout &DL = DAG.getDataLayout();
  const GlobalValue *GV = GSD->getGlobal();
  MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);

  SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
  return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
}

SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
  // On hw >= R700, COS/SIN input must be between -1. and 1.
  // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
  EVT VT = Op.getValueType();
  SDValue Arg = Op.getOperand(0);
  SDLoc DL(Op);

  // TODO: Should this propagate fast-math-flags?
  SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
      DAG.getNode(ISD::FADD, DL, VT,
        DAG.getNode(ISD::FMUL, DL, VT, Arg,
          DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
        DAG.getConstantFP(0.5, DL, MVT::f32)));
  unsigned TrigNode;
  switch (Op.getOpcode()) {
  case ISD::FCOS:
    TrigNode = AMDGPUISD::COS_HW;
    break;
  case ISD::FSIN:
    TrigNode = AMDGPUISD::SIN_HW;
    break;
  default:
    llvm_unreachable("Wrong trig opcode");
  }
  SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
      DAG.getNode(ISD::FADD, DL, VT, FractPart,
        DAG.getConstantFP(-0.5, DL, MVT::f32)));
  if (Gen >= AMDGPUSubtarget::R700)
    return TrigVal;
  // On R600 hw, COS/SIN input must be between -Pi and Pi.
  return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
      DAG.getConstantFP(numbers::pif, DL, MVT::f32));
}

SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();

  SDValue Lo = Op.getOperand(0);
  SDValue Hi = Op.getOperand(1);
  SDValue Shift = Op.getOperand(2);
  SDValue Zero = DAG.getConstant(0, DL, VT);
  SDValue One  = DAG.getConstant(1, DL, VT);

  SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
  SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
  SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
  SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);

  // The dance around Width1 is necessary for 0 special case.
  // Without it the CompShift might be 32, producing incorrect results in
  // Overflow. So we do the shift in two steps, the alternative is to
  // add a conditional to filter the special case.

  SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
  Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);

  SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
  HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
  SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);

  SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
  SDValue LoBig = Zero;

  Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
  Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);

  return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
}

SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();

  SDValue Lo = Op.getOperand(0);
  SDValue Hi = Op.getOperand(1);
  SDValue Shift = Op.getOperand(2);
  SDValue Zero = DAG.getConstant(0, DL, VT);
  SDValue One  = DAG.getConstant(1, DL, VT);

  const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;

  SDValue Width  = DAG.getConstant(VT.getSizeInBits(), DL, VT);
  SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
  SDValue BigShift  = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
  SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);

  // The dance around Width1 is necessary for 0 special case.
  // Without it the CompShift might be 32, producing incorrect results in
  // Overflow. So we do the shift in two steps, the alternative is to
  // add a conditional to filter the special case.

  SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
  Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);

  SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
  SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
  LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);

  SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
  SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;

  Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
  Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);

  return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
}

SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
                                          unsigned mainop, unsigned ovf) const {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();

  SDValue Lo = Op.getOperand(0);
  SDValue Hi = Op.getOperand(1);

  SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
  // Extend sign.
  OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
                    DAG.getValueType(MVT::i1));

  SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);

  return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
}

SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  return DAG.getNode(
      ISD::SETCC,
      DL,
      MVT::i1,
      Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
      DAG.getCondCode(ISD::SETEQ));
}

SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  return DAG.getNode(
      ISD::SETCC,
      DL,
      MVT::i1,
      Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
      DAG.getCondCode(ISD::SETEQ));
}

SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
                                                   const SDLoc &DL,
                                                   unsigned DwordOffset) const {
  unsigned ByteOffset = DwordOffset * 4;
  PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
                                      AMDGPUAS::PARAM_I_ADDRESS);

  // We shouldn't be using an offset wider than 16-bits for implicit parameters.
  assert(isInt<16>(ByteOffset));

  return DAG.getLoad(VT, DL, DAG.getEntryNode(),
                     DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
                     MachinePointerInfo(ConstantPointerNull::get(PtrType)));
}

bool R600TargetLowering::isZero(SDValue Op) const {
  if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
    return Cst->isNullValue();
  } else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
    return CstFP->isZero();
  } else {
    return false;
  }
}

bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
  if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
    return CFP->isExactlyValue(1.0);
  }
  return isAllOnesConstant(Op);
}

bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
  if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
    return CFP->getValueAPF().isZero();
  }
  return isNullConstant(Op);
}

SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();

  SDValue LHS = Op.getOperand(0);
  SDValue RHS = Op.getOperand(1);
  SDValue True = Op.getOperand(2);
  SDValue False = Op.getOperand(3);
  SDValue CC = Op.getOperand(4);
  SDValue Temp;

  if (VT == MVT::f32) {
    DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
    SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
    if (MinMax)
      return MinMax;
  }

  // LHS and RHS are guaranteed to be the same value type
  EVT CompareVT = LHS.getValueType();

  // Check if we can lower this to a native operation.

  // Try to lower to a SET* instruction:
  //
  // SET* can match the following patterns:
  //
  // select_cc f32, f32, -1,  0, cc_supported
  // select_cc f32, f32, 1.0f, 0.0f, cc_supported
  // select_cc i32, i32, -1,  0, cc_supported
  //

  // Move hardware True/False values to the correct operand.
  if (isHWTrueValue(False) && isHWFalseValue(True)) {
    ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
    ISD::CondCode InverseCC = ISD::getSetCCInverse(CCOpcode, CompareVT);
    if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
      std::swap(False, True);
      CC = DAG.getCondCode(InverseCC);
    } else {
      ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
      if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
        std::swap(False, True);
        std::swap(LHS, RHS);
        CC = DAG.getCondCode(SwapInvCC);
      }
    }
  }

  if (isHWTrueValue(True) && isHWFalseValue(False) &&
      (CompareVT == VT || VT == MVT::i32)) {
    // This can be matched by a SET* instruction.
    return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
  }

  // Try to lower to a CND* instruction:
  //
  // CND* can match the following patterns:
  //
  // select_cc f32, 0.0, f32, f32, cc_supported
  // select_cc f32, 0.0, i32, i32, cc_supported
  // select_cc i32, 0,   f32, f32, cc_supported
  // select_cc i32, 0,   i32, i32, cc_supported
  //

  // Try to move the zero value to the RHS
  if (isZero(LHS)) {
    ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
    // Try swapping the operands
    ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
    if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
      std::swap(LHS, RHS);
      CC = DAG.getCondCode(CCSwapped);
    } else {
      // Try inverting the conditon and then swapping the operands
      ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT);
      CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
      if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
        std::swap(True, False);
        std::swap(LHS, RHS);
        CC = DAG.getCondCode(CCSwapped);
      }
    }
  }
  if (isZero(RHS)) {
    SDValue Cond = LHS;
    SDValue Zero = RHS;
    ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
    if (CompareVT != VT) {
      // Bitcast True / False to the correct types.  This will end up being
      // a nop, but it allows us to define only a single pattern in the
      // .TD files for each CND* instruction rather than having to have
      // one pattern for integer True/False and one for fp True/False
      True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
      False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
    }

    switch (CCOpcode) {
    case ISD::SETONE:
    case ISD::SETUNE:
    case ISD::SETNE:
      CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT);
      Temp = True;
      True = False;
      False = Temp;
      break;
    default:
      break;
    }
    SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
        Cond, Zero,
        True, False,
        DAG.getCondCode(CCOpcode));
    return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
  }

  // If we make it this for it means we have no native instructions to handle
  // this SELECT_CC, so we must lower it.
  SDValue HWTrue, HWFalse;

  if (CompareVT == MVT::f32) {
    HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
    HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
  } else if (CompareVT == MVT::i32) {
    HWTrue = DAG.getConstant(-1, DL, CompareVT);
    HWFalse = DAG.getConstant(0, DL, CompareVT);
  }
  else {
    llvm_unreachable("Unhandled value type in LowerSELECT_CC");
  }

  // Lower this unsupported SELECT_CC into a combination of two supported
  // SELECT_CC operations.
  SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);

  return DAG.getNode(ISD::SELECT_CC, DL, VT,
      Cond, HWFalse,
      True, False,
      DAG.getCondCode(ISD::SETNE));
}

/// LLVM generates byte-addressed pointers.  For indirect addressing, we need to
/// convert these pointers to a register index.  Each register holds
/// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
/// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
/// for indirect addressing.
SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
                                               unsigned StackWidth,
                                               SelectionDAG &DAG) const {
  unsigned SRLPad;
  switch(StackWidth) {
  case 1:
    SRLPad = 2;
    break;
  case 2:
    SRLPad = 3;
    break;
  case 4:
    SRLPad = 4;
    break;
  default: llvm_unreachable("Invalid stack width");
  }

  SDLoc DL(Ptr);
  return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
                     DAG.getConstant(SRLPad, DL, MVT::i32));
}

void R600TargetLowering::getStackAddress(unsigned StackWidth,
                                         unsigned ElemIdx,
                                         unsigned &Channel,
                                         unsigned &PtrIncr) const {
  switch (StackWidth) {
  default:
  case 1:
    Channel = 0;
    if (ElemIdx > 0) {
      PtrIncr = 1;
    } else {
      PtrIncr = 0;
    }
    break;
  case 2:
    Channel = ElemIdx % 2;
    if (ElemIdx == 2) {
      PtrIncr = 1;
    } else {
      PtrIncr = 0;
    }
    break;
  case 4:
    Channel = ElemIdx;
    PtrIncr = 0;
    break;
  }
}

SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
                                                   SelectionDAG &DAG) const {
  SDLoc DL(Store);
  //TODO: Who creates the i8 stores?
  assert(Store->isTruncatingStore()
         || Store->getValue().getValueType() == MVT::i8);
  assert(Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS);

  SDValue Mask;
  if (Store->getMemoryVT() == MVT::i8) {
    assert(Store->getAlignment() >= 1);
    Mask = DAG.getConstant(0xff, DL, MVT::i32);
  } else if (Store->getMemoryVT() == MVT::i16) {
    assert(Store->getAlignment() >= 2);
    Mask = DAG.getConstant(0xffff, DL, MVT::i32);
  } else {
    llvm_unreachable("Unsupported private trunc store");
  }

  SDValue OldChain = Store->getChain();
  bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
  // Skip dummy
  SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
  SDValue BasePtr = Store->getBasePtr();
  SDValue Offset = Store->getOffset();
  EVT MemVT = Store->getMemoryVT();

  SDValue LoadPtr = BasePtr;
  if (!Offset.isUndef()) {
    LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
  }

  // Get dword location
  // TODO: this should be eliminated by the future SHR ptr, 2
  SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
                            DAG.getConstant(0xfffffffc, DL, MVT::i32));

  // Load dword
  // TODO: can we be smarter about machine pointer info?
  MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
  SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);

  Chain = Dst.getValue(1);

  // Get offset in dword
  SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
                                DAG.getConstant(0x3, DL, MVT::i32));

  // Convert byte offset to bit shift
  SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
                                 DAG.getConstant(3, DL, MVT::i32));

  // TODO: Contrary to the name of the functiom,
  // it also handles sub i32 non-truncating stores (like i1)
  SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
                                  Store->getValue());

  // Mask the value to the right type
  SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);

  // Shift the value in place
  SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
                                     MaskedValue, ShiftAmt);

  // Shift the mask in place
  SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);

  // Invert the mask. NOTE: if we had native ROL instructions we could
  // use inverted mask
  DstMask = DAG.getNOT(DL, DstMask, MVT::i32);

  // Cleanup the target bits
  Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);

  // Add the new bits
  SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);

  // Store dword
  // TODO: Can we be smarter about MachinePointerInfo?
  SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);

  // If we are part of expanded vector, make our neighbors depend on this store
  if (VectorTrunc) {
    // Make all other vector elements depend on this store
    Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
    DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
  }
  return NewStore;
}

SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
  StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
  unsigned AS = StoreNode->getAddressSpace();

  SDValue Chain = StoreNode->getChain();
  SDValue Ptr = StoreNode->getBasePtr();
  SDValue Value = StoreNode->getValue();

  EVT VT = Value.getValueType();
  EVT MemVT = StoreNode->getMemoryVT();
  EVT PtrVT = Ptr.getValueType();

  SDLoc DL(Op);

  const bool TruncatingStore = StoreNode->isTruncatingStore();

  // Neither LOCAL nor PRIVATE can do vectors at the moment
  if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS ||
       TruncatingStore) &&
      VT.isVector()) {
    if ((AS == AMDGPUAS::PRIVATE_ADDRESS) && TruncatingStore) {
      // Add an extra level of chain to isolate this vector
      SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
      // TODO: can the chain be replaced without creating a new store?
      SDValue NewStore = DAG.getTruncStore(
          NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
          MemVT, StoreNode->getAlignment(),
          StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
      StoreNode = cast<StoreSDNode>(NewStore);
    }

    return scalarizeVectorStore(StoreNode, DAG);
  }

  Align Alignment = StoreNode->getAlign();
  if (Alignment < MemVT.getStoreSize() &&
      !allowsMisalignedMemoryAccesses(MemVT, AS, Alignment.value(),
                                      StoreNode->getMemOperand()->getFlags(),
                                      nullptr)) {
    return expandUnalignedStore(StoreNode, DAG);
  }

  SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
                                  DAG.getConstant(2, DL, PtrVT));

  if (AS == AMDGPUAS::GLOBAL_ADDRESS) {
    // It is beneficial to create MSKOR here instead of combiner to avoid
    // artificial dependencies introduced by RMW
    if (TruncatingStore) {
      assert(VT.bitsLE(MVT::i32));
      SDValue MaskConstant;
      if (MemVT == MVT::i8) {
        MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
      } else {
        assert(MemVT == MVT::i16);
        assert(StoreNode->getAlignment() >= 2);
        MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
      }

      SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
                                      DAG.getConstant(0x00000003, DL, PtrVT));
      SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
                                     DAG.getConstant(3, DL, VT));

      // Put the mask in correct place
      SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);

      // Put the value bits in correct place
      SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
      SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);

      // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
      // vector instead.
      SDValue Src[4] = {
        ShiftedValue,
        DAG.getConstant(0, DL, MVT::i32),
        DAG.getConstant(0, DL, MVT::i32),
        Mask
      };
      SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
      SDValue Args[3] = { Chain, Input, DWordAddr };
      return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
                                     Op->getVTList(), Args, MemVT,
                                     StoreNode->getMemOperand());
    } else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
      // Convert pointer from byte address to dword address.
      Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);

      if (StoreNode->isIndexed()) {
        llvm_unreachable("Indexed stores not supported yet");
      } else {
        Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
      }
      return Chain;
    }
  }

  // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
  if (AS != AMDGPUAS::PRIVATE_ADDRESS)
    return SDValue();

  if (MemVT.bitsLT(MVT::i32))
    return lowerPrivateTruncStore(StoreNode, DAG);

  // Standard i32+ store, tag it with DWORDADDR to note that the address
  // has been shifted
  if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
    Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
    return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
  }

  // Tagged i32+ stores will be matched by patterns
  return SDValue();
}

// return (512 + (kc_bank << 12)
static int
ConstantAddressBlock(unsigned AddressSpace) {
  switch (AddressSpace) {
  case AMDGPUAS::CONSTANT_BUFFER_0:
    return 512;
  case AMDGPUAS::CONSTANT_BUFFER_1:
    return 512 + 4096;
  case AMDGPUAS::CONSTANT_BUFFER_2:
    return 512 + 4096 * 2;
  case AMDGPUAS::CONSTANT_BUFFER_3:
    return 512 + 4096 * 3;
  case AMDGPUAS::CONSTANT_BUFFER_4:
    return 512 + 4096 * 4;
  case AMDGPUAS::CONSTANT_BUFFER_5:
    return 512 + 4096 * 5;
  case AMDGPUAS::CONSTANT_BUFFER_6:
    return 512 + 4096 * 6;
  case AMDGPUAS::CONSTANT_BUFFER_7:
    return 512 + 4096 * 7;
  case AMDGPUAS::CONSTANT_BUFFER_8:
    return 512 + 4096 * 8;
  case AMDGPUAS::CONSTANT_BUFFER_9:
    return 512 + 4096 * 9;
  case AMDGPUAS::CONSTANT_BUFFER_10:
    return 512 + 4096 * 10;
  case AMDGPUAS::CONSTANT_BUFFER_11:
    return 512 + 4096 * 11;
  case AMDGPUAS::CONSTANT_BUFFER_12:
    return 512 + 4096 * 12;
  case AMDGPUAS::CONSTANT_BUFFER_13:
    return 512 + 4096 * 13;
  case AMDGPUAS::CONSTANT_BUFFER_14:
    return 512 + 4096 * 14;
  case AMDGPUAS::CONSTANT_BUFFER_15:
    return 512 + 4096 * 15;
  default:
    return -1;
  }
}

SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
                                                SelectionDAG &DAG) const {
  SDLoc DL(Op);
  LoadSDNode *Load = cast<LoadSDNode>(Op);
  ISD::LoadExtType ExtType = Load->getExtensionType();
  EVT MemVT = Load->getMemoryVT();
  assert(Load->getAlignment() >= MemVT.getStoreSize());

  SDValue BasePtr = Load->getBasePtr();
  SDValue Chain = Load->getChain();
  SDValue Offset = Load->getOffset();

  SDValue LoadPtr = BasePtr;
  if (!Offset.isUndef()) {
    LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
  }

  // Get dword location
  // NOTE: this should be eliminated by the future SHR ptr, 2
  SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
                            DAG.getConstant(0xfffffffc, DL, MVT::i32));

  // Load dword
  // TODO: can we be smarter about machine pointer info?
  MachinePointerInfo PtrInfo(AMDGPUAS::PRIVATE_ADDRESS);
  SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);

  // Get offset within the register.
  SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
                                LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));

  // Bit offset of target byte (byteIdx * 8).
  SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
                                 DAG.getConstant(3, DL, MVT::i32));

  // Shift to the right.
  SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);

  // Eliminate the upper bits by setting them to ...
  EVT MemEltVT = MemVT.getScalarType();

  if (ExtType == ISD::SEXTLOAD) { // ... ones.
    SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
    Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
  } else { // ... or zeros.
    Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
  }

  SDValue Ops[] = {
    Ret,
    Read.getValue(1) // This should be our output chain
  };

  return DAG.getMergeValues(Ops, DL);
}

SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
  LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
  unsigned AS = LoadNode->getAddressSpace();
  EVT MemVT = LoadNode->getMemoryVT();
  ISD::LoadExtType ExtType = LoadNode->getExtensionType();

  if (AS == AMDGPUAS::PRIVATE_ADDRESS &&
      ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
    return lowerPrivateExtLoad(Op, DAG);
  }

  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  SDValue Chain = LoadNode->getChain();
  SDValue Ptr = LoadNode->getBasePtr();

  if ((LoadNode->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
      LoadNode->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
      VT.isVector()) {
    SDValue Ops[2];
    std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LoadNode, DAG);
    return DAG.getMergeValues(Ops, DL);
  }

  // This is still used for explicit load from addrspace(8)
  int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
  if (ConstantBlock > -1 &&
      ((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
       (LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
    SDValue Result;
    if (isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
        isa<ConstantSDNode>(Ptr)) {
      return constBufferLoad(LoadNode, LoadNode->getAddressSpace(), DAG);
    } else {
      //TODO: Does this even work?
      // non-constant ptr can't be folded, keeps it as a v4f32 load
      Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
          DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
                      DAG.getConstant(4, DL, MVT::i32)),
                      DAG.getConstant(LoadNode->getAddressSpace() -
                                      AMDGPUAS::CONSTANT_BUFFER_0, DL, MVT::i32)
          );
    }

    if (!VT.isVector()) {
      Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
                           DAG.getConstant(0, DL, MVT::i32));
    }

    SDValue MergedValues[2] = {
      Result,
      Chain
    };
    return DAG.getMergeValues(MergedValues, DL);
  }

  // For most operations returning SDValue() will result in the node being
  // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
  // need to manually expand loads that may be legal in some address spaces and
  // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
  // compute shaders, since the data is sign extended when it is uploaded to the
  // buffer. However SEXT loads from other address spaces are not supported, so
  // we need to expand them here.
  if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
    assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
    SDValue NewLoad = DAG.getExtLoad(
        ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
        LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
    SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
                              DAG.getValueType(MemVT));

    SDValue MergedValues[2] = { Res, Chain };
    return DAG.getMergeValues(MergedValues, DL);
  }

  if (LoadNode->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
    return SDValue();
  }

  // DWORDADDR ISD marks already shifted address
  if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
    assert(VT == MVT::i32);
    Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
    Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
    return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
  }
  return SDValue();
}

SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
  SDValue Chain = Op.getOperand(0);
  SDValue Cond  = Op.getOperand(1);
  SDValue Jump  = Op.getOperand(2);

  return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
                     Chain, Jump, Cond);
}

SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
                                            SelectionDAG &DAG) const {
  MachineFunction &MF = DAG.getMachineFunction();
  const R600FrameLowering *TFL = Subtarget->getFrameLowering();

  FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);

  unsigned FrameIndex = FIN->getIndex();
  Register IgnoredFrameReg;
  unsigned Offset =
    TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
  return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
                         Op.getValueType());
}

CCAssignFn *R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC,
                                                  bool IsVarArg) const {
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
  case CallingConv::C:
  case CallingConv::Fast:
  case CallingConv::Cold:
    llvm_unreachable("kernels should not be handled here");
  case CallingConv::AMDGPU_VS:
  case CallingConv::AMDGPU_GS:
  case CallingConv::AMDGPU_PS:
  case CallingConv::AMDGPU_CS:
  case CallingConv::AMDGPU_HS:
  case CallingConv::AMDGPU_ES:
  case CallingConv::AMDGPU_LS:
    return CC_R600;
  default:
    report_fatal_error("Unsupported calling convention.");
  }
}

/// XXX Only kernel functions are supported, so we can assume for now that
/// every function is a kernel function, but in the future we should use
/// separate calling conventions for kernel and non-kernel functions.
SDValue R600TargetLowering::LowerFormalArguments(
    SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
    const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
    SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
                 *DAG.getContext());
  MachineFunction &MF = DAG.getMachineFunction();
  SmallVector<ISD::InputArg, 8> LocalIns;

  if (AMDGPU::isShader(CallConv)) {
    CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
  } else {
    analyzeFormalArgumentsCompute(CCInfo, Ins);
  }

  for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
    CCValAssign &VA = ArgLocs[i];
    const ISD::InputArg &In = Ins[i];
    EVT VT = In.VT;
    EVT MemVT = VA.getLocVT();
    if (!VT.isVector() && MemVT.isVector()) {
      // Get load source type if scalarized.
      MemVT = MemVT.getVectorElementType();
    }

    if (AMDGPU::isShader(CallConv)) {
      unsigned Reg = MF.addLiveIn(VA.getLocReg(), &R600::R600_Reg128RegClass);
      SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
      InVals.push_back(Register);
      continue;
    }

    // i64 isn't a legal type, so the register type used ends up as i32, which
    // isn't expected here. It attempts to create this sextload, but it ends up
    // being invalid. Somehow this seems to work with i64 arguments, but breaks
    // for <1 x i64>.

    // The first 36 bytes of the input buffer contains information about
    // thread group and global sizes.
    ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
    if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
      // FIXME: This should really check the extload type, but the handling of
      // extload vector parameters seems to be broken.

      // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
      Ext = ISD::SEXTLOAD;
    }

    // Compute the offset from the value.
    // XXX - I think PartOffset should give you this, but it seems to give the
    // size of the register which isn't useful.

    unsigned PartOffset = VA.getLocMemOffset();
    unsigned Alignment = MinAlign(VT.getStoreSize(), PartOffset);

    MachinePointerInfo PtrInfo(AMDGPUAS::PARAM_I_ADDRESS);
    SDValue Arg = DAG.getLoad(
        ISD::UNINDEXED, Ext, VT, DL, Chain,
        DAG.getConstant(PartOffset, DL, MVT::i32), DAG.getUNDEF(MVT::i32),
        PtrInfo,
        MemVT, Alignment, MachineMemOperand::MONonTemporal |
                                        MachineMemOperand::MODereferenceable |
                                        MachineMemOperand::MOInvariant);

    InVals.push_back(Arg);
  }
  return Chain;
}

EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
                                           EVT VT) const {
   if (!VT.isVector())
     return MVT::i32;
   return VT.changeVectorElementTypeToInteger();
}

bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
                                          const SelectionDAG &DAG) const {
  // Local and Private addresses do not handle vectors. Limit to i32
  if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS)) {
    return (MemVT.getSizeInBits() <= 32);
  }
  return true;
}

bool R600TargetLowering::allowsMisalignedMemoryAccesses(
    EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
    bool *IsFast) const {
  if (IsFast)
    *IsFast = false;

  if (!VT.isSimple() || VT == MVT::Other)
    return false;

  if (VT.bitsLT(MVT::i32))
    return false;

  // TODO: This is a rough estimate.
  if (IsFast)
    *IsFast = true;

  return VT.bitsGT(MVT::i32) && Align % 4 == 0;
}

static SDValue CompactSwizzlableVector(
  SelectionDAG &DAG, SDValue VectorEntry,
  DenseMap<unsigned, unsigned> &RemapSwizzle) {
  assert(RemapSwizzle.empty());

  SDLoc DL(VectorEntry);
  EVT EltTy = VectorEntry.getValueType().getVectorElementType();

  SDValue NewBldVec[4];
  for (unsigned i = 0; i < 4; i++)
    NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
                               DAG.getIntPtrConstant(i, DL));

  for (unsigned i = 0; i < 4; i++) {
    if (NewBldVec[i].isUndef())
      // We mask write here to teach later passes that the ith element of this
      // vector is undef. Thus we can use it to reduce 128 bits reg usage,
      // break false dependencies and additionnaly make assembly easier to read.
      RemapSwizzle[i] = 7; // SEL_MASK_WRITE
    if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
      if (C->isZero()) {
        RemapSwizzle[i] = 4; // SEL_0
        NewBldVec[i] = DAG.getUNDEF(MVT::f32);
      } else if (C->isExactlyValue(1.0)) {
        RemapSwizzle[i] = 5; // SEL_1
        NewBldVec[i] = DAG.getUNDEF(MVT::f32);
      }
    }

    if (NewBldVec[i].isUndef())
      continue;

    for (unsigned j = 0; j < i; j++) {
      if (NewBldVec[i] == NewBldVec[j]) {
        NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
        RemapSwizzle[i] = j;
        break;
      }
    }
  }

  return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
                            NewBldVec);
}

static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
                                DenseMap<unsigned, unsigned> &RemapSwizzle) {
  assert(RemapSwizzle.empty());

  SDLoc DL(VectorEntry);
  EVT EltTy = VectorEntry.getValueType().getVectorElementType();

  SDValue NewBldVec[4];
  bool isUnmovable[4] = {false, false, false, false};
  for (unsigned i = 0; i < 4; i++)
    NewBldVec[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltTy, VectorEntry,
                               DAG.getIntPtrConstant(i, DL));

  for (unsigned i = 0; i < 4; i++) {
    RemapSwizzle[i] = i;
    if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
      unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
          ->getZExtValue();
      if (i == Idx)
        isUnmovable[Idx] = true;
    }
  }

  for (unsigned i = 0; i < 4; i++) {
    if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
      unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
          ->getZExtValue();
      if (isUnmovable[Idx])
        continue;
      // Swap i and Idx
      std::swap(NewBldVec[Idx], NewBldVec[i]);
      std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
      break;
    }
  }

  return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
                            NewBldVec);
}

SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
                                            SelectionDAG &DAG,
                                            const SDLoc &DL) const {
  // Old -> New swizzle values
  DenseMap<unsigned, unsigned> SwizzleRemap;

  BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
  for (unsigned i = 0; i < 4; i++) {
    unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
    if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
      Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
  }

  SwizzleRemap.clear();
  BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
  for (unsigned i = 0; i < 4; i++) {
    unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
    if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
      Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
  }

  return BuildVector;
}

SDValue R600TargetLowering::constBufferLoad(LoadSDNode *LoadNode, int Block,
                                            SelectionDAG &DAG) const {
  SDLoc DL(LoadNode);
  EVT VT = LoadNode->getValueType(0);
  SDValue Chain = LoadNode->getChain();
  SDValue Ptr = LoadNode->getBasePtr();
  assert (isa<ConstantSDNode>(Ptr));

  //TODO: Support smaller loads
  if (LoadNode->getMemoryVT().getScalarType() != MVT::i32 || !ISD::isNON_EXTLoad(LoadNode))
    return SDValue();

  if (LoadNode->getAlignment() < 4)
    return SDValue();

  int ConstantBlock = ConstantAddressBlock(Block);

  SDValue Slots[4];
  for (unsigned i = 0; i < 4; i++) {
    // We want Const position encoded with the following formula :
    // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
    // const_index is Ptr computed by llvm using an alignment of 16.
    // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
    // then div by 4 at the ISel step
    SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
        DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
    Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
  }
  EVT NewVT = MVT::v4i32;
  unsigned NumElements = 4;
  if (VT.isVector()) {
    NewVT = VT;
    NumElements = VT.getVectorNumElements();
  }
  SDValue Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
  if (!VT.isVector()) {
    Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
                         DAG.getConstant(0, DL, MVT::i32));
  }
  SDValue MergedValues[2] = {
    Result,
    Chain
  };
  return DAG.getMergeValues(MergedValues, DL);
}

//===----------------------------------------------------------------------===//
// Custom DAG Optimizations
//===----------------------------------------------------------------------===//

SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
                                              DAGCombinerInfo &DCI) const {
  SelectionDAG &DAG = DCI.DAG;
  SDLoc DL(N);

  switch (N->getOpcode()) {
  // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
  case ISD::FP_ROUND: {
      SDValue Arg = N->getOperand(0);
      if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
        return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
                           Arg.getOperand(0));
      }
      break;
    }

  // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
  // (i32 select_cc f32, f32, -1, 0 cc)
  //
  // Mesa's GLSL frontend generates the above pattern a lot and we can lower
  // this to one of the SET*_DX10 instructions.
  case ISD::FP_TO_SINT: {
    SDValue FNeg = N->getOperand(0);
    if (FNeg.getOpcode() != ISD::FNEG) {
      return SDValue();
    }
    SDValue SelectCC = FNeg.getOperand(0);
    if (SelectCC.getOpcode() != ISD::SELECT_CC ||
        SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
        SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
        !isHWTrueValue(SelectCC.getOperand(2)) ||
        !isHWFalseValue(SelectCC.getOperand(3))) {
      return SDValue();
    }

    return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
                           SelectCC.getOperand(0), // LHS
                           SelectCC.getOperand(1), // RHS
                           DAG.getConstant(-1, DL, MVT::i32), // True
                           DAG.getConstant(0, DL, MVT::i32),  // False
                           SelectCC.getOperand(4)); // CC
  }

  // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
  // => build_vector elt0, ... , NewEltIdx, ... , eltN
  case ISD::INSERT_VECTOR_ELT: {
    SDValue InVec = N->getOperand(0);
    SDValue InVal = N->getOperand(1);
    SDValue EltNo = N->getOperand(2);

    // If the inserted element is an UNDEF, just use the input vector.
    if (InVal.isUndef())
      return InVec;

    EVT VT = InVec.getValueType();

    // If we can't generate a legal BUILD_VECTOR, exit
    if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
      return SDValue();

    // Check that we know which element is being inserted
    if (!isa<ConstantSDNode>(EltNo))
      return SDValue();
    unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();

    // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
    // be converted to a BUILD_VECTOR).  Fill in the Ops vector with the
    // vector elements.
    SmallVector<SDValue, 8> Ops;
    if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
      Ops.append(InVec.getNode()->op_begin(),
                 InVec.getNode()->op_end());
    } else if (InVec.isUndef()) {
      unsigned NElts = VT.getVectorNumElements();
      Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
    } else {
      return SDValue();
    }

    // Insert the element
    if (Elt < Ops.size()) {
      // All the operands of BUILD_VECTOR must have the same type;
      // we enforce that here.
      EVT OpVT = Ops[0].getValueType();
      if (InVal.getValueType() != OpVT)
        InVal = OpVT.bitsGT(InVal.getValueType()) ?
          DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
          DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
      Ops[Elt] = InVal;
    }

    // Return the new vector
    return DAG.getBuildVector(VT, DL, Ops);
  }

  // Extract_vec (Build_vector) generated by custom lowering
  // also needs to be customly combined
  case ISD::EXTRACT_VECTOR_ELT: {
    SDValue Arg = N->getOperand(0);
    if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
      if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
        unsigned Element = Const->getZExtValue();
        return Arg->getOperand(Element);
      }
    }
    if (Arg.getOpcode() == ISD::BITCAST &&
        Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
        (Arg.getOperand(0).getValueType().getVectorNumElements() ==
         Arg.getValueType().getVectorNumElements())) {
      if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
        unsigned Element = Const->getZExtValue();
        return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
                           Arg->getOperand(0).getOperand(Element));
      }
    }
    break;
  }

  case ISD::SELECT_CC: {
    // Try common optimizations
    if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
      return Ret;

    // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
    //      selectcc x, y, a, b, inv(cc)
    //
    // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
    //      selectcc x, y, a, b, cc
    SDValue LHS = N->getOperand(0);
    if (LHS.getOpcode() != ISD::SELECT_CC) {
      return SDValue();
    }

    SDValue RHS = N->getOperand(1);
    SDValue True = N->getOperand(2);
    SDValue False = N->getOperand(3);
    ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();

    if (LHS.getOperand(2).getNode() != True.getNode() ||
        LHS.getOperand(3).getNode() != False.getNode() ||
        RHS.getNode() != False.getNode()) {
      return SDValue();
    }

    switch (NCC) {
    default: return SDValue();
    case ISD::SETNE: return LHS;
    case ISD::SETEQ: {
      ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
      LHSCC = ISD::getSetCCInverse(LHSCC, LHS.getOperand(0).getValueType());
      if (DCI.isBeforeLegalizeOps() ||
          isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
        return DAG.getSelectCC(DL,
                               LHS.getOperand(0),
                               LHS.getOperand(1),
                               LHS.getOperand(2),
                               LHS.getOperand(3),
                               LHSCC);
      break;
    }
    }
    return SDValue();
  }

  case AMDGPUISD::R600_EXPORT: {
    SDValue Arg = N->getOperand(1);
    if (Arg.getOpcode() != ISD::BUILD_VECTOR)
      break;

    SDValue NewArgs[8] = {
      N->getOperand(0), // Chain
      SDValue(),
      N->getOperand(2), // ArrayBase
      N->getOperand(3), // Type
      N->getOperand(4), // SWZ_X
      N->getOperand(5), // SWZ_Y
      N->getOperand(6), // SWZ_Z
      N->getOperand(7) // SWZ_W
    };
    NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
    return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
  }
  case AMDGPUISD::TEXTURE_FETCH: {
    SDValue Arg = N->getOperand(1);
    if (Arg.getOpcode() != ISD::BUILD_VECTOR)
      break;

    SDValue NewArgs[19] = {
      N->getOperand(0),
      N->getOperand(1),
      N->getOperand(2),
      N->getOperand(3),
      N->getOperand(4),
      N->getOperand(5),
      N->getOperand(6),
      N->getOperand(7),
      N->getOperand(8),
      N->getOperand(9),
      N->getOperand(10),
      N->getOperand(11),
      N->getOperand(12),
      N->getOperand(13),
      N->getOperand(14),
      N->getOperand(15),
      N->getOperand(16),
      N->getOperand(17),
      N->getOperand(18),
    };
    NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
    return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
  }

  case ISD::LOAD: {
    LoadSDNode *LoadNode = cast<LoadSDNode>(N);
    SDValue Ptr = LoadNode->getBasePtr();
    if (LoadNode->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS &&
         isa<ConstantSDNode>(Ptr))
      return constBufferLoad(LoadNode, AMDGPUAS::CONSTANT_BUFFER_0, DAG);
    break;
  }

  default: break;
  }

  return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}

bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
                                     SDValue &Src, SDValue &Neg, SDValue &Abs,
                                     SDValue &Sel, SDValue &Imm,
                                     SelectionDAG &DAG) const {
  const R600InstrInfo *TII = Subtarget->getInstrInfo();
  if (!Src.isMachineOpcode())
    return false;

  switch (Src.getMachineOpcode()) {
  case R600::FNEG_R600:
    if (!Neg.getNode())
      return false;
    Src = Src.getOperand(0);
    Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
    return true;
  case R600::FABS_R600:
    if (!Abs.getNode())
      return false;
    Src = Src.getOperand(0);
    Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
    return true;
  case R600::CONST_COPY: {
    unsigned Opcode = ParentNode->getMachineOpcode();
    bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;

    if (!Sel.getNode())
      return false;

    SDValue CstOffset = Src.getOperand(0);
    if (ParentNode->getValueType(0).isVector())
      return false;

    // Gather constants values
    int SrcIndices[] = {
      TII->getOperandIdx(Opcode, R600::OpName::src0),
      TII->getOperandIdx(Opcode, R600::OpName::src1),
      TII->getOperandIdx(Opcode, R600::OpName::src2),
      TII->getOperandIdx(Opcode, R600::OpName::src0_X),
      TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
      TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
      TII->getOperandIdx(Opcode, R600::OpName::src0_W),
      TII->getOperandIdx(Opcode, R600::OpName::src1_X),
      TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
      TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
      TII->getOperandIdx(Opcode, R600::OpName::src1_W)
    };
    std::vector<unsigned> Consts;
    for (int OtherSrcIdx : SrcIndices) {
      int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
      if (OtherSrcIdx < 0 || OtherSelIdx < 0)
        continue;
      if (HasDst) {
        OtherSrcIdx--;
        OtherSelIdx--;
      }
      if (RegisterSDNode *Reg =
          dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
        if (Reg->getReg() == R600::ALU_CONST) {
          ConstantSDNode *Cst
            = cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
          Consts.push_back(Cst->getZExtValue());
        }
      }
    }

    ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
    Consts.push_back(Cst->getZExtValue());
    if (!TII->fitsConstReadLimitations(Consts)) {
      return false;
    }

    Sel = CstOffset;
    Src = DAG.getRegister(R600::ALU_CONST, MVT::f32);
    return true;
  }
  case R600::MOV_IMM_GLOBAL_ADDR:
    // Check if the Imm slot is used. Taken from below.
    if (cast<ConstantSDNode>(Imm)->getZExtValue())
      return false;
    Imm = Src.getOperand(0);
    Src = DAG.getRegister(R600::ALU_LITERAL_X, MVT::i32);
    return true;
  case R600::MOV_IMM_I32:
  case R600::MOV_IMM_F32: {
    unsigned ImmReg = R600::ALU_LITERAL_X;
    uint64_t ImmValue = 0;

    if (Src.getMachineOpcode() == R600::MOV_IMM_F32) {
      ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
      float FloatValue = FPC->getValueAPF().convertToFloat();
      if (FloatValue == 0.0) {
        ImmReg = R600::ZERO;
      } else if (FloatValue == 0.5) {
        ImmReg = R600::HALF;
      } else if (FloatValue == 1.0) {
        ImmReg = R600::ONE;
      } else {
        ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
      }
    } else {
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
      uint64_t Value = C->getZExtValue();
      if (Value == 0) {
        ImmReg = R600::ZERO;
      } else if (Value == 1) {
        ImmReg = R600::ONE_INT;
      } else {
        ImmValue = Value;
      }
    }

    // Check that we aren't already using an immediate.
    // XXX: It's possible for an instruction to have more than one
    // immediate operand, but this is not supported yet.
    if (ImmReg == R600::ALU_LITERAL_X) {
      if (!Imm.getNode())
        return false;
      ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
      assert(C);
      if (C->getZExtValue())
        return false;
      Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
    }
    Src = DAG.getRegister(ImmReg, MVT::i32);
    return true;
  }
  default:
    return false;
  }
}

/// Fold the instructions after selecting them
SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
                                            SelectionDAG &DAG) const {
  const R600InstrInfo *TII = Subtarget->getInstrInfo();
  if (!Node->isMachineOpcode())
    return Node;

  unsigned Opcode = Node->getMachineOpcode();
  SDValue FakeOp;

  std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());

  if (Opcode == R600::DOT_4) {
    int OperandIdx[] = {
      TII->getOperandIdx(Opcode, R600::OpName::src0_X),
      TII->getOperandIdx(Opcode, R600::OpName::src0_Y),
      TII->getOperandIdx(Opcode, R600::OpName::src0_Z),
      TII->getOperandIdx(Opcode, R600::OpName::src0_W),
      TII->getOperandIdx(Opcode, R600::OpName::src1_X),
      TII->getOperandIdx(Opcode, R600::OpName::src1_Y),
      TII->getOperandIdx(Opcode, R600::OpName::src1_Z),
      TII->getOperandIdx(Opcode, R600::OpName::src1_W)
        };
    int NegIdx[] = {
      TII->getOperandIdx(Opcode, R600::OpName::src0_neg_X),
      TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Y),
      TII->getOperandIdx(Opcode, R600::OpName::src0_neg_Z),
      TII->getOperandIdx(Opcode, R600::OpName::src0_neg_W),
      TII->getOperandIdx(Opcode, R600::OpName::src1_neg_X),
      TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Y),
      TII->getOperandIdx(Opcode, R600::OpName::src1_neg_Z),
      TII->getOperandIdx(Opcode, R600::OpName::src1_neg_W)
    };
    int AbsIdx[] = {
      TII->getOperandIdx(Opcode, R600::OpName::src0_abs_X),
      TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Y),
      TII->getOperandIdx(Opcode, R600::OpName::src0_abs_Z),
      TII->getOperandIdx(Opcode, R600::OpName::src0_abs_W),
      TII->getOperandIdx(Opcode, R600::OpName::src1_abs_X),
      TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Y),
      TII->getOperandIdx(Opcode, R600::OpName::src1_abs_Z),
      TII->getOperandIdx(Opcode, R600::OpName::src1_abs_W)
    };
    for (unsigned i = 0; i < 8; i++) {
      if (OperandIdx[i] < 0)
        return Node;
      SDValue &Src = Ops[OperandIdx[i] - 1];
      SDValue &Neg = Ops[NegIdx[i] - 1];
      SDValue &Abs = Ops[AbsIdx[i] - 1];
      bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
      int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
      if (HasDst)
        SelIdx--;
      SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
      if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
        return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
    }
  } else if (Opcode == R600::REG_SEQUENCE) {
    for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
      SDValue &Src = Ops[i];
      if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
        return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
    }
  } else {
    if (!TII->hasInstrModifiers(Opcode))
      return Node;
    int OperandIdx[] = {
      TII->getOperandIdx(Opcode, R600::OpName::src0),
      TII->getOperandIdx(Opcode, R600::OpName::src1),
      TII->getOperandIdx(Opcode, R600::OpName::src2)
    };
    int NegIdx[] = {
      TII->getOperandIdx(Opcode, R600::OpName::src0_neg),
      TII->getOperandIdx(Opcode, R600::OpName::src1_neg),
      TII->getOperandIdx(Opcode, R600::OpName::src2_neg)
    };
    int AbsIdx[] = {
      TII->getOperandIdx(Opcode, R600::OpName::src0_abs),
      TII->getOperandIdx(Opcode, R600::OpName::src1_abs),
      -1
    };
    for (unsigned i = 0; i < 3; i++) {
      if (OperandIdx[i] < 0)
        return Node;
      SDValue &Src = Ops[OperandIdx[i] - 1];
      SDValue &Neg = Ops[NegIdx[i] - 1];
      SDValue FakeAbs;
      SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
      bool HasDst = TII->getOperandIdx(Opcode, R600::OpName::dst) > -1;
      int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
      int ImmIdx = TII->getOperandIdx(Opcode, R600::OpName::literal);
      if (HasDst) {
        SelIdx--;
        ImmIdx--;
      }
      SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
      SDValue &Imm = Ops[ImmIdx];
      if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
        return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
    }
  }

  return Node;
}