AMDGPUTargetMachine.cpp 42.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// The AMDGPU target machine contains all of the hardware specific
/// information  needed to emit code for R600 and SI GPUs.
//
//===----------------------------------------------------------------------===//

#include "AMDGPUTargetMachine.h"
#include "AMDGPU.h"
#include "AMDGPUAliasAnalysis.h"
#include "AMDGPUCallLowering.h"
#include "AMDGPUExportClustering.h"
#include "AMDGPUInstructionSelector.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUMacroFusion.h"
#include "AMDGPUTargetObjectFile.h"
#include "AMDGPUTargetTransformInfo.h"
#include "GCNIterativeScheduler.h"
#include "GCNSchedStrategy.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "R600MachineScheduler.h"
#include "SIMachineFunctionInfo.h"
#include "SIMachineScheduler.h"
#include "TargetInfo/AMDGPUTargetInfo.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/Localizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Vectorize.h"
#include <memory>

using namespace llvm;

static cl::opt<bool> EnableR600StructurizeCFG(
  "r600-ir-structurize",
  cl::desc("Use StructurizeCFG IR pass"),
  cl::init(true));

static cl::opt<bool> EnableSROA(
  "amdgpu-sroa",
  cl::desc("Run SROA after promote alloca pass"),
  cl::ReallyHidden,
  cl::init(true));

static cl::opt<bool>
EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
                        cl::desc("Run early if-conversion"),
                        cl::init(false));

static cl::opt<bool>
OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
            cl::desc("Run pre-RA exec mask optimizations"),
            cl::init(true));

static cl::opt<bool> EnableR600IfConvert(
  "r600-if-convert",
  cl::desc("Use if conversion pass"),
  cl::ReallyHidden,
  cl::init(true));

// Option to disable vectorizer for tests.
static cl::opt<bool> EnableLoadStoreVectorizer(
  "amdgpu-load-store-vectorizer",
  cl::desc("Enable load store vectorizer"),
  cl::init(true),
  cl::Hidden);

// Option to control global loads scalarization
static cl::opt<bool> ScalarizeGlobal(
  "amdgpu-scalarize-global-loads",
  cl::desc("Enable global load scalarization"),
  cl::init(true),
  cl::Hidden);

// Option to run internalize pass.
static cl::opt<bool> InternalizeSymbols(
  "amdgpu-internalize-symbols",
  cl::desc("Enable elimination of non-kernel functions and unused globals"),
  cl::init(false),
  cl::Hidden);

// Option to inline all early.
static cl::opt<bool> EarlyInlineAll(
  "amdgpu-early-inline-all",
  cl::desc("Inline all functions early"),
  cl::init(false),
  cl::Hidden);

static cl::opt<bool> EnableSDWAPeephole(
  "amdgpu-sdwa-peephole",
  cl::desc("Enable SDWA peepholer"),
  cl::init(true));

static cl::opt<bool> EnableDPPCombine(
  "amdgpu-dpp-combine",
  cl::desc("Enable DPP combiner"),
  cl::init(true));

// Enable address space based alias analysis
static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
  cl::desc("Enable AMDGPU Alias Analysis"),
  cl::init(true));

// Option to run late CFG structurizer
static cl::opt<bool, true> LateCFGStructurize(
  "amdgpu-late-structurize",
  cl::desc("Enable late CFG structurization"),
  cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
  cl::Hidden);

static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
  "amdgpu-function-calls",
  cl::desc("Enable AMDGPU function call support"),
  cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
  cl::init(true),
  cl::Hidden);

static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt(
  "amdgpu-fixed-function-abi",
  cl::desc("Enable all implicit function arguments"),
  cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI),
  cl::init(false),
  cl::Hidden);

// Enable lib calls simplifications
static cl::opt<bool> EnableLibCallSimplify(
  "amdgpu-simplify-libcall",
  cl::desc("Enable amdgpu library simplifications"),
  cl::init(true),
  cl::Hidden);

static cl::opt<bool> EnableLowerKernelArguments(
  "amdgpu-ir-lower-kernel-arguments",
  cl::desc("Lower kernel argument loads in IR pass"),
  cl::init(true),
  cl::Hidden);

static cl::opt<bool> EnableRegReassign(
  "amdgpu-reassign-regs",
  cl::desc("Enable register reassign optimizations on gfx10+"),
  cl::init(true),
  cl::Hidden);

// Enable atomic optimization
static cl::opt<bool> EnableAtomicOptimizations(
  "amdgpu-atomic-optimizations",
  cl::desc("Enable atomic optimizations"),
  cl::init(false),
  cl::Hidden);

// Enable Mode register optimization
static cl::opt<bool> EnableSIModeRegisterPass(
  "amdgpu-mode-register",
  cl::desc("Enable mode register pass"),
  cl::init(true),
  cl::Hidden);

// Option is used in lit tests to prevent deadcoding of patterns inspected.
static cl::opt<bool>
EnableDCEInRA("amdgpu-dce-in-ra",
    cl::init(true), cl::Hidden,
    cl::desc("Enable machine DCE inside regalloc"));

static cl::opt<bool> EnableScalarIRPasses(
  "amdgpu-scalar-ir-passes",
  cl::desc("Enable scalar IR passes"),
  cl::init(true),
  cl::Hidden);

static cl::opt<bool> EnableStructurizerWorkarounds(
    "amdgpu-enable-structurizer-workarounds",
    cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
    cl::Hidden);

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
  // Register the target
  RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
  RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());

  PassRegistry *PR = PassRegistry::getPassRegistry();
  initializeR600ClauseMergePassPass(*PR);
  initializeR600ControlFlowFinalizerPass(*PR);
  initializeR600PacketizerPass(*PR);
  initializeR600ExpandSpecialInstrsPassPass(*PR);
  initializeR600VectorRegMergerPass(*PR);
  initializeGlobalISel(*PR);
  initializeAMDGPUDAGToDAGISelPass(*PR);
  initializeGCNDPPCombinePass(*PR);
  initializeSILowerI1CopiesPass(*PR);
  initializeSILowerSGPRSpillsPass(*PR);
  initializeSIFixSGPRCopiesPass(*PR);
  initializeSIFixVGPRCopiesPass(*PR);
  initializeSIFixupVectorISelPass(*PR);
  initializeSIFoldOperandsPass(*PR);
  initializeSIPeepholeSDWAPass(*PR);
  initializeSIShrinkInstructionsPass(*PR);
  initializeSIOptimizeExecMaskingPreRAPass(*PR);
  initializeSILoadStoreOptimizerPass(*PR);
  initializeAMDGPUFixFunctionBitcastsPass(*PR);
  initializeAMDGPUAlwaysInlinePass(*PR);
  initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
  initializeAMDGPUAnnotateUniformValuesPass(*PR);
  initializeAMDGPUArgumentUsageInfoPass(*PR);
  initializeAMDGPUAtomicOptimizerPass(*PR);
  initializeAMDGPULowerKernelArgumentsPass(*PR);
  initializeAMDGPULowerKernelAttributesPass(*PR);
  initializeAMDGPULowerIntrinsicsPass(*PR);
  initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
  initializeAMDGPUPostLegalizerCombinerPass(*PR);
  initializeAMDGPUPreLegalizerCombinerPass(*PR);
  initializeAMDGPUPromoteAllocaPass(*PR);
  initializeAMDGPUPromoteAllocaToVectorPass(*PR);
  initializeAMDGPUCodeGenPreparePass(*PR);
  initializeAMDGPUPropagateAttributesEarlyPass(*PR);
  initializeAMDGPUPropagateAttributesLatePass(*PR);
  initializeAMDGPURewriteOutArgumentsPass(*PR);
  initializeAMDGPUUnifyMetadataPass(*PR);
  initializeSIAnnotateControlFlowPass(*PR);
  initializeSIInsertHardClausesPass(*PR);
  initializeSIInsertWaitcntsPass(*PR);
  initializeSIModeRegisterPass(*PR);
  initializeSIWholeQuadModePass(*PR);
  initializeSILowerControlFlowPass(*PR);
  initializeSIRemoveShortExecBranchesPass(*PR);
  initializeSIPreEmitPeepholePass(*PR);
  initializeSIInsertSkipsPass(*PR);
  initializeSIMemoryLegalizerPass(*PR);
  initializeSIOptimizeExecMaskingPass(*PR);
  initializeSIPreAllocateWWMRegsPass(*PR);
  initializeSIFormMemoryClausesPass(*PR);
  initializeSIPostRABundlerPass(*PR);
  initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
  initializeAMDGPUAAWrapperPassPass(*PR);
  initializeAMDGPUExternalAAWrapperPass(*PR);
  initializeAMDGPUUseNativeCallsPass(*PR);
  initializeAMDGPUSimplifyLibCallsPass(*PR);
  initializeAMDGPUInlinerPass(*PR);
  initializeAMDGPUPrintfRuntimeBindingPass(*PR);
  initializeGCNRegBankReassignPass(*PR);
  initializeGCNNSAReassignPass(*PR);
  initializeSIAddIMGInitPass(*PR);
}

static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  return std::make_unique<AMDGPUTargetObjectFile>();
}

static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
  return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
}

static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
  return new SIScheduleDAGMI(C);
}

static ScheduleDAGInstrs *
createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
  ScheduleDAGMILive *DAG =
    new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
  DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
  DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
  DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
  DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
  return DAG;
}

static ScheduleDAGInstrs *
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
  auto DAG = new GCNIterativeScheduler(C,
    GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
  DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
  DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
  return DAG;
}

static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
  return new GCNIterativeScheduler(C,
    GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
}

static ScheduleDAGInstrs *
createIterativeILPMachineScheduler(MachineSchedContext *C) {
  auto DAG = new GCNIterativeScheduler(C,
    GCNIterativeScheduler::SCHEDULE_ILP);
  DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
  DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
  DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
  return DAG;
}

static MachineSchedRegistry
R600SchedRegistry("r600", "Run R600's custom scheduler",
                   createR600MachineScheduler);

static MachineSchedRegistry
SISchedRegistry("si", "Run SI's custom scheduler",
                createSIMachineScheduler);

static MachineSchedRegistry
GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
                             "Run GCN scheduler to maximize occupancy",
                             createGCNMaxOccupancyMachineScheduler);

static MachineSchedRegistry
IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
  "Run GCN scheduler to maximize occupancy (experimental)",
  createIterativeGCNMaxOccupancyMachineScheduler);

static MachineSchedRegistry
GCNMinRegSchedRegistry("gcn-minreg",
  "Run GCN iterative scheduler for minimal register usage (experimental)",
  createMinRegScheduler);

static MachineSchedRegistry
GCNILPSchedRegistry("gcn-ilp",
  "Run GCN iterative scheduler for ILP scheduling (experimental)",
  createIterativeILPMachineScheduler);

static StringRef computeDataLayout(const Triple &TT) {
  if (TT.getArch() == Triple::r600) {
    // 32-bit pointers.
      return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
             "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5";
  }

  // 32-bit private, local, and region pointers. 64-bit global, constant and
  // flat, non-integral buffer fat pointers.
    return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
         "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
         "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"
         "-ni:7";
}

LLVM_READNONE
static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
  if (!GPU.empty())
    return GPU;

  // Need to default to a target with flat support for HSA.
  if (TT.getArch() == Triple::amdgcn)
    return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";

  return "r600";
}

static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
  // The AMDGPU toolchain only supports generating shared objects, so we
  // must always use PIC.
  return Reloc::PIC_;
}

AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
                                         StringRef CPU, StringRef FS,
                                         TargetOptions Options,
                                         Optional<Reloc::Model> RM,
                                         Optional<CodeModel::Model> CM,
                                         CodeGenOpt::Level OptLevel)
    : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
                        FS, Options, getEffectiveRelocModel(RM),
                        getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
      TLOF(createTLOF(getTargetTriple())) {
  initAsmInfo();
  if (TT.getArch() == Triple::amdgcn) {
    if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
      MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
    else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
      MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
  }
}

bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
bool AMDGPUTargetMachine::EnableFunctionCalls = false;
bool AMDGPUTargetMachine::EnableFixedFunctionABI = false;

AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;

StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
  Attribute GPUAttr = F.getFnAttribute("target-cpu");
  return GPUAttr.hasAttribute(Attribute::None) ?
    getTargetCPU() : GPUAttr.getValueAsString();
}

StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
  Attribute FSAttr = F.getFnAttribute("target-features");

  return FSAttr.hasAttribute(Attribute::None) ?
    getTargetFeatureString() :
    FSAttr.getValueAsString();
}

/// Predicate for Internalize pass.
static bool mustPreserveGV(const GlobalValue &GV) {
  if (const Function *F = dyn_cast<Function>(&GV))
    return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());

  return !GV.use_empty();
}

void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
  Builder.DivergentTarget = true;

  bool EnableOpt = getOptLevel() > CodeGenOpt::None;
  bool Internalize = InternalizeSymbols;
  bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
  bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
  bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;

  if (EnableFunctionCalls) {
    delete Builder.Inliner;
    Builder.Inliner = createAMDGPUFunctionInliningPass();
  }

  Builder.addExtension(
    PassManagerBuilder::EP_ModuleOptimizerEarly,
    [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
                                               legacy::PassManagerBase &PM) {
      if (AMDGPUAA) {
        PM.add(createAMDGPUAAWrapperPass());
        PM.add(createAMDGPUExternalAAWrapperPass());
      }
      PM.add(createAMDGPUUnifyMetadataPass());
      PM.add(createAMDGPUPrintfRuntimeBinding());
      if (Internalize)
        PM.add(createInternalizePass(mustPreserveGV));
      PM.add(createAMDGPUPropagateAttributesLatePass(this));
      if (Internalize)
        PM.add(createGlobalDCEPass());
      if (EarlyInline)
        PM.add(createAMDGPUAlwaysInlinePass(false));
  });

  Builder.addExtension(
    PassManagerBuilder::EP_EarlyAsPossible,
    [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
                                      legacy::PassManagerBase &PM) {
      if (AMDGPUAA) {
        PM.add(createAMDGPUAAWrapperPass());
        PM.add(createAMDGPUExternalAAWrapperPass());
      }
      PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
      PM.add(llvm::createAMDGPUUseNativeCallsPass());
      if (LibCallSimplify)
        PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
  });

  Builder.addExtension(
    PassManagerBuilder::EP_CGSCCOptimizerLate,
    [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
      // Add infer address spaces pass to the opt pipeline after inlining
      // but before SROA to increase SROA opportunities.
      PM.add(createInferAddressSpacesPass());

      // This should run after inlining to have any chance of doing anything,
      // and before other cleanup optimizations.
      PM.add(createAMDGPULowerKernelAttributesPass());

      // Promote alloca to vector before SROA and loop unroll. If we manage
      // to eliminate allocas before unroll we may choose to unroll less.
      if (EnableOpt)
        PM.add(createAMDGPUPromoteAllocaToVector());
  });
}

//===----------------------------------------------------------------------===//
// R600 Target Machine (R600 -> Cayman)
//===----------------------------------------------------------------------===//

R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
                                     StringRef CPU, StringRef FS,
                                     TargetOptions Options,
                                     Optional<Reloc::Model> RM,
                                     Optional<CodeModel::Model> CM,
                                     CodeGenOpt::Level OL, bool JIT)
    : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
  setRequiresStructuredCFG(true);

  // Override the default since calls aren't supported for r600.
  if (EnableFunctionCalls &&
      EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
    EnableFunctionCalls = false;
}

const R600Subtarget *R600TargetMachine::getSubtargetImpl(
  const Function &F) const {
  StringRef GPU = getGPUName(F);
  StringRef FS = getFeatureString(F);

  SmallString<128> SubtargetKey(GPU);
  SubtargetKey.append(FS);

  auto &I = SubtargetMap[SubtargetKey];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
  }

  return I.get();
}

TargetTransformInfo
R600TargetMachine::getTargetTransformInfo(const Function &F) {
  return TargetTransformInfo(R600TTIImpl(this, F));
}

//===----------------------------------------------------------------------===//
// GCN Target Machine (SI+)
//===----------------------------------------------------------------------===//

GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
                                   StringRef CPU, StringRef FS,
                                   TargetOptions Options,
                                   Optional<Reloc::Model> RM,
                                   Optional<CodeModel::Model> CM,
                                   CodeGenOpt::Level OL, bool JIT)
    : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}

const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
  StringRef GPU = getGPUName(F);
  StringRef FS = getFeatureString(F);

  SmallString<128> SubtargetKey(GPU);
  SubtargetKey.append(FS);

  auto &I = SubtargetMap[SubtargetKey];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
  }

  I->setScalarizeGlobalBehavior(ScalarizeGlobal);

  return I.get();
}

TargetTransformInfo
GCNTargetMachine::getTargetTransformInfo(const Function &F) {
  return TargetTransformInfo(GCNTTIImpl(this, F));
}

//===----------------------------------------------------------------------===//
// AMDGPU Pass Setup
//===----------------------------------------------------------------------===//

namespace {

class AMDGPUPassConfig : public TargetPassConfig {
public:
  AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
    : TargetPassConfig(TM, PM) {
    // Exceptions and StackMaps are not supported, so these passes will never do
    // anything.
    disablePass(&StackMapLivenessID);
    disablePass(&FuncletLayoutID);
  }

  AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
    return getTM<AMDGPUTargetMachine>();
  }

  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override {
    ScheduleDAGMILive *DAG = createGenericSchedLive(C);
    DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
    DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
    return DAG;
  }

  void addEarlyCSEOrGVNPass();
  void addStraightLineScalarOptimizationPasses();
  void addIRPasses() override;
  void addCodeGenPrepare() override;
  bool addPreISel() override;
  bool addInstSelector() override;
  bool addGCPasses() override;

  std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};

std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
  return getStandardCSEConfigForOpt(TM->getOptLevel());
}

class R600PassConfig final : public AMDGPUPassConfig {
public:
  R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
    : AMDGPUPassConfig(TM, PM) {}

  ScheduleDAGInstrs *createMachineScheduler(
    MachineSchedContext *C) const override {
    return createR600MachineScheduler(C);
  }

  bool addPreISel() override;
  bool addInstSelector() override;
  void addPreRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;
};

class GCNPassConfig final : public AMDGPUPassConfig {
public:
  GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
    : AMDGPUPassConfig(TM, PM) {
    // It is necessary to know the register usage of the entire call graph.  We
    // allow calls without EnableAMDGPUFunctionCalls if they are marked
    // noinline, so this is always required.
    setRequiresCodeGenSCCOrder(true);
  }

  GCNTargetMachine &getGCNTargetMachine() const {
    return getTM<GCNTargetMachine>();
  }

  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override;

  bool addPreISel() override;
  void addMachineSSAOptimization() override;
  bool addILPOpts() override;
  bool addInstSelector() override;
  bool addIRTranslator() override;
  void addPreLegalizeMachineIR() override;
  bool addLegalizeMachineIR() override;
  void addPreRegBankSelect() override;
  bool addRegBankSelect() override;
  bool addGlobalInstructionSelect() override;
  void addFastRegAlloc() override;
  void addOptimizedRegAlloc() override;
  void addPreRegAlloc() override;
  bool addPreRewrite() override;
  void addPostRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;
};

} // end anonymous namespace

void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
  if (getOptLevel() == CodeGenOpt::Aggressive)
    addPass(createGVNPass());
  else
    addPass(createEarlyCSEPass());
}

void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
  addPass(createLICMPass());
  addPass(createSeparateConstOffsetFromGEPPass());
  addPass(createSpeculativeExecutionPass());
  // ReassociateGEPs exposes more opportunites for SLSR. See
  // the example in reassociate-geps-and-slsr.ll.
  addPass(createStraightLineStrengthReducePass());
  // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
  // EarlyCSE can reuse.
  addEarlyCSEOrGVNPass();
  // Run NaryReassociate after EarlyCSE/GVN to be more effective.
  addPass(createNaryReassociatePass());
  // NaryReassociate on GEPs creates redundant common expressions, so run
  // EarlyCSE after it.
  addPass(createEarlyCSEPass());
}

void AMDGPUPassConfig::addIRPasses() {
  const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();

  // There is no reason to run these.
  disablePass(&StackMapLivenessID);
  disablePass(&FuncletLayoutID);
  disablePass(&PatchableFunctionID);

  addPass(createAMDGPUPrintfRuntimeBinding());

  // This must occur before inlining, as the inliner will not look through
  // bitcast calls.
  addPass(createAMDGPUFixFunctionBitcastsPass());

  // A call to propagate attributes pass in the backend in case opt was not run.
  addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));

  addPass(createAtomicExpandPass());


  addPass(createAMDGPULowerIntrinsicsPass());

  // Function calls are not supported, so make sure we inline everything.
  addPass(createAMDGPUAlwaysInlinePass());
  addPass(createAlwaysInlinerLegacyPass());
  // We need to add the barrier noop pass, otherwise adding the function
  // inlining pass will cause all of the PassConfigs passes to be run
  // one function at a time, which means if we have a nodule with two
  // functions, then we will generate code for the first function
  // without ever running any passes on the second.
  addPass(createBarrierNoopPass());

  // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
  if (TM.getTargetTriple().getArch() == Triple::r600)
    addPass(createR600OpenCLImageTypeLoweringPass());

  // Replace OpenCL enqueued block function pointers with global variables.
  addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());

  if (TM.getOptLevel() > CodeGenOpt::None) {
    addPass(createInferAddressSpacesPass());
    addPass(createAMDGPUPromoteAlloca());

    if (EnableSROA)
      addPass(createSROAPass());

    if (EnableScalarIRPasses)
      addStraightLineScalarOptimizationPasses();

    if (EnableAMDGPUAliasAnalysis) {
      addPass(createAMDGPUAAWrapperPass());
      addPass(createExternalAAWrapperPass([](Pass &P, Function &,
                                             AAResults &AAR) {
        if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
          AAR.addAAResult(WrapperPass->getResult());
        }));
    }
  }

  if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
    // TODO: May want to move later or split into an early and late one.
    addPass(createAMDGPUCodeGenPreparePass());
  }

  TargetPassConfig::addIRPasses();

  // EarlyCSE is not always strong enough to clean up what LSR produces. For
  // example, GVN can combine
  //
  //   %0 = add %a, %b
  //   %1 = add %b, %a
  //
  // and
  //
  //   %0 = shl nsw %a, 2
  //   %1 = shl %a, 2
  //
  // but EarlyCSE can do neither of them.
  if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses)
    addEarlyCSEOrGVNPass();
}

void AMDGPUPassConfig::addCodeGenPrepare() {
  if (TM->getTargetTriple().getArch() == Triple::amdgcn)
    addPass(createAMDGPUAnnotateKernelFeaturesPass());

  if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
      EnableLowerKernelArguments)
    addPass(createAMDGPULowerKernelArgumentsPass());

  addPass(&AMDGPUPerfHintAnalysisID);

  TargetPassConfig::addCodeGenPrepare();

  if (EnableLoadStoreVectorizer)
    addPass(createLoadStoreVectorizerPass());

  // LowerSwitch pass may introduce unreachable blocks that can
  // cause unexpected behavior for subsequent passes. Placing it
  // here seems better that these blocks would get cleaned up by
  // UnreachableBlockElim inserted next in the pass flow.
  addPass(createLowerSwitchPass());
}

bool AMDGPUPassConfig::addPreISel() {
  addPass(createFlattenCFGPass());
  return false;
}

bool AMDGPUPassConfig::addInstSelector() {
  // Defer the verifier until FinalizeISel.
  addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
  return false;
}

bool AMDGPUPassConfig::addGCPasses() {
  // Do nothing. GC is not supported.
  return false;
}

//===----------------------------------------------------------------------===//
// R600 Pass Setup
//===----------------------------------------------------------------------===//

bool R600PassConfig::addPreISel() {
  AMDGPUPassConfig::addPreISel();

  if (EnableR600StructurizeCFG)
    addPass(createStructurizeCFGPass());
  return false;
}

bool R600PassConfig::addInstSelector() {
  addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
  return false;
}

void R600PassConfig::addPreRegAlloc() {
  addPass(createR600VectorRegMerger());
}

void R600PassConfig::addPreSched2() {
  addPass(createR600EmitClauseMarkers(), false);
  if (EnableR600IfConvert)
    addPass(&IfConverterID, false);
  addPass(createR600ClauseMergePass(), false);
}

void R600PassConfig::addPreEmitPass() {
  addPass(createAMDGPUCFGStructurizerPass(), false);
  addPass(createR600ExpandSpecialInstrsPass(), false);
  addPass(&FinalizeMachineBundlesID, false);
  addPass(createR600Packetizer(), false);
  addPass(createR600ControlFlowFinalizer(), false);
}

TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
  return new R600PassConfig(*this, PM);
}

//===----------------------------------------------------------------------===//
// GCN Pass Setup
//===----------------------------------------------------------------------===//

ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
  MachineSchedContext *C) const {
  const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
  if (ST.enableSIScheduler())
    return createSIMachineScheduler(C);
  return createGCNMaxOccupancyMachineScheduler(C);
}

bool GCNPassConfig::addPreISel() {
  AMDGPUPassConfig::addPreISel();

  if (EnableAtomicOptimizations) {
    addPass(createAMDGPUAtomicOptimizerPass());
  }

  // FIXME: We need to run a pass to propagate the attributes when calls are
  // supported.

  // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
  // regions formed by them.
  addPass(&AMDGPUUnifyDivergentExitNodesID);
  if (!LateCFGStructurize) {
    if (EnableStructurizerWorkarounds) {
      addPass(createFixIrreduciblePass());
      addPass(createUnifyLoopExitsPass());
    }
    addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
  }
  addPass(createSinkingPass());
  addPass(createAMDGPUAnnotateUniformValues());
  if (!LateCFGStructurize) {
    addPass(createSIAnnotateControlFlowPass());
  }
  addPass(createLCSSAPass());

  return false;
}

void GCNPassConfig::addMachineSSAOptimization() {
  TargetPassConfig::addMachineSSAOptimization();

  // We want to fold operands after PeepholeOptimizer has run (or as part of
  // it), because it will eliminate extra copies making it easier to fold the
  // real source operand. We want to eliminate dead instructions after, so that
  // we see fewer uses of the copies. We then need to clean up the dead
  // instructions leftover after the operands are folded as well.
  //
  // XXX - Can we get away without running DeadMachineInstructionElim again?
  addPass(&SIFoldOperandsID);
  if (EnableDPPCombine)
    addPass(&GCNDPPCombineID);
  addPass(&DeadMachineInstructionElimID);
  addPass(&SILoadStoreOptimizerID);
  if (EnableSDWAPeephole) {
    addPass(&SIPeepholeSDWAID);
    addPass(&EarlyMachineLICMID);
    addPass(&MachineCSEID);
    addPass(&SIFoldOperandsID);
    addPass(&DeadMachineInstructionElimID);
  }
  addPass(createSIShrinkInstructionsPass());
}

bool GCNPassConfig::addILPOpts() {
  if (EnableEarlyIfConversion)
    addPass(&EarlyIfConverterID);

  TargetPassConfig::addILPOpts();
  return false;
}

bool GCNPassConfig::addInstSelector() {
  AMDGPUPassConfig::addInstSelector();
  addPass(&SIFixSGPRCopiesID);
  addPass(createSILowerI1CopiesPass());
  // TODO: We have to add FinalizeISel
  // to expand V_ADD/SUB_U64_PSEUDO before SIFixupVectorISel
  // that expects V_ADD/SUB -> A_ADDC/SUBB pairs expanded.
  // Will be removed as soon as SIFixupVectorISel is changed
  // to work with V_ADD/SUB_U64_PSEUDO instead.
  addPass(&FinalizeISelID);
  addPass(createSIFixupVectorISelPass());
  addPass(createSIAddIMGInitPass());
  return false;
}

bool GCNPassConfig::addIRTranslator() {
  addPass(new IRTranslator());
  return false;
}

void GCNPassConfig::addPreLegalizeMachineIR() {
  bool IsOptNone = getOptLevel() == CodeGenOpt::None;
  addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
  addPass(new Localizer());
}

bool GCNPassConfig::addLegalizeMachineIR() {
  addPass(new Legalizer());
  return false;
}

void GCNPassConfig::addPreRegBankSelect() {
  bool IsOptNone = getOptLevel() == CodeGenOpt::None;
  addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
}

bool GCNPassConfig::addRegBankSelect() {
  addPass(new RegBankSelect());
  return false;
}

bool GCNPassConfig::addGlobalInstructionSelect() {
  addPass(new InstructionSelect());
  return false;
}

void GCNPassConfig::addPreRegAlloc() {
  if (LateCFGStructurize) {
    addPass(createAMDGPUMachineCFGStructurizerPass());
  }
  addPass(createSIWholeQuadModePass());
}

void GCNPassConfig::addFastRegAlloc() {
  // FIXME: We have to disable the verifier here because of PHIElimination +
  // TwoAddressInstructions disabling it.

  // This must be run immediately after phi elimination and before
  // TwoAddressInstructions, otherwise the processing of the tied operand of
  // SI_ELSE will introduce a copy of the tied operand source after the else.
  insertPass(&PHIEliminationID, &SILowerControlFlowID, false);

  // This must be run just after RegisterCoalescing.
  insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);

  TargetPassConfig::addFastRegAlloc();
}

void GCNPassConfig::addOptimizedRegAlloc() {
  if (OptExecMaskPreRA)
    insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
  insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);

  // This must be run immediately after phi elimination and before
  // TwoAddressInstructions, otherwise the processing of the tied operand of
  // SI_ELSE will introduce a copy of the tied operand source after the else.
  insertPass(&PHIEliminationID, &SILowerControlFlowID, false);

  // This must be run just after RegisterCoalescing.
  insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false);

  if (EnableDCEInRA)
    insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);

  TargetPassConfig::addOptimizedRegAlloc();
}

bool GCNPassConfig::addPreRewrite() {
  if (EnableRegReassign) {
    addPass(&GCNNSAReassignID);
    addPass(&GCNRegBankReassignID);
  }
  return true;
}

void GCNPassConfig::addPostRegAlloc() {
  addPass(&SIFixVGPRCopiesID);
  if (getOptLevel() > CodeGenOpt::None)
    addPass(&SIOptimizeExecMaskingID);
  TargetPassConfig::addPostRegAlloc();

  // Equivalent of PEI for SGPRs.
  addPass(&SILowerSGPRSpillsID);
}

void GCNPassConfig::addPreSched2() {
  addPass(&SIPostRABundlerID);
}

void GCNPassConfig::addPreEmitPass() {
  addPass(createSIMemoryLegalizerPass());
  addPass(createSIInsertWaitcntsPass());
  addPass(createSIShrinkInstructionsPass());
  addPass(createSIModeRegisterPass());

  // The hazard recognizer that runs as part of the post-ra scheduler does not
  // guarantee to be able handle all hazards correctly. This is because if there
  // are multiple scheduling regions in a basic block, the regions are scheduled
  // bottom up, so when we begin to schedule a region we don't know what
  // instructions were emitted directly before it.
  //
  // Here we add a stand-alone hazard recognizer pass which can handle all
  // cases.
  //
  // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would
  // be better for it to emit S_NOP <N> when possible.
  addPass(&PostRAHazardRecognizerID);
  if (getOptLevel() > CodeGenOpt::None)
    addPass(&SIInsertHardClausesID);

  addPass(&SIRemoveShortExecBranchesID);
  addPass(&SIInsertSkipsPassID);
  addPass(&SIPreEmitPeepholeID);
  addPass(&BranchRelaxationPassID);
}

TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new GCNPassConfig(*this, PM);
}

yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
  return new yaml::SIMachineFunctionInfo();
}

yaml::MachineFunctionInfo *
GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  return new yaml::SIMachineFunctionInfo(*MFI,
                                         *MF.getSubtarget().getRegisterInfo());
}

bool GCNTargetMachine::parseMachineFunctionInfo(
    const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
    SMDiagnostic &Error, SMRange &SourceRange) const {
  const yaml::SIMachineFunctionInfo &YamlMFI =
      reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
  MachineFunction &MF = PFS.MF;
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  MFI->initializeBaseYamlFields(YamlMFI);

  auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
    Register TempReg;
    if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
      SourceRange = RegName.SourceRange;
      return true;
    }
    RegVal = TempReg;

    return false;
  };

  auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
    // Create a diagnostic for a the register string literal.
    const MemoryBuffer &Buffer =
        *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
    Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
                         RegName.Value.size(), SourceMgr::DK_Error,
                         "incorrect register class for field", RegName.Value,
                         None, None);
    SourceRange = RegName.SourceRange;
    return true;
  };

  if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
      parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
      parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
    return true;

  if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
      !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
    return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
  }

  if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
      !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
    return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
  }

  if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
      !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
    return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
  }

  auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
                                   const TargetRegisterClass &RC,
                                   ArgDescriptor &Arg, unsigned UserSGPRs,
                                   unsigned SystemSGPRs) {
    // Skip parsing if it's not present.
    if (!A)
      return false;

    if (A->IsRegister) {
      Register Reg;
      if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
        SourceRange = A->RegisterName.SourceRange;
        return true;
      }
      if (!RC.contains(Reg))
        return diagnoseRegisterClass(A->RegisterName);
      Arg = ArgDescriptor::createRegister(Reg);
    } else
      Arg = ArgDescriptor::createStack(A->StackOffset);
    // Check and apply the optional mask.
    if (A->Mask)
      Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());

    MFI->NumUserSGPRs += UserSGPRs;
    MFI->NumSystemSGPRs += SystemSGPRs;
    return false;
  };

  if (YamlMFI.ArgInfo &&
      (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
                             AMDGPU::SGPR_128RegClass,
                             MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
                             AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
                             2, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
                             MFI->ArgInfo.QueuePtr, 2, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
                             AMDGPU::SReg_64RegClass,
                             MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
                             AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
                             2, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
                             AMDGPU::SReg_64RegClass,
                             MFI->ArgInfo.FlatScratchInit, 2, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
                             AMDGPU::SGPR_32RegClass,
                             MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
                             AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
                             0, 1) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
                             AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
                             0, 1) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
                             AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
                             0, 1) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
                             AMDGPU::SGPR_32RegClass,
                             MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
                             AMDGPU::SGPR_32RegClass,
                             MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
                             AMDGPU::SReg_64RegClass,
                             MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
                             AMDGPU::SReg_64RegClass,
                             MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
                             AMDGPU::VGPR_32RegClass,
                             MFI->ArgInfo.WorkItemIDX, 0, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
                             AMDGPU::VGPR_32RegClass,
                             MFI->ArgInfo.WorkItemIDY, 0, 0) ||
       parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
                             AMDGPU::VGPR_32RegClass,
                             MFI->ArgInfo.WorkItemIDZ, 0, 0)))
    return true;

  MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
  MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
  MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
  MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
  MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
  MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;

  return false;
}