AMDGPURegisterBankInfo.cpp
162 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
//===- AMDGPURegisterBankInfo.cpp -------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for
/// AMDGPU.
///
/// \par
///
/// AMDGPU has unique register bank constraints that require special high level
/// strategies to deal with. There are two main true physical register banks
/// VGPR (vector), and SGPR (scalar). Additionally the VCC register bank is a
/// sort of pseudo-register bank needed to represent SGPRs used in a vector
/// boolean context. There is also the AGPR bank, which is a special purpose
/// physical register bank present on some subtargets.
///
/// Copying from VGPR to SGPR is generally illegal, unless the value is known to
/// be uniform. It is generally not valid to legalize operands by inserting
/// copies as on other targets. Operations which require uniform, SGPR operands
/// generally require scalarization by repeatedly executing the instruction,
/// activating each set of lanes using a unique set of input values. This is
/// referred to as a waterfall loop.
///
/// \par Booleans
///
/// Booleans (s1 values) requires special consideration. A vector compare result
/// is naturally a bitmask with one bit per lane, in a 32 or 64-bit
/// register. These are represented with the VCC bank. During selection, we need
/// to be able to unambiguously go back from a register class to a register
/// bank. To distinguish whether an SGPR should use the SGPR or VCC register
/// bank, we need to know the use context type. An SGPR s1 value always means a
/// VCC bank value, otherwise it will be the SGPR bank. A scalar compare sets
/// SCC, which is a 1-bit unaddressable register. This will need to be copied to
/// a 32-bit virtual register. Taken together, this means we need to adjust the
/// type of boolean operations to be regbank legal. All SALU booleans need to be
/// widened to 32-bits, and all VALU booleans need to be s1 values.
///
/// A noteworthy exception to the s1-means-vcc rule is for legalization artifact
/// casts. G_TRUNC s1 results, and G_SEXT/G_ZEXT/G_ANYEXT sources are never vcc
/// bank. A non-boolean source (such as a truncate from a 1-bit load from
/// memory) will require a copy to the VCC bank which will require clearing the
/// high bits and inserting a compare.
///
/// \par Constant bus restriction
///
/// VALU instructions have a limitation known as the constant bus
/// restriction. Most VALU instructions can use SGPR operands, but may read at
/// most 1 SGPR or constant literal value (this to 2 in gfx10 for most
/// instructions). This is one unique SGPR, so the same SGPR may be used for
/// multiple operands. From a register bank perspective, any combination of
/// operands should be legal as an SGPR, but this is contextually dependent on
/// the SGPR operands all being the same register. There is therefore optimal to
/// choose the SGPR with the most uses to minimize the number of copies.
///
/// We avoid trying to solve this problem in RegBankSelect. Any VALU G_*
/// operation should have its source operands all mapped to VGPRs (except for
/// VCC), inserting copies from any SGPR operands. This the most trival legal
/// mapping. Anything beyond the simplest 1:1 instruction selection would be too
/// complicated to solve here. Every optimization pattern or instruction
/// selected to multiple outputs would have to enforce this rule, and there
/// would be additional complexity in tracking this rule for every G_*
/// operation. By forcing all inputs to VGPRs, it also simplifies the task of
/// picking the optimal operand combination from a post-isel optimization pass.
///
//===----------------------------------------------------------------------===//
#include "AMDGPURegisterBankInfo.h"
#include "AMDGPUGlobalISelUtils.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPUSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#define GET_TARGET_REGBANK_IMPL
#include "AMDGPUGenRegisterBank.inc"
// This file will be TableGen'ed at some point.
#include "AMDGPUGenRegisterBankInfo.def"
using namespace llvm;
using namespace MIPatternMatch;
namespace {
// Observer to apply a register bank to new registers created by LegalizerHelper.
class ApplyRegBankMapping final : public GISelChangeObserver {
private:
const AMDGPURegisterBankInfo &RBI;
MachineRegisterInfo &MRI;
const RegisterBank *NewBank;
SmallVector<MachineInstr *, 4> NewInsts;
public:
ApplyRegBankMapping(const AMDGPURegisterBankInfo &RBI_,
MachineRegisterInfo &MRI_, const RegisterBank *RB)
: RBI(RBI_), MRI(MRI_), NewBank(RB) {}
~ApplyRegBankMapping() {
for (MachineInstr *MI : NewInsts)
applyBank(*MI);
}
/// Set any registers that don't have a set register class or bank to SALU.
void applyBank(MachineInstr &MI) {
const unsigned Opc = MI.getOpcode();
if (Opc == AMDGPU::G_ANYEXT || Opc == AMDGPU::G_ZEXT ||
Opc == AMDGPU::G_SEXT) {
// LegalizerHelper wants to use the basic legalization artifacts when
// widening etc. We don't handle selection with vcc in artifact sources,
// so we need to use a sslect instead to handle these properly.
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
const RegisterBank *SrcBank = RBI.getRegBank(SrcReg, MRI, *RBI.TRI);
if (SrcBank == &AMDGPU::VCCRegBank) {
const LLT S32 = LLT::scalar(32);
assert(MRI.getType(SrcReg) == LLT::scalar(1));
assert(MRI.getType(DstReg) == S32);
assert(NewBank == &AMDGPU::VGPRRegBank);
// Replace the extension with a select, which really uses the boolean
// source.
MachineIRBuilder B(MI);
auto True = B.buildConstant(S32, Opc == AMDGPU::G_SEXT ? -1 : 1);
auto False = B.buildConstant(S32, 0);
B.buildSelect(DstReg, SrcReg, True, False);
MRI.setRegBank(True.getReg(0), *NewBank);
MRI.setRegBank(False.getReg(0), *NewBank);
MI.eraseFromParent();
}
assert(!MRI.getRegClassOrRegBank(DstReg));
MRI.setRegBank(DstReg, *NewBank);
return;
}
#ifndef NDEBUG
if (Opc == AMDGPU::G_TRUNC) {
Register DstReg = MI.getOperand(0).getReg();
const RegisterBank *DstBank = RBI.getRegBank(DstReg, MRI, *RBI.TRI);
assert(DstBank != &AMDGPU::VCCRegBank);
}
#endif
for (MachineOperand &Op : MI.operands()) {
if (!Op.isReg())
continue;
// We may see physical registers if building a real MI
Register Reg = Op.getReg();
if (Reg.isPhysical() || MRI.getRegClassOrRegBank(Reg))
continue;
const RegisterBank *RB = NewBank;
if (MRI.getType(Reg) == LLT::scalar(1)) {
assert(NewBank == &AMDGPU::VGPRRegBank &&
"s1 operands should only be used for vector bools");
assert((MI.getOpcode() != AMDGPU::G_TRUNC &&
MI.getOpcode() != AMDGPU::G_ANYEXT) &&
"not expecting legalization artifacts here");
RB = &AMDGPU::VCCRegBank;
}
MRI.setRegBank(Reg, *RB);
}
}
void erasingInstr(MachineInstr &MI) override {}
void createdInstr(MachineInstr &MI) override {
// At this point, the instruction was just inserted and has no operands.
NewInsts.push_back(&MI);
}
void changingInstr(MachineInstr &MI) override {}
void changedInstr(MachineInstr &MI) override {}
};
}
AMDGPURegisterBankInfo::AMDGPURegisterBankInfo(const GCNSubtarget &ST)
: AMDGPUGenRegisterBankInfo(),
Subtarget(ST),
TRI(Subtarget.getRegisterInfo()),
TII(Subtarget.getInstrInfo()) {
// HACK: Until this is fully tablegen'd.
static llvm::once_flag InitializeRegisterBankFlag;
static auto InitializeRegisterBankOnce = [this]() {
assert(&getRegBank(AMDGPU::SGPRRegBankID) == &AMDGPU::SGPRRegBank &&
&getRegBank(AMDGPU::VGPRRegBankID) == &AMDGPU::VGPRRegBank &&
&getRegBank(AMDGPU::AGPRRegBankID) == &AMDGPU::AGPRRegBank);
(void)this;
};
llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
}
static bool isVectorRegisterBank(const RegisterBank &Bank) {
unsigned BankID = Bank.getID();
return BankID == AMDGPU::VGPRRegBankID || BankID == AMDGPU::AGPRRegBankID;
}
unsigned AMDGPURegisterBankInfo::copyCost(const RegisterBank &Dst,
const RegisterBank &Src,
unsigned Size) const {
// TODO: Should there be a UniformVGPRRegBank which can use readfirstlane?
if (Dst.getID() == AMDGPU::SGPRRegBankID &&
(isVectorRegisterBank(Src) || Src.getID() == AMDGPU::VCCRegBankID)) {
return std::numeric_limits<unsigned>::max();
}
// Bool values are tricky, because the meaning is based on context. The SCC
// and VCC banks are for the natural scalar and vector conditions produced by
// a compare.
//
// Legalization doesn't know about the necessary context, so an s1 use may
// have been a truncate from an arbitrary value, in which case a copy (lowered
// as a compare with 0) needs to be inserted.
if (Size == 1 &&
(Dst.getID() == AMDGPU::SGPRRegBankID) &&
(isVectorRegisterBank(Src) ||
Src.getID() == AMDGPU::SGPRRegBankID ||
Src.getID() == AMDGPU::VCCRegBankID))
return std::numeric_limits<unsigned>::max();
// There is no direct copy between AGPRs.
if (Dst.getID() == AMDGPU::AGPRRegBankID &&
Src.getID() == AMDGPU::AGPRRegBankID)
return 4;
return RegisterBankInfo::copyCost(Dst, Src, Size);
}
unsigned AMDGPURegisterBankInfo::getBreakDownCost(
const ValueMapping &ValMapping,
const RegisterBank *CurBank) const {
// Check if this is a breakdown for G_LOAD to move the pointer from SGPR to
// VGPR.
// FIXME: Is there a better way to do this?
if (ValMapping.NumBreakDowns >= 2 || ValMapping.BreakDown[0].Length >= 64)
return 10; // This is expensive.
assert(ValMapping.NumBreakDowns == 2 &&
ValMapping.BreakDown[0].Length == 32 &&
ValMapping.BreakDown[0].StartIdx == 0 &&
ValMapping.BreakDown[1].Length == 32 &&
ValMapping.BreakDown[1].StartIdx == 32 &&
ValMapping.BreakDown[0].RegBank == ValMapping.BreakDown[1].RegBank);
// 32-bit extract of a 64-bit value is just access of a subregister, so free.
// TODO: Cost of 0 hits assert, though it's not clear it's what we really
// want.
// TODO: 32-bit insert to a 64-bit SGPR may incur a non-free copy due to SGPR
// alignment restrictions, but this probably isn't important.
return 1;
}
const RegisterBank &
AMDGPURegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC,
LLT Ty) const {
if (&RC == &AMDGPU::SReg_1RegClass)
return AMDGPU::VCCRegBank;
// We promote real scalar booleans to SReg_32. Any SGPR using s1 is really a
// VCC-like use.
if (TRI->isSGPRClass(&RC)) {
// FIXME: This probably came from a copy from a physical register, which
// should be inferrrable from the copied to-type. We don't have many boolean
// physical register constraints so just assume a normal SGPR for now.
if (!Ty.isValid())
return AMDGPU::SGPRRegBank;
return Ty == LLT::scalar(1) ? AMDGPU::VCCRegBank : AMDGPU::SGPRRegBank;
}
return TRI->isAGPRClass(&RC) ? AMDGPU::AGPRRegBank : AMDGPU::VGPRRegBank;
}
template <unsigned NumOps>
RegisterBankInfo::InstructionMappings
AMDGPURegisterBankInfo::addMappingFromTable(
const MachineInstr &MI, const MachineRegisterInfo &MRI,
const std::array<unsigned, NumOps> RegSrcOpIdx,
ArrayRef<OpRegBankEntry<NumOps>> Table) const {
InstructionMappings AltMappings;
SmallVector<const ValueMapping *, 10> Operands(MI.getNumOperands());
unsigned Sizes[NumOps];
for (unsigned I = 0; I < NumOps; ++I) {
Register Reg = MI.getOperand(RegSrcOpIdx[I]).getReg();
Sizes[I] = getSizeInBits(Reg, MRI, *TRI);
}
for (unsigned I = 0, E = MI.getNumExplicitDefs(); I != E; ++I) {
unsigned SizeI = getSizeInBits(MI.getOperand(I).getReg(), MRI, *TRI);
Operands[I] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, SizeI);
}
// getInstrMapping's default mapping uses ID 1, so start at 2.
unsigned MappingID = 2;
for (const auto &Entry : Table) {
for (unsigned I = 0; I < NumOps; ++I) {
int OpIdx = RegSrcOpIdx[I];
Operands[OpIdx] = AMDGPU::getValueMapping(Entry.RegBanks[I], Sizes[I]);
}
AltMappings.push_back(&getInstructionMapping(MappingID++, Entry.Cost,
getOperandsMapping(Operands),
Operands.size()));
}
return AltMappings;
}
RegisterBankInfo::InstructionMappings
AMDGPURegisterBankInfo::getInstrAlternativeMappingsIntrinsic(
const MachineInstr &MI, const MachineRegisterInfo &MRI) const {
switch (MI.getIntrinsicID()) {
case Intrinsic::amdgcn_readlane: {
static const OpRegBankEntry<3> Table[2] = {
// Perfectly legal.
{ { AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID }, 1 },
// Need a readfirstlane for the index.
{ { AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 2 }
};
const std::array<unsigned, 3> RegSrcOpIdx = { { 0, 2, 3 } };
return addMappingFromTable<3>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table));
}
case Intrinsic::amdgcn_writelane: {
static const OpRegBankEntry<4> Table[4] = {
// Perfectly legal.
{ { AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID }, 1 },
// Need readfirstlane of first op
{ { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID }, 2 },
// Need readfirstlane of second op
{ { AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 2 },
// Need readfirstlane of both ops
{ { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 3 }
};
// rsrc, voffset, offset
const std::array<unsigned, 4> RegSrcOpIdx = { { 0, 2, 3, 4 } };
return addMappingFromTable<4>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table));
}
default:
return RegisterBankInfo::getInstrAlternativeMappings(MI);
}
}
RegisterBankInfo::InstructionMappings
AMDGPURegisterBankInfo::getInstrAlternativeMappingsIntrinsicWSideEffects(
const MachineInstr &MI, const MachineRegisterInfo &MRI) const {
switch (MI.getIntrinsicID()) {
case Intrinsic::amdgcn_s_buffer_load: {
static const OpRegBankEntry<2> Table[4] = {
// Perfectly legal.
{ { AMDGPU::SGPRRegBankID, AMDGPU::SGPRRegBankID }, 1 },
// Only need 1 register in loop
{ { AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID }, 300 },
// Have to waterfall the resource.
{ { AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID }, 1000 },
// Have to waterfall the resource, and the offset.
{ { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 1500 }
};
// rsrc, offset
const std::array<unsigned, 2> RegSrcOpIdx = { { 2, 3 } };
return addMappingFromTable<2>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table));
}
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap: {
// VGPR = M0, VGPR
static const OpRegBankEntry<3> Table[2] = {
// Perfectly legal.
{ { AMDGPU::VGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::VGPRRegBankID }, 1 },
// Need a readfirstlane for m0
{ { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 2 }
};
const std::array<unsigned, 3> RegSrcOpIdx = { { 0, 2, 3 } };
return addMappingFromTable<3>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table));
}
case Intrinsic::amdgcn_s_sendmsg:
case Intrinsic::amdgcn_s_sendmsghalt: {
// FIXME: Should have no register for immediate
static const OpRegBankEntry<1> Table[2] = {
// Perfectly legal.
{ { AMDGPU::SGPRRegBankID }, 1 },
// Need readlane
{ { AMDGPU::VGPRRegBankID }, 3 }
};
const std::array<unsigned, 1> RegSrcOpIdx = { { 2 } };
return addMappingFromTable<1>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table));
}
default:
return RegisterBankInfo::getInstrAlternativeMappings(MI);
}
}
static bool memOpHasNoClobbered(const MachineMemOperand *MMO) {
const Instruction *I = dyn_cast_or_null<Instruction>(MMO->getValue());
return I && I->getMetadata("amdgpu.noclobber");
}
// FIXME: Returns uniform if there's no source value information. This is
// probably wrong.
static bool isScalarLoadLegal(const MachineInstr &MI) {
if (!MI.hasOneMemOperand())
return false;
const MachineMemOperand *MMO = *MI.memoperands_begin();
const unsigned AS = MMO->getAddrSpace();
const bool IsConst = AS == AMDGPUAS::CONSTANT_ADDRESS ||
AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
// There are no extending SMRD/SMEM loads, and they require 4-byte alignment.
return MMO->getSize() >= 4 && MMO->getAlign() >= Align(4) &&
// Can't do a scalar atomic load.
!MMO->isAtomic() &&
// Don't use scalar loads for volatile accesses to non-constant address
// spaces.
(IsConst || !MMO->isVolatile()) &&
// Memory must be known constant, or not written before this load.
(IsConst || MMO->isInvariant() || memOpHasNoClobbered(MMO)) &&
AMDGPUInstrInfo::isUniformMMO(MMO);
}
RegisterBankInfo::InstructionMappings
AMDGPURegisterBankInfo::getInstrAlternativeMappings(
const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
InstructionMappings AltMappings;
switch (MI.getOpcode()) {
case TargetOpcode::G_CONSTANT: {
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
if (Size == 1) {
static const OpRegBankEntry<1> Table[3] = {
{ { AMDGPU::VGPRRegBankID }, 1 },
{ { AMDGPU::SGPRRegBankID }, 1 },
{ { AMDGPU::VCCRegBankID }, 1 }
};
return addMappingFromTable<1>(MI, MRI, {{ 0 }}, Table);
}
LLVM_FALLTHROUGH;
}
case TargetOpcode::G_FCONSTANT:
case TargetOpcode::G_FRAME_INDEX:
case TargetOpcode::G_GLOBAL_VALUE: {
static const OpRegBankEntry<1> Table[2] = {
{ { AMDGPU::VGPRRegBankID }, 1 },
{ { AMDGPU::SGPRRegBankID }, 1 }
};
return addMappingFromTable<1>(MI, MRI, {{ 0 }}, Table);
}
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR: {
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
if (Size == 1) {
// s_{and|or|xor}_b32 set scc when the result of the 32-bit op is not 0.
const InstructionMapping &SCCMapping = getInstructionMapping(
1, 1, getOperandsMapping(
{AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32)}),
3); // Num Operands
AltMappings.push_back(&SCCMapping);
const InstructionMapping &VCCMapping0 = getInstructionMapping(
2, 1, getOperandsMapping(
{AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Size)}),
3); // Num Operands
AltMappings.push_back(&VCCMapping0);
return AltMappings;
}
if (Size != 64)
break;
const InstructionMapping &SSMapping = getInstructionMapping(
1, 1, getOperandsMapping(
{AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size)}),
3); // Num Operands
AltMappings.push_back(&SSMapping);
const InstructionMapping &VVMapping = getInstructionMapping(
2, 2, getOperandsMapping(
{AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size),
AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size),
AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size)}),
3); // Num Operands
AltMappings.push_back(&VVMapping);
break;
}
case TargetOpcode::G_LOAD:
case TargetOpcode::G_ZEXTLOAD:
case TargetOpcode::G_SEXTLOAD: {
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
LLT PtrTy = MRI.getType(MI.getOperand(1).getReg());
unsigned PtrSize = PtrTy.getSizeInBits();
unsigned AS = PtrTy.getAddressSpace();
if ((AS != AMDGPUAS::LOCAL_ADDRESS && AS != AMDGPUAS::REGION_ADDRESS &&
AS != AMDGPUAS::PRIVATE_ADDRESS) &&
isScalarLoadLegal(MI)) {
const InstructionMapping &SSMapping = getInstructionMapping(
1, 1, getOperandsMapping(
{AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, PtrSize)}),
2); // Num Operands
AltMappings.push_back(&SSMapping);
}
const InstructionMapping &VVMapping = getInstructionMapping(
2, 1,
getOperandsMapping(
{AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, PtrSize)}),
2); // Num Operands
AltMappings.push_back(&VVMapping);
// It may be possible to have a vgpr = load sgpr mapping here, because
// the mubuf instructions support this kind of load, but probably for only
// gfx7 and older. However, the addressing mode matching in the instruction
// selector should be able to do a better job of detecting and selecting
// these kinds of loads from the vgpr = load vgpr mapping.
return AltMappings;
}
case TargetOpcode::G_SELECT: {
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
const InstructionMapping &SSMapping = getInstructionMapping(1, 1,
getOperandsMapping({AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 1),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size)}),
4); // Num Operands
AltMappings.push_back(&SSMapping);
const InstructionMapping &VVMapping = getInstructionMapping(2, 1,
getOperandsMapping({AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1),
AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size),
AMDGPU::getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size)}),
4); // Num Operands
AltMappings.push_back(&VVMapping);
return AltMappings;
}
case TargetOpcode::G_SMIN:
case TargetOpcode::G_SMAX:
case TargetOpcode::G_UMIN:
case TargetOpcode::G_UMAX: {
static const OpRegBankEntry<3> Table[2] = {
{ { AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID, AMDGPU::VGPRRegBankID }, 1 },
// Scalar requires cmp+select, and extends if 16-bit.
// FIXME: Should there be separate costs for 32 and 16-bit
{ { AMDGPU::SGPRRegBankID, AMDGPU::SGPRRegBankID, AMDGPU::SGPRRegBankID }, 3 }
};
const std::array<unsigned, 3> RegSrcOpIdx = { { 0, 1, 2 } };
return addMappingFromTable<3>(MI, MRI, RegSrcOpIdx, makeArrayRef(Table));
}
case TargetOpcode::G_UADDE:
case TargetOpcode::G_USUBE:
case TargetOpcode::G_SADDE:
case TargetOpcode::G_SSUBE: {
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
const InstructionMapping &SSMapping = getInstructionMapping(1, 1,
getOperandsMapping(
{AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 1),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 1)}),
5); // Num Operands
AltMappings.push_back(&SSMapping);
const InstructionMapping &VVMapping = getInstructionMapping(2, 1,
getOperandsMapping({AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1),
AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size),
AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1)}),
5); // Num Operands
AltMappings.push_back(&VVMapping);
return AltMappings;
}
case AMDGPU::G_BRCOND: {
assert(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() == 1);
// TODO: Change type to 32 for scalar
const InstructionMapping &SMapping = getInstructionMapping(
1, 1, getOperandsMapping(
{AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 1), nullptr}),
2); // Num Operands
AltMappings.push_back(&SMapping);
const InstructionMapping &VMapping = getInstructionMapping(
1, 1, getOperandsMapping(
{AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1), nullptr }),
2); // Num Operands
AltMappings.push_back(&VMapping);
return AltMappings;
}
case AMDGPU::G_INTRINSIC:
return getInstrAlternativeMappingsIntrinsic(MI, MRI);
case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS:
return getInstrAlternativeMappingsIntrinsicWSideEffects(MI, MRI);
default:
break;
}
return RegisterBankInfo::getInstrAlternativeMappings(MI);
}
void AMDGPURegisterBankInfo::split64BitValueForMapping(
MachineIRBuilder &B,
SmallVector<Register, 2> &Regs,
LLT HalfTy,
Register Reg) const {
assert(HalfTy.getSizeInBits() == 32);
MachineRegisterInfo *MRI = B.getMRI();
Register LoLHS = MRI->createGenericVirtualRegister(HalfTy);
Register HiLHS = MRI->createGenericVirtualRegister(HalfTy);
const RegisterBank *Bank = getRegBank(Reg, *MRI, *TRI);
MRI->setRegBank(LoLHS, *Bank);
MRI->setRegBank(HiLHS, *Bank);
Regs.push_back(LoLHS);
Regs.push_back(HiLHS);
B.buildInstr(AMDGPU::G_UNMERGE_VALUES)
.addDef(LoLHS)
.addDef(HiLHS)
.addUse(Reg);
}
/// Replace the current type each register in \p Regs has with \p NewTy
static void setRegsToType(MachineRegisterInfo &MRI, ArrayRef<Register> Regs,
LLT NewTy) {
for (Register Reg : Regs) {
assert(MRI.getType(Reg).getSizeInBits() == NewTy.getSizeInBits());
MRI.setType(Reg, NewTy);
}
}
static LLT getHalfSizedType(LLT Ty) {
if (Ty.isVector()) {
assert(Ty.getNumElements() % 2 == 0);
return LLT::scalarOrVector(Ty.getNumElements() / 2, Ty.getElementType());
}
assert(Ty.getSizeInBits() % 2 == 0);
return LLT::scalar(Ty.getSizeInBits() / 2);
}
/// Legalize instruction \p MI where operands in \p OpIndices must be SGPRs. If
/// any of the required SGPR operands are VGPRs, perform a waterfall loop to
/// execute the instruction for each unique combination of values in all lanes
/// in the wave. The block will be split such that rest of the instructions are
/// moved to a new block.
///
/// Essentially performs this loop:
//
/// Save Execution Mask
/// For (Lane : Wavefront) {
/// Enable Lane, Disable all other lanes
/// SGPR = read SGPR value for current lane from VGPR
/// VGPRResult[Lane] = use_op SGPR
/// }
/// Restore Execution Mask
///
/// There is additional complexity to try for compare values to identify the
/// unique values used.
bool AMDGPURegisterBankInfo::executeInWaterfallLoop(
MachineIRBuilder &B,
iterator_range<MachineBasicBlock::iterator> Range,
SmallSet<Register, 4> &SGPROperandRegs,
MachineRegisterInfo &MRI) const {
SmallVector<Register, 4> ResultRegs;
SmallVector<Register, 4> InitResultRegs;
SmallVector<Register, 4> PhiRegs;
// Track use registers which have already been expanded with a readfirstlane
// sequence. This may have multiple uses if moving a sequence.
DenseMap<Register, Register> WaterfalledRegMap;
MachineBasicBlock &MBB = B.getMBB();
MachineFunction *MF = &B.getMF();
const TargetRegisterClass *WaveRC = TRI->getWaveMaskRegClass();
const unsigned WaveAndOpc = Subtarget.isWave32() ?
AMDGPU::S_AND_B32 : AMDGPU::S_AND_B64;
const unsigned MovTermOpc = Subtarget.isWave32() ?
AMDGPU::S_MOV_B32_term : AMDGPU::S_MOV_B64_term;
const unsigned XorTermOpc = Subtarget.isWave32() ?
AMDGPU::S_XOR_B32_term : AMDGPU::S_XOR_B64_term;
const unsigned AndSaveExecOpc = Subtarget.isWave32() ?
AMDGPU::S_AND_SAVEEXEC_B32 : AMDGPU::S_AND_SAVEEXEC_B64;
const unsigned ExecReg = Subtarget.isWave32() ?
AMDGPU::EXEC_LO : AMDGPU::EXEC;
#ifndef NDEBUG
const int OrigRangeSize = std::distance(Range.begin(), Range.end());
#endif
for (MachineInstr &MI : Range) {
for (MachineOperand &Def : MI.defs()) {
LLT ResTy = MRI.getType(Def.getReg());
const RegisterBank *DefBank = getRegBank(Def.getReg(), MRI, *TRI);
ResultRegs.push_back(Def.getReg());
Register InitReg = B.buildUndef(ResTy).getReg(0);
Register PhiReg = MRI.createGenericVirtualRegister(ResTy);
InitResultRegs.push_back(InitReg);
PhiRegs.push_back(PhiReg);
MRI.setRegBank(PhiReg, *DefBank);
MRI.setRegBank(InitReg, *DefBank);
}
}
Register SaveExecReg = MRI.createVirtualRegister(WaveRC);
Register InitSaveExecReg = MRI.createVirtualRegister(WaveRC);
// Don't bother using generic instructions/registers for the exec mask.
B.buildInstr(TargetOpcode::IMPLICIT_DEF)
.addDef(InitSaveExecReg);
Register PhiExec = MRI.createVirtualRegister(WaveRC);
Register NewExec = MRI.createVirtualRegister(WaveRC);
// To insert the loop we need to split the block. Move everything before this
// point to a new block, and insert a new empty block before this instruction.
MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
MachineBasicBlock *RestoreExecBB = MF->CreateMachineBasicBlock();
MachineFunction::iterator MBBI(MBB);
++MBBI;
MF->insert(MBBI, LoopBB);
MF->insert(MBBI, RestoreExecBB);
MF->insert(MBBI, RemainderBB);
LoopBB->addSuccessor(RestoreExecBB);
LoopBB->addSuccessor(LoopBB);
// Move the rest of the block into a new block.
RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
RemainderBB->splice(RemainderBB->begin(), &MBB, Range.end(), MBB.end());
MBB.addSuccessor(LoopBB);
RestoreExecBB->addSuccessor(RemainderBB);
B.setInsertPt(*LoopBB, LoopBB->end());
B.buildInstr(TargetOpcode::PHI)
.addDef(PhiExec)
.addReg(InitSaveExecReg)
.addMBB(&MBB)
.addReg(NewExec)
.addMBB(LoopBB);
for (auto Result : zip(InitResultRegs, ResultRegs, PhiRegs)) {
B.buildInstr(TargetOpcode::G_PHI)
.addDef(std::get<2>(Result))
.addReg(std::get<0>(Result)) // Initial value / implicit_def
.addMBB(&MBB)
.addReg(std::get<1>(Result)) // Mid-loop value.
.addMBB(LoopBB);
}
const DebugLoc &DL = B.getDL();
MachineInstr &FirstInst = *Range.begin();
// Move the instruction into the loop. Note we moved everything after
// Range.end() already into a new block, so Range.end() is no longer valid.
LoopBB->splice(LoopBB->end(), &MBB, Range.begin(), MBB.end());
// Figure out the iterator range after splicing the instructions.
MachineBasicBlock::iterator NewBegin = FirstInst.getIterator();
auto NewEnd = LoopBB->end();
MachineBasicBlock::iterator I = Range.begin();
B.setInsertPt(*LoopBB, I);
Register CondReg;
assert(std::distance(NewBegin, NewEnd) == OrigRangeSize);
for (MachineInstr &MI : make_range(NewBegin, NewEnd)) {
for (MachineOperand &Op : MI.uses()) {
if (!Op.isReg() || Op.isDef())
continue;
Register OldReg = Op.getReg();
if (!SGPROperandRegs.count(OldReg))
continue;
// See if we already processed this register in another instruction in the
// sequence.
auto OldVal = WaterfalledRegMap.find(OldReg);
if (OldVal != WaterfalledRegMap.end()) {
Op.setReg(OldVal->second);
continue;
}
LLT OpTy = MRI.getType(Op.getReg());
unsigned OpSize = OpTy.getSizeInBits();
// Can only do a readlane of 32-bit pieces.
if (OpSize == 32) {
// Avoid extra copies in the simple case of one 32-bit register.
Register CurrentLaneOpReg
= MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
MRI.setType(CurrentLaneOpReg, OpTy);
constrainGenericRegister(Op.getReg(), AMDGPU::VGPR_32RegClass, MRI);
// Read the next variant <- also loop target.
BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32),
CurrentLaneOpReg)
.addReg(Op.getReg());
Register NewCondReg = MRI.createVirtualRegister(WaveRC);
bool First = CondReg == AMDGPU::NoRegister;
if (First)
CondReg = NewCondReg;
// Compare the just read M0 value to all possible Idx values.
B.buildInstr(AMDGPU::V_CMP_EQ_U32_e64)
.addDef(NewCondReg)
.addReg(CurrentLaneOpReg)
.addReg(Op.getReg());
Op.setReg(CurrentLaneOpReg);
if (!First) {
Register AndReg = MRI.createVirtualRegister(WaveRC);
// If there are multiple operands to consider, and the conditions.
B.buildInstr(WaveAndOpc)
.addDef(AndReg)
.addReg(NewCondReg)
.addReg(CondReg);
CondReg = AndReg;
}
} else {
LLT S32 = LLT::scalar(32);
SmallVector<Register, 8> ReadlanePieces;
// The compares can be done as 64-bit, but the extract needs to be done
// in 32-bit pieces.
bool Is64 = OpSize % 64 == 0;
LLT UnmergeTy = OpSize % 64 == 0 ? LLT::scalar(64) : LLT::scalar(32);
unsigned CmpOp = OpSize % 64 == 0 ? AMDGPU::V_CMP_EQ_U64_e64
: AMDGPU::V_CMP_EQ_U32_e64;
// The compares can be done as 64-bit, but the extract needs to be done
// in 32-bit pieces.
// Insert the unmerge before the loop.
B.setMBB(MBB);
auto Unmerge = B.buildUnmerge(UnmergeTy, Op.getReg());
B.setInstr(*I);
unsigned NumPieces = Unmerge->getNumOperands() - 1;
for (unsigned PieceIdx = 0; PieceIdx != NumPieces; ++PieceIdx) {
Register UnmergePiece = Unmerge.getReg(PieceIdx);
Register CurrentLaneOpReg;
if (Is64) {
Register CurrentLaneOpRegLo = MRI.createGenericVirtualRegister(S32);
Register CurrentLaneOpRegHi = MRI.createGenericVirtualRegister(S32);
MRI.setRegClass(UnmergePiece, &AMDGPU::VReg_64RegClass);
MRI.setRegClass(CurrentLaneOpRegLo, &AMDGPU::SReg_32_XM0RegClass);
MRI.setRegClass(CurrentLaneOpRegHi, &AMDGPU::SReg_32_XM0RegClass);
// Read the next variant <- also loop target.
BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32),
CurrentLaneOpRegLo)
.addReg(UnmergePiece, 0, AMDGPU::sub0);
// Read the next variant <- also loop target.
BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32),
CurrentLaneOpRegHi)
.addReg(UnmergePiece, 0, AMDGPU::sub1);
CurrentLaneOpReg =
B.buildMerge(LLT::scalar(64),
{CurrentLaneOpRegLo, CurrentLaneOpRegHi})
.getReg(0);
MRI.setRegClass(CurrentLaneOpReg, &AMDGPU::SReg_64_XEXECRegClass);
if (OpTy.getScalarSizeInBits() == 64) {
// If we need to produce a 64-bit element vector, so use the
// merged pieces
ReadlanePieces.push_back(CurrentLaneOpReg);
} else {
// 32-bit element type.
ReadlanePieces.push_back(CurrentLaneOpRegLo);
ReadlanePieces.push_back(CurrentLaneOpRegHi);
}
} else {
CurrentLaneOpReg = MRI.createGenericVirtualRegister(S32);
MRI.setRegClass(UnmergePiece, &AMDGPU::VGPR_32RegClass);
MRI.setRegClass(CurrentLaneOpReg, &AMDGPU::SReg_32_XM0RegClass);
// Read the next variant <- also loop target.
BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32),
CurrentLaneOpReg)
.addReg(UnmergePiece);
ReadlanePieces.push_back(CurrentLaneOpReg);
}
Register NewCondReg = MRI.createVirtualRegister(WaveRC);
bool First = CondReg == AMDGPU::NoRegister;
if (First)
CondReg = NewCondReg;
B.buildInstr(CmpOp)
.addDef(NewCondReg)
.addReg(CurrentLaneOpReg)
.addReg(UnmergePiece);
if (!First) {
Register AndReg = MRI.createVirtualRegister(WaveRC);
// If there are multiple operands to consider, and the conditions.
B.buildInstr(WaveAndOpc)
.addDef(AndReg)
.addReg(NewCondReg)
.addReg(CondReg);
CondReg = AndReg;
}
}
// FIXME: Build merge seems to switch to CONCAT_VECTORS but not
// BUILD_VECTOR
if (OpTy.isVector()) {
auto Merge = B.buildBuildVector(OpTy, ReadlanePieces);
Op.setReg(Merge.getReg(0));
} else {
auto Merge = B.buildMerge(OpTy, ReadlanePieces);
Op.setReg(Merge.getReg(0));
}
MRI.setRegBank(Op.getReg(), AMDGPU::SGPRRegBank);
}
// Make sure we don't re-process this register again.
WaterfalledRegMap.insert(std::make_pair(OldReg, Op.getReg()));
}
}
B.setInsertPt(*LoopBB, LoopBB->end());
// Update EXEC, save the original EXEC value to VCC.
B.buildInstr(AndSaveExecOpc)
.addDef(NewExec)
.addReg(CondReg, RegState::Kill);
MRI.setSimpleHint(NewExec, CondReg);
// Update EXEC, switch all done bits to 0 and all todo bits to 1.
B.buildInstr(XorTermOpc)
.addDef(ExecReg)
.addReg(ExecReg)
.addReg(NewExec);
// XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
// s_cbranch_scc0?
// Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
B.buildInstr(AMDGPU::S_CBRANCH_EXECNZ)
.addMBB(LoopBB);
// Save the EXEC mask before the loop.
BuildMI(MBB, MBB.end(), DL, TII->get(MovTermOpc), SaveExecReg)
.addReg(ExecReg);
// Restore the EXEC mask after the loop.
B.setMBB(*RestoreExecBB);
B.buildInstr(MovTermOpc)
.addDef(ExecReg)
.addReg(SaveExecReg);
// Set the insert point after the original instruction, so any new
// instructions will be in the remainder.
B.setInsertPt(*RemainderBB, RemainderBB->begin());
return true;
}
// Return any unique registers used by \p MI at \p OpIndices that need to be
// handled in a waterfall loop. Returns these registers in \p
// SGPROperandRegs. Returns true if there are any operansd to handle and a
// waterfall loop is necessary.
bool AMDGPURegisterBankInfo::collectWaterfallOperands(
SmallSet<Register, 4> &SGPROperandRegs, MachineInstr &MI,
MachineRegisterInfo &MRI, ArrayRef<unsigned> OpIndices) const {
for (unsigned Op : OpIndices) {
assert(MI.getOperand(Op).isUse());
Register Reg = MI.getOperand(Op).getReg();
const RegisterBank *OpBank = getRegBank(Reg, MRI, *TRI);
if (OpBank->getID() == AMDGPU::VGPRRegBankID)
SGPROperandRegs.insert(Reg);
}
// No operands need to be replaced, so no need to loop.
return !SGPROperandRegs.empty();
}
bool AMDGPURegisterBankInfo::executeInWaterfallLoop(
MachineIRBuilder &B, MachineInstr &MI, MachineRegisterInfo &MRI,
ArrayRef<unsigned> OpIndices) const {
// Use a set to avoid extra readfirstlanes in the case where multiple operands
// are the same register.
SmallSet<Register, 4> SGPROperandRegs;
if (!collectWaterfallOperands(SGPROperandRegs, MI, MRI, OpIndices))
return false;
MachineBasicBlock::iterator I = MI.getIterator();
return executeInWaterfallLoop(B, make_range(I, std::next(I)),
SGPROperandRegs, MRI);
}
bool AMDGPURegisterBankInfo::executeInWaterfallLoop(
MachineInstr &MI, MachineRegisterInfo &MRI,
ArrayRef<unsigned> OpIndices) const {
MachineIRBuilder B(MI);
return executeInWaterfallLoop(B, MI, MRI, OpIndices);
}
// Legalize an operand that must be an SGPR by inserting a readfirstlane.
void AMDGPURegisterBankInfo::constrainOpWithReadfirstlane(
MachineInstr &MI, MachineRegisterInfo &MRI, unsigned OpIdx) const {
Register Reg = MI.getOperand(OpIdx).getReg();
const RegisterBank *Bank = getRegBank(Reg, MRI, *TRI);
if (Bank != &AMDGPU::VGPRRegBank)
return;
MachineIRBuilder B(MI);
Register SGPR = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
B.buildInstr(AMDGPU::V_READFIRSTLANE_B32)
.addDef(SGPR)
.addReg(Reg);
MRI.setType(SGPR, MRI.getType(Reg));
const TargetRegisterClass *Constrained =
constrainGenericRegister(Reg, AMDGPU::VGPR_32RegClass, MRI);
(void)Constrained;
assert(Constrained && "Failed to constrain readfirstlane src reg");
MI.getOperand(OpIdx).setReg(SGPR);
}
/// Split \p Ty into 2 pieces. The first will have \p FirstSize bits, and the
/// rest will be in the remainder.
static std::pair<LLT, LLT> splitUnequalType(LLT Ty, unsigned FirstSize) {
unsigned TotalSize = Ty.getSizeInBits();
if (!Ty.isVector())
return {LLT::scalar(FirstSize), LLT::scalar(TotalSize - FirstSize)};
LLT EltTy = Ty.getElementType();
unsigned EltSize = EltTy.getSizeInBits();
assert(FirstSize % EltSize == 0);
unsigned FirstPartNumElts = FirstSize / EltSize;
unsigned RemainderElts = (TotalSize - FirstSize) / EltSize;
return {LLT::scalarOrVector(FirstPartNumElts, EltTy),
LLT::scalarOrVector(RemainderElts, EltTy)};
}
static LLT widen96To128(LLT Ty) {
if (!Ty.isVector())
return LLT::scalar(128);
LLT EltTy = Ty.getElementType();
assert(128 % EltTy.getSizeInBits() == 0);
return LLT::vector(128 / EltTy.getSizeInBits(), EltTy);
}
bool AMDGPURegisterBankInfo::applyMappingLoad(MachineInstr &MI,
const AMDGPURegisterBankInfo::OperandsMapper &OpdMapper,
MachineRegisterInfo &MRI) const {
Register DstReg = MI.getOperand(0).getReg();
const LLT LoadTy = MRI.getType(DstReg);
unsigned LoadSize = LoadTy.getSizeInBits();
const unsigned MaxNonSmrdLoadSize = 128;
const RegisterBank *PtrBank =
OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank;
if (PtrBank == &AMDGPU::SGPRRegBank) {
// If the pointer is an SGPR, we ordinarily have nothing to do.
if (LoadSize != 96)
return false;
MachineMemOperand *MMO = *MI.memoperands_begin();
Register PtrReg = MI.getOperand(1).getReg();
// 96-bit loads are only available for vector loads. We need to split this
// into a 64-bit part, and 32 (unless we can widen to a 128-bit load).
MachineIRBuilder B(MI);
ApplyRegBankMapping O(*this, MRI, &AMDGPU::SGPRRegBank);
GISelObserverWrapper Observer(&O);
B.setChangeObserver(Observer);
if (MMO->getAlign() < Align(16)) {
LLT Part64, Part32;
std::tie(Part64, Part32) = splitUnequalType(LoadTy, 64);
auto Load0 = B.buildLoadFromOffset(Part64, PtrReg, *MMO, 0);
auto Load1 = B.buildLoadFromOffset(Part32, PtrReg, *MMO, 8);
auto Undef = B.buildUndef(LoadTy);
auto Ins0 = B.buildInsert(LoadTy, Undef, Load0, 0);
B.buildInsert(MI.getOperand(0), Ins0, Load1, 64);
} else {
LLT WiderTy = widen96To128(LoadTy);
auto WideLoad = B.buildLoadFromOffset(WiderTy, PtrReg, *MMO, 0);
B.buildExtract(MI.getOperand(0), WideLoad, 0);
}
MI.eraseFromParent();
return true;
}
// 128-bit loads are supported for all instruction types.
if (LoadSize <= MaxNonSmrdLoadSize)
return false;
SmallVector<Register, 16> DefRegs(OpdMapper.getVRegs(0));
SmallVector<Register, 1> SrcRegs(OpdMapper.getVRegs(1));
if (SrcRegs.empty())
SrcRegs.push_back(MI.getOperand(1).getReg());
assert(LoadSize % MaxNonSmrdLoadSize == 0);
// RegBankSelect only emits scalar types, so we need to reset the pointer
// operand to a pointer type.
Register BasePtrReg = SrcRegs[0];
LLT PtrTy = MRI.getType(MI.getOperand(1).getReg());
MRI.setType(BasePtrReg, PtrTy);
MachineIRBuilder B(MI);
unsigned NumSplitParts = LoadTy.getSizeInBits() / MaxNonSmrdLoadSize;
const LLT LoadSplitTy = LoadTy.divide(NumSplitParts);
ApplyRegBankMapping O(*this, MRI, &AMDGPU::VGPRRegBank);
GISelObserverWrapper Observer(&O);
B.setChangeObserver(Observer);
LegalizerHelper Helper(B.getMF(), Observer, B);
if (LoadTy.isVector()) {
if (Helper.fewerElementsVector(MI, 0, LoadSplitTy) != LegalizerHelper::Legalized)
return false;
} else {
if (Helper.narrowScalar(MI, 0, LoadSplitTy) != LegalizerHelper::Legalized)
return false;
}
MRI.setRegBank(DstReg, AMDGPU::VGPRRegBank);
return true;
}
bool AMDGPURegisterBankInfo::applyMappingDynStackAlloc(
MachineInstr &MI,
const AMDGPURegisterBankInfo::OperandsMapper &OpdMapper,
MachineRegisterInfo &MRI) const {
const MachineFunction &MF = *MI.getMF();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const auto &TFI = *ST.getFrameLowering();
// Guard in case the stack growth direction ever changes with scratch
// instructions.
if (TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown)
return false;
Register Dst = MI.getOperand(0).getReg();
Register AllocSize = MI.getOperand(1).getReg();
Align Alignment = assumeAligned(MI.getOperand(2).getImm());
const RegisterBank *SizeBank = getRegBank(AllocSize, MRI, *TRI);
// TODO: Need to emit a wave reduction to get the maximum size.
if (SizeBank != &AMDGPU::SGPRRegBank)
return false;
LLT PtrTy = MRI.getType(Dst);
LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits());
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
Register SPReg = Info->getStackPtrOffsetReg();
ApplyRegBankMapping ApplyBank(*this, MRI, &AMDGPU::SGPRRegBank);
GISelObserverWrapper Observer(&ApplyBank);
MachineIRBuilder B(MI);
B.setChangeObserver(Observer);
auto WaveSize = B.buildConstant(LLT::scalar(32), ST.getWavefrontSizeLog2());
auto ScaledSize = B.buildShl(IntPtrTy, AllocSize, WaveSize);
auto SPCopy = B.buildCopy(PtrTy, SPReg);
if (Alignment > TFI.getStackAlign()) {
auto PtrAdd = B.buildPtrAdd(PtrTy, SPCopy, ScaledSize);
B.buildMaskLowPtrBits(Dst, PtrAdd,
Log2(Alignment) + ST.getWavefrontSizeLog2());
} else {
B.buildPtrAdd(Dst, SPCopy, ScaledSize);
}
MI.eraseFromParent();
return true;
}
bool AMDGPURegisterBankInfo::applyMappingImage(
MachineInstr &MI, const AMDGPURegisterBankInfo::OperandsMapper &OpdMapper,
MachineRegisterInfo &MRI, int RsrcIdx) const {
const int NumDefs = MI.getNumExplicitDefs();
// The reported argument index is relative to the IR intrinsic call arguments,
// so we need to shift by the number of defs and the intrinsic ID.
RsrcIdx += NumDefs + 1;
// Insert copies to VGPR arguments.
applyDefaultMapping(OpdMapper);
// Fixup any SGPR arguments.
SmallVector<unsigned, 4> SGPRIndexes;
for (int I = NumDefs, NumOps = MI.getNumOperands(); I != NumOps; ++I) {
if (!MI.getOperand(I).isReg())
continue;
// If this intrinsic has a sampler, it immediately follows rsrc.
if (I == RsrcIdx || I == RsrcIdx + 1)
SGPRIndexes.push_back(I);
}
executeInWaterfallLoop(MI, MRI, SGPRIndexes);
return true;
}
static Register getSrcRegIgnoringCopies(const MachineRegisterInfo &MRI,
Register Reg) {
MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
if (!Def)
return Reg;
// TODO: Guard against this being an implicit def
return Def->getOperand(0).getReg();
}
// Analyze a combined offset from an llvm.amdgcn.s.buffer intrinsic and store
// the three offsets (voffset, soffset and instoffset)
static unsigned setBufferOffsets(MachineIRBuilder &B,
const AMDGPURegisterBankInfo &RBI,
Register CombinedOffset, Register &VOffsetReg,
Register &SOffsetReg, int64_t &InstOffsetVal,
Align Alignment) {
const LLT S32 = LLT::scalar(32);
MachineRegisterInfo *MRI = B.getMRI();
if (Optional<int64_t> Imm = getConstantVRegVal(CombinedOffset, *MRI)) {
uint32_t SOffset, ImmOffset;
if (AMDGPU::splitMUBUFOffset(*Imm, SOffset, ImmOffset, &RBI.Subtarget,
Alignment)) {
VOffsetReg = B.buildConstant(S32, 0).getReg(0);
SOffsetReg = B.buildConstant(S32, SOffset).getReg(0);
InstOffsetVal = ImmOffset;
B.getMRI()->setRegBank(VOffsetReg, AMDGPU::VGPRRegBank);
B.getMRI()->setRegBank(SOffsetReg, AMDGPU::SGPRRegBank);
return SOffset + ImmOffset;
}
}
Register Base;
unsigned Offset;
MachineInstr *Unused;
std::tie(Base, Offset, Unused)
= AMDGPU::getBaseWithConstantOffset(*MRI, CombinedOffset);
uint32_t SOffset, ImmOffset;
if (Offset > 0 && AMDGPU::splitMUBUFOffset(Offset, SOffset, ImmOffset,
&RBI.Subtarget, Alignment)) {
if (RBI.getRegBank(Base, *MRI, *RBI.TRI) == &AMDGPU::VGPRRegBank) {
VOffsetReg = Base;
SOffsetReg = B.buildConstant(S32, SOffset).getReg(0);
B.getMRI()->setRegBank(SOffsetReg, AMDGPU::SGPRRegBank);
InstOffsetVal = ImmOffset;
return 0; // XXX - Why is this 0?
}
// If we have SGPR base, we can use it for soffset.
if (SOffset == 0) {
VOffsetReg = B.buildConstant(S32, 0).getReg(0);
B.getMRI()->setRegBank(VOffsetReg, AMDGPU::VGPRRegBank);
SOffsetReg = Base;
InstOffsetVal = ImmOffset;
return 0; // XXX - Why is this 0?
}
}
// Handle the variable sgpr + vgpr case.
if (MachineInstr *Add = getOpcodeDef(AMDGPU::G_ADD, CombinedOffset, *MRI)) {
Register Src0 = getSrcRegIgnoringCopies(*MRI, Add->getOperand(1).getReg());
Register Src1 = getSrcRegIgnoringCopies(*MRI, Add->getOperand(2).getReg());
const RegisterBank *Src0Bank = RBI.getRegBank(Src0, *MRI, *RBI.TRI);
const RegisterBank *Src1Bank = RBI.getRegBank(Src1, *MRI, *RBI.TRI);
if (Src0Bank == &AMDGPU::VGPRRegBank && Src1Bank == &AMDGPU::SGPRRegBank) {
VOffsetReg = Src0;
SOffsetReg = Src1;
return 0;
}
if (Src0Bank == &AMDGPU::SGPRRegBank && Src1Bank == &AMDGPU::VGPRRegBank) {
VOffsetReg = Src1;
SOffsetReg = Src0;
return 0;
}
}
// Ensure we have a VGPR for the combined offset. This could be an issue if we
// have an SGPR offset and a VGPR resource.
if (RBI.getRegBank(CombinedOffset, *MRI, *RBI.TRI) == &AMDGPU::VGPRRegBank) {
VOffsetReg = CombinedOffset;
} else {
VOffsetReg = B.buildCopy(S32, CombinedOffset).getReg(0);
B.getMRI()->setRegBank(VOffsetReg, AMDGPU::VGPRRegBank);
}
SOffsetReg = B.buildConstant(S32, 0).getReg(0);
B.getMRI()->setRegBank(SOffsetReg, AMDGPU::SGPRRegBank);
return 0;
}
bool AMDGPURegisterBankInfo::applyMappingSBufferLoad(
const OperandsMapper &OpdMapper) const {
MachineInstr &MI = OpdMapper.getMI();
MachineRegisterInfo &MRI = OpdMapper.getMRI();
const LLT S32 = LLT::scalar(32);
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
const RegisterBank *RSrcBank =
OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank;
const RegisterBank *OffsetBank =
OpdMapper.getInstrMapping().getOperandMapping(2).BreakDown[0].RegBank;
if (RSrcBank == &AMDGPU::SGPRRegBank &&
OffsetBank == &AMDGPU::SGPRRegBank)
return true; // Legal mapping
// FIXME: 96-bit case was widened during legalize. We neeed to narrow it back
// here but don't have an MMO.
unsigned LoadSize = Ty.getSizeInBits();
int NumLoads = 1;
if (LoadSize == 256 || LoadSize == 512) {
NumLoads = LoadSize / 128;
Ty = Ty.divide(NumLoads);
}
// Use the alignment to ensure that the required offsets will fit into the
// immediate offsets.
const Align Alignment = NumLoads > 1 ? Align(16 * NumLoads) : Align(1);
MachineIRBuilder B(MI);
MachineFunction &MF = B.getMF();
Register SOffset;
Register VOffset;
int64_t ImmOffset = 0;
unsigned MMOOffset = setBufferOffsets(B, *this, MI.getOperand(2).getReg(),
VOffset, SOffset, ImmOffset, Alignment);
// TODO: 96-bit loads were widened to 128-bit results. Shrink the result if we
// can, but we neeed to track an MMO for that.
const unsigned MemSize = (Ty.getSizeInBits() + 7) / 8;
const Align MemAlign(4); // FIXME: ABI type alignment?
MachineMemOperand *BaseMMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
MemSize, MemAlign);
if (MMOOffset != 0)
BaseMMO = MF.getMachineMemOperand(BaseMMO, MMOOffset, MemSize);
// If only the offset is divergent, emit a MUBUF buffer load instead. We can
// assume that the buffer is unswizzled.
Register RSrc = MI.getOperand(1).getReg();
Register VIndex = B.buildConstant(S32, 0).getReg(0);
B.getMRI()->setRegBank(VIndex, AMDGPU::VGPRRegBank);
SmallVector<Register, 4> LoadParts(NumLoads);
MachineBasicBlock::iterator MII = MI.getIterator();
MachineInstrSpan Span(MII, &B.getMBB());
for (int i = 0; i < NumLoads; ++i) {
if (NumLoads == 1) {
LoadParts[i] = Dst;
} else {
LoadParts[i] = MRI.createGenericVirtualRegister(Ty);
MRI.setRegBank(LoadParts[i], AMDGPU::VGPRRegBank);
}
MachineMemOperand *MMO = BaseMMO;
if (i != 0)
BaseMMO = MF.getMachineMemOperand(BaseMMO, MMOOffset + 16 * i, MemSize);
B.buildInstr(AMDGPU::G_AMDGPU_BUFFER_LOAD)
.addDef(LoadParts[i]) // vdata
.addUse(RSrc) // rsrc
.addUse(VIndex) // vindex
.addUse(VOffset) // voffset
.addUse(SOffset) // soffset
.addImm(ImmOffset + 16 * i) // offset(imm)
.addImm(0) // cachepolicy, swizzled buffer(imm)
.addImm(0) // idxen(imm)
.addMemOperand(MMO);
}
// TODO: If only the resource is a VGPR, it may be better to execute the
// scalar load in the waterfall loop if the resource is expected to frequently
// be dynamically uniform.
if (RSrcBank != &AMDGPU::SGPRRegBank) {
// Remove the original instruction to avoid potentially confusing the
// waterfall loop logic.
B.setInstr(*Span.begin());
MI.eraseFromParent();
SmallSet<Register, 4> OpsToWaterfall;
OpsToWaterfall.insert(RSrc);
executeInWaterfallLoop(B, make_range(Span.begin(), Span.end()),
OpsToWaterfall, MRI);
}
if (NumLoads != 1) {
if (Ty.isVector())
B.buildConcatVectors(Dst, LoadParts);
else
B.buildMerge(Dst, LoadParts);
}
// We removed the instruction earlier with a waterfall loop.
if (RSrcBank == &AMDGPU::SGPRRegBank)
MI.eraseFromParent();
return true;
}
bool AMDGPURegisterBankInfo::applyMappingBFEIntrinsic(
const OperandsMapper &OpdMapper, bool Signed) const {
MachineInstr &MI = OpdMapper.getMI();
MachineRegisterInfo &MRI = OpdMapper.getMRI();
// Insert basic copies
applyDefaultMapping(OpdMapper);
Register DstReg = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(DstReg);
const LLT S32 = LLT::scalar(32);
const RegisterBank *DstBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
if (DstBank == &AMDGPU::VGPRRegBank) {
if (Ty == S32)
return true;
// TODO: 64-bit version is scalar only, so we need to expand this.
return false;
}
Register SrcReg = MI.getOperand(2).getReg();
Register OffsetReg = MI.getOperand(3).getReg();
Register WidthReg = MI.getOperand(4).getReg();
// The scalar form packs the offset and width in a single operand.
ApplyRegBankMapping ApplyBank(*this, MRI, &AMDGPU::SGPRRegBank);
GISelObserverWrapper Observer(&ApplyBank);
MachineIRBuilder B(MI);
B.setChangeObserver(Observer);
// Ensure the high bits are clear to insert the offset.
auto OffsetMask = B.buildConstant(S32, maskTrailingOnes<unsigned>(6));
auto ClampOffset = B.buildAnd(S32, OffsetReg, OffsetMask);
// Zeros out the low bits, so don't bother clamping the input value.
auto ShiftWidth = B.buildShl(S32, WidthReg, B.buildConstant(S32, 16));
// Transformation function, pack the offset and width of a BFE into
// the format expected by the S_BFE_I32 / S_BFE_U32. In the second
// source, bits [5:0] contain the offset and bits [22:16] the width.
auto MergedInputs = B.buildOr(S32, ClampOffset, ShiftWidth);
// TODO: It might be worth using a pseudo here to avoid scc clobber and
// register class constraints.
unsigned Opc = Ty == S32 ? (Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32) :
(Signed ? AMDGPU::S_BFE_I64 : AMDGPU::S_BFE_U64);
auto MIB = B.buildInstr(Opc, {DstReg}, {SrcReg, MergedInputs});
if (!constrainSelectedInstRegOperands(*MIB, *TII, *TRI, *this))
llvm_unreachable("failed to constrain BFE");
MI.eraseFromParent();
return true;
}
// FIXME: Duplicated from LegalizerHelper
static CmpInst::Predicate minMaxToCompare(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_SMIN:
return CmpInst::ICMP_SLT;
case TargetOpcode::G_SMAX:
return CmpInst::ICMP_SGT;
case TargetOpcode::G_UMIN:
return CmpInst::ICMP_ULT;
case TargetOpcode::G_UMAX:
return CmpInst::ICMP_UGT;
default:
llvm_unreachable("not in integer min/max");
}
}
static unsigned minMaxToExtend(unsigned Opc) {
switch (Opc) {
case TargetOpcode::G_SMIN:
case TargetOpcode::G_SMAX:
return TargetOpcode::G_SEXT;
case TargetOpcode::G_UMIN:
case TargetOpcode::G_UMAX:
return TargetOpcode::G_ZEXT;
default:
llvm_unreachable("not in integer min/max");
}
}
// Emit a legalized extension from <2 x s16> to 2 32-bit components, avoiding
// any illegal vector extend or unmerge operations.
static std::pair<Register, Register>
unpackV2S16ToS32(MachineIRBuilder &B, Register Src, unsigned ExtOpcode) {
const LLT S32 = LLT::scalar(32);
auto Bitcast = B.buildBitcast(S32, Src);
if (ExtOpcode == TargetOpcode::G_SEXT) {
auto ExtLo = B.buildSExtInReg(S32, Bitcast, 16);
auto ShiftHi = B.buildAShr(S32, Bitcast, B.buildConstant(S32, 16));
return std::make_pair(ExtLo.getReg(0), ShiftHi.getReg(0));
}
auto ShiftHi = B.buildLShr(S32, Bitcast, B.buildConstant(S32, 16));
if (ExtOpcode == TargetOpcode::G_ZEXT) {
auto ExtLo = B.buildAnd(S32, Bitcast, B.buildConstant(S32, 0xffff));
return std::make_pair(ExtLo.getReg(0), ShiftHi.getReg(0));
}
assert(ExtOpcode == TargetOpcode::G_ANYEXT);
return std::make_pair(Bitcast.getReg(0), ShiftHi.getReg(0));
}
static MachineInstr *buildExpandedScalarMinMax(MachineIRBuilder &B,
CmpInst::Predicate Pred,
Register Dst, Register Src0,
Register Src1) {
const LLT CmpType = LLT::scalar(32);
auto Cmp = B.buildICmp(Pred, CmpType, Src0, Src1);
return B.buildSelect(Dst, Cmp, Src0, Src1);
}
// FIXME: Duplicated from LegalizerHelper, except changing the boolean type.
void AMDGPURegisterBankInfo::lowerScalarMinMax(MachineIRBuilder &B,
MachineInstr &MI) const {
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Src1 = MI.getOperand(2).getReg();
const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
MachineInstr *Sel = buildExpandedScalarMinMax(B, Pred, Dst, Src0, Src1);
Register CmpReg = Sel->getOperand(1).getReg();
B.getMRI()->setRegBank(CmpReg, AMDGPU::SGPRRegBank);
MI.eraseFromParent();
}
// For cases where only a single copy is inserted for matching register banks.
// Replace the register in the instruction operand
static bool substituteSimpleCopyRegs(
const AMDGPURegisterBankInfo::OperandsMapper &OpdMapper, unsigned OpIdx) {
SmallVector<unsigned, 1> SrcReg(OpdMapper.getVRegs(OpIdx));
if (!SrcReg.empty()) {
assert(SrcReg.size() == 1);
OpdMapper.getMI().getOperand(OpIdx).setReg(SrcReg[0]);
return true;
}
return false;
}
/// Handle register layout difference for f16 images for some subtargets.
Register AMDGPURegisterBankInfo::handleD16VData(MachineIRBuilder &B,
MachineRegisterInfo &MRI,
Register Reg) const {
if (!Subtarget.hasUnpackedD16VMem())
return Reg;
const LLT S16 = LLT::scalar(16);
LLT StoreVT = MRI.getType(Reg);
if (!StoreVT.isVector() || StoreVT.getElementType() != S16)
return Reg;
auto Unmerge = B.buildUnmerge(S16, Reg);
SmallVector<Register, 4> WideRegs;
for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
WideRegs.push_back(Unmerge.getReg(I));
const LLT S32 = LLT::scalar(32);
int NumElts = StoreVT.getNumElements();
return B.buildMerge(LLT::vector(NumElts, S32), WideRegs).getReg(0);
}
static std::pair<Register, unsigned>
getBaseWithConstantOffset(MachineRegisterInfo &MRI, Register Reg) {
int64_t Const;
if (mi_match(Reg, MRI, m_ICst(Const)))
return std::make_pair(Register(), Const);
Register Base;
if (mi_match(Reg, MRI, m_GAdd(m_Reg(Base), m_ICst(Const))))
return std::make_pair(Base, Const);
// TODO: Handle G_OR used for add case
return std::make_pair(Reg, 0);
}
std::pair<Register, unsigned>
AMDGPURegisterBankInfo::splitBufferOffsets(MachineIRBuilder &B,
Register OrigOffset) const {
const unsigned MaxImm = 4095;
Register BaseReg;
unsigned ImmOffset;
const LLT S32 = LLT::scalar(32);
std::tie(BaseReg, ImmOffset) = getBaseWithConstantOffset(*B.getMRI(),
OrigOffset);
unsigned C1 = 0;
if (ImmOffset != 0) {
// If the immediate value is too big for the immoffset field, put the value
// and -4096 into the immoffset field so that the value that is copied/added
// for the voffset field is a multiple of 4096, and it stands more chance
// of being CSEd with the copy/add for another similar load/store.
// However, do not do that rounding down to a multiple of 4096 if that is a
// negative number, as it appears to be illegal to have a negative offset
// in the vgpr, even if adding the immediate offset makes it positive.
unsigned Overflow = ImmOffset & ~MaxImm;
ImmOffset -= Overflow;
if ((int32_t)Overflow < 0) {
Overflow += ImmOffset;
ImmOffset = 0;
}
C1 = ImmOffset;
if (Overflow != 0) {
if (!BaseReg)
BaseReg = B.buildConstant(S32, Overflow).getReg(0);
else {
auto OverflowVal = B.buildConstant(S32, Overflow);
BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0);
}
}
}
if (!BaseReg)
BaseReg = B.buildConstant(S32, 0).getReg(0);
return {BaseReg, C1};
}
static bool isZero(Register Reg, MachineRegisterInfo &MRI) {
int64_t C;
return mi_match(Reg, MRI, m_ICst(C)) && C == 0;
}
static unsigned extractGLC(unsigned CachePolicy) {
return CachePolicy & 1;
}
static unsigned extractSLC(unsigned CachePolicy) {
return (CachePolicy >> 1) & 1;
}
static unsigned extractDLC(unsigned CachePolicy) {
return (CachePolicy >> 2) & 1;
}
MachineInstr *
AMDGPURegisterBankInfo::selectStoreIntrinsic(MachineIRBuilder &B,
MachineInstr &MI) const {
MachineRegisterInfo &MRI = *B.getMRI();
executeInWaterfallLoop(B, MI, MRI, {2, 4});
// FIXME: DAG lowering brokenly changes opcode based on FP vs. integer.
Register VData = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(VData);
int EltSize = Ty.getScalarSizeInBits();
int Size = Ty.getSizeInBits();
// FIXME: Broken integer truncstore.
if (EltSize != 32)
report_fatal_error("unhandled intrinsic store");
// FIXME: Verifier should enforce 1 MMO for these intrinsics.
const int MemSize = (*MI.memoperands_begin())->getSize();
Register RSrc = MI.getOperand(2).getReg();
Register VOffset = MI.getOperand(3).getReg();
Register SOffset = MI.getOperand(4).getReg();
unsigned CachePolicy = MI.getOperand(5).getImm();
unsigned ImmOffset;
std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
const bool Offen = !isZero(VOffset, MRI);
unsigned Opc = AMDGPU::BUFFER_STORE_DWORD_OFFEN_exact;
switch (8 * MemSize) {
case 8:
Opc = Offen ? AMDGPU::BUFFER_STORE_BYTE_OFFEN_exact :
AMDGPU::BUFFER_STORE_BYTE_OFFSET_exact;
break;
case 16:
Opc = Offen ? AMDGPU::BUFFER_STORE_SHORT_OFFEN_exact :
AMDGPU::BUFFER_STORE_SHORT_OFFSET_exact;
break;
default:
Opc = Offen ? AMDGPU::BUFFER_STORE_DWORD_OFFEN_exact :
AMDGPU::BUFFER_STORE_DWORD_OFFSET_exact;
if (Size > 32)
Opc = AMDGPU::getMUBUFOpcode(Opc, Size / 32);
break;
}
// Set the insertion point back to the instruction in case it was moved into a
// loop.
B.setInstr(MI);
MachineInstrBuilder MIB = B.buildInstr(Opc)
.addUse(VData);
if (Offen)
MIB.addUse(VOffset);
MIB.addUse(RSrc)
.addUse(SOffset)
.addImm(ImmOffset)
.addImm(extractGLC(CachePolicy))
.addImm(extractSLC(CachePolicy))
.addImm(0) // tfe: FIXME: Remove from inst
.addImm(extractDLC(CachePolicy))
.cloneMemRefs(MI);
// FIXME: We need a way to report failure from applyMappingImpl.
// Insert constrain copies before inserting the loop.
if (!constrainSelectedInstRegOperands(*MIB, *TII, *TRI, *this))
report_fatal_error("failed to constrain selected store intrinsic");
return MIB;
}
bool AMDGPURegisterBankInfo::buildVCopy(MachineIRBuilder &B, Register DstReg,
Register SrcReg) const {
MachineRegisterInfo &MRI = *B.getMRI();
LLT SrcTy = MRI.getType(SrcReg);
if (SrcTy.getSizeInBits() == 32) {
// Use a v_mov_b32 here to make the exec dependency explicit.
B.buildInstr(AMDGPU::V_MOV_B32_e32)
.addDef(DstReg)
.addUse(SrcReg);
return constrainGenericRegister(DstReg, AMDGPU::VGPR_32RegClass, MRI) &&
constrainGenericRegister(SrcReg, AMDGPU::SReg_32RegClass, MRI);
}
Register TmpReg0 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
Register TmpReg1 = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
B.buildInstr(AMDGPU::V_MOV_B32_e32)
.addDef(TmpReg0)
.addUse(SrcReg, 0, AMDGPU::sub0);
B.buildInstr(AMDGPU::V_MOV_B32_e32)
.addDef(TmpReg1)
.addUse(SrcReg, 0, AMDGPU::sub1);
B.buildInstr(AMDGPU::REG_SEQUENCE)
.addDef(DstReg)
.addUse(TmpReg0)
.addImm(AMDGPU::sub0)
.addUse(TmpReg1)
.addImm(AMDGPU::sub1);
return constrainGenericRegister(SrcReg, AMDGPU::SReg_64RegClass, MRI) &&
constrainGenericRegister(DstReg, AMDGPU::VReg_64RegClass, MRI);
}
/// Utility function for pushing dynamic vector indexes with a constant offset
/// into waterwall loops.
static void reinsertVectorIndexAdd(MachineIRBuilder &B,
MachineInstr &IdxUseInstr,
unsigned OpIdx,
unsigned ConstOffset) {
MachineRegisterInfo &MRI = *B.getMRI();
const LLT S32 = LLT::scalar(32);
Register WaterfallIdx = IdxUseInstr.getOperand(OpIdx).getReg();
B.setInsertPt(*IdxUseInstr.getParent(), IdxUseInstr.getIterator());
auto MaterializedOffset = B.buildConstant(S32, ConstOffset);
auto Add = B.buildAdd(S32, WaterfallIdx, MaterializedOffset);
MRI.setRegBank(MaterializedOffset.getReg(0), AMDGPU::SGPRRegBank);
MRI.setRegBank(Add.getReg(0), AMDGPU::SGPRRegBank);
IdxUseInstr.getOperand(OpIdx).setReg(Add.getReg(0));
}
/// Implement extending a 32-bit value to a 64-bit value. \p Lo32Reg is the
/// original 32-bit source value (to be inserted in the low part of the combined
/// 64-bit result), and \p Hi32Reg is the high half of the combined 64-bit
/// value.
static void extendLow32IntoHigh32(MachineIRBuilder &B,
Register Hi32Reg, Register Lo32Reg,
unsigned ExtOpc,
const RegisterBank &RegBank,
bool IsBooleanSrc = false) {
if (ExtOpc == AMDGPU::G_ZEXT) {
B.buildConstant(Hi32Reg, 0);
} else if (ExtOpc == AMDGPU::G_SEXT) {
if (IsBooleanSrc) {
// If we know the original source was an s1, the high half is the same as
// the low.
B.buildCopy(Hi32Reg, Lo32Reg);
} else {
// Replicate sign bit from 32-bit extended part.
auto ShiftAmt = B.buildConstant(LLT::scalar(32), 31);
B.getMRI()->setRegBank(ShiftAmt.getReg(0), RegBank);
B.buildAShr(Hi32Reg, Lo32Reg, ShiftAmt);
}
} else {
assert(ExtOpc == AMDGPU::G_ANYEXT && "not an integer extension");
B.buildUndef(Hi32Reg);
}
}
bool AMDGPURegisterBankInfo::foldExtractEltToCmpSelect(
MachineInstr &MI, MachineRegisterInfo &MRI,
const OperandsMapper &OpdMapper) const {
Register VecReg = MI.getOperand(1).getReg();
Register Idx = MI.getOperand(2).getReg();
const RegisterBank &IdxBank =
*OpdMapper.getInstrMapping().getOperandMapping(2).BreakDown[0].RegBank;
bool IsDivergentIdx = IdxBank == AMDGPU::VGPRRegBank;
LLT VecTy = MRI.getType(VecReg);
unsigned EltSize = VecTy.getScalarSizeInBits();
unsigned NumElem = VecTy.getNumElements();
if (!SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
IsDivergentIdx))
return false;
MachineIRBuilder B(MI);
LLT S32 = LLT::scalar(32);
const RegisterBank &DstBank =
*OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
const RegisterBank &SrcBank =
*OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank;
const RegisterBank &CCBank =
(DstBank == AMDGPU::SGPRRegBank &&
SrcBank == AMDGPU::SGPRRegBank &&
IdxBank == AMDGPU::SGPRRegBank) ? AMDGPU::SGPRRegBank
: AMDGPU::VCCRegBank;
LLT CCTy = (CCBank == AMDGPU::SGPRRegBank) ? S32 : LLT::scalar(1);
if (CCBank == AMDGPU::VCCRegBank && IdxBank == AMDGPU::SGPRRegBank) {
Idx = B.buildCopy(S32, Idx)->getOperand(0).getReg();
MRI.setRegBank(Idx, AMDGPU::VGPRRegBank);
}
LLT EltTy = VecTy.getScalarType();
SmallVector<Register, 2> DstRegs(OpdMapper.getVRegs(0));
unsigned NumLanes = DstRegs.size();
if (!NumLanes)
NumLanes = 1;
else
EltTy = MRI.getType(DstRegs[0]);
auto UnmergeToEltTy = B.buildUnmerge(EltTy, VecReg);
SmallVector<Register, 2> Res(NumLanes);
for (unsigned L = 0; L < NumLanes; ++L)
Res[L] = UnmergeToEltTy.getReg(L);
for (unsigned I = 1; I < NumElem; ++I) {
auto IC = B.buildConstant(S32, I);
MRI.setRegBank(IC->getOperand(0).getReg(), AMDGPU::SGPRRegBank);
auto Cmp = B.buildICmp(CmpInst::ICMP_EQ, CCTy, Idx, IC);
MRI.setRegBank(Cmp->getOperand(0).getReg(), CCBank);
for (unsigned L = 0; L < NumLanes; ++L) {
auto S = B.buildSelect(EltTy, Cmp,
UnmergeToEltTy.getReg(I * NumLanes + L), Res[L]);
for (unsigned N : { 0, 2, 3 })
MRI.setRegBank(S->getOperand(N).getReg(), DstBank);
Res[L] = S->getOperand(0).getReg();
}
}
for (unsigned L = 0; L < NumLanes; ++L) {
Register DstReg = (NumLanes == 1) ? MI.getOperand(0).getReg() : DstRegs[L];
B.buildCopy(DstReg, Res[L]);
MRI.setRegBank(DstReg, DstBank);
}
MRI.setRegBank(MI.getOperand(0).getReg(), DstBank);
MI.eraseFromParent();
return true;
}
bool AMDGPURegisterBankInfo::foldInsertEltToCmpSelect(
MachineInstr &MI, MachineRegisterInfo &MRI,
const OperandsMapper &OpdMapper) const {
Register VecReg = MI.getOperand(1).getReg();
Register Idx = MI.getOperand(3).getReg();
const RegisterBank &IdxBank =
*OpdMapper.getInstrMapping().getOperandMapping(3).BreakDown[0].RegBank;
bool IsDivergentIdx = IdxBank == AMDGPU::VGPRRegBank;
LLT VecTy = MRI.getType(VecReg);
unsigned EltSize = VecTy.getScalarSizeInBits();
unsigned NumElem = VecTy.getNumElements();
if (!SITargetLowering::shouldExpandVectorDynExt(EltSize, NumElem,
IsDivergentIdx))
return false;
MachineIRBuilder B(MI);
LLT S32 = LLT::scalar(32);
const RegisterBank &DstBank =
*OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
const RegisterBank &SrcBank =
*OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank;
const RegisterBank &InsBank =
*OpdMapper.getInstrMapping().getOperandMapping(2).BreakDown[0].RegBank;
const RegisterBank &CCBank =
(DstBank == AMDGPU::SGPRRegBank &&
SrcBank == AMDGPU::SGPRRegBank &&
InsBank == AMDGPU::SGPRRegBank &&
IdxBank == AMDGPU::SGPRRegBank) ? AMDGPU::SGPRRegBank
: AMDGPU::VCCRegBank;
LLT CCTy = (CCBank == AMDGPU::SGPRRegBank) ? S32 : LLT::scalar(1);
if (CCBank == AMDGPU::VCCRegBank && IdxBank == AMDGPU::SGPRRegBank) {
Idx = B.buildCopy(S32, Idx)->getOperand(0).getReg();
MRI.setRegBank(Idx, AMDGPU::VGPRRegBank);
}
LLT EltTy = VecTy.getScalarType();
SmallVector<Register, 2> InsRegs(OpdMapper.getVRegs(2));
unsigned NumLanes = InsRegs.size();
if (!NumLanes) {
NumLanes = 1;
InsRegs.push_back(MI.getOperand(2).getReg());
} else {
EltTy = MRI.getType(InsRegs[0]);
}
auto UnmergeToEltTy = B.buildUnmerge(EltTy, VecReg);
SmallVector<Register, 16> Ops(NumElem * NumLanes);
for (unsigned I = 0; I < NumElem; ++I) {
auto IC = B.buildConstant(S32, I);
MRI.setRegBank(IC->getOperand(0).getReg(), AMDGPU::SGPRRegBank);
auto Cmp = B.buildICmp(CmpInst::ICMP_EQ, CCTy, Idx, IC);
MRI.setRegBank(Cmp->getOperand(0).getReg(), CCBank);
for (unsigned L = 0; L < NumLanes; ++L) {
auto S = B.buildSelect(EltTy, Cmp, InsRegs[L],
UnmergeToEltTy.getReg(I * NumLanes + L));
for (unsigned N : { 0, 2, 3 })
MRI.setRegBank(S->getOperand(N).getReg(), DstBank);
Ops[I * NumLanes + L] = S->getOperand(0).getReg();
}
}
LLT MergeTy = LLT::vector(Ops.size(), EltTy);
if (MergeTy == MRI.getType(MI.getOperand(0).getReg())) {
B.buildBuildVector(MI.getOperand(0), Ops);
} else {
auto Vec = B.buildBuildVector(MergeTy, Ops);
MRI.setRegBank(Vec->getOperand(0).getReg(), DstBank);
B.buildBitcast(MI.getOperand(0).getReg(), Vec);
}
MRI.setRegBank(MI.getOperand(0).getReg(), DstBank);
MI.eraseFromParent();
return true;
}
void AMDGPURegisterBankInfo::applyMappingImpl(
const OperandsMapper &OpdMapper) const {
MachineInstr &MI = OpdMapper.getMI();
unsigned Opc = MI.getOpcode();
MachineRegisterInfo &MRI = OpdMapper.getMRI();
switch (Opc) {
case AMDGPU::G_PHI: {
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
if (DstTy != LLT::scalar(1))
break;
const LLT S32 = LLT::scalar(32);
const RegisterBank *DstBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
if (DstBank == &AMDGPU::VCCRegBank) {
applyDefaultMapping(OpdMapper);
// The standard handling only considers the result register bank for
// phis. For VCC, blindly inserting a copy when the phi is lowered will
// produce an invalid copy. We can only copy with some kind of compare to
// get a vector boolean result. Insert a regitser bank copy that will be
// correctly lowered to a compare.
MachineIRBuilder B(*MI.getParent()->getParent());
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
Register SrcReg = MI.getOperand(I).getReg();
const RegisterBank *SrcBank = getRegBank(SrcReg, MRI, *TRI);
if (SrcBank != &AMDGPU::VCCRegBank) {
MachineBasicBlock *SrcMBB = MI.getOperand(I + 1).getMBB();
B.setInsertPt(*SrcMBB, SrcMBB->getFirstTerminator());
auto Copy = B.buildCopy(LLT::scalar(1), SrcReg);
MRI.setRegBank(Copy.getReg(0), AMDGPU::VCCRegBank);
MI.getOperand(I).setReg(Copy.getReg(0));
}
}
return;
}
// Phi handling is strange and only considers the bank of the destination.
substituteSimpleCopyRegs(OpdMapper, 0);
// Promote SGPR/VGPR booleans to s32
MachineFunction *MF = MI.getParent()->getParent();
ApplyRegBankMapping ApplyBank(*this, MRI, DstBank);
GISelObserverWrapper Observer(&ApplyBank);
MachineIRBuilder B(MI);
LegalizerHelper Helper(*MF, Observer, B);
if (Helper.widenScalar(MI, 0, S32) != LegalizerHelper::Legalized)
llvm_unreachable("widen scalar should have succeeded");
return;
}
case AMDGPU::G_ICMP:
case AMDGPU::G_UADDO:
case AMDGPU::G_USUBO:
case AMDGPU::G_UADDE:
case AMDGPU::G_SADDE:
case AMDGPU::G_USUBE:
case AMDGPU::G_SSUBE: {
unsigned BoolDstOp = Opc == AMDGPU::G_ICMP ? 0 : 1;
Register DstReg = MI.getOperand(BoolDstOp).getReg();
const RegisterBank *DstBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
if (DstBank != &AMDGPU::SGPRRegBank)
break;
const bool HasCarryIn = MI.getNumOperands() == 5;
// If this is a scalar compare, promote the result to s32, as the selection
// will end up using a copy to a 32-bit vreg.
const LLT S32 = LLT::scalar(32);
Register NewDstReg = MRI.createGenericVirtualRegister(S32);
MRI.setRegBank(NewDstReg, AMDGPU::SGPRRegBank);
MI.getOperand(BoolDstOp).setReg(NewDstReg);
MachineIRBuilder B(MI);
if (HasCarryIn) {
Register NewSrcReg = MRI.createGenericVirtualRegister(S32);
MRI.setRegBank(NewSrcReg, AMDGPU::SGPRRegBank);
B.buildZExt(NewSrcReg, MI.getOperand(4).getReg());
MI.getOperand(4).setReg(NewSrcReg);
}
MachineBasicBlock *MBB = MI.getParent();
B.setInsertPt(*MBB, std::next(MI.getIterator()));
// If we had a constrained VCC result register, a copy was inserted to VCC
// from SGPR.
SmallVector<Register, 1> DefRegs(OpdMapper.getVRegs(0));
if (DefRegs.empty())
DefRegs.push_back(DstReg);
B.buildTrunc(DefRegs[0], NewDstReg);
return;
}
case AMDGPU::G_SELECT: {
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
SmallVector<Register, 1> CondRegs(OpdMapper.getVRegs(1));
if (CondRegs.empty())
CondRegs.push_back(MI.getOperand(1).getReg());
else {
assert(CondRegs.size() == 1);
}
const RegisterBank *CondBank = getRegBank(CondRegs[0], MRI, *TRI);
if (CondBank == &AMDGPU::SGPRRegBank) {
MachineIRBuilder B(MI);
const LLT S32 = LLT::scalar(32);
Register NewCondReg = MRI.createGenericVirtualRegister(S32);
MRI.setRegBank(NewCondReg, AMDGPU::SGPRRegBank);
MI.getOperand(1).setReg(NewCondReg);
B.buildZExt(NewCondReg, CondRegs[0]);
}
if (DstTy.getSizeInBits() != 64)
break;
MachineIRBuilder B(MI);
LLT HalfTy = getHalfSizedType(DstTy);
SmallVector<Register, 2> DefRegs(OpdMapper.getVRegs(0));
SmallVector<Register, 2> Src1Regs(OpdMapper.getVRegs(2));
SmallVector<Register, 2> Src2Regs(OpdMapper.getVRegs(3));
// All inputs are SGPRs, nothing special to do.
if (DefRegs.empty()) {
assert(Src1Regs.empty() && Src2Regs.empty());
break;
}
if (Src1Regs.empty())
split64BitValueForMapping(B, Src1Regs, HalfTy, MI.getOperand(2).getReg());
else {
setRegsToType(MRI, Src1Regs, HalfTy);
}
if (Src2Regs.empty())
split64BitValueForMapping(B, Src2Regs, HalfTy, MI.getOperand(3).getReg());
else
setRegsToType(MRI, Src2Regs, HalfTy);
setRegsToType(MRI, DefRegs, HalfTy);
B.buildSelect(DefRegs[0], CondRegs[0], Src1Regs[0], Src2Regs[0]);
B.buildSelect(DefRegs[1], CondRegs[0], Src1Regs[1], Src2Regs[1]);
MRI.setRegBank(DstReg, AMDGPU::VGPRRegBank);
MI.eraseFromParent();
return;
}
case AMDGPU::G_BRCOND: {
Register CondReg = MI.getOperand(0).getReg();
// FIXME: Should use legalizer helper, but should change bool ext type.
const RegisterBank *CondBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
if (CondBank == &AMDGPU::SGPRRegBank) {
MachineIRBuilder B(MI);
const LLT S32 = LLT::scalar(32);
Register NewCondReg = MRI.createGenericVirtualRegister(S32);
MRI.setRegBank(NewCondReg, AMDGPU::SGPRRegBank);
MI.getOperand(0).setReg(NewCondReg);
B.buildZExt(NewCondReg, CondReg);
return;
}
break;
}
case AMDGPU::G_AND:
case AMDGPU::G_OR:
case AMDGPU::G_XOR: {
// 64-bit and is only available on the SALU, so split into 2 32-bit ops if
// there is a VGPR input.
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
if (DstTy.getSizeInBits() == 1) {
const RegisterBank *DstBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
if (DstBank == &AMDGPU::VCCRegBank)
break;
MachineFunction *MF = MI.getParent()->getParent();
ApplyRegBankMapping ApplyBank(*this, MRI, DstBank);
GISelObserverWrapper Observer(&ApplyBank);
MachineIRBuilder B(MI);
LegalizerHelper Helper(*MF, Observer, B);
if (Helper.widenScalar(MI, 0, LLT::scalar(32)) !=
LegalizerHelper::Legalized)
llvm_unreachable("widen scalar should have succeeded");
return;
}
if (DstTy.getSizeInBits() != 64)
break;
LLT HalfTy = getHalfSizedType(DstTy);
SmallVector<Register, 2> DefRegs(OpdMapper.getVRegs(0));
SmallVector<Register, 2> Src0Regs(OpdMapper.getVRegs(1));
SmallVector<Register, 2> Src1Regs(OpdMapper.getVRegs(2));
// All inputs are SGPRs, nothing special to do.
if (DefRegs.empty()) {
assert(Src0Regs.empty() && Src1Regs.empty());
break;
}
assert(DefRegs.size() == 2);
assert(Src0Regs.size() == Src1Regs.size() &&
(Src0Regs.empty() || Src0Regs.size() == 2));
// Depending on where the source registers came from, the generic code may
// have decided to split the inputs already or not. If not, we still need to
// extract the values.
MachineIRBuilder B(MI);
if (Src0Regs.empty())
split64BitValueForMapping(B, Src0Regs, HalfTy, MI.getOperand(1).getReg());
else
setRegsToType(MRI, Src0Regs, HalfTy);
if (Src1Regs.empty())
split64BitValueForMapping(B, Src1Regs, HalfTy, MI.getOperand(2).getReg());
else
setRegsToType(MRI, Src1Regs, HalfTy);
setRegsToType(MRI, DefRegs, HalfTy);
B.buildInstr(Opc)
.addDef(DefRegs[0])
.addUse(Src0Regs[0])
.addUse(Src1Regs[0]);
B.buildInstr(Opc)
.addDef(DefRegs[1])
.addUse(Src0Regs[1])
.addUse(Src1Regs[1]);
MRI.setRegBank(DstReg, AMDGPU::VGPRRegBank);
MI.eraseFromParent();
return;
}
case AMDGPU::G_ADD:
case AMDGPU::G_SUB:
case AMDGPU::G_MUL:
case AMDGPU::G_SHL:
case AMDGPU::G_LSHR:
case AMDGPU::G_ASHR: {
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
// 16-bit operations are VALU only, but can be promoted to 32-bit SALU.
// Packed 16-bit operations need to be scalarized and promoted.
if (DstTy != LLT::scalar(16) && DstTy != LLT::vector(2, 16))
break;
const RegisterBank *DstBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
if (DstBank == &AMDGPU::VGPRRegBank)
break;
const LLT S32 = LLT::scalar(32);
MachineBasicBlock *MBB = MI.getParent();
MachineFunction *MF = MBB->getParent();
MachineIRBuilder B(MI);
ApplyRegBankMapping ApplySALU(*this, MRI, &AMDGPU::SGPRRegBank);
GISelObserverWrapper Observer(&ApplySALU);
if (DstTy.isVector()) {
B.setChangeObserver(Observer);
Register WideSrc0Lo, WideSrc0Hi;
Register WideSrc1Lo, WideSrc1Hi;
std::tie(WideSrc0Lo, WideSrc0Hi)
= unpackV2S16ToS32(B, MI.getOperand(1).getReg(), AMDGPU::G_ANYEXT);
std::tie(WideSrc1Lo, WideSrc1Hi)
= unpackV2S16ToS32(B, MI.getOperand(2).getReg(), AMDGPU::G_ANYEXT);
auto Lo = B.buildInstr(MI.getOpcode(), {S32}, {WideSrc0Lo, WideSrc1Lo});
auto Hi = B.buildInstr(MI.getOpcode(), {S32}, {WideSrc0Hi, WideSrc1Hi});
B.buildBuildVectorTrunc(DstReg, {Lo.getReg(0), Hi.getReg(0)});
MI.eraseFromParent();
} else {
LegalizerHelper Helper(*MF, Observer, B);
if (Helper.widenScalar(MI, 0, S32) != LegalizerHelper::Legalized)
llvm_unreachable("widen scalar should have succeeded");
// FIXME: s16 shift amounts should be legal.
if (Opc == AMDGPU::G_SHL || Opc == AMDGPU::G_LSHR ||
Opc == AMDGPU::G_ASHR) {
B.setInsertPt(*MBB, MI.getIterator());
if (Helper.widenScalar(MI, 1, S32) != LegalizerHelper::Legalized)
llvm_unreachable("widen scalar should have succeeded");
}
}
return;
}
case AMDGPU::G_SMIN:
case AMDGPU::G_SMAX:
case AMDGPU::G_UMIN:
case AMDGPU::G_UMAX: {
Register DstReg = MI.getOperand(0).getReg();
const RegisterBank *DstBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
if (DstBank == &AMDGPU::VGPRRegBank)
break;
MachineFunction *MF = MI.getParent()->getParent();
MachineIRBuilder B(MI);
// Turn scalar min/max into a compare and select.
LLT Ty = MRI.getType(DstReg);
const LLT S32 = LLT::scalar(32);
const LLT S16 = LLT::scalar(16);
const LLT V2S16 = LLT::vector(2, 16);
if (Ty == V2S16) {
ApplyRegBankMapping ApplySALU(*this, MRI, &AMDGPU::SGPRRegBank);
GISelObserverWrapper Observer(&ApplySALU);
B.setChangeObserver(Observer);
// Need to widen to s32, and expand as cmp + select, and avoid producing
// illegal vector extends or unmerges that would need further
// legalization.
//
// TODO: Should we just readfirstlane? That should probably be handled
// with a UniformVGPR register bank that wouldn't need special
// consideration here.
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(1).getReg();
Register Src1 = MI.getOperand(2).getReg();
Register WideSrc0Lo, WideSrc0Hi;
Register WideSrc1Lo, WideSrc1Hi;
unsigned ExtendOp = minMaxToExtend(MI.getOpcode());
std::tie(WideSrc0Lo, WideSrc0Hi) = unpackV2S16ToS32(B, Src0, ExtendOp);
std::tie(WideSrc1Lo, WideSrc1Hi) = unpackV2S16ToS32(B, Src1, ExtendOp);
Register Lo = MRI.createGenericVirtualRegister(S32);
Register Hi = MRI.createGenericVirtualRegister(S32);
const CmpInst::Predicate Pred = minMaxToCompare(MI.getOpcode());
buildExpandedScalarMinMax(B, Pred, Lo, WideSrc0Lo, WideSrc1Lo);
buildExpandedScalarMinMax(B, Pred, Hi, WideSrc0Hi, WideSrc1Hi);
B.buildBuildVectorTrunc(Dst, {Lo, Hi});
MI.eraseFromParent();
} else if (Ty == S16) {
ApplyRegBankMapping ApplySALU(*this, MRI, &AMDGPU::SGPRRegBank);
GISelObserverWrapper Observer(&ApplySALU);
LegalizerHelper Helper(*MF, Observer, B);
// Need to widen to s32, and expand as cmp + select.
if (Helper.widenScalar(MI, 0, S32) != LegalizerHelper::Legalized)
llvm_unreachable("widenScalar should have succeeded");
// FIXME: This is relying on widenScalar leaving MI in place.
lowerScalarMinMax(B, MI);
} else
lowerScalarMinMax(B, MI);
return;
}
case AMDGPU::G_SEXT_INREG: {
SmallVector<Register, 2> SrcRegs(OpdMapper.getVRegs(1));
if (SrcRegs.empty())
break; // Nothing to repair
const LLT S32 = LLT::scalar(32);
MachineIRBuilder B(MI);
ApplyRegBankMapping O(*this, MRI, &AMDGPU::VGPRRegBank);
GISelObserverWrapper Observer(&O);
B.setChangeObserver(Observer);
// Don't use LegalizerHelper's narrowScalar. It produces unwanted G_SEXTs
// we would need to further expand, and doesn't let us directly set the
// result registers.
SmallVector<Register, 2> DstRegs(OpdMapper.getVRegs(0));
int Amt = MI.getOperand(2).getImm();
if (Amt <= 32) {
if (Amt == 32) {
// The low bits are unchanged.
B.buildCopy(DstRegs[0], SrcRegs[0]);
} else {
// Extend in the low bits and propagate the sign bit to the high half.
B.buildSExtInReg(DstRegs[0], SrcRegs[0], Amt);
}
B.buildAShr(DstRegs[1], DstRegs[0], B.buildConstant(S32, 31));
} else {
// The low bits are unchanged, and extend in the high bits.
B.buildCopy(DstRegs[0], SrcRegs[0]);
B.buildSExtInReg(DstRegs[1], DstRegs[0], Amt - 32);
}
Register DstReg = MI.getOperand(0).getReg();
MRI.setRegBank(DstReg, AMDGPU::VGPRRegBank);
MI.eraseFromParent();
return;
}
case AMDGPU::G_CTPOP:
case AMDGPU::G_CTLZ_ZERO_UNDEF:
case AMDGPU::G_CTTZ_ZERO_UNDEF: {
MachineIRBuilder B(MI);
MachineFunction &MF = B.getMF();
const RegisterBank *DstBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
if (DstBank == &AMDGPU::SGPRRegBank)
break;
Register SrcReg = MI.getOperand(1).getReg();
const LLT S32 = LLT::scalar(32);
LLT Ty = MRI.getType(SrcReg);
if (Ty == S32)
break;
ApplyRegBankMapping ApplyVALU(*this, MRI, &AMDGPU::VGPRRegBank);
GISelObserverWrapper Observer(&ApplyVALU);
LegalizerHelper Helper(MF, Observer, B);
if (Helper.narrowScalar(MI, 1, S32) != LegalizerHelper::Legalized)
llvm_unreachable("narrowScalar should have succeeded");
return;
}
case AMDGPU::G_SEXT:
case AMDGPU::G_ZEXT:
case AMDGPU::G_ANYEXT: {
Register SrcReg = MI.getOperand(1).getReg();
LLT SrcTy = MRI.getType(SrcReg);
const bool Signed = Opc == AMDGPU::G_SEXT;
assert(empty(OpdMapper.getVRegs(1)));
MachineIRBuilder B(MI);
const RegisterBank *SrcBank =
OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank;
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
if (DstTy.isScalar() &&
SrcBank != &AMDGPU::SGPRRegBank &&
SrcBank != &AMDGPU::VCCRegBank &&
// FIXME: Should handle any type that round to s64 when irregular
// breakdowns supported.
DstTy.getSizeInBits() == 64 &&
SrcTy.getSizeInBits() <= 32) {
SmallVector<Register, 2> DefRegs(OpdMapper.getVRegs(0));
// Extend to 32-bit, and then extend the low half.
if (Signed) {
// TODO: Should really be buildSExtOrCopy
B.buildSExtOrTrunc(DefRegs[0], SrcReg);
} else if (Opc == AMDGPU::G_ZEXT) {
B.buildZExtOrTrunc(DefRegs[0], SrcReg);
} else {
B.buildAnyExtOrTrunc(DefRegs[0], SrcReg);
}
extendLow32IntoHigh32(B, DefRegs[1], DefRegs[0], Opc, *SrcBank);
MRI.setRegBank(DstReg, *SrcBank);
MI.eraseFromParent();
return;
}
if (SrcTy != LLT::scalar(1))
return;
// It is not legal to have a legalization artifact with a VCC source. Rather
// than introducing a copy, insert the select we would have to select the
// copy to.
if (SrcBank == &AMDGPU::VCCRegBank) {
SmallVector<Register, 2> DefRegs(OpdMapper.getVRegs(0));
const RegisterBank *DstBank = &AMDGPU::VGPRRegBank;
unsigned DstSize = DstTy.getSizeInBits();
// 64-bit select is SGPR only
const bool UseSel64 = DstSize > 32 &&
SrcBank->getID() == AMDGPU::SGPRRegBankID;
// TODO: Should s16 select be legal?
LLT SelType = UseSel64 ? LLT::scalar(64) : LLT::scalar(32);
auto True = B.buildConstant(SelType, Signed ? -1 : 1);
auto False = B.buildConstant(SelType, 0);
MRI.setRegBank(True.getReg(0), *DstBank);
MRI.setRegBank(False.getReg(0), *DstBank);
MRI.setRegBank(DstReg, *DstBank);
if (DstSize > 32) {
B.buildSelect(DefRegs[0], SrcReg, True, False);
extendLow32IntoHigh32(B, DefRegs[1], DefRegs[0], Opc, *SrcBank, true);
} else if (DstSize < 32) {
auto Sel = B.buildSelect(SelType, SrcReg, True, False);
MRI.setRegBank(Sel.getReg(0), *DstBank);
B.buildTrunc(DstReg, Sel);
} else {
B.buildSelect(DstReg, SrcReg, True, False);
}
MI.eraseFromParent();
return;
}
break;
}
case AMDGPU::G_BUILD_VECTOR:
case AMDGPU::G_BUILD_VECTOR_TRUNC: {
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI.getType(DstReg);
if (DstTy != LLT::vector(2, 16))
break;
assert(MI.getNumOperands() == 3 && OpdMapper.getVRegs(0).empty());
substituteSimpleCopyRegs(OpdMapper, 1);
substituteSimpleCopyRegs(OpdMapper, 2);
const RegisterBank *DstBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
if (DstBank == &AMDGPU::SGPRRegBank)
break; // Can use S_PACK_* instructions.
MachineIRBuilder B(MI);
Register Lo = MI.getOperand(1).getReg();
Register Hi = MI.getOperand(2).getReg();
const LLT S32 = LLT::scalar(32);
const RegisterBank *BankLo =
OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank;
const RegisterBank *BankHi =
OpdMapper.getInstrMapping().getOperandMapping(2).BreakDown[0].RegBank;
Register ZextLo;
Register ShiftHi;
if (Opc == AMDGPU::G_BUILD_VECTOR) {
ZextLo = B.buildZExt(S32, Lo).getReg(0);
MRI.setRegBank(ZextLo, *BankLo);
Register ZextHi = B.buildZExt(S32, Hi).getReg(0);
MRI.setRegBank(ZextHi, *BankHi);
auto ShiftAmt = B.buildConstant(S32, 16);
MRI.setRegBank(ShiftAmt.getReg(0), *BankHi);
ShiftHi = B.buildShl(S32, ZextHi, ShiftAmt).getReg(0);
MRI.setRegBank(ShiftHi, *BankHi);
} else {
Register MaskLo = B.buildConstant(S32, 0xffff).getReg(0);
MRI.setRegBank(MaskLo, *BankLo);
auto ShiftAmt = B.buildConstant(S32, 16);
MRI.setRegBank(ShiftAmt.getReg(0), *BankHi);
ShiftHi = B.buildShl(S32, Hi, ShiftAmt).getReg(0);
MRI.setRegBank(ShiftHi, *BankHi);
ZextLo = B.buildAnd(S32, Lo, MaskLo).getReg(0);
MRI.setRegBank(ZextLo, *BankLo);
}
auto Or = B.buildOr(S32, ZextLo, ShiftHi);
MRI.setRegBank(Or.getReg(0), *DstBank);
B.buildBitcast(DstReg, Or);
MI.eraseFromParent();
return;
}
case AMDGPU::G_EXTRACT_VECTOR_ELT: {
SmallVector<Register, 2> DstRegs(OpdMapper.getVRegs(0));
assert(OpdMapper.getVRegs(1).empty() && OpdMapper.getVRegs(2).empty());
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
const LLT S32 = LLT::scalar(32);
LLT DstTy = MRI.getType(DstReg);
LLT SrcTy = MRI.getType(SrcReg);
if (foldExtractEltToCmpSelect(MI, MRI, OpdMapper))
return;
MachineIRBuilder B(MI);
const ValueMapping &DstMapping
= OpdMapper.getInstrMapping().getOperandMapping(0);
const RegisterBank *DstBank = DstMapping.BreakDown[0].RegBank;
const RegisterBank *SrcBank =
OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank;
const RegisterBank *IdxBank =
OpdMapper.getInstrMapping().getOperandMapping(2).BreakDown[0].RegBank;
Register BaseIdxReg;
unsigned ConstOffset;
MachineInstr *OffsetDef;
std::tie(BaseIdxReg, ConstOffset, OffsetDef) =
AMDGPU::getBaseWithConstantOffset(MRI, MI.getOperand(2).getReg());
// See if the index is an add of a constant which will be foldable by moving
// the base register of the index later if this is going to be executed in a
// waterfall loop. This is essentially to reassociate the add of a constant
// with the readfirstlane.
bool ShouldMoveIndexIntoLoop = IdxBank != &AMDGPU::SGPRRegBank &&
ConstOffset > 0 &&
ConstOffset < SrcTy.getNumElements();
// Move the base register. We'll re-insert the add later.
if (ShouldMoveIndexIntoLoop)
MI.getOperand(2).setReg(BaseIdxReg);
// If this is a VGPR result only because the index was a VGPR result, the
// actual indexing will be done on the SGPR source vector, which will
// produce a scalar result. We need to copy to the VGPR result inside the
// waterfall loop.
const bool NeedCopyToVGPR = DstBank == &AMDGPU::VGPRRegBank &&
SrcBank == &AMDGPU::SGPRRegBank;
if (DstRegs.empty()) {
applyDefaultMapping(OpdMapper);
executeInWaterfallLoop(MI, MRI, { 2 });
if (NeedCopyToVGPR) {
// We don't want a phi for this temporary reg.
Register TmpReg = MRI.createGenericVirtualRegister(DstTy);
MRI.setRegBank(TmpReg, AMDGPU::SGPRRegBank);
MI.getOperand(0).setReg(TmpReg);
B.setInsertPt(*MI.getParent(), ++MI.getIterator());
// Use a v_mov_b32 here to make the exec dependency explicit.
buildVCopy(B, DstReg, TmpReg);
}
// Re-insert the constant offset add inside the waterfall loop.
if (ShouldMoveIndexIntoLoop)
reinsertVectorIndexAdd(B, MI, 2, ConstOffset);
return;
}
assert(DstTy.getSizeInBits() == 64);
LLT Vec32 = LLT::vector(2 * SrcTy.getNumElements(), 32);
auto CastSrc = B.buildBitcast(Vec32, SrcReg);
auto One = B.buildConstant(S32, 1);
MachineBasicBlock::iterator MII = MI.getIterator();
// Split the vector index into 32-bit pieces. Prepare to move all of the
// new instructions into a waterfall loop if necessary.
//
// Don't put the bitcast or constant in the loop.
MachineInstrSpan Span(MII, &B.getMBB());
// Compute 32-bit element indices, (2 * OrigIdx, 2 * OrigIdx + 1).
auto IdxLo = B.buildShl(S32, BaseIdxReg, One);
auto IdxHi = B.buildAdd(S32, IdxLo, One);
auto Extract0 = B.buildExtractVectorElement(DstRegs[0], CastSrc, IdxLo);
auto Extract1 = B.buildExtractVectorElement(DstRegs[1], CastSrc, IdxHi);
MRI.setRegBank(DstReg, *DstBank);
MRI.setRegBank(CastSrc.getReg(0), *SrcBank);
MRI.setRegBank(One.getReg(0), AMDGPU::SGPRRegBank);
MRI.setRegBank(IdxLo.getReg(0), AMDGPU::SGPRRegBank);
MRI.setRegBank(IdxHi.getReg(0), AMDGPU::SGPRRegBank);
SmallSet<Register, 4> OpsToWaterfall;
if (!collectWaterfallOperands(OpsToWaterfall, MI, MRI, { 2 })) {
MI.eraseFromParent();
return;
}
// Remove the original instruction to avoid potentially confusing the
// waterfall loop logic.
B.setInstr(*Span.begin());
MI.eraseFromParent();
executeInWaterfallLoop(B, make_range(Span.begin(), Span.end()),
OpsToWaterfall, MRI);
if (NeedCopyToVGPR) {
MachineBasicBlock *LoopBB = Extract1->getParent();
Register TmpReg0 = MRI.createGenericVirtualRegister(S32);
Register TmpReg1 = MRI.createGenericVirtualRegister(S32);
MRI.setRegBank(TmpReg0, AMDGPU::SGPRRegBank);
MRI.setRegBank(TmpReg1, AMDGPU::SGPRRegBank);
Extract0->getOperand(0).setReg(TmpReg0);
Extract1->getOperand(0).setReg(TmpReg1);
B.setInsertPt(*LoopBB, ++Extract1->getIterator());
buildVCopy(B, DstRegs[0], TmpReg0);
buildVCopy(B, DstRegs[1], TmpReg1);
}
if (ShouldMoveIndexIntoLoop)
reinsertVectorIndexAdd(B, *IdxLo, 1, ConstOffset);
return;
}
case AMDGPU::G_INSERT_VECTOR_ELT: {
SmallVector<Register, 2> InsRegs(OpdMapper.getVRegs(2));
Register DstReg = MI.getOperand(0).getReg();
LLT VecTy = MRI.getType(DstReg);
assert(OpdMapper.getVRegs(0).empty());
assert(OpdMapper.getVRegs(3).empty());
if (substituteSimpleCopyRegs(OpdMapper, 1))
MRI.setType(MI.getOperand(1).getReg(), VecTy);
if (foldInsertEltToCmpSelect(MI, MRI, OpdMapper))
return;
const RegisterBank *IdxBank =
OpdMapper.getInstrMapping().getOperandMapping(3).BreakDown[0].RegBank;
Register SrcReg = MI.getOperand(1).getReg();
Register InsReg = MI.getOperand(2).getReg();
LLT InsTy = MRI.getType(InsReg);
(void)InsTy;
Register BaseIdxReg;
unsigned ConstOffset;
MachineInstr *OffsetDef;
std::tie(BaseIdxReg, ConstOffset, OffsetDef) =
AMDGPU::getBaseWithConstantOffset(MRI, MI.getOperand(3).getReg());
// See if the index is an add of a constant which will be foldable by moving
// the base register of the index later if this is going to be executed in a
// waterfall loop. This is essentially to reassociate the add of a constant
// with the readfirstlane.
bool ShouldMoveIndexIntoLoop = IdxBank != &AMDGPU::SGPRRegBank &&
ConstOffset > 0 &&
ConstOffset < VecTy.getNumElements();
// Move the base register. We'll re-insert the add later.
if (ShouldMoveIndexIntoLoop)
MI.getOperand(3).setReg(BaseIdxReg);
if (InsRegs.empty()) {
executeInWaterfallLoop(MI, MRI, { 3 });
// Re-insert the constant offset add inside the waterfall loop.
if (ShouldMoveIndexIntoLoop) {
MachineIRBuilder B(MI);
reinsertVectorIndexAdd(B, MI, 3, ConstOffset);
}
return;
}
assert(InsTy.getSizeInBits() == 64);
const LLT S32 = LLT::scalar(32);
LLT Vec32 = LLT::vector(2 * VecTy.getNumElements(), 32);
MachineIRBuilder B(MI);
auto CastSrc = B.buildBitcast(Vec32, SrcReg);
auto One = B.buildConstant(S32, 1);
// Split the vector index into 32-bit pieces. Prepare to move all of the
// new instructions into a waterfall loop if necessary.
//
// Don't put the bitcast or constant in the loop.
MachineInstrSpan Span(MachineBasicBlock::iterator(&MI), &B.getMBB());
// Compute 32-bit element indices, (2 * OrigIdx, 2 * OrigIdx + 1).
auto IdxLo = B.buildShl(S32, BaseIdxReg, One);
auto IdxHi = B.buildAdd(S32, IdxLo, One);
auto InsLo = B.buildInsertVectorElement(Vec32, CastSrc, InsRegs[0], IdxLo);
auto InsHi = B.buildInsertVectorElement(Vec32, InsLo, InsRegs[1], IdxHi);
const RegisterBank *DstBank =
OpdMapper.getInstrMapping().getOperandMapping(0).BreakDown[0].RegBank;
const RegisterBank *SrcBank =
OpdMapper.getInstrMapping().getOperandMapping(1).BreakDown[0].RegBank;
const RegisterBank *InsSrcBank =
OpdMapper.getInstrMapping().getOperandMapping(2).BreakDown[0].RegBank;
MRI.setRegBank(InsReg, *InsSrcBank);
MRI.setRegBank(CastSrc.getReg(0), *SrcBank);
MRI.setRegBank(InsLo.getReg(0), *DstBank);
MRI.setRegBank(InsHi.getReg(0), *DstBank);
MRI.setRegBank(One.getReg(0), AMDGPU::SGPRRegBank);
MRI.setRegBank(IdxLo.getReg(0), AMDGPU::SGPRRegBank);
MRI.setRegBank(IdxHi.getReg(0), AMDGPU::SGPRRegBank);
SmallSet<Register, 4> OpsToWaterfall;
if (!collectWaterfallOperands(OpsToWaterfall, MI, MRI, { 3 })) {
B.setInsertPt(B.getMBB(), MI);
B.buildBitcast(DstReg, InsHi);
MI.eraseFromParent();
return;
}
B.setInstr(*Span.begin());
MI.eraseFromParent();
// Figure out the point after the waterfall loop before mangling the control
// flow.
executeInWaterfallLoop(B, make_range(Span.begin(), Span.end()),
OpsToWaterfall, MRI);
// The insertion point is now right after the original instruction.
//
// Keep the bitcast to the original vector type out of the loop. Doing this
// saved an extra phi we don't need inside the loop.
B.buildBitcast(DstReg, InsHi);
// Re-insert the constant offset add inside the waterfall loop.
if (ShouldMoveIndexIntoLoop)
reinsertVectorIndexAdd(B, *IdxLo, 1, ConstOffset);
return;
}
case AMDGPU::G_AMDGPU_BUFFER_LOAD:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16:
case AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT:
case AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16:
case AMDGPU::G_AMDGPU_BUFFER_STORE:
case AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE:
case AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT:
case AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT:
case AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16:
case AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT:
case AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16: {
applyDefaultMapping(OpdMapper);
executeInWaterfallLoop(MI, MRI, {1, 4});
return;
}
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC: {
applyDefaultMapping(OpdMapper);
executeInWaterfallLoop(MI, MRI, {2, 5});
return;
}
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP: {
applyDefaultMapping(OpdMapper);
executeInWaterfallLoop(MI, MRI, {3, 6});
return;
}
case AMDGPU::G_AMDGPU_S_BUFFER_LOAD: {
applyMappingSBufferLoad(OpdMapper);
return;
}
case AMDGPU::G_INTRINSIC: {
switch (MI.getIntrinsicID()) {
case Intrinsic::amdgcn_readlane: {
substituteSimpleCopyRegs(OpdMapper, 2);
assert(OpdMapper.getVRegs(0).empty());
assert(OpdMapper.getVRegs(3).empty());
// Make sure the index is an SGPR. It doesn't make sense to run this in a
// waterfall loop, so assume it's a uniform value.
constrainOpWithReadfirstlane(MI, MRI, 3); // Index
return;
}
case Intrinsic::amdgcn_writelane: {
assert(OpdMapper.getVRegs(0).empty());
assert(OpdMapper.getVRegs(2).empty());
assert(OpdMapper.getVRegs(3).empty());
substituteSimpleCopyRegs(OpdMapper, 4); // VGPR input val
constrainOpWithReadfirstlane(MI, MRI, 2); // Source value
constrainOpWithReadfirstlane(MI, MRI, 3); // Index
return;
}
case Intrinsic::amdgcn_ballot:
case Intrinsic::amdgcn_interp_p1:
case Intrinsic::amdgcn_interp_p2:
case Intrinsic::amdgcn_interp_mov:
case Intrinsic::amdgcn_interp_p1_f16:
case Intrinsic::amdgcn_interp_p2_f16: {
applyDefaultMapping(OpdMapper);
// Readlane for m0 value, which is always the last operand.
// FIXME: Should this be a waterfall loop instead?
constrainOpWithReadfirstlane(MI, MRI, MI.getNumOperands() - 1); // Index
return;
}
case Intrinsic::amdgcn_permlane16:
case Intrinsic::amdgcn_permlanex16: {
// Doing a waterfall loop over these wouldn't make any sense.
substituteSimpleCopyRegs(OpdMapper, 2);
substituteSimpleCopyRegs(OpdMapper, 3);
constrainOpWithReadfirstlane(MI, MRI, 4);
constrainOpWithReadfirstlane(MI, MRI, 5);
return;
}
case Intrinsic::amdgcn_sbfe:
applyMappingBFEIntrinsic(OpdMapper, true);
return;
case Intrinsic::amdgcn_ubfe:
applyMappingBFEIntrinsic(OpdMapper, false);
return;
}
break;
}
case AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD:
case AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE: {
const AMDGPU::RsrcIntrinsic *RSrcIntrin
= AMDGPU::lookupRsrcIntrinsic(MI.getIntrinsicID());
assert(RSrcIntrin && RSrcIntrin->IsImage);
// Non-images can have complications from operands that allow both SGPR
// and VGPR. For now it's too complicated to figure out the final opcode
// to derive the register bank from the MCInstrDesc.
applyMappingImage(MI, OpdMapper, MRI, RSrcIntrin->RsrcArg);
return;
}
case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
auto IntrID = MI.getIntrinsicID();
switch (IntrID) {
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap: {
// This is only allowed to execute with 1 lane, so readfirstlane is safe.
assert(OpdMapper.getVRegs(0).empty());
substituteSimpleCopyRegs(OpdMapper, 3);
constrainOpWithReadfirstlane(MI, MRI, 2); // M0
return;
}
case Intrinsic::amdgcn_ds_gws_init:
case Intrinsic::amdgcn_ds_gws_barrier:
case Intrinsic::amdgcn_ds_gws_sema_br: {
// Only the first lane is executes, so readfirstlane is safe.
substituteSimpleCopyRegs(OpdMapper, 1);
constrainOpWithReadfirstlane(MI, MRI, 2); // M0
return;
}
case Intrinsic::amdgcn_ds_gws_sema_v:
case Intrinsic::amdgcn_ds_gws_sema_p:
case Intrinsic::amdgcn_ds_gws_sema_release_all: {
// Only the first lane is executes, so readfirstlane is safe.
constrainOpWithReadfirstlane(MI, MRI, 1); // M0
return;
}
case Intrinsic::amdgcn_ds_append:
case Intrinsic::amdgcn_ds_consume: {
constrainOpWithReadfirstlane(MI, MRI, 2); // M0
return;
}
case Intrinsic::amdgcn_s_sendmsg:
case Intrinsic::amdgcn_s_sendmsghalt: {
// FIXME: Should this use a waterfall loop?
constrainOpWithReadfirstlane(MI, MRI, 2); // M0
return;
}
case Intrinsic::amdgcn_s_setreg: {
constrainOpWithReadfirstlane(MI, MRI, 2);
return;
}
default: {
if (const AMDGPU::RsrcIntrinsic *RSrcIntrin =
AMDGPU::lookupRsrcIntrinsic(IntrID)) {
// Non-images can have complications from operands that allow both SGPR
// and VGPR. For now it's too complicated to figure out the final opcode
// to derive the register bank from the MCInstrDesc.
if (RSrcIntrin->IsImage) {
applyMappingImage(MI, OpdMapper, MRI, RSrcIntrin->RsrcArg);
return;
}
}
break;
}
}
break;
}
case AMDGPU::G_LOAD:
case AMDGPU::G_ZEXTLOAD:
case AMDGPU::G_SEXTLOAD: {
if (applyMappingLoad(MI, OpdMapper, MRI))
return;
break;
}
case AMDGPU::G_DYN_STACKALLOC:
applyMappingDynStackAlloc(MI, OpdMapper, MRI);
return;
default:
break;
}
return applyDefaultMapping(OpdMapper);
}
bool AMDGPURegisterBankInfo::isSALUMapping(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
for (unsigned i = 0, e = MI.getNumOperands();i != e; ++i) {
if (!MI.getOperand(i).isReg())
continue;
Register Reg = MI.getOperand(i).getReg();
if (const RegisterBank *Bank = getRegBank(Reg, MRI, *TRI)) {
if (Bank->getID() != AMDGPU::SGPRRegBankID)
return false;
}
}
return true;
}
const RegisterBankInfo::InstructionMapping &
AMDGPURegisterBankInfo::getDefaultMappingSOP(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
SmallVector<const ValueMapping*, 8> OpdsMapping(MI.getNumOperands());
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &SrcOp = MI.getOperand(i);
if (!SrcOp.isReg())
continue;
unsigned Size = getSizeInBits(SrcOp.getReg(), MRI, *TRI);
OpdsMapping[i] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
}
return getInstructionMapping(1, 1, getOperandsMapping(OpdsMapping),
MI.getNumOperands());
}
const RegisterBankInfo::InstructionMapping &
AMDGPURegisterBankInfo::getDefaultMappingVOP(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
SmallVector<const ValueMapping*, 8> OpdsMapping(MI.getNumOperands());
// Even though we technically could use SGPRs, this would require knowledge of
// the constant bus restriction. Force all sources to VGPR (except for VCC).
//
// TODO: Unary ops are trivially OK, so accept SGPRs?
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &Src = MI.getOperand(i);
if (!Src.isReg())
continue;
unsigned Size = getSizeInBits(Src.getReg(), MRI, *TRI);
unsigned BankID = Size == 1 ? AMDGPU::VCCRegBankID : AMDGPU::VGPRRegBankID;
OpdsMapping[i] = AMDGPU::getValueMapping(BankID, Size);
}
return getInstructionMapping(1, 1, getOperandsMapping(OpdsMapping),
MI.getNumOperands());
}
const RegisterBankInfo::InstructionMapping &
AMDGPURegisterBankInfo::getDefaultMappingAllVGPR(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
SmallVector<const ValueMapping*, 8> OpdsMapping(MI.getNumOperands());
for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
const MachineOperand &Op = MI.getOperand(I);
if (!Op.isReg())
continue;
unsigned Size = getSizeInBits(Op.getReg(), MRI, *TRI);
OpdsMapping[I] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
}
return getInstructionMapping(1, 1, getOperandsMapping(OpdsMapping),
MI.getNumOperands());
}
const RegisterBankInfo::InstructionMapping &
AMDGPURegisterBankInfo::getImageMapping(const MachineRegisterInfo &MRI,
const MachineInstr &MI,
int RsrcIdx) const {
// The reported argument index is relative to the IR intrinsic call arguments,
// so we need to shift by the number of defs and the intrinsic ID.
RsrcIdx += MI.getNumExplicitDefs() + 1;
const int NumOps = MI.getNumOperands();
SmallVector<const ValueMapping *, 8> OpdsMapping(NumOps);
// TODO: Should packed/unpacked D16 difference be reported here as part of
// the value mapping?
for (int I = 0; I != NumOps; ++I) {
if (!MI.getOperand(I).isReg())
continue;
Register OpReg = MI.getOperand(I).getReg();
// We replace some dead address operands with $noreg
if (!OpReg)
continue;
unsigned Size = getSizeInBits(OpReg, MRI, *TRI);
// FIXME: Probably need a new intrinsic register bank searchable table to
// handle arbitrary intrinsics easily.
//
// If this has a sampler, it immediately follows rsrc.
const bool MustBeSGPR = I == RsrcIdx || I == RsrcIdx + 1;
if (MustBeSGPR) {
// If this must be an SGPR, so we must report whatever it is as legal.
unsigned NewBank = getRegBankID(OpReg, MRI, *TRI, AMDGPU::SGPRRegBankID);
OpdsMapping[I] = AMDGPU::getValueMapping(NewBank, Size);
} else {
// Some operands must be VGPR, and these are easy to copy to.
OpdsMapping[I] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
}
}
return getInstructionMapping(1, 1, getOperandsMapping(OpdsMapping), NumOps);
}
/// Return the mapping for a pointer arugment.
const RegisterBankInfo::ValueMapping *
AMDGPURegisterBankInfo::getValueMappingForPtr(const MachineRegisterInfo &MRI,
Register PtrReg) const {
LLT PtrTy = MRI.getType(PtrReg);
unsigned Size = PtrTy.getSizeInBits();
if (Subtarget.useFlatForGlobal() ||
!SITargetLowering::isFlatGlobalAddrSpace(PtrTy.getAddressSpace()))
return AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
// If we're using MUBUF instructions for global memory, an SGPR base register
// is possible. Otherwise this needs to be a VGPR.
const RegisterBank *PtrBank = getRegBank(PtrReg, MRI, *TRI);
return AMDGPU::getValueMapping(PtrBank->getID(), Size);
}
const RegisterBankInfo::InstructionMapping &
AMDGPURegisterBankInfo::getInstrMappingForLoad(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
SmallVector<const ValueMapping*, 2> OpdsMapping(2);
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
Register PtrReg = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(PtrReg);
unsigned AS = PtrTy.getAddressSpace();
unsigned PtrSize = PtrTy.getSizeInBits();
const ValueMapping *ValMapping;
const ValueMapping *PtrMapping;
const RegisterBank *PtrBank = getRegBank(PtrReg, MRI, *TRI);
if (PtrBank == &AMDGPU::SGPRRegBank &&
SITargetLowering::isFlatGlobalAddrSpace(AS)) {
if (isScalarLoadLegal(MI)) {
// We have a uniform instruction so we want to use an SMRD load
ValMapping = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
PtrMapping = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, PtrSize);
} else {
ValMapping = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
// If we're using MUBUF instructions for global memory, an SGPR base
// register is possible. Otherwise this needs to be a VGPR.
unsigned PtrBankID = Subtarget.useFlatForGlobal() ?
AMDGPU::VGPRRegBankID : AMDGPU::SGPRRegBankID;
PtrMapping = AMDGPU::getValueMapping(PtrBankID, PtrSize);
}
} else {
ValMapping = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
PtrMapping = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, PtrSize);
}
OpdsMapping[0] = ValMapping;
OpdsMapping[1] = PtrMapping;
const RegisterBankInfo::InstructionMapping &Mapping = getInstructionMapping(
1, 1, getOperandsMapping(OpdsMapping), MI.getNumOperands());
return Mapping;
// FIXME: Do we want to add a mapping for FLAT load, or should we just
// handle that during instruction selection?
}
unsigned
AMDGPURegisterBankInfo::getRegBankID(Register Reg,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI,
unsigned Default) const {
const RegisterBank *Bank = getRegBank(Reg, MRI, TRI);
return Bank ? Bank->getID() : Default;
}
static unsigned regBankUnion(unsigned RB0, unsigned RB1) {
return (RB0 == AMDGPU::SGPRRegBankID && RB1 == AMDGPU::SGPRRegBankID) ?
AMDGPU::SGPRRegBankID : AMDGPU::VGPRRegBankID;
}
static int regBankBoolUnion(int RB0, int RB1) {
if (RB0 == -1)
return RB1;
if (RB1 == -1)
return RB0;
// vcc, vcc -> vcc
// vcc, sgpr -> vcc
// vcc, vgpr -> vcc
if (RB0 == AMDGPU::VCCRegBankID || RB1 == AMDGPU::VCCRegBankID)
return AMDGPU::VCCRegBankID;
// vcc, vgpr -> vgpr
return regBankUnion(RB0, RB1);
}
const RegisterBankInfo::ValueMapping *
AMDGPURegisterBankInfo::getSGPROpMapping(Register Reg,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) const {
// Lie and claim anything is legal, even though this needs to be an SGPR
// applyMapping will have to deal with it as a waterfall loop.
unsigned Bank = getRegBankID(Reg, MRI, TRI, AMDGPU::SGPRRegBankID);
unsigned Size = getSizeInBits(Reg, MRI, TRI);
return AMDGPU::getValueMapping(Bank, Size);
}
const RegisterBankInfo::ValueMapping *
AMDGPURegisterBankInfo::getVGPROpMapping(Register Reg,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) const {
unsigned Size = getSizeInBits(Reg, MRI, TRI);
return AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
}
const RegisterBankInfo::ValueMapping *
AMDGPURegisterBankInfo::getAGPROpMapping(Register Reg,
const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) const {
unsigned Size = getSizeInBits(Reg, MRI, TRI);
return AMDGPU::getValueMapping(AMDGPU::AGPRRegBankID, Size);
}
///
/// This function must return a legal mapping, because
/// AMDGPURegisterBankInfo::getInstrAlternativeMappings() is not called
/// in RegBankSelect::Mode::Fast. Any mapping that would cause a
/// VGPR to SGPR generated is illegal.
///
// Operands that must be SGPRs must accept potentially divergent VGPRs as
// legal. These will be dealt with in applyMappingImpl.
//
const RegisterBankInfo::InstructionMapping &
AMDGPURegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
const MachineFunction &MF = *MI.getParent()->getParent();
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (MI.isCopy()) {
// The default logic bothers to analyze impossible alternative mappings. We
// want the most straightforward mapping, so just directly handle this.
const RegisterBank *DstBank = getRegBank(MI.getOperand(0).getReg(), MRI,
*TRI);
const RegisterBank *SrcBank = getRegBank(MI.getOperand(1).getReg(), MRI,
*TRI);
assert(SrcBank && "src bank should have been assigned already");
if (!DstBank)
DstBank = SrcBank;
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
if (cannotCopy(*DstBank, *SrcBank, Size))
return getInvalidInstructionMapping();
const ValueMapping &ValMap = getValueMapping(0, Size, *DstBank);
return getInstructionMapping(
1, /*Cost*/ 1,
/*OperandsMapping*/ getOperandsMapping({&ValMap}), 1);
}
if (MI.isRegSequence()) {
// If any input is a VGPR, the result must be a VGPR. The default handling
// assumes any copy between banks is legal.
unsigned BankID = AMDGPU::SGPRRegBankID;
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
auto OpBank = getRegBankID(MI.getOperand(I).getReg(), MRI, *TRI);
// It doesn't make sense to use vcc or scc banks here, so just ignore
// them.
if (OpBank != AMDGPU::SGPRRegBankID) {
BankID = AMDGPU::VGPRRegBankID;
break;
}
}
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
const ValueMapping &ValMap = getValueMapping(0, Size, getRegBank(BankID));
return getInstructionMapping(
1, /*Cost*/ 1,
/*OperandsMapping*/ getOperandsMapping({&ValMap}), 1);
}
// The default handling is broken and doesn't handle illegal SGPR->VGPR copies
// properly.
//
// TODO: There are additional exec masking dependencies to analyze.
if (MI.getOpcode() == TargetOpcode::G_PHI) {
// TODO: Generate proper invalid bank enum.
int ResultBank = -1;
Register DstReg = MI.getOperand(0).getReg();
// Sometimes the result may have already been assigned a bank.
if (const RegisterBank *DstBank = getRegBank(DstReg, MRI, *TRI))
ResultBank = DstBank->getID();
for (unsigned I = 1, E = MI.getNumOperands(); I != E; I += 2) {
Register Reg = MI.getOperand(I).getReg();
const RegisterBank *Bank = getRegBank(Reg, MRI, *TRI);
// FIXME: Assuming VGPR for any undetermined inputs.
if (!Bank || Bank->getID() == AMDGPU::VGPRRegBankID) {
ResultBank = AMDGPU::VGPRRegBankID;
break;
}
// FIXME: Need to promote SGPR case to s32
unsigned OpBank = Bank->getID();
ResultBank = regBankBoolUnion(ResultBank, OpBank);
}
assert(ResultBank != -1);
unsigned Size = MRI.getType(DstReg).getSizeInBits();
const ValueMapping &ValMap =
getValueMapping(0, Size, getRegBank(ResultBank));
return getInstructionMapping(
1, /*Cost*/ 1,
/*OperandsMapping*/ getOperandsMapping({&ValMap}), 1);
}
const RegisterBankInfo::InstructionMapping &Mapping = getInstrMappingImpl(MI);
if (Mapping.isValid())
return Mapping;
SmallVector<const ValueMapping*, 8> OpdsMapping(MI.getNumOperands());
switch (MI.getOpcode()) {
default:
return getInvalidInstructionMapping();
case AMDGPU::G_AND:
case AMDGPU::G_OR:
case AMDGPU::G_XOR: {
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
if (Size == 1) {
const RegisterBank *DstBank
= getRegBank(MI.getOperand(0).getReg(), MRI, *TRI);
unsigned TargetBankID = -1;
unsigned BankLHS = -1;
unsigned BankRHS = -1;
if (DstBank) {
TargetBankID = DstBank->getID();
if (DstBank == &AMDGPU::VCCRegBank) {
TargetBankID = AMDGPU::VCCRegBankID;
BankLHS = AMDGPU::VCCRegBankID;
BankRHS = AMDGPU::VCCRegBankID;
} else {
BankLHS = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
BankRHS = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
}
} else {
BankLHS = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI,
AMDGPU::VCCRegBankID);
BankRHS = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI,
AMDGPU::VCCRegBankID);
// Both inputs should be true booleans to produce a boolean result.
if (BankLHS == AMDGPU::VGPRRegBankID || BankRHS == AMDGPU::VGPRRegBankID) {
TargetBankID = AMDGPU::VGPRRegBankID;
} else if (BankLHS == AMDGPU::VCCRegBankID || BankRHS == AMDGPU::VCCRegBankID) {
TargetBankID = AMDGPU::VCCRegBankID;
BankLHS = AMDGPU::VCCRegBankID;
BankRHS = AMDGPU::VCCRegBankID;
} else if (BankLHS == AMDGPU::SGPRRegBankID && BankRHS == AMDGPU::SGPRRegBankID) {
TargetBankID = AMDGPU::SGPRRegBankID;
}
}
OpdsMapping[0] = AMDGPU::getValueMapping(TargetBankID, Size);
OpdsMapping[1] = AMDGPU::getValueMapping(BankLHS, Size);
OpdsMapping[2] = AMDGPU::getValueMapping(BankRHS, Size);
break;
}
if (Size == 64) {
if (isSALUMapping(MI)) {
OpdsMapping[0] = getValueMappingSGPR64Only(AMDGPU::SGPRRegBankID, Size);
OpdsMapping[1] = OpdsMapping[2] = OpdsMapping[0];
} else {
OpdsMapping[0] = getValueMappingSGPR64Only(AMDGPU::VGPRRegBankID, Size);
unsigned Bank1 = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI/*, DefaultBankID*/);
OpdsMapping[1] = AMDGPU::getValueMapping(Bank1, Size);
unsigned Bank2 = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI/*, DefaultBankID*/);
OpdsMapping[2] = AMDGPU::getValueMapping(Bank2, Size);
}
break;
}
LLVM_FALLTHROUGH;
}
case AMDGPU::G_PTR_ADD:
case AMDGPU::G_PTRMASK:
case AMDGPU::G_ADD:
case AMDGPU::G_SUB:
case AMDGPU::G_MUL:
case AMDGPU::G_SHL:
case AMDGPU::G_LSHR:
case AMDGPU::G_ASHR:
case AMDGPU::G_UADDO:
case AMDGPU::G_USUBO:
case AMDGPU::G_UADDE:
case AMDGPU::G_SADDE:
case AMDGPU::G_USUBE:
case AMDGPU::G_SSUBE:
case AMDGPU::G_SMIN:
case AMDGPU::G_SMAX:
case AMDGPU::G_UMIN:
case AMDGPU::G_UMAX:
case AMDGPU::G_SHUFFLE_VECTOR:
if (isSALUMapping(MI))
return getDefaultMappingSOP(MI);
LLVM_FALLTHROUGH;
case AMDGPU::G_FADD:
case AMDGPU::G_FSUB:
case AMDGPU::G_FPTOSI:
case AMDGPU::G_FPTOUI:
case AMDGPU::G_FMUL:
case AMDGPU::G_FMA:
case AMDGPU::G_FMAD:
case AMDGPU::G_FSQRT:
case AMDGPU::G_FFLOOR:
case AMDGPU::G_FCEIL:
case AMDGPU::G_FRINT:
case AMDGPU::G_SITOFP:
case AMDGPU::G_UITOFP:
case AMDGPU::G_FPTRUNC:
case AMDGPU::G_FPEXT:
case AMDGPU::G_FEXP2:
case AMDGPU::G_FLOG2:
case AMDGPU::G_FMINNUM:
case AMDGPU::G_FMAXNUM:
case AMDGPU::G_FMINNUM_IEEE:
case AMDGPU::G_FMAXNUM_IEEE:
case AMDGPU::G_FCANONICALIZE:
case AMDGPU::G_INTRINSIC_TRUNC:
case AMDGPU::G_BSWAP: // TODO: Somehow expand for scalar?
case AMDGPU::G_FSHR: // TODO: Expand for scalar
case AMDGPU::G_AMDGPU_FFBH_U32:
case AMDGPU::G_AMDGPU_FMIN_LEGACY:
case AMDGPU::G_AMDGPU_FMAX_LEGACY:
case AMDGPU::G_AMDGPU_RCP_IFLAG:
case AMDGPU::G_AMDGPU_CVT_F32_UBYTE0:
case AMDGPU::G_AMDGPU_CVT_F32_UBYTE1:
case AMDGPU::G_AMDGPU_CVT_F32_UBYTE2:
case AMDGPU::G_AMDGPU_CVT_F32_UBYTE3:
return getDefaultMappingVOP(MI);
case AMDGPU::G_UMULH:
case AMDGPU::G_SMULH: {
if (Subtarget.hasScalarMulHiInsts() && isSALUMapping(MI))
return getDefaultMappingSOP(MI);
return getDefaultMappingVOP(MI);
}
case AMDGPU::G_IMPLICIT_DEF: {
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
break;
}
case AMDGPU::G_FCONSTANT:
case AMDGPU::G_CONSTANT:
case AMDGPU::G_GLOBAL_VALUE:
case AMDGPU::G_BLOCK_ADDR:
case AMDGPU::G_READCYCLECOUNTER: {
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
break;
}
case AMDGPU::G_FRAME_INDEX: {
// TODO: This should be the same as other constants, but eliminateFrameIndex
// currently assumes VALU uses.
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
break;
}
case AMDGPU::G_DYN_STACKALLOC: {
// Result is always uniform, and a wave reduction is needed for the source.
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, 32);
unsigned SrcBankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[1] = AMDGPU::getValueMapping(SrcBankID, 32);
break;
}
case AMDGPU::G_INSERT: {
unsigned BankID = isSALUMapping(MI) ? AMDGPU::SGPRRegBankID :
AMDGPU::VGPRRegBankID;
unsigned DstSize = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
unsigned SrcSize = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI);
unsigned EltSize = getSizeInBits(MI.getOperand(2).getReg(), MRI, *TRI);
OpdsMapping[0] = AMDGPU::getValueMapping(BankID, DstSize);
OpdsMapping[1] = AMDGPU::getValueMapping(BankID, SrcSize);
OpdsMapping[2] = AMDGPU::getValueMapping(BankID, EltSize);
OpdsMapping[3] = nullptr;
break;
}
case AMDGPU::G_EXTRACT: {
unsigned BankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI);
unsigned DstSize = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
unsigned SrcSize = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[0] = AMDGPU::getValueMapping(BankID, DstSize);
OpdsMapping[1] = AMDGPU::getValueMapping(BankID, SrcSize);
OpdsMapping[2] = nullptr;
break;
}
case AMDGPU::G_BUILD_VECTOR:
case AMDGPU::G_BUILD_VECTOR_TRUNC: {
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
if (DstTy == LLT::vector(2, 16)) {
unsigned DstSize = DstTy.getSizeInBits();
unsigned SrcSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
unsigned Src0BankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI);
unsigned Src1BankID = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI);
unsigned DstBankID = regBankUnion(Src0BankID, Src1BankID);
OpdsMapping[0] = AMDGPU::getValueMapping(DstBankID, DstSize);
OpdsMapping[1] = AMDGPU::getValueMapping(Src0BankID, SrcSize);
OpdsMapping[2] = AMDGPU::getValueMapping(Src1BankID, SrcSize);
break;
}
LLVM_FALLTHROUGH;
}
case AMDGPU::G_MERGE_VALUES:
case AMDGPU::G_CONCAT_VECTORS: {
unsigned Bank = isSALUMapping(MI) ?
AMDGPU::SGPRRegBankID : AMDGPU::VGPRRegBankID;
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
unsigned SrcSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(Bank, DstSize);
// Op1 and Dst should use the same register bank.
for (unsigned i = 1, e = MI.getNumOperands(); i != e; ++i)
OpdsMapping[i] = AMDGPU::getValueMapping(Bank, SrcSize);
break;
}
case AMDGPU::G_BITCAST:
case AMDGPU::G_INTTOPTR:
case AMDGPU::G_PTRTOINT:
case AMDGPU::G_BITREVERSE:
case AMDGPU::G_FABS:
case AMDGPU::G_FNEG: {
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
unsigned BankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[0] = OpdsMapping[1] = AMDGPU::getValueMapping(BankID, Size);
break;
}
case AMDGPU::G_CTLZ_ZERO_UNDEF:
case AMDGPU::G_CTTZ_ZERO_UNDEF:
case AMDGPU::G_CTPOP: {
unsigned Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
unsigned BankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[0] = AMDGPU::getValueMapping(BankID, 32);
// This should really be getValueMappingSGPR64Only, but allowing the generic
// code to handle the register split just makes using LegalizerHelper more
// difficult.
OpdsMapping[1] = AMDGPU::getValueMapping(BankID, Size);
break;
}
case AMDGPU::G_TRUNC: {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
unsigned Bank = getRegBankID(Src, MRI, *TRI);
unsigned DstSize = getSizeInBits(Dst, MRI, *TRI);
unsigned SrcSize = getSizeInBits(Src, MRI, *TRI);
OpdsMapping[0] = AMDGPU::getValueMapping(Bank, DstSize);
OpdsMapping[1] = AMDGPU::getValueMapping(Bank, SrcSize);
break;
}
case AMDGPU::G_ZEXT:
case AMDGPU::G_SEXT:
case AMDGPU::G_ANYEXT:
case AMDGPU::G_SEXT_INREG: {
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
unsigned DstSize = getSizeInBits(Dst, MRI, *TRI);
unsigned SrcSize = getSizeInBits(Src, MRI, *TRI);
unsigned DstBank;
const RegisterBank *SrcBank = getRegBank(Src, MRI, *TRI);
assert(SrcBank);
switch (SrcBank->getID()) {
case AMDGPU::SGPRRegBankID:
DstBank = AMDGPU::SGPRRegBankID;
break;
default:
DstBank = AMDGPU::VGPRRegBankID;
break;
}
// Scalar extend can use 64-bit BFE, but VGPRs require extending to
// 32-bits, and then to 64.
OpdsMapping[0] = AMDGPU::getValueMappingSGPR64Only(DstBank, DstSize);
OpdsMapping[1] = AMDGPU::getValueMappingSGPR64Only(SrcBank->getID(),
SrcSize);
break;
}
case AMDGPU::G_FCMP: {
unsigned Size = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
unsigned Op2Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI);
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1);
OpdsMapping[1] = nullptr; // Predicate Operand.
OpdsMapping[2] = AMDGPU::getValueMapping(Op2Bank, Size);
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
break;
}
case AMDGPU::G_STORE: {
assert(MI.getOperand(0).isReg());
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
// FIXME: We need to specify a different reg bank once scalar stores are
// supported.
const ValueMapping *ValMapping =
AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
OpdsMapping[0] = ValMapping;
OpdsMapping[1] = getValueMappingForPtr(MRI, MI.getOperand(1).getReg());
break;
}
case AMDGPU::G_ICMP: {
auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
unsigned Size = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
// See if the result register has already been constrained to vcc, which may
// happen due to control flow intrinsic lowering.
unsigned DstBank = getRegBankID(MI.getOperand(0).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
unsigned Op2Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI);
unsigned Op3Bank = getRegBankID(MI.getOperand(3).getReg(), MRI, *TRI);
bool CanUseSCC = DstBank == AMDGPU::SGPRRegBankID &&
Op2Bank == AMDGPU::SGPRRegBankID &&
Op3Bank == AMDGPU::SGPRRegBankID &&
(Size == 32 || (Size == 64 &&
(Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) &&
Subtarget.hasScalarCompareEq64()));
DstBank = CanUseSCC ? AMDGPU::SGPRRegBankID : AMDGPU::VCCRegBankID;
unsigned SrcBank = CanUseSCC ? AMDGPU::SGPRRegBankID : AMDGPU::VGPRRegBankID;
// TODO: Use 32-bit for scalar output size.
// SCC results will need to be copied to a 32-bit SGPR virtual register.
const unsigned ResultSize = 1;
OpdsMapping[0] = AMDGPU::getValueMapping(DstBank, ResultSize);
OpdsMapping[2] = AMDGPU::getValueMapping(SrcBank, Size);
OpdsMapping[3] = AMDGPU::getValueMapping(SrcBank, Size);
break;
}
case AMDGPU::G_EXTRACT_VECTOR_ELT: {
// VGPR index can be used for waterfall when indexing a SGPR vector.
unsigned SrcBankID = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI);
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
unsigned SrcSize = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
unsigned IdxSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
unsigned IdxBank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI);
unsigned OutputBankID = regBankUnion(SrcBankID, IdxBank);
OpdsMapping[0] = AMDGPU::getValueMappingSGPR64Only(OutputBankID, DstSize);
OpdsMapping[1] = AMDGPU::getValueMapping(SrcBankID, SrcSize);
// The index can be either if the source vector is VGPR.
OpdsMapping[2] = AMDGPU::getValueMapping(IdxBank, IdxSize);
break;
}
case AMDGPU::G_INSERT_VECTOR_ELT: {
unsigned OutputBankID = isSALUMapping(MI) ?
AMDGPU::SGPRRegBankID : AMDGPU::VGPRRegBankID;
unsigned VecSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
unsigned InsertSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
unsigned IdxSize = MRI.getType(MI.getOperand(3).getReg()).getSizeInBits();
unsigned InsertEltBankID = getRegBankID(MI.getOperand(2).getReg(),
MRI, *TRI);
unsigned IdxBankID = getRegBankID(MI.getOperand(3).getReg(), MRI, *TRI);
OpdsMapping[0] = AMDGPU::getValueMapping(OutputBankID, VecSize);
OpdsMapping[1] = AMDGPU::getValueMapping(OutputBankID, VecSize);
// This is a weird case, because we need to break down the mapping based on
// the register bank of a different operand.
if (InsertSize == 64 && OutputBankID == AMDGPU::VGPRRegBankID) {
OpdsMapping[2] = AMDGPU::getValueMappingSplit64(InsertEltBankID,
InsertSize);
} else {
assert(InsertSize == 32 || InsertSize == 64);
OpdsMapping[2] = AMDGPU::getValueMapping(InsertEltBankID, InsertSize);
}
// The index can be either if the source vector is VGPR.
OpdsMapping[3] = AMDGPU::getValueMapping(IdxBankID, IdxSize);
break;
}
case AMDGPU::G_UNMERGE_VALUES: {
unsigned Bank = isSALUMapping(MI) ? AMDGPU::SGPRRegBankID :
AMDGPU::VGPRRegBankID;
// Op1 and Dst should use the same register bank.
// FIXME: Shouldn't this be the default? Why do we need to handle this?
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
unsigned Size = getSizeInBits(MI.getOperand(i).getReg(), MRI, *TRI);
OpdsMapping[i] = AMDGPU::getValueMapping(Bank, Size);
}
break;
}
case AMDGPU::G_AMDGPU_BUFFER_LOAD:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT:
case AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16:
case AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT:
case AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16:
case AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT:
case AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16:
case AMDGPU::G_AMDGPU_BUFFER_STORE:
case AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE:
case AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT:
case AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT:
case AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16: {
OpdsMapping[0] = getVGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI);
// rsrc
OpdsMapping[1] = getSGPROpMapping(MI.getOperand(1).getReg(), MRI, *TRI);
// vindex
OpdsMapping[2] = getVGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
// voffset
OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
// soffset
OpdsMapping[4] = getSGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI);
// Any remaining operands are immediates and were correctly null
// initialized.
break;
}
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC:
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC: {
// vdata_out
OpdsMapping[0] = getVGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI);
// vdata_in
OpdsMapping[1] = getVGPROpMapping(MI.getOperand(1).getReg(), MRI, *TRI);
// rsrc
OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
// vindex
OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
// voffset
OpdsMapping[4] = getVGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI);
// soffset
OpdsMapping[5] = getSGPROpMapping(MI.getOperand(5).getReg(), MRI, *TRI);
// Any remaining operands are immediates and were correctly null
// initialized.
break;
}
case AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP: {
// vdata_out
OpdsMapping[0] = getVGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI);
// vdata_in
OpdsMapping[1] = getVGPROpMapping(MI.getOperand(1).getReg(), MRI, *TRI);
// cmp
OpdsMapping[2] = getVGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
// rsrc
OpdsMapping[3] = getSGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
// vindex
OpdsMapping[4] = getVGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI);
// voffset
OpdsMapping[5] = getVGPROpMapping(MI.getOperand(5).getReg(), MRI, *TRI);
// soffset
OpdsMapping[6] = getSGPROpMapping(MI.getOperand(6).getReg(), MRI, *TRI);
// Any remaining operands are immediates and were correctly null
// initialized.
break;
}
case AMDGPU::G_AMDGPU_S_BUFFER_LOAD: {
// Lie and claim everything is legal, even though some need to be
// SGPRs. applyMapping will have to deal with it as a waterfall loop.
OpdsMapping[1] = getSGPROpMapping(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
// We need to convert this to a MUBUF if either the resource of offset is
// VGPR.
unsigned RSrcBank = OpdsMapping[1]->BreakDown[0].RegBank->getID();
unsigned OffsetBank = OpdsMapping[2]->BreakDown[0].RegBank->getID();
unsigned ResultBank = regBankUnion(RSrcBank, OffsetBank);
unsigned Size0 = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(ResultBank, Size0);
break;
}
case AMDGPU::G_INTRINSIC: {
switch (MI.getIntrinsicID()) {
default:
return getInvalidInstructionMapping();
case Intrinsic::amdgcn_div_fmas:
case Intrinsic::amdgcn_div_fixup:
case Intrinsic::amdgcn_trig_preop:
case Intrinsic::amdgcn_sin:
case Intrinsic::amdgcn_cos:
case Intrinsic::amdgcn_log_clamp:
case Intrinsic::amdgcn_rcp:
case Intrinsic::amdgcn_rcp_legacy:
case Intrinsic::amdgcn_sqrt:
case Intrinsic::amdgcn_rsq:
case Intrinsic::amdgcn_rsq_legacy:
case Intrinsic::amdgcn_rsq_clamp:
case Intrinsic::amdgcn_fmul_legacy:
case Intrinsic::amdgcn_ldexp:
case Intrinsic::amdgcn_frexp_mant:
case Intrinsic::amdgcn_frexp_exp:
case Intrinsic::amdgcn_fract:
case Intrinsic::amdgcn_cvt_pkrtz:
case Intrinsic::amdgcn_cvt_pknorm_i16:
case Intrinsic::amdgcn_cvt_pknorm_u16:
case Intrinsic::amdgcn_cvt_pk_i16:
case Intrinsic::amdgcn_cvt_pk_u16:
case Intrinsic::amdgcn_fmed3:
case Intrinsic::amdgcn_cubeid:
case Intrinsic::amdgcn_cubema:
case Intrinsic::amdgcn_cubesc:
case Intrinsic::amdgcn_cubetc:
case Intrinsic::amdgcn_sffbh:
case Intrinsic::amdgcn_fmad_ftz:
case Intrinsic::amdgcn_mbcnt_lo:
case Intrinsic::amdgcn_mbcnt_hi:
case Intrinsic::amdgcn_mul_u24:
case Intrinsic::amdgcn_mul_i24:
case Intrinsic::amdgcn_lerp:
case Intrinsic::amdgcn_sad_u8:
case Intrinsic::amdgcn_msad_u8:
case Intrinsic::amdgcn_sad_hi_u8:
case Intrinsic::amdgcn_sad_u16:
case Intrinsic::amdgcn_qsad_pk_u16_u8:
case Intrinsic::amdgcn_mqsad_pk_u16_u8:
case Intrinsic::amdgcn_mqsad_u32_u8:
case Intrinsic::amdgcn_cvt_pk_u8_f32:
case Intrinsic::amdgcn_alignbit:
case Intrinsic::amdgcn_alignbyte:
case Intrinsic::amdgcn_fdot2:
case Intrinsic::amdgcn_sdot2:
case Intrinsic::amdgcn_udot2:
case Intrinsic::amdgcn_sdot4:
case Intrinsic::amdgcn_udot4:
case Intrinsic::amdgcn_sdot8:
case Intrinsic::amdgcn_udot8:
return getDefaultMappingVOP(MI);
case Intrinsic::amdgcn_sbfe:
case Intrinsic::amdgcn_ubfe:
if (isSALUMapping(MI))
return getDefaultMappingSOP(MI);
return getDefaultMappingVOP(MI);
case Intrinsic::amdgcn_ds_swizzle:
case Intrinsic::amdgcn_ds_permute:
case Intrinsic::amdgcn_ds_bpermute:
case Intrinsic::amdgcn_update_dpp:
case Intrinsic::amdgcn_mov_dpp8:
case Intrinsic::amdgcn_mov_dpp:
case Intrinsic::amdgcn_wwm:
case Intrinsic::amdgcn_wqm:
case Intrinsic::amdgcn_softwqm:
return getDefaultMappingAllVGPR(MI);
case Intrinsic::amdgcn_kernarg_segment_ptr:
case Intrinsic::amdgcn_s_getpc:
case Intrinsic::amdgcn_groupstaticsize: {
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
break;
}
case Intrinsic::amdgcn_wqm_vote: {
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = OpdsMapping[2]
= AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Size);
break;
}
case Intrinsic::amdgcn_ps_live: {
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1);
break;
}
case Intrinsic::amdgcn_div_scale: {
unsigned Dst0Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
unsigned Dst1Size = MRI.getType(MI.getOperand(1).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Dst0Size);
OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, Dst1Size);
unsigned SrcSize = MRI.getType(MI.getOperand(3).getReg()).getSizeInBits();
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, SrcSize);
OpdsMapping[4] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, SrcSize);
break;
}
case Intrinsic::amdgcn_class: {
Register Src0Reg = MI.getOperand(2).getReg();
Register Src1Reg = MI.getOperand(3).getReg();
unsigned Src0Size = MRI.getType(Src0Reg).getSizeInBits();
unsigned Src1Size = MRI.getType(Src1Reg).getSizeInBits();
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, DstSize);
OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Src0Size);
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Src1Size);
break;
}
case Intrinsic::amdgcn_icmp:
case Intrinsic::amdgcn_fcmp: {
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
// This is not VCCRegBank because this is not used in boolean contexts.
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, DstSize);
unsigned OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, OpSize);
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, OpSize);
break;
}
case Intrinsic::amdgcn_readlane: {
// This must be an SGPR, but accept a VGPR.
Register IdxReg = MI.getOperand(3).getReg();
unsigned IdxSize = MRI.getType(IdxReg).getSizeInBits();
unsigned IdxBank = getRegBankID(IdxReg, MRI, *TRI, AMDGPU::SGPRRegBankID);
OpdsMapping[3] = AMDGPU::getValueMapping(IdxBank, IdxSize);
LLVM_FALLTHROUGH;
}
case Intrinsic::amdgcn_readfirstlane: {
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
unsigned SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, DstSize);
OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, SrcSize);
break;
}
case Intrinsic::amdgcn_writelane: {
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
Register SrcReg = MI.getOperand(2).getReg();
unsigned SrcSize = MRI.getType(SrcReg).getSizeInBits();
unsigned SrcBank = getRegBankID(SrcReg, MRI, *TRI, AMDGPU::SGPRRegBankID);
Register IdxReg = MI.getOperand(3).getReg();
unsigned IdxSize = MRI.getType(IdxReg).getSizeInBits();
unsigned IdxBank = getRegBankID(IdxReg, MRI, *TRI, AMDGPU::SGPRRegBankID);
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, DstSize);
// These 2 must be SGPRs, but accept VGPRs. Readfirstlane will be inserted
// to legalize.
OpdsMapping[2] = AMDGPU::getValueMapping(SrcBank, SrcSize);
OpdsMapping[3] = AMDGPU::getValueMapping(IdxBank, IdxSize);
OpdsMapping[4] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, SrcSize);
break;
}
case Intrinsic::amdgcn_if_break: {
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1);
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
break;
}
case Intrinsic::amdgcn_permlane16:
case Intrinsic::amdgcn_permlanex16: {
unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, *TRI);
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, Size);
OpdsMapping[4] = getSGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
OpdsMapping[5] = getSGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI);
break;
}
case Intrinsic::amdgcn_mfma_f32_4x4x1f32:
case Intrinsic::amdgcn_mfma_f32_4x4x4f16:
case Intrinsic::amdgcn_mfma_i32_4x4x4i8:
case Intrinsic::amdgcn_mfma_f32_4x4x2bf16:
case Intrinsic::amdgcn_mfma_f32_16x16x1f32:
case Intrinsic::amdgcn_mfma_f32_16x16x4f32:
case Intrinsic::amdgcn_mfma_f32_16x16x4f16:
case Intrinsic::amdgcn_mfma_f32_16x16x16f16:
case Intrinsic::amdgcn_mfma_i32_16x16x4i8:
case Intrinsic::amdgcn_mfma_i32_16x16x16i8:
case Intrinsic::amdgcn_mfma_f32_16x16x2bf16:
case Intrinsic::amdgcn_mfma_f32_16x16x8bf16:
case Intrinsic::amdgcn_mfma_f32_32x32x1f32:
case Intrinsic::amdgcn_mfma_f32_32x32x2f32:
case Intrinsic::amdgcn_mfma_f32_32x32x4f16:
case Intrinsic::amdgcn_mfma_f32_32x32x8f16:
case Intrinsic::amdgcn_mfma_i32_32x32x4i8:
case Intrinsic::amdgcn_mfma_i32_32x32x8i8:
case Intrinsic::amdgcn_mfma_f32_32x32x2bf16:
case Intrinsic::amdgcn_mfma_f32_32x32x4bf16: {
// Default for MAI intrinsics.
// srcC can also be an immediate which can be folded later.
// FIXME: Should we eventually add an alternative mapping with AGPR src
// for srcA/srcB?
//
// vdst, srcA, srcB, srcC
OpdsMapping[0] = getAGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI);
OpdsMapping[2] = getVGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
OpdsMapping[4] = getAGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI);
break;
}
case Intrinsic::amdgcn_interp_p1:
case Intrinsic::amdgcn_interp_p2:
case Intrinsic::amdgcn_interp_mov:
case Intrinsic::amdgcn_interp_p1_f16:
case Intrinsic::amdgcn_interp_p2_f16: {
const int M0Idx = MI.getNumOperands() - 1;
Register M0Reg = MI.getOperand(M0Idx).getReg();
unsigned M0Bank = getRegBankID(M0Reg, MRI, *TRI, AMDGPU::SGPRRegBankID);
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, DstSize);
for (int I = 2; I != M0Idx && MI.getOperand(I).isReg(); ++I)
OpdsMapping[I] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32);
// Must be SGPR, but we must take whatever the original bank is and fix it
// later.
OpdsMapping[M0Idx] = AMDGPU::getValueMapping(M0Bank, 32);
break;
}
case Intrinsic::amdgcn_ballot: {
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
unsigned SrcSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, DstSize);
OpdsMapping[2] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, SrcSize);
break;
}
}
break;
}
case AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD:
case AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE: {
auto IntrID = MI.getIntrinsicID();
const AMDGPU::RsrcIntrinsic *RSrcIntrin = AMDGPU::lookupRsrcIntrinsic(IntrID);
assert(RSrcIntrin && "missing RsrcIntrinsic for image intrinsic");
// Non-images can have complications from operands that allow both SGPR
// and VGPR. For now it's too complicated to figure out the final opcode
// to derive the register bank from the MCInstrDesc.
assert(RSrcIntrin->IsImage);
return getImageMapping(MRI, MI, RSrcIntrin->RsrcArg);
}
case AMDGPU::G_INTRINSIC_W_SIDE_EFFECTS: {
auto IntrID = MI.getIntrinsicID();
switch (IntrID) {
case Intrinsic::amdgcn_s_getreg:
case Intrinsic::amdgcn_s_memtime:
case Intrinsic::amdgcn_s_memrealtime:
case Intrinsic::amdgcn_s_get_waveid_in_workgroup: {
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
break;
}
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax:
return getDefaultMappingAllVGPR(MI);
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap: {
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, DstSize);
unsigned M0Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
OpdsMapping[2] = AMDGPU::getValueMapping(M0Bank, 32);
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32);
break;
}
case Intrinsic::amdgcn_ds_append:
case Intrinsic::amdgcn_ds_consume: {
unsigned DstSize = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, DstSize);
OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
break;
}
case Intrinsic::amdgcn_exp_compr:
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32);
OpdsMapping[4] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32);
break;
case Intrinsic::amdgcn_exp:
// FIXME: Could we support packed types here?
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32);
OpdsMapping[4] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32);
OpdsMapping[5] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32);
OpdsMapping[6] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32);
break;
case Intrinsic::amdgcn_s_sendmsg:
case Intrinsic::amdgcn_s_sendmsghalt: {
// This must be an SGPR, but accept a VGPR.
unsigned Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
OpdsMapping[2] = AMDGPU::getValueMapping(Bank, 32);
break;
}
case Intrinsic::amdgcn_s_setreg: {
// This must be an SGPR, but accept a VGPR.
unsigned Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
OpdsMapping[2] = AMDGPU::getValueMapping(Bank, 32);
break;
}
case Intrinsic::amdgcn_end_cf: {
unsigned Size = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
break;
}
case Intrinsic::amdgcn_else: {
unsigned WaveSize = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[0] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1);
OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, WaveSize);
OpdsMapping[3] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, WaveSize);
break;
}
case Intrinsic::amdgcn_kill: {
OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::VCCRegBankID, 1);
break;
}
case Intrinsic::amdgcn_raw_buffer_load:
case Intrinsic::amdgcn_raw_tbuffer_load: {
// FIXME: Should make intrinsic ID the last operand of the instruction,
// then this would be the same as store
OpdsMapping[0] = getVGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI);
OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
OpdsMapping[4] = getSGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI);
break;
}
case Intrinsic::amdgcn_raw_buffer_store:
case Intrinsic::amdgcn_raw_buffer_store_format:
case Intrinsic::amdgcn_raw_tbuffer_store: {
OpdsMapping[1] = getVGPROpMapping(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
OpdsMapping[4] = getSGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI);
break;
}
case Intrinsic::amdgcn_struct_buffer_load:
case Intrinsic::amdgcn_struct_tbuffer_load: {
OpdsMapping[0] = getVGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI);
OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
OpdsMapping[4] = getVGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI);
OpdsMapping[5] = getSGPROpMapping(MI.getOperand(5).getReg(), MRI, *TRI);
break;
}
case Intrinsic::amdgcn_struct_buffer_store:
case Intrinsic::amdgcn_struct_tbuffer_store: {
OpdsMapping[1] = getVGPROpMapping(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[2] = getSGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
OpdsMapping[4] = getVGPROpMapping(MI.getOperand(4).getReg(), MRI, *TRI);
OpdsMapping[5] = getSGPROpMapping(MI.getOperand(5).getReg(), MRI, *TRI);
break;
}
case Intrinsic::amdgcn_init_exec_from_input: {
unsigned Size = getSizeInBits(MI.getOperand(1).getReg(), MRI, *TRI);
OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::SGPRRegBankID, Size);
break;
}
case Intrinsic::amdgcn_ds_gws_init:
case Intrinsic::amdgcn_ds_gws_barrier:
case Intrinsic::amdgcn_ds_gws_sema_br: {
OpdsMapping[1] = AMDGPU::getValueMapping(AMDGPU::VGPRRegBankID, 32);
// This must be an SGPR, but accept a VGPR.
unsigned Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
OpdsMapping[2] = AMDGPU::getValueMapping(Bank, 32);
break;
}
case Intrinsic::amdgcn_ds_gws_sema_v:
case Intrinsic::amdgcn_ds_gws_sema_p:
case Intrinsic::amdgcn_ds_gws_sema_release_all: {
// This must be an SGPR, but accept a VGPR.
unsigned Bank = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
OpdsMapping[1] = AMDGPU::getValueMapping(Bank, 32);
break;
}
default:
return getInvalidInstructionMapping();
}
break;
}
case AMDGPU::G_SELECT: {
unsigned Size = MRI.getType(MI.getOperand(0).getReg()).getSizeInBits();
unsigned Op2Bank = getRegBankID(MI.getOperand(2).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
unsigned Op3Bank = getRegBankID(MI.getOperand(3).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
bool SGPRSrcs = Op2Bank == AMDGPU::SGPRRegBankID &&
Op3Bank == AMDGPU::SGPRRegBankID;
unsigned CondBankDefault = SGPRSrcs ?
AMDGPU::SGPRRegBankID : AMDGPU::VCCRegBankID;
unsigned CondBank = getRegBankID(MI.getOperand(1).getReg(), MRI, *TRI,
CondBankDefault);
if (CondBank == AMDGPU::SGPRRegBankID)
CondBank = SGPRSrcs ? AMDGPU::SGPRRegBankID : AMDGPU::VCCRegBankID;
else if (CondBank == AMDGPU::VGPRRegBankID)
CondBank = AMDGPU::VCCRegBankID;
unsigned Bank = SGPRSrcs && CondBank == AMDGPU::SGPRRegBankID ?
AMDGPU::SGPRRegBankID : AMDGPU::VGPRRegBankID;
assert(CondBank == AMDGPU::VCCRegBankID || CondBank == AMDGPU::SGPRRegBankID);
// TODO: Should report 32-bit for scalar condition type.
if (Size == 64) {
OpdsMapping[0] = AMDGPU::getValueMappingSGPR64Only(Bank, Size);
OpdsMapping[1] = AMDGPU::getValueMapping(CondBank, 1);
OpdsMapping[2] = AMDGPU::getValueMappingSGPR64Only(Bank, Size);
OpdsMapping[3] = AMDGPU::getValueMappingSGPR64Only(Bank, Size);
} else {
OpdsMapping[0] = AMDGPU::getValueMapping(Bank, Size);
OpdsMapping[1] = AMDGPU::getValueMapping(CondBank, 1);
OpdsMapping[2] = AMDGPU::getValueMapping(Bank, Size);
OpdsMapping[3] = AMDGPU::getValueMapping(Bank, Size);
}
break;
}
case AMDGPU::G_LOAD:
case AMDGPU::G_ZEXTLOAD:
case AMDGPU::G_SEXTLOAD:
return getInstrMappingForLoad(MI);
case AMDGPU::G_ATOMICRMW_XCHG:
case AMDGPU::G_ATOMICRMW_ADD:
case AMDGPU::G_ATOMICRMW_SUB:
case AMDGPU::G_ATOMICRMW_AND:
case AMDGPU::G_ATOMICRMW_OR:
case AMDGPU::G_ATOMICRMW_XOR:
case AMDGPU::G_ATOMICRMW_MAX:
case AMDGPU::G_ATOMICRMW_MIN:
case AMDGPU::G_ATOMICRMW_UMAX:
case AMDGPU::G_ATOMICRMW_UMIN:
case AMDGPU::G_ATOMICRMW_FADD:
case AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG:
case AMDGPU::G_AMDGPU_ATOMIC_INC:
case AMDGPU::G_AMDGPU_ATOMIC_DEC: {
OpdsMapping[0] = getVGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI);
OpdsMapping[1] = getValueMappingForPtr(MRI, MI.getOperand(1).getReg());
OpdsMapping[2] = getVGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
break;
}
case AMDGPU::G_ATOMIC_CMPXCHG: {
OpdsMapping[0] = getVGPROpMapping(MI.getOperand(0).getReg(), MRI, *TRI);
OpdsMapping[1] = getValueMappingForPtr(MRI, MI.getOperand(1).getReg());
OpdsMapping[2] = getVGPROpMapping(MI.getOperand(2).getReg(), MRI, *TRI);
OpdsMapping[3] = getVGPROpMapping(MI.getOperand(3).getReg(), MRI, *TRI);
break;
}
case AMDGPU::G_BRCOND: {
unsigned Bank = getRegBankID(MI.getOperand(0).getReg(), MRI, *TRI,
AMDGPU::SGPRRegBankID);
assert(MRI.getType(MI.getOperand(0).getReg()).getSizeInBits() == 1);
if (Bank != AMDGPU::SGPRRegBankID)
Bank = AMDGPU::VCCRegBankID;
OpdsMapping[0] = AMDGPU::getValueMapping(Bank, 1);
break;
}
}
return getInstructionMapping(/*ID*/1, /*Cost*/1,
getOperandsMapping(OpdsMapping),
MI.getNumOperands());
}