AMDKernelCodeT.h 32.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
//===-- AMDGPUKernelCodeT.h - Print AMDGPU assembly code ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file AMDKernelCodeT.h
//===----------------------------------------------------------------------===//

#ifndef AMDKERNELCODET_H
#define AMDKERNELCODET_H

#include "llvm/MC/SubtargetFeature.h"

#include <cstddef>
#include <cstdint>

#include "llvm/Support/Debug.h"
//---------------------------------------------------------------------------//
// AMD Kernel Code, and its dependencies                                     //
//---------------------------------------------------------------------------//

typedef uint8_t hsa_powertwo8_t;
typedef uint32_t hsa_ext_code_kind_t;
typedef uint8_t hsa_ext_brig_profile8_t;
typedef uint8_t hsa_ext_brig_machine_model8_t;
typedef uint64_t hsa_ext_control_directive_present64_t;
typedef uint16_t hsa_ext_exception_kind16_t;
typedef uint32_t hsa_ext_code_kind32_t;

typedef struct hsa_dim3_s {
  uint32_t x;
  uint32_t y;
  uint32_t z;
} hsa_dim3_t;

/// The version of the amd_*_code_t struct. Minor versions must be
/// backward compatible.
typedef uint32_t amd_code_version32_t;
enum amd_code_version_t {
  AMD_CODE_VERSION_MAJOR = 0,
  AMD_CODE_VERSION_MINOR = 1
};

// Sets val bits for specified mask in specified dst packed instance.
#define AMD_HSA_BITS_SET(dst, mask, val)                                       \
  dst &= (~(1 << mask ## _SHIFT) & ~mask);                                     \
  dst |= (((val) << mask ## _SHIFT) & mask)

// Gets bits for specified mask from specified src packed instance.
#define AMD_HSA_BITS_GET(src, mask)                                            \
  ((src & mask) >> mask ## _SHIFT)                                             \

/// The values used to define the number of bytes to use for the
/// swizzle element size.
enum amd_element_byte_size_t {
  AMD_ELEMENT_2_BYTES = 0,
  AMD_ELEMENT_4_BYTES = 1,
  AMD_ELEMENT_8_BYTES = 2,
  AMD_ELEMENT_16_BYTES = 3
};

/// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
/// COMPUTE_PGM_RSRC2 registers.
typedef uint64_t amd_compute_pgm_resource_register64_t;

/// Every amd_*_code_t has the following properties, which are composed of
/// a number of bit fields. Every bit field has a mask (AMD_CODE_PROPERTY_*),
/// bit width (AMD_CODE_PROPERTY_*_WIDTH, and bit shift amount
/// (AMD_CODE_PROPERTY_*_SHIFT) for convenient access. Unused bits must be 0.
///
/// (Note that bit fields cannot be used as their layout is
/// implementation defined in the C standard and so cannot be used to
/// specify an ABI)
typedef uint32_t amd_code_property32_t;
enum amd_code_property_mask_t {

  /// Enable the setup of the SGPR user data registers
  /// (AMD_CODE_PROPERTY_ENABLE_SGPR_*), see documentation of amd_kernel_code_t
  /// for initial register state.
  ///
  /// The total number of SGPRuser data registers requested must not
  /// exceed 16. Any requests beyond 16 will be ignored.
  ///
  /// Used to set COMPUTE_PGM_RSRC2.USER_SGPR (set to total count of
  /// SGPR user data registers enabled up to 16).

  AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT = 0,
  AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT = 2,
  AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT = 3,
  AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT = 4,
  AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT = 5,
  AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT = 6,
  AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_SIZE_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT = 7,
  AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT = 8,
  AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT = 9,
  AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z = ((1 << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z_SHIFT,

  AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32_SHIFT = 10,
  AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32 = ((1 << AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_WAVEFRONT_SIZE32_SHIFT,

  AMD_CODE_PROPERTY_RESERVED1_SHIFT = 11,
  AMD_CODE_PROPERTY_RESERVED1_WIDTH = 5,
  AMD_CODE_PROPERTY_RESERVED1 = ((1 << AMD_CODE_PROPERTY_RESERVED1_WIDTH) - 1) << AMD_CODE_PROPERTY_RESERVED1_SHIFT,

  /// Control wave ID base counter for GDS ordered-append. Used to set
  /// COMPUTE_DISPATCH_INITIATOR.ORDERED_APPEND_ENBL. (Not sure if
  /// ORDERED_APPEND_MODE also needs to be settable)
  AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT = 16,
  AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH = 1,
  AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS = ((1 << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_WIDTH) - 1) << AMD_CODE_PROPERTY_ENABLE_ORDERED_APPEND_GDS_SHIFT,

  /// The interleave (swizzle) element size in bytes required by the
  /// code for private memory. This must be 2, 4, 8 or 16. This value
  /// is provided to the finalizer when it is invoked and is recorded
  /// here. The hardware will interleave the memory requests of each
  /// lane of a wavefront by this element size to ensure each
  /// work-item gets a distinct memory memory location. Therefore, the
  /// finalizer ensures that all load and store operations done to
  /// private memory do not exceed this size. For example, if the
  /// element size is 4 (32-bits or dword) and a 64-bit value must be
  /// loaded, the finalizer will generate two 32-bit loads. This
  /// ensures that the interleaving will get the work-item
  /// specific dword for both halves of the 64-bit value. If it just
  /// did a 64-bit load then it would get one dword which belonged to
  /// its own work-item, but the second dword would belong to the
  /// adjacent lane work-item since the interleaving is in dwords.
  ///
  /// The value used must match the value that the runtime configures
  /// the GPU flat scratch (SH_STATIC_MEM_CONFIG.ELEMENT_SIZE). This
  /// is generally DWORD.
  ///
  /// uSE VALUES FROM THE AMD_ELEMENT_BYTE_SIZE_T ENUM.
  AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT = 17,
  AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH = 2,
  AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE = ((1 << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_WIDTH) - 1) << AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE_SHIFT,

  /// Are global memory addresses 64 bits. Must match
  /// amd_kernel_code_t.hsail_machine_model ==
  /// HSA_MACHINE_LARGE. Must also match
  /// SH_MEM_CONFIG.PTR32 (GFX6 (SI)/GFX7 (CI)),
  /// SH_MEM_CONFIG.ADDRESS_MODE (GFX8 (VI)+).
  AMD_CODE_PROPERTY_IS_PTR64_SHIFT = 19,
  AMD_CODE_PROPERTY_IS_PTR64_WIDTH = 1,
  AMD_CODE_PROPERTY_IS_PTR64 = ((1 << AMD_CODE_PROPERTY_IS_PTR64_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_PTR64_SHIFT,

  /// Indicate if the generated ISA is using a dynamically sized call
  /// stack. This can happen if calls are implemented using a call
  /// stack and recursion, alloca or calls to indirect functions are
  /// present. In these cases the Finalizer cannot compute the total
  /// private segment size at compile time. In this case the
  /// workitem_private_segment_byte_size only specifies the statically
  /// know private segment size, and additional space must be added
  /// for the call stack.
  AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT = 20,
  AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH = 1,
  AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK = ((1 << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK_SHIFT,

  /// Indicate if code generated has support for debugging.
  AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT = 21,
  AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH = 1,
  AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED = ((1 << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED_SHIFT,

  AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_SHIFT = 22,
  AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_WIDTH = 1,
  AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED = ((1 << AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_WIDTH) - 1) << AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED_SHIFT,

  AMD_CODE_PROPERTY_RESERVED2_SHIFT = 23,
  AMD_CODE_PROPERTY_RESERVED2_WIDTH = 9,
  AMD_CODE_PROPERTY_RESERVED2 = ((1 << AMD_CODE_PROPERTY_RESERVED2_WIDTH) - 1) << AMD_CODE_PROPERTY_RESERVED2_SHIFT
};

/// The hsa_ext_control_directives_t specifies the values for the HSAIL
/// control directives. These control how the finalizer generates code. This
/// struct is used both as an argument to hsaFinalizeKernel to specify values for
/// the control directives, and is used in HsaKernelCode to record the values of
/// the control directives that the finalize used when generating the code which
/// either came from the finalizer argument or explicit HSAIL control
/// directives. See the definition of the control directives in HSA Programmer's
/// Reference Manual which also defines how the values specified as finalizer
/// arguments have to agree with the control directives in the HSAIL code.
typedef struct hsa_ext_control_directives_s {
  /// This is a bit set indicating which control directives have been
  /// specified. If the value is 0 then there are no control directives specified
  /// and the rest of the fields can be ignored. The bits are accessed using the
  /// hsa_ext_control_directives_present_mask_t. Any control directive that is not
  /// enabled in this bit set must have the value of all 0s.
  hsa_ext_control_directive_present64_t enabled_control_directives;

  /// If enableBreakExceptions is not enabled then must be 0, otherwise must be
  /// non-0 and specifies the set of HSAIL exceptions that must have the BREAK
  /// policy enabled. If this set is not empty then the generated code may have
  /// lower performance than if the set is empty. If the kernel being finalized
  /// has any enablebreakexceptions control directives, then the values specified
  /// by this argument are unioned with the values in these control
  /// directives. If any of the functions the kernel calls have an
  /// enablebreakexceptions control directive, then they must be equal or a
  /// subset of, this union.
  hsa_ext_exception_kind16_t enable_break_exceptions;

  /// If enableDetectExceptions is not enabled then must be 0, otherwise must be
  /// non-0 and specifies the set of HSAIL exceptions that must have the DETECT
  /// policy enabled. If this set is not empty then the generated code may have
  /// lower performance than if the set is empty. However, an implementation
  /// should endeavour to make the performance impact small. If the kernel being
  /// finalized has any enabledetectexceptions control directives, then the
  /// values specified by this argument are unioned with the values in these
  /// control directives. If any of the functions the kernel calls have an
  /// enabledetectexceptions control directive, then they must be equal or a
  /// subset of, this union.
  hsa_ext_exception_kind16_t enable_detect_exceptions;

  /// If maxDynamicGroupSize is not enabled then must be 0, and any amount of
  /// dynamic group segment can be allocated for a dispatch, otherwise the value
  /// specifies the maximum number of bytes of dynamic group segment that can be
  /// allocated for a dispatch. If the kernel being finalized has any
  /// maxdynamicsize control directives, then the values must be the same, and
  /// must be the same as this argument if it is enabled. This value can be used
  /// by the finalizer to determine the maximum number of bytes of group memory
  /// used by each work-group by adding this value to the group memory required
  /// for all group segment variables used by the kernel and all functions it
  /// calls, and group memory used to implement other HSAIL features such as
  /// fbarriers and the detect exception operations. This can allow the finalizer
  /// to determine the expected number of work-groups that can be executed by a
  /// compute unit and allow more resources to be allocated to the work-items if
  /// it is known that fewer work-groups can be executed due to group memory
  /// limitations.
  uint32_t max_dynamic_group_size;

  /// If maxFlatGridSize is not enabled then must be 0, otherwise must be greater
  /// than 0. See HSA Programmer's Reference Manual description of
  /// maxflatgridsize control directive.
  uint32_t max_flat_grid_size;

  /// If maxFlatWorkgroupSize is not enabled then must be 0, otherwise must be
  /// greater than 0. See HSA Programmer's Reference Manual description of
  /// maxflatworkgroupsize control directive.
  uint32_t max_flat_workgroup_size;

  /// If requestedWorkgroupsPerCu is not enabled then must be 0, and the
  /// finalizer is free to generate ISA that may result in any number of
  /// work-groups executing on a single compute unit. Otherwise, the finalizer
  /// should attempt to generate ISA that will allow the specified number of
  /// work-groups to execute on a single compute unit. This is only a hint and
  /// can be ignored by the finalizer. If the kernel being finalized, or any of
  /// the functions it calls, has a requested control directive, then the values
  /// must be the same. This can be used to determine the number of resources
  /// that should be allocated to a single work-group and work-item. For example,
  /// a low value may allow more resources to be allocated, resulting in higher
  /// per work-item performance, as it is known there will never be more than the
  /// specified number of work-groups actually executing on the compute
  /// unit. Conversely, a high value may allocate fewer resources, resulting in
  /// lower per work-item performance, which is offset by the fact it allows more
  /// work-groups to actually execute on the compute unit.
  uint32_t requested_workgroups_per_cu;

  /// If not enabled then all elements for Dim3 must be 0, otherwise every
  /// element must be greater than 0. See HSA Programmer's Reference Manual
  /// description of requiredgridsize control directive.
  hsa_dim3_t required_grid_size;

  /// If requiredWorkgroupSize is not enabled then all elements for Dim3 must be
  /// 0, and the produced code can be dispatched with any legal work-group range
  /// consistent with the dispatch dimensions. Otherwise, the code produced must
  /// always be dispatched with the specified work-group range. No element of the
  /// specified range must be 0. It must be consistent with required_dimensions
  /// and max_flat_workgroup_size. If the kernel being finalized, or any of the
  /// functions it calls, has a requiredworkgroupsize control directive, then the
  /// values must be the same. Specifying a value can allow the finalizer to
  /// optimize work-group id operations, and if the number of work-items in the
  /// work-group is less than the WAVESIZE then barrier operations can be
  /// optimized to just a memory fence.
  hsa_dim3_t required_workgroup_size;

  /// If requiredDim is not enabled then must be 0 and the produced kernel code
  /// can be dispatched with 1, 2 or 3 dimensions. If enabled then the value is
  /// 1..3 and the code produced must only be dispatched with a dimension that
  /// matches. Other values are illegal. If the kernel being finalized, or any of
  /// the functions it calls, has a requireddimsize control directive, then the
  /// values must be the same. This can be used to optimize the code generated to
  /// compute the absolute and flat work-group and work-item id, and the dim
  /// HSAIL operations.
  uint8_t required_dim;

  /// Reserved. Must be 0.
  uint8_t reserved[75];
} hsa_ext_control_directives_t;

/// AMD Kernel Code Object (amd_kernel_code_t). GPU CP uses the AMD Kernel
/// Code Object to set up the hardware to execute the kernel dispatch.
///
/// Initial Kernel Register State.
///
/// Initial kernel register state will be set up by CP/SPI prior to the start
/// of execution of every wavefront. This is limited by the constraints of the
/// current hardware.
///
/// The order of the SGPR registers is defined, but the Finalizer can specify
/// which ones are actually setup in the amd_kernel_code_t object using the
/// enable_sgpr_* bit fields. The register numbers used for enabled registers
/// are dense starting at SGPR0: the first enabled register is SGPR0, the next
/// enabled register is SGPR1 etc.; disabled registers do not have an SGPR
/// number.
///
/// The initial SGPRs comprise up to 16 User SRGPs that are set up by CP and
/// apply to all waves of the grid. It is possible to specify more than 16 User
/// SGPRs using the enable_sgpr_* bit fields, in which case only the first 16
/// are actually initialized. These are then immediately followed by the System
/// SGPRs that are set up by ADC/SPI and can have different values for each wave
/// of the grid dispatch.
///
/// SGPR register initial state is defined as follows:
///
/// Private Segment Buffer (enable_sgpr_private_segment_buffer):
///   Number of User SGPR registers: 4. V# that can be used, together with
///   Scratch Wave Offset as an offset, to access the Private/Spill/Arg
///   segments using a segment address. It must be set as follows:
///     - Base address: of the scratch memory area used by the dispatch. It
///       does not include the scratch wave offset. It will be the per process
///       SH_HIDDEN_PRIVATE_BASE_VMID plus any offset from this dispatch (for
///       example there may be a per pipe offset, or per AQL Queue offset).
///     - Stride + data_format: Element Size * Index Stride (???)
///     - Cache swizzle: ???
///     - Swizzle enable: SH_STATIC_MEM_CONFIG.SWIZZLE_ENABLE (must be 1 for
///       scratch)
///     - Num records: Flat Scratch Work Item Size / Element Size (???)
///     - Dst_sel_*: ???
///     - Num_format: ???
///     - Element_size: SH_STATIC_MEM_CONFIG.ELEMENT_SIZE (will be DWORD, must
///       agree with amd_kernel_code_t.privateElementSize)
///     - Index_stride: SH_STATIC_MEM_CONFIG.INDEX_STRIDE (will be 64 as must
///       be number of wavefront lanes for scratch, must agree with
///       amd_kernel_code_t.wavefrontSize)
///     - Add tid enable: 1
///     - ATC: from SH_MEM_CONFIG.PRIVATE_ATC,
///     - Hash_enable: ???
///     - Heap: ???
///     - Mtype: from SH_STATIC_MEM_CONFIG.PRIVATE_MTYPE
///     - Type: 0 (a buffer) (???)
///
/// Dispatch Ptr (enable_sgpr_dispatch_ptr):
///   Number of User SGPR registers: 2. 64 bit address of AQL dispatch packet
///   for kernel actually executing.
///
/// Queue Ptr (enable_sgpr_queue_ptr):
///   Number of User SGPR registers: 2. 64 bit address of AmdQueue object for
///   AQL queue on which the dispatch packet was queued.
///
/// Kernarg Segment Ptr (enable_sgpr_kernarg_segment_ptr):
///   Number of User SGPR registers: 2. 64 bit address of Kernarg segment. This
///   is directly copied from the kernargPtr in the dispatch packet. Having CP
///   load it once avoids loading it at the beginning of every wavefront.
///
/// Dispatch Id (enable_sgpr_dispatch_id):
///   Number of User SGPR registers: 2. 64 bit Dispatch ID of the dispatch
///   packet being executed.
///
/// Flat Scratch Init (enable_sgpr_flat_scratch_init):
///   Number of User SGPR registers: 2. This is 2 SGPRs.
///
///   For CI/VI:
///     The first SGPR is a 32 bit byte offset from SH_MEM_HIDDEN_PRIVATE_BASE
///     to base of memory for scratch for this dispatch. This is the same offset
///     used in computing the Scratch Segment Buffer base address. The value of
///     Scratch Wave Offset must be added by the kernel code and moved to
///     SGPRn-4 for use as the FLAT SCRATCH BASE in flat memory instructions.
///
///     The second SGPR is 32 bit byte size of a single work-item's scratch
///     memory usage. This is directly loaded from the dispatch packet Private
///     Segment Byte Size and rounded up to a multiple of DWORD.
///
///     \todo [Does CP need to round this to >4 byte alignment?]
///
///     The kernel code must move to SGPRn-3 for use as the FLAT SCRATCH SIZE in
///     flat memory instructions. Having CP load it once avoids loading it at
///     the beginning of every wavefront.
///
///   For PI:
///     This is the 64 bit base address of the scratch backing memory for
///     allocated by CP for this dispatch.
///
/// Private Segment Size (enable_sgpr_private_segment_size):
///   Number of User SGPR registers: 1. The 32 bit byte size of a single
///   work-item's scratch memory allocation. This is the value from the dispatch
///   packet. Private Segment Byte Size rounded up by CP to a multiple of DWORD.
///
///   \todo [Does CP need to round this to >4 byte alignment?]
///
///   Having CP load it once avoids loading it at the beginning of every
///   wavefront.
///
///   \todo [This will not be used for CI/VI since it is the same value as
///   the second SGPR of Flat Scratch Init. However, it is need for PI which
///   changes meaning of Flat Scratchg Init..]
///
/// Grid Work-Group Count X (enable_sgpr_grid_workgroup_count_x):
///   Number of User SGPR registers: 1. 32 bit count of the number of
///   work-groups in the X dimension for the grid being executed. Computed from
///   the fields in the HsaDispatchPacket as
///   ((gridSize.x+workgroupSize.x-1)/workgroupSize.x).
///
/// Grid Work-Group Count Y (enable_sgpr_grid_workgroup_count_y):
///   Number of User SGPR registers: 1. 32 bit count of the number of
///   work-groups in the Y dimension for the grid being executed. Computed from
///   the fields in the HsaDispatchPacket as
///   ((gridSize.y+workgroupSize.y-1)/workgroupSize.y).
///
///   Only initialized if <16 previous SGPRs initialized.
///
/// Grid Work-Group Count Z (enable_sgpr_grid_workgroup_count_z):
///   Number of User SGPR registers: 1. 32 bit count of the number of
///   work-groups in the Z dimension for the grid being executed. Computed
///   from the fields in the HsaDispatchPacket as
///   ((gridSize.z+workgroupSize.z-1)/workgroupSize.z).
///
///   Only initialized if <16 previous SGPRs initialized.
///
/// Work-Group Id X (enable_sgpr_workgroup_id_x):
///   Number of System SGPR registers: 1. 32 bit work group id in X dimension
///   of grid for wavefront. Always present.
///
/// Work-Group Id Y (enable_sgpr_workgroup_id_y):
///   Number of System SGPR registers: 1. 32 bit work group id in Y dimension
///   of grid for wavefront.
///
/// Work-Group Id Z (enable_sgpr_workgroup_id_z):
///   Number of System SGPR registers: 1. 32 bit work group id in Z dimension
///   of grid for wavefront. If present then Work-group Id Y will also be
///   present
///
/// Work-Group Info (enable_sgpr_workgroup_info):
///   Number of System SGPR registers: 1. {first_wave, 14'b0000,
///   ordered_append_term[10:0], threadgroup_size_in_waves[5:0]}
///
/// Private Segment Wave Byte Offset
/// (enable_sgpr_private_segment_wave_byte_offset):
///   Number of System SGPR registers: 1. 32 bit byte offset from base of
///   dispatch scratch base. Must be used as an offset with Private/Spill/Arg
///   segment address when using Scratch Segment Buffer. It must be added to
///   Flat Scratch Offset if setting up FLAT SCRATCH for flat addressing.
///
///
/// The order of the VGPR registers is defined, but the Finalizer can specify
/// which ones are actually setup in the amd_kernel_code_t object using the
/// enableVgpr*  bit fields. The register numbers used for enabled registers
/// are dense starting at VGPR0: the first enabled register is VGPR0, the next
/// enabled register is VGPR1 etc.; disabled registers do not have an VGPR
/// number.
///
/// VGPR register initial state is defined as follows:
///
/// Work-Item Id X (always initialized):
///   Number of registers: 1. 32 bit work item id in X dimension of work-group
///   for wavefront lane.
///
/// Work-Item Id X (enable_vgpr_workitem_id > 0):
///   Number of registers: 1. 32 bit work item id in Y dimension of work-group
///   for wavefront lane.
///
/// Work-Item Id X (enable_vgpr_workitem_id > 0):
///   Number of registers: 1. 32 bit work item id in Z dimension of work-group
///   for wavefront lane.
///
///
/// The setting of registers is being done by existing GPU hardware as follows:
///   1) SGPRs before the Work-Group Ids are set by CP using the 16 User Data
///      registers.
///   2) Work-group Id registers X, Y, Z are set by SPI which supports any
///      combination including none.
///   3) Scratch Wave Offset is also set by SPI which is why its value cannot
///      be added into the value Flat Scratch Offset which would avoid the
///      Finalizer generated prolog having to do the add.
///   4) The VGPRs are set by SPI which only supports specifying either (X),
///      (X, Y) or (X, Y, Z).
///
/// Flat Scratch Dispatch Offset and Flat Scratch Size are adjacent SGRRs so
/// they can be moved as a 64 bit value to the hardware required SGPRn-3 and
/// SGPRn-4 respectively using the Finalizer ?FLAT_SCRATCH? Register.
///
/// The global segment can be accessed either using flat operations or buffer
/// operations. If buffer operations are used then the Global Buffer used to
/// access HSAIL Global/Readonly/Kernarg (which are combine) segments using a
/// segment address is not passed into the kernel code by CP since its base
/// address is always 0. Instead the Finalizer generates prolog code to
/// initialize 4 SGPRs with a V# that has the following properties, and then
/// uses that in the buffer instructions:
///   - base address of 0
///   - no swizzle
///   - ATC=1
///   - MTYPE set to support memory coherence specified in
///     amd_kernel_code_t.globalMemoryCoherence
///
/// When the Global Buffer is used to access the Kernarg segment, must add the
/// dispatch packet kernArgPtr to a kernarg segment address before using this V#.
/// Alternatively scalar loads can be used if the kernarg offset is uniform, as
/// the kernarg segment is constant for the duration of the kernel execution.
///

typedef struct amd_kernel_code_s {
  uint32_t amd_kernel_code_version_major;
  uint32_t amd_kernel_code_version_minor;
  uint16_t amd_machine_kind;
  uint16_t amd_machine_version_major;
  uint16_t amd_machine_version_minor;
  uint16_t amd_machine_version_stepping;

  /// Byte offset (possibly negative) from start of amd_kernel_code_t
  /// object to kernel's entry point instruction. The actual code for
  /// the kernel is required to be 256 byte aligned to match hardware
  /// requirements (SQ cache line is 16). The code must be position
  /// independent code (PIC) for AMD devices to give runtime the
  /// option of copying code to discrete GPU memory or APU L2
  /// cache. The Finalizer should endeavour to allocate all kernel
  /// machine code in contiguous memory pages so that a device
  /// pre-fetcher will tend to only pre-fetch Kernel Code objects,
  /// improving cache performance.
  int64_t kernel_code_entry_byte_offset;

  /// Range of bytes to consider prefetching expressed as an offset
  /// and size. The offset is from the start (possibly negative) of
  /// amd_kernel_code_t object. Set both to 0 if no prefetch
  /// information is available.
  int64_t kernel_code_prefetch_byte_offset;
  uint64_t kernel_code_prefetch_byte_size;

  /// Reserved. Must be 0.
  uint64_t reserved0;

  /// Shader program settings for CS. Contains COMPUTE_PGM_RSRC1 and
  /// COMPUTE_PGM_RSRC2 registers.
  uint64_t compute_pgm_resource_registers;

  /// Code properties. See amd_code_property_mask_t for a full list of
  /// properties.
  uint32_t code_properties;

  /// The amount of memory required for the combined private, spill
  /// and arg segments for a work-item in bytes. If
  /// is_dynamic_callstack is 1 then additional space must be added to
  /// this value for the call stack.
  uint32_t workitem_private_segment_byte_size;

  /// The amount of group segment memory required by a work-group in
  /// bytes. This does not include any dynamically allocated group
  /// segment memory that may be added when the kernel is
  /// dispatched.
  uint32_t workgroup_group_segment_byte_size;

  /// Number of byte of GDS required by kernel dispatch. Must be 0 if
  /// not using GDS.
  uint32_t gds_segment_byte_size;

  /// The size in bytes of the kernarg segment that holds the values
  /// of the arguments to the kernel. This could be used by CP to
  /// prefetch the kernarg segment pointed to by the dispatch packet.
  uint64_t kernarg_segment_byte_size;

  /// Number of fbarrier's used in the kernel and all functions it
  /// calls. If the implementation uses group memory to allocate the
  /// fbarriers then that amount must already be included in the
  /// workgroup_group_segment_byte_size total.
  uint32_t workgroup_fbarrier_count;

  /// Number of scalar registers used by a wavefront. This includes
  /// the special SGPRs for VCC, Flat Scratch Base, Flat Scratch Size
  /// and XNACK (for GFX8 (VI)). It does not include the 16 SGPR added if a
  /// trap handler is enabled. Used to set COMPUTE_PGM_RSRC1.SGPRS.
  uint16_t wavefront_sgpr_count;

  /// Number of vector registers used by each work-item. Used to set
  /// COMPUTE_PGM_RSRC1.VGPRS.
  uint16_t workitem_vgpr_count;

  /// If reserved_vgpr_count is 0 then must be 0. Otherwise, this is the
  /// first fixed VGPR number reserved.
  uint16_t reserved_vgpr_first;

  /// The number of consecutive VGPRs reserved by the client. If
  /// is_debug_supported then this count includes VGPRs reserved
  /// for debugger use.
  uint16_t reserved_vgpr_count;

  /// If reserved_sgpr_count is 0 then must be 0. Otherwise, this is the
  /// first fixed SGPR number reserved.
  uint16_t reserved_sgpr_first;

  /// The number of consecutive SGPRs reserved by the client. If
  /// is_debug_supported then this count includes SGPRs reserved
  /// for debugger use.
  uint16_t reserved_sgpr_count;

  /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
  /// fixed SGPR number used to hold the wave scratch offset for the
  /// entire kernel execution, or uint16_t(-1) if the register is not
  /// used or not known.
  uint16_t debug_wavefront_private_segment_offset_sgpr;

  /// If is_debug_supported is 0 then must be 0. Otherwise, this is the
  /// fixed SGPR number of the first of 4 SGPRs used to hold the
  /// scratch V# used for the entire kernel execution, or uint16_t(-1)
  /// if the registers are not used or not known.
  uint16_t debug_private_segment_buffer_sgpr;

  /// The maximum byte alignment of variables used by the kernel in
  /// the specified memory segment. Expressed as a power of two. Must
  /// be at least HSA_POWERTWO_16.
  uint8_t kernarg_segment_alignment;
  uint8_t group_segment_alignment;
  uint8_t private_segment_alignment;

  /// Wavefront size expressed as a power of two. Must be a power of 2
  /// in range 1..64 inclusive. Used to support runtime query that
  /// obtains wavefront size, which may be used by application to
  /// allocated dynamic group memory and set the dispatch work-group
  /// size.
  uint8_t wavefront_size;

  int32_t call_convention;
  uint8_t reserved3[12];
  uint64_t runtime_loader_kernel_symbol;
  uint64_t control_directives[16];
} amd_kernel_code_t;

#endif // AMDKERNELCODET_H