AMDGPUPromoteAlloca.cpp 35.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
//===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates allocas by either converting them into vectors or
// by migrating them to local address space.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <map>
#include <tuple>
#include <utility>
#include <vector>

#define DEBUG_TYPE "amdgpu-promote-alloca"

using namespace llvm;

namespace {

static cl::opt<bool> DisablePromoteAllocaToVector(
  "disable-promote-alloca-to-vector",
  cl::desc("Disable promote alloca to vector"),
  cl::init(false));

static cl::opt<bool> DisablePromoteAllocaToLDS(
  "disable-promote-alloca-to-lds",
  cl::desc("Disable promote alloca to LDS"),
  cl::init(false));

static cl::opt<unsigned> PromoteAllocaToVectorLimit(
  "amdgpu-promote-alloca-to-vector-limit",
  cl::desc("Maximum byte size to consider promote alloca to vector"),
  cl::init(0));

// FIXME: This can create globals so should be a module pass.
class AMDGPUPromoteAlloca : public FunctionPass {
private:
  const TargetMachine *TM;
  Module *Mod = nullptr;
  const DataLayout *DL = nullptr;

  // FIXME: This should be per-kernel.
  uint32_t LocalMemLimit = 0;
  uint32_t CurrentLocalMemUsage = 0;
  unsigned MaxVGPRs;

  bool IsAMDGCN = false;
  bool IsAMDHSA = false;

  std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
  Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);

  /// BaseAlloca is the alloca root the search started from.
  /// Val may be that alloca or a recursive user of it.
  bool collectUsesWithPtrTypes(Value *BaseAlloca,
                               Value *Val,
                               std::vector<Value*> &WorkList) const;

  /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
  /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
  /// Returns true if both operands are derived from the same alloca. Val should
  /// be the same value as one of the input operands of UseInst.
  bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
                                       Instruction *UseInst,
                                       int OpIdx0, int OpIdx1) const;

  /// Check whether we have enough local memory for promotion.
  bool hasSufficientLocalMem(const Function &F);

public:
  static char ID;

  AMDGPUPromoteAlloca() : FunctionPass(ID) {}

  bool doInitialization(Module &M) override;
  bool runOnFunction(Function &F) override;

  StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }

  bool handleAlloca(AllocaInst &I, bool SufficientLDS);

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    FunctionPass::getAnalysisUsage(AU);
  }
};

class AMDGPUPromoteAllocaToVector : public FunctionPass {
private:
  unsigned MaxVGPRs;

public:
  static char ID;

  AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {}

  bool runOnFunction(Function &F) override;

  StringRef getPassName() const override {
    return "AMDGPU Promote Alloca to vector";
  }

  bool handleAlloca(AllocaInst &I);

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    FunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char AMDGPUPromoteAlloca::ID = 0;
char AMDGPUPromoteAllocaToVector::ID = 0;

INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
                "AMDGPU promote alloca to vector or LDS", false, false)

INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector",
                "AMDGPU promote alloca to vector", false, false)

char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID;

bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
  Mod = &M;
  DL = &Mod->getDataLayout();

  return false;
}

bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
    TM = &TPC->getTM<TargetMachine>();
  else
    return false;

  const Triple &TT = TM->getTargetTriple();
  IsAMDGCN = TT.getArch() == Triple::amdgcn;
  IsAMDHSA = TT.getOS() == Triple::AMDHSA;

  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
  if (!ST.isPromoteAllocaEnabled())
    return false;

  if (IsAMDGCN) {
    const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(F);
    MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
  } else {
    MaxVGPRs = 128;
  }

  bool SufficientLDS = hasSufficientLocalMem(F);
  bool Changed = false;
  BasicBlock &EntryBB = *F.begin();

  SmallVector<AllocaInst *, 16> Allocas;
  for (Instruction &I : EntryBB) {
    if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
      Allocas.push_back(AI);
  }

  for (AllocaInst *AI : Allocas) {
    if (handleAlloca(*AI, SufficientLDS))
      Changed = true;
  }

  return Changed;
}

std::pair<Value *, Value *>
AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
  const Function &F = *Builder.GetInsertBlock()->getParent();
  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);

  if (!IsAMDHSA) {
    Function *LocalSizeYFn
      = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
    Function *LocalSizeZFn
      = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);

    CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
    CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});

    ST.makeLIDRangeMetadata(LocalSizeY);
    ST.makeLIDRangeMetadata(LocalSizeZ);

    return std::make_pair(LocalSizeY, LocalSizeZ);
  }

  // We must read the size out of the dispatch pointer.
  assert(IsAMDGCN);

  // We are indexing into this struct, and want to extract the workgroup_size_*
  // fields.
  //
  //   typedef struct hsa_kernel_dispatch_packet_s {
  //     uint16_t header;
  //     uint16_t setup;
  //     uint16_t workgroup_size_x ;
  //     uint16_t workgroup_size_y;
  //     uint16_t workgroup_size_z;
  //     uint16_t reserved0;
  //     uint32_t grid_size_x ;
  //     uint32_t grid_size_y ;
  //     uint32_t grid_size_z;
  //
  //     uint32_t private_segment_size;
  //     uint32_t group_segment_size;
  //     uint64_t kernel_object;
  //
  // #ifdef HSA_LARGE_MODEL
  //     void *kernarg_address;
  // #elif defined HSA_LITTLE_ENDIAN
  //     void *kernarg_address;
  //     uint32_t reserved1;
  // #else
  //     uint32_t reserved1;
  //     void *kernarg_address;
  // #endif
  //     uint64_t reserved2;
  //     hsa_signal_t completion_signal; // uint64_t wrapper
  //   } hsa_kernel_dispatch_packet_t
  //
  Function *DispatchPtrFn
    = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);

  CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
  DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
  DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);

  // Size of the dispatch packet struct.
  DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);

  Type *I32Ty = Type::getInt32Ty(Mod->getContext());
  Value *CastDispatchPtr = Builder.CreateBitCast(
    DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));

  // We could do a single 64-bit load here, but it's likely that the basic
  // 32-bit and extract sequence is already present, and it is probably easier
  // to CSE this. The loads should be mergable later anyway.
  Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
  LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4));

  Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
  LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4));

  MDNode *MD = MDNode::get(Mod->getContext(), None);
  LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
  LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
  ST.makeLIDRangeMetadata(LoadZU);

  // Extract y component. Upper half of LoadZU should be zero already.
  Value *Y = Builder.CreateLShr(LoadXY, 16);

  return std::make_pair(Y, LoadZU);
}

Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
  const AMDGPUSubtarget &ST =
      AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent());
  Intrinsic::ID IntrID = Intrinsic::not_intrinsic;

  switch (N) {
  case 0:
    IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x
                      : (Intrinsic::ID)Intrinsic::r600_read_tidig_x;
    break;
  case 1:
    IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y
                      : (Intrinsic::ID)Intrinsic::r600_read_tidig_y;
    break;

  case 2:
    IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z
                      : (Intrinsic::ID)Intrinsic::r600_read_tidig_z;
    break;
  default:
    llvm_unreachable("invalid dimension");
  }

  Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
  CallInst *CI = Builder.CreateCall(WorkitemIdFn);
  ST.makeLIDRangeMetadata(CI);

  return CI;
}

static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
  return FixedVectorType::get(ArrayTy->getElementType(),
                              ArrayTy->getNumElements());
}

static Value *stripBitcasts(Value *V) {
  while (Instruction *I = dyn_cast<Instruction>(V)) {
    if (I->getOpcode() != Instruction::BitCast)
      break;
    V = I->getOperand(0);
  }
  return V;
}

static Value *
calculateVectorIndex(Value *Ptr,
                     const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
  GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr));
  if (!GEP)
    return nullptr;

  auto I = GEPIdx.find(GEP);
  return I == GEPIdx.end() ? nullptr : I->second;
}

static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
  // FIXME we only support simple cases
  if (GEP->getNumOperands() != 3)
    return nullptr;

  ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
  if (!I0 || !I0->isZero())
    return nullptr;

  return GEP->getOperand(2);
}

// Not an instruction handled below to turn into a vector.
//
// TODO: Check isTriviallyVectorizable for calls and handle other
// instructions.
static bool canVectorizeInst(Instruction *Inst, User *User,
                             const DataLayout &DL) {
  switch (Inst->getOpcode()) {
  case Instruction::Load: {
    // Currently only handle the case where the Pointer Operand is a GEP.
    // Also we could not vectorize volatile or atomic loads.
    LoadInst *LI = cast<LoadInst>(Inst);
    if (isa<AllocaInst>(User) &&
        LI->getPointerOperandType() == User->getType() &&
        isa<VectorType>(LI->getType()))
      return true;

    Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand());
    if (!PtrInst)
      return false;

    return (PtrInst->getOpcode() == Instruction::GetElementPtr ||
            PtrInst->getOpcode() == Instruction::BitCast) &&
           LI->isSimple();
  }
  case Instruction::BitCast:
    return true;
  case Instruction::Store: {
    // Must be the stored pointer operand, not a stored value, plus
    // since it should be canonical form, the User should be a GEP.
    // Also we could not vectorize volatile or atomic stores.
    StoreInst *SI = cast<StoreInst>(Inst);
    if (isa<AllocaInst>(User) &&
        SI->getPointerOperandType() == User->getType() &&
        isa<VectorType>(SI->getValueOperand()->getType()))
      return true;

    Instruction *UserInst = dyn_cast<Instruction>(User);
    if (!UserInst)
      return false;

    return (SI->getPointerOperand() == User) &&
           (UserInst->getOpcode() == Instruction::GetElementPtr ||
            UserInst->getOpcode() == Instruction::BitCast) &&
           SI->isSimple();
  }
  default:
    return false;
  }
}

static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL,
                                     unsigned MaxVGPRs) {

  if (DisablePromoteAllocaToVector) {
    LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
    return false;
  }

  Type *AllocaTy = Alloca->getAllocatedType();
  auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy);
  if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) {
    if (VectorType::isValidElementType(ArrayTy->getElementType()) &&
        ArrayTy->getNumElements() > 0)
      VectorTy = arrayTypeToVecType(ArrayTy);
  }

  // Use up to 1/4 of available register budget for vectorization.
  unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8
                                              : (MaxVGPRs * 32);

  if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) {
    LLVM_DEBUG(dbgs() << "  Alloca too big for vectorization with "
                      << MaxVGPRs << " registers available\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");

  // FIXME: There is no reason why we can't support larger arrays, we
  // are just being conservative for now.
  // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
  // could also be promoted but we don't currently handle this case
  if (!VectorTy || VectorTy->getNumElements() > 16 ||
      VectorTy->getNumElements() < 2) {
    LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
    return false;
  }

  std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
  std::vector<Value *> WorkList;
  SmallVector<User *, 8> Users(Alloca->users());
  SmallVector<User *, 8> UseUsers(Users.size(), Alloca);
  Type *VecEltTy = VectorTy->getElementType();
  while (!Users.empty()) {
    User *AllocaUser = Users.pop_back_val();
    User *UseUser = UseUsers.pop_back_val();
    Instruction *Inst = dyn_cast<Instruction>(AllocaUser);

    GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
    if (!GEP) {
      if (!canVectorizeInst(Inst, UseUser, DL))
        return false;

      if (Inst->getOpcode() == Instruction::BitCast) {
        Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType();
        Type *ToTy = Inst->getType()->getPointerElementType();
        if (FromTy->isAggregateType() || ToTy->isAggregateType() ||
            DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy))
          continue;

        for (User *CastUser : Inst->users()) {
          if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser)))
            continue;
          Users.push_back(CastUser);
          UseUsers.push_back(Inst);
        }

        continue;
      }

      WorkList.push_back(AllocaUser);
      continue;
    }

    Value *Index = GEPToVectorIndex(GEP);

    // If we can't compute a vector index from this GEP, then we can't
    // promote this alloca to vector.
    if (!Index) {
      LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
                        << '\n');
      return false;
    }

    GEPVectorIdx[GEP] = Index;
    Users.append(GEP->user_begin(), GEP->user_end());
    UseUsers.append(GEP->getNumUses(), GEP);
  }

  LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
                    << *VectorTy << '\n');

  for (Value *V : WorkList) {
    Instruction *Inst = cast<Instruction>(V);
    IRBuilder<> Builder(Inst);
    switch (Inst->getOpcode()) {
    case Instruction::Load: {
      if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy())
        break;

      Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
      Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
      if (!Index)
        break;

      Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
      Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
      Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
      Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
      if (Inst->getType() != VecEltTy)
        ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType());
      Inst->replaceAllUsesWith(ExtractElement);
      Inst->eraseFromParent();
      break;
    }
    case Instruction::Store: {
      StoreInst *SI = cast<StoreInst>(Inst);
      if (SI->getValueOperand()->getType() == AllocaTy ||
          SI->getValueOperand()->getType()->isVectorTy())
        break;

      Value *Ptr = SI->getPointerOperand();
      Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
      if (!Index)
        break;

      Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
      Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
      Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
      Value *Elt = SI->getValueOperand();
      if (Elt->getType() != VecEltTy)
        Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy);
      Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index);
      Builder.CreateStore(NewVecValue, BitCast);
      Inst->eraseFromParent();
      break;
    }

    default:
      llvm_unreachable("Inconsistency in instructions promotable to vector");
    }
  }
  return true;
}

static bool isCallPromotable(CallInst *CI) {
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
  if (!II)
    return false;

  switch (II->getIntrinsicID()) {
  case Intrinsic::memcpy:
  case Intrinsic::memmove:
  case Intrinsic::memset:
  case Intrinsic::lifetime_start:
  case Intrinsic::lifetime_end:
  case Intrinsic::invariant_start:
  case Intrinsic::invariant_end:
  case Intrinsic::launder_invariant_group:
  case Intrinsic::strip_invariant_group:
  case Intrinsic::objectsize:
    return true;
  default:
    return false;
  }
}

bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
                                                          Value *Val,
                                                          Instruction *Inst,
                                                          int OpIdx0,
                                                          int OpIdx1) const {
  // Figure out which operand is the one we might not be promoting.
  Value *OtherOp = Inst->getOperand(OpIdx0);
  if (Val == OtherOp)
    OtherOp = Inst->getOperand(OpIdx1);

  if (isa<ConstantPointerNull>(OtherOp))
    return true;

  Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
  if (!isa<AllocaInst>(OtherObj))
    return false;

  // TODO: We should be able to replace undefs with the right pointer type.

  // TODO: If we know the other base object is another promotable
  // alloca, not necessarily this alloca, we can do this. The
  // important part is both must have the same address space at
  // the end.
  if (OtherObj != BaseAlloca) {
    LLVM_DEBUG(
        dbgs() << "Found a binary instruction with another alloca object\n");
    return false;
  }

  return true;
}

bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
  Value *BaseAlloca,
  Value *Val,
  std::vector<Value*> &WorkList) const {

  for (User *User : Val->users()) {
    if (is_contained(WorkList, User))
      continue;

    if (CallInst *CI = dyn_cast<CallInst>(User)) {
      if (!isCallPromotable(CI))
        return false;

      WorkList.push_back(User);
      continue;
    }

    Instruction *UseInst = cast<Instruction>(User);
    if (UseInst->getOpcode() == Instruction::PtrToInt)
      return false;

    if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
      if (LI->isVolatile())
        return false;

      continue;
    }

    if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
      if (SI->isVolatile())
        return false;

      // Reject if the stored value is not the pointer operand.
      if (SI->getPointerOperand() != Val)
        return false;
    } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
      if (RMW->isVolatile())
        return false;
    } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
      if (CAS->isVolatile())
        return false;
    }

    // Only promote a select if we know that the other select operand
    // is from another pointer that will also be promoted.
    if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
      if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
        return false;

      // May need to rewrite constant operands.
      WorkList.push_back(ICmp);
    }

    if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
      // Give up if the pointer may be captured.
      if (PointerMayBeCaptured(UseInst, true, true))
        return false;
      // Don't collect the users of this.
      WorkList.push_back(User);
      continue;
    }

    if (!User->getType()->isPointerTy())
      continue;

    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
      // Be conservative if an address could be computed outside the bounds of
      // the alloca.
      if (!GEP->isInBounds())
        return false;
    }

    // Only promote a select if we know that the other select operand is from
    // another pointer that will also be promoted.
    if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
      if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
        return false;
    }

    // Repeat for phis.
    if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
      // TODO: Handle more complex cases. We should be able to replace loops
      // over arrays.
      switch (Phi->getNumIncomingValues()) {
      case 1:
        break;
      case 2:
        if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
          return false;
        break;
      default:
        return false;
      }
    }

    WorkList.push_back(User);
    if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
      return false;
  }

  return true;
}

bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) {

  FunctionType *FTy = F.getFunctionType();
  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);

  // If the function has any arguments in the local address space, then it's
  // possible these arguments require the entire local memory space, so
  // we cannot use local memory in the pass.
  for (Type *ParamTy : FTy->params()) {
    PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
    if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
      LocalMemLimit = 0;
      LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
                           "local memory disabled.\n");
      return false;
    }
  }

  LocalMemLimit = ST.getLocalMemorySize();
  if (LocalMemLimit == 0)
    return false;

  const DataLayout &DL = Mod->getDataLayout();

  // Check how much local memory is being used by global objects
  CurrentLocalMemUsage = 0;
  for (GlobalVariable &GV : Mod->globals()) {
    if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
      continue;

    for (const User *U : GV.users()) {
      const Instruction *Use = dyn_cast<Instruction>(U);
      if (!Use)
        continue;

      if (Use->getParent()->getParent() == &F) {
        Align Alignment =
            DL.getValueOrABITypeAlignment(GV.getAlign(), GV.getValueType());

        // FIXME: Try to account for padding here. The padding is currently
        // determined from the inverse order of uses in the function. I'm not
        // sure if the use list order is in any way connected to this, so the
        // total reported size is likely incorrect.
        uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
        CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alignment);
        CurrentLocalMemUsage += AllocSize;
        break;
      }
    }
  }

  unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
                                                          F);

  // Restrict local memory usage so that we don't drastically reduce occupancy,
  // unless it is already significantly reduced.

  // TODO: Have some sort of hint or other heuristics to guess occupancy based
  // on other factors..
  unsigned OccupancyHint = ST.getWavesPerEU(F).second;
  if (OccupancyHint == 0)
    OccupancyHint = 7;

  // Clamp to max value.
  OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());

  // Check the hint but ignore it if it's obviously wrong from the existing LDS
  // usage.
  MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);


  // Round up to the next tier of usage.
  unsigned MaxSizeWithWaveCount
    = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);

  // Program is possibly broken by using more local mem than available.
  if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
    return false;

  LocalMemLimit = MaxSizeWithWaveCount;

  LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
                    << " bytes of LDS\n"
                    << "  Rounding size to " << MaxSizeWithWaveCount
                    << " with a maximum occupancy of " << MaxOccupancy << '\n'
                    << " and " << (LocalMemLimit - CurrentLocalMemUsage)
                    << " available for promotion\n");

  return true;
}

// FIXME: Should try to pick the most likely to be profitable allocas first.
bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) {
  // Array allocations are probably not worth handling, since an allocation of
  // the array type is the canonical form.
  if (!I.isStaticAlloca() || I.isArrayAllocation())
    return false;

  const DataLayout &DL = Mod->getDataLayout();
  IRBuilder<> Builder(&I);

  // First try to replace the alloca with a vector
  Type *AllocaTy = I.getAllocatedType();

  LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');

  if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs))
    return true; // Promoted to vector.

  if (DisablePromoteAllocaToLDS)
    return false;

  const Function &ContainingFunction = *I.getParent()->getParent();
  CallingConv::ID CC = ContainingFunction.getCallingConv();

  // Don't promote the alloca to LDS for shader calling conventions as the work
  // item ID intrinsics are not supported for these calling conventions.
  // Furthermore not all LDS is available for some of the stages.
  switch (CC) {
  case CallingConv::AMDGPU_KERNEL:
  case CallingConv::SPIR_KERNEL:
    break;
  default:
    LLVM_DEBUG(
        dbgs()
        << " promote alloca to LDS not supported with calling convention.\n");
    return false;
  }

  // Not likely to have sufficient local memory for promotion.
  if (!SufficientLDS)
    return false;

  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction);
  unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;

  Align Alignment =
      DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType());

  // FIXME: This computed padding is likely wrong since it depends on inverse
  // usage order.
  //
  // FIXME: It is also possible that if we're allowed to use all of the memory
  // could could end up using more than the maximum due to alignment padding.

  uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment);
  uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
  NewSize += AllocSize;

  if (NewSize > LocalMemLimit) {
    LLVM_DEBUG(dbgs() << "  " << AllocSize
                      << " bytes of local memory not available to promote\n");
    return false;
  }

  CurrentLocalMemUsage = NewSize;

  std::vector<Value*> WorkList;

  if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
    LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
    return false;
  }

  LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");

  Function *F = I.getParent()->getParent();

  Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
  GlobalVariable *GV = new GlobalVariable(
      *Mod, GVTy, false, GlobalValue::InternalLinkage,
      UndefValue::get(GVTy),
      Twine(F->getName()) + Twine('.') + I.getName(),
      nullptr,
      GlobalVariable::NotThreadLocal,
      AMDGPUAS::LOCAL_ADDRESS);
  GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
  GV->setAlignment(MaybeAlign(I.getAlignment()));

  Value *TCntY, *TCntZ;

  std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
  Value *TIdX = getWorkitemID(Builder, 0);
  Value *TIdY = getWorkitemID(Builder, 1);
  Value *TIdZ = getWorkitemID(Builder, 2);

  Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
  Tmp0 = Builder.CreateMul(Tmp0, TIdX);
  Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
  Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
  TID = Builder.CreateAdd(TID, TIdZ);

  Value *Indices[] = {
    Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
    TID
  };

  Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
  I.mutateType(Offset->getType());
  I.replaceAllUsesWith(Offset);
  I.eraseFromParent();

  for (Value *V : WorkList) {
    CallInst *Call = dyn_cast<CallInst>(V);
    if (!Call) {
      if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
        Value *Src0 = CI->getOperand(0);
        Type *EltTy = Src0->getType()->getPointerElementType();
        PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);

        if (isa<ConstantPointerNull>(CI->getOperand(0)))
          CI->setOperand(0, ConstantPointerNull::get(NewTy));

        if (isa<ConstantPointerNull>(CI->getOperand(1)))
          CI->setOperand(1, ConstantPointerNull::get(NewTy));

        continue;
      }

      // The operand's value should be corrected on its own and we don't want to
      // touch the users.
      if (isa<AddrSpaceCastInst>(V))
        continue;

      Type *EltTy = V->getType()->getPointerElementType();
      PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);

      // FIXME: It doesn't really make sense to try to do this for all
      // instructions.
      V->mutateType(NewTy);

      // Adjust the types of any constant operands.
      if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
        if (isa<ConstantPointerNull>(SI->getOperand(1)))
          SI->setOperand(1, ConstantPointerNull::get(NewTy));

        if (isa<ConstantPointerNull>(SI->getOperand(2)))
          SI->setOperand(2, ConstantPointerNull::get(NewTy));
      } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
        for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
          if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
            Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
        }
      }

      continue;
    }

    IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
    Builder.SetInsertPoint(Intr);
    switch (Intr->getIntrinsicID()) {
    case Intrinsic::lifetime_start:
    case Intrinsic::lifetime_end:
      // These intrinsics are for address space 0 only
      Intr->eraseFromParent();
      continue;
    case Intrinsic::memcpy: {
      MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
      Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(),
                           MemCpy->getRawSource(), MemCpy->getSourceAlign(),
                           MemCpy->getLength(), MemCpy->isVolatile());
      Intr->eraseFromParent();
      continue;
    }
    case Intrinsic::memmove: {
      MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
      Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(),
                            MemMove->getRawSource(), MemMove->getSourceAlign(),
                            MemMove->getLength(), MemMove->isVolatile());
      Intr->eraseFromParent();
      continue;
    }
    case Intrinsic::memset: {
      MemSetInst *MemSet = cast<MemSetInst>(Intr);
      Builder.CreateMemSet(
          MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(),
          MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile());
      Intr->eraseFromParent();
      continue;
    }
    case Intrinsic::invariant_start:
    case Intrinsic::invariant_end:
    case Intrinsic::launder_invariant_group:
    case Intrinsic::strip_invariant_group:
      Intr->eraseFromParent();
      // FIXME: I think the invariant marker should still theoretically apply,
      // but the intrinsics need to be changed to accept pointers with any
      // address space.
      continue;
    case Intrinsic::objectsize: {
      Value *Src = Intr->getOperand(0);
      Type *SrcTy = Src->getType()->getPointerElementType();
      Function *ObjectSize = Intrinsic::getDeclaration(Mod,
        Intrinsic::objectsize,
        { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
      );

      CallInst *NewCall = Builder.CreateCall(
          ObjectSize,
          {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
      Intr->replaceAllUsesWith(NewCall);
      Intr->eraseFromParent();
      continue;
    }
    default:
      Intr->print(errs());
      llvm_unreachable("Don't know how to promote alloca intrinsic use.");
    }
  }
  return true;
}

bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) {
  if (skipFunction(F) || DisablePromoteAllocaToVector)
    return false;

  const TargetMachine *TM;
  if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
    TM = &TPC->getTM<TargetMachine>();
  else
    return false;

  const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
  if (!ST.isPromoteAllocaEnabled())
    return false;

  if (TM->getTargetTriple().getArch() == Triple::amdgcn) {
    const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(F);
    MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first);
  } else {
    MaxVGPRs = 128;
  }

  bool Changed = false;
  BasicBlock &EntryBB = *F.begin();

  SmallVector<AllocaInst *, 16> Allocas;
  for (Instruction &I : EntryBB) {
    if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
      Allocas.push_back(AI);
  }

  for (AllocaInst *AI : Allocas) {
    if (handleAlloca(*AI))
      Changed = true;
  }

  return Changed;
}

bool AMDGPUPromoteAllocaToVector::handleAlloca(AllocaInst &I) {
  // Array allocations are probably not worth handling, since an allocation of
  // the array type is the canonical form.
  if (!I.isStaticAlloca() || I.isArrayAllocation())
    return false;

  LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');

  Module *Mod = I.getParent()->getParent()->getParent();
  return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs);
}

FunctionPass *llvm::createAMDGPUPromoteAlloca() {
  return new AMDGPUPromoteAlloca();
}

FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() {
  return new AMDGPUPromoteAllocaToVector();
}