AMDGPUPrintfRuntimeBinding.cpp 21.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
//=== AMDGPUPrintfRuntimeBinding.cpp - OpenCL printf implementation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// \file
//
// The pass bind printfs to a kernel arg pointer that will be bound to a buffer
// later by the runtime.
//
// This pass traverses the functions in the module and converts
// each call to printf to a sequence of operations that
// store the following into the printf buffer:
// - format string (passed as a module's metadata unique ID)
// - bitwise copies of printf arguments
// The backend passes will need to store metadata in the kernel
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
using namespace llvm;

#define DEBUG_TYPE "printfToRuntime"
#define DWORD_ALIGN 4

namespace {
class LLVM_LIBRARY_VISIBILITY AMDGPUPrintfRuntimeBinding final
    : public ModulePass {

public:
  static char ID;

  explicit AMDGPUPrintfRuntimeBinding();

private:
  bool runOnModule(Module &M) override;
  void getConversionSpecifiers(SmallVectorImpl<char> &OpConvSpecifiers,
                               StringRef fmt, size_t num_ops) const;

  bool shouldPrintAsStr(char Specifier, Type *OpType) const;
  bool
  lowerPrintfForGpu(Module &M,
                    function_ref<const TargetLibraryInfo &(Function &)> GetTLI);

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
  }

  Value *simplify(Instruction *I, const TargetLibraryInfo *TLI) {
    return SimplifyInstruction(I, {*TD, TLI, DT});
  }

  const DataLayout *TD;
  const DominatorTree *DT;
  SmallVector<CallInst *, 32> Printfs;
};
} // namespace

char AMDGPUPrintfRuntimeBinding::ID = 0;

INITIALIZE_PASS_BEGIN(AMDGPUPrintfRuntimeBinding,
                      "amdgpu-printf-runtime-binding", "AMDGPU Printf lowering",
                      false, false)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(AMDGPUPrintfRuntimeBinding, "amdgpu-printf-runtime-binding",
                    "AMDGPU Printf lowering", false, false)

char &llvm::AMDGPUPrintfRuntimeBindingID = AMDGPUPrintfRuntimeBinding::ID;

namespace llvm {
ModulePass *createAMDGPUPrintfRuntimeBinding() {
  return new AMDGPUPrintfRuntimeBinding();
}
} // namespace llvm

AMDGPUPrintfRuntimeBinding::AMDGPUPrintfRuntimeBinding()
    : ModulePass(ID), TD(nullptr), DT(nullptr) {
  initializeAMDGPUPrintfRuntimeBindingPass(*PassRegistry::getPassRegistry());
}

void AMDGPUPrintfRuntimeBinding::getConversionSpecifiers(
    SmallVectorImpl<char> &OpConvSpecifiers, StringRef Fmt,
    size_t NumOps) const {
  // not all format characters are collected.
  // At this time the format characters of interest
  // are %p and %s, which use to know if we
  // are either storing a literal string or a
  // pointer to the printf buffer.
  static const char ConvSpecifiers[] = "cdieEfgGaosuxXp";
  size_t CurFmtSpecifierIdx = 0;
  size_t PrevFmtSpecifierIdx = 0;

  while ((CurFmtSpecifierIdx = Fmt.find_first_of(
              ConvSpecifiers, CurFmtSpecifierIdx)) != StringRef::npos) {
    bool ArgDump = false;
    StringRef CurFmt = Fmt.substr(PrevFmtSpecifierIdx,
                                  CurFmtSpecifierIdx - PrevFmtSpecifierIdx);
    size_t pTag = CurFmt.find_last_of("%");
    if (pTag != StringRef::npos) {
      ArgDump = true;
      while (pTag && CurFmt[--pTag] == '%') {
        ArgDump = !ArgDump;
      }
    }

    if (ArgDump)
      OpConvSpecifiers.push_back(Fmt[CurFmtSpecifierIdx]);

    PrevFmtSpecifierIdx = ++CurFmtSpecifierIdx;
  }
}

bool AMDGPUPrintfRuntimeBinding::shouldPrintAsStr(char Specifier,
                                                  Type *OpType) const {
  if (Specifier != 's')
    return false;
  const PointerType *PT = dyn_cast<PointerType>(OpType);
  if (!PT || PT->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
    return false;
  Type *ElemType = PT->getContainedType(0);
  if (ElemType->getTypeID() != Type::IntegerTyID)
    return false;
  IntegerType *ElemIType = cast<IntegerType>(ElemType);
  return ElemIType->getBitWidth() == 8;
}

bool AMDGPUPrintfRuntimeBinding::lowerPrintfForGpu(
    Module &M, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
  LLVMContext &Ctx = M.getContext();
  IRBuilder<> Builder(Ctx);
  Type *I32Ty = Type::getInt32Ty(Ctx);
  unsigned UniqID = 0;
  // NB: This is important for this string size to be divizable by 4
  const char NonLiteralStr[4] = "???";

  for (auto CI : Printfs) {
    unsigned NumOps = CI->getNumArgOperands();

    SmallString<16> OpConvSpecifiers;
    Value *Op = CI->getArgOperand(0);

    if (auto LI = dyn_cast<LoadInst>(Op)) {
      Op = LI->getPointerOperand();
      for (auto Use : Op->users()) {
        if (auto SI = dyn_cast<StoreInst>(Use)) {
          Op = SI->getValueOperand();
          break;
        }
      }
    }

    if (auto I = dyn_cast<Instruction>(Op)) {
      Value *Op_simplified = simplify(I, &GetTLI(*I->getFunction()));
      if (Op_simplified)
        Op = Op_simplified;
    }

    ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Op);

    if (ConstExpr) {
      GlobalVariable *GVar = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));

      StringRef Str("unknown");
      if (GVar && GVar->hasInitializer()) {
        auto Init = GVar->getInitializer();
        if (auto CA = dyn_cast<ConstantDataArray>(Init)) {
          if (CA->isString())
            Str = CA->getAsCString();
        } else if (isa<ConstantAggregateZero>(Init)) {
          Str = "";
        }
        //
        // we need this call to ascertain
        // that we are printing a string
        // or a pointer. It takes out the
        // specifiers and fills up the first
        // arg
        getConversionSpecifiers(OpConvSpecifiers, Str, NumOps - 1);
      }
      // Add metadata for the string
      std::string AStreamHolder;
      raw_string_ostream Sizes(AStreamHolder);
      int Sum = DWORD_ALIGN;
      Sizes << CI->getNumArgOperands() - 1;
      Sizes << ':';
      for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
                                  ArgCount <= OpConvSpecifiers.size();
           ArgCount++) {
        Value *Arg = CI->getArgOperand(ArgCount);
        Type *ArgType = Arg->getType();
        unsigned ArgSize = TD->getTypeAllocSizeInBits(ArgType);
        ArgSize = ArgSize / 8;
        //
        // ArgSize by design should be a multiple of DWORD_ALIGN,
        // expand the arguments that do not follow this rule.
        //
        if (ArgSize % DWORD_ALIGN != 0) {
          llvm::Type *ResType = llvm::Type::getInt32Ty(Ctx);
          auto *LLVMVecType = llvm::dyn_cast<llvm::FixedVectorType>(ArgType);
          int NumElem = LLVMVecType ? LLVMVecType->getNumElements() : 1;
          if (LLVMVecType && NumElem > 1)
            ResType = llvm::FixedVectorType::get(ResType, NumElem);
          Builder.SetInsertPoint(CI);
          Builder.SetCurrentDebugLocation(CI->getDebugLoc());
          if (OpConvSpecifiers[ArgCount - 1] == 'x' ||
              OpConvSpecifiers[ArgCount - 1] == 'X' ||
              OpConvSpecifiers[ArgCount - 1] == 'u' ||
              OpConvSpecifiers[ArgCount - 1] == 'o')
            Arg = Builder.CreateZExt(Arg, ResType);
          else
            Arg = Builder.CreateSExt(Arg, ResType);
          ArgType = Arg->getType();
          ArgSize = TD->getTypeAllocSizeInBits(ArgType);
          ArgSize = ArgSize / 8;
          CI->setOperand(ArgCount, Arg);
        }
        if (OpConvSpecifiers[ArgCount - 1] == 'f') {
          ConstantFP *FpCons = dyn_cast<ConstantFP>(Arg);
          if (FpCons)
            ArgSize = 4;
          else {
            FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
            if (FpExt && FpExt->getType()->isDoubleTy() &&
                FpExt->getOperand(0)->getType()->isFloatTy())
              ArgSize = 4;
          }
        }
        if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
          if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
            GlobalVariable *GV =
                dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
            if (GV && GV->hasInitializer()) {
              Constant *Init = GV->getInitializer();
              ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
              if (Init->isZeroValue() || CA->isString()) {
                size_t SizeStr = Init->isZeroValue()
                                     ? 1
                                     : (strlen(CA->getAsCString().data()) + 1);
                size_t Rem = SizeStr % DWORD_ALIGN;
                size_t NSizeStr = 0;
                LLVM_DEBUG(dbgs() << "Printf string original size = " << SizeStr
                                  << '\n');
                if (Rem) {
                  NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
                } else {
                  NSizeStr = SizeStr;
                }
                ArgSize = NSizeStr;
              }
            } else {
              ArgSize = sizeof(NonLiteralStr);
            }
          } else {
            ArgSize = sizeof(NonLiteralStr);
          }
        }
        LLVM_DEBUG(dbgs() << "Printf ArgSize (in buffer) = " << ArgSize
                          << " for type: " << *ArgType << '\n');
        Sizes << ArgSize << ':';
        Sum += ArgSize;
      }
      LLVM_DEBUG(dbgs() << "Printf format string in source = " << Str.str()
                        << '\n');
      for (size_t I = 0; I < Str.size(); ++I) {
        // Rest of the C escape sequences (e.g. \') are handled correctly
        // by the MDParser
        switch (Str[I]) {
        case '\a':
          Sizes << "\\a";
          break;
        case '\b':
          Sizes << "\\b";
          break;
        case '\f':
          Sizes << "\\f";
          break;
        case '\n':
          Sizes << "\\n";
          break;
        case '\r':
          Sizes << "\\r";
          break;
        case '\v':
          Sizes << "\\v";
          break;
        case ':':
          // ':' cannot be scanned by Flex, as it is defined as a delimiter
          // Replace it with it's octal representation \72
          Sizes << "\\72";
          break;
        default:
          Sizes << Str[I];
          break;
        }
      }

      // Insert the printf_alloc call
      Builder.SetInsertPoint(CI);
      Builder.SetCurrentDebugLocation(CI->getDebugLoc());

      AttributeList Attr = AttributeList::get(Ctx, AttributeList::FunctionIndex,
                                              Attribute::NoUnwind);

      Type *SizetTy = Type::getInt32Ty(Ctx);

      Type *Tys_alloc[1] = {SizetTy};
      Type *I8Ptr = PointerType::get(Type::getInt8Ty(Ctx), 1);
      FunctionType *FTy_alloc = FunctionType::get(I8Ptr, Tys_alloc, false);
      FunctionCallee PrintfAllocFn =
          M.getOrInsertFunction(StringRef("__printf_alloc"), FTy_alloc, Attr);

      LLVM_DEBUG(dbgs() << "Printf metadata = " << Sizes.str() << '\n');
      std::string fmtstr = itostr(++UniqID) + ":" + Sizes.str().c_str();
      MDString *fmtStrArray = MDString::get(Ctx, fmtstr);

      // Instead of creating global variables, the
      // printf format strings are extracted
      // and passed as metadata. This avoids
      // polluting llvm's symbol tables in this module.
      // Metadata is going to be extracted
      // by the backend passes and inserted
      // into the OpenCL binary as appropriate.
      StringRef amd("llvm.printf.fmts");
      NamedMDNode *metaD = M.getOrInsertNamedMetadata(amd);
      MDNode *myMD = MDNode::get(Ctx, fmtStrArray);
      metaD->addOperand(myMD);
      Value *sumC = ConstantInt::get(SizetTy, Sum, false);
      SmallVector<Value *, 1> alloc_args;
      alloc_args.push_back(sumC);
      CallInst *pcall =
          CallInst::Create(PrintfAllocFn, alloc_args, "printf_alloc_fn", CI);

      //
      // Insert code to split basicblock with a
      // piece of hammock code.
      // basicblock splits after buffer overflow check
      //
      ConstantPointerNull *zeroIntPtr =
          ConstantPointerNull::get(PointerType::get(Type::getInt8Ty(Ctx), 1));
      ICmpInst *cmp =
          dyn_cast<ICmpInst>(Builder.CreateICmpNE(pcall, zeroIntPtr, ""));
      if (!CI->use_empty()) {
        Value *result =
            Builder.CreateSExt(Builder.CreateNot(cmp), I32Ty, "printf_res");
        CI->replaceAllUsesWith(result);
      }
      SplitBlock(CI->getParent(), cmp);
      Instruction *Brnch =
          SplitBlockAndInsertIfThen(cmp, cmp->getNextNode(), false);

      Builder.SetInsertPoint(Brnch);

      // store unique printf id in the buffer
      //
      SmallVector<Value *, 1> ZeroIdxList;
      ConstantInt *zeroInt =
          ConstantInt::get(Ctx, APInt(32, StringRef("0"), 10));
      ZeroIdxList.push_back(zeroInt);

      GetElementPtrInst *BufferIdx =
          dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
              nullptr, pcall, ZeroIdxList, "PrintBuffID", Brnch));

      Type *idPointer = PointerType::get(I32Ty, AMDGPUAS::GLOBAL_ADDRESS);
      Value *id_gep_cast =
          new BitCastInst(BufferIdx, idPointer, "PrintBuffIdCast", Brnch);

      new StoreInst(ConstantInt::get(I32Ty, UniqID), id_gep_cast, Brnch);

      SmallVector<Value *, 2> FourthIdxList;
      ConstantInt *fourInt =
          ConstantInt::get(Ctx, APInt(32, StringRef("4"), 10));

      FourthIdxList.push_back(fourInt); // 1st 4 bytes hold the printf_id
      // the following GEP is the buffer pointer
      BufferIdx = cast<GetElementPtrInst>(GetElementPtrInst::Create(
          nullptr, pcall, FourthIdxList, "PrintBuffGep", Brnch));

      Type *Int32Ty = Type::getInt32Ty(Ctx);
      Type *Int64Ty = Type::getInt64Ty(Ctx);
      for (unsigned ArgCount = 1; ArgCount < CI->getNumArgOperands() &&
                                  ArgCount <= OpConvSpecifiers.size();
           ArgCount++) {
        Value *Arg = CI->getArgOperand(ArgCount);
        Type *ArgType = Arg->getType();
        SmallVector<Value *, 32> WhatToStore;
        if (ArgType->isFPOrFPVectorTy() && !isa<VectorType>(ArgType)) {
          Type *IType = (ArgType->isFloatTy()) ? Int32Ty : Int64Ty;
          if (OpConvSpecifiers[ArgCount - 1] == 'f') {
            ConstantFP *fpCons = dyn_cast<ConstantFP>(Arg);
            if (fpCons) {
              APFloat Val(fpCons->getValueAPF());
              bool Lost = false;
              Val.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
                          &Lost);
              Arg = ConstantFP::get(Ctx, Val);
              IType = Int32Ty;
            } else {
              FPExtInst *FpExt = dyn_cast<FPExtInst>(Arg);
              if (FpExt && FpExt->getType()->isDoubleTy() &&
                  FpExt->getOperand(0)->getType()->isFloatTy()) {
                Arg = FpExt->getOperand(0);
                IType = Int32Ty;
              }
            }
          }
          Arg = new BitCastInst(Arg, IType, "PrintArgFP", Brnch);
          WhatToStore.push_back(Arg);
        } else if (ArgType->getTypeID() == Type::PointerTyID) {
          if (shouldPrintAsStr(OpConvSpecifiers[ArgCount - 1], ArgType)) {
            const char *S = NonLiteralStr;
            if (ConstantExpr *ConstExpr = dyn_cast<ConstantExpr>(Arg)) {
              GlobalVariable *GV =
                  dyn_cast<GlobalVariable>(ConstExpr->getOperand(0));
              if (GV && GV->hasInitializer()) {
                Constant *Init = GV->getInitializer();
                ConstantDataArray *CA = dyn_cast<ConstantDataArray>(Init);
                if (Init->isZeroValue() || CA->isString()) {
                  S = Init->isZeroValue() ? "" : CA->getAsCString().data();
                }
              }
            }
            size_t SizeStr = strlen(S) + 1;
            size_t Rem = SizeStr % DWORD_ALIGN;
            size_t NSizeStr = 0;
            if (Rem) {
              NSizeStr = SizeStr + (DWORD_ALIGN - Rem);
            } else {
              NSizeStr = SizeStr;
            }
            if (S[0]) {
              char *MyNewStr = new char[NSizeStr]();
              strcpy(MyNewStr, S);
              int NumInts = NSizeStr / 4;
              int CharC = 0;
              while (NumInts) {
                int ANum = *(int *)(MyNewStr + CharC);
                CharC += 4;
                NumInts--;
                Value *ANumV = ConstantInt::get(Int32Ty, ANum, false);
                WhatToStore.push_back(ANumV);
              }
              delete[] MyNewStr;
            } else {
              // Empty string, give a hint to RT it is no NULL
              Value *ANumV = ConstantInt::get(Int32Ty, 0xFFFFFF00, false);
              WhatToStore.push_back(ANumV);
            }
          } else {
            uint64_t Size = TD->getTypeAllocSizeInBits(ArgType);
            assert((Size == 32 || Size == 64) && "unsupported size");
            Type *DstType = (Size == 32) ? Int32Ty : Int64Ty;
            Arg = new PtrToIntInst(Arg, DstType, "PrintArgPtr", Brnch);
            WhatToStore.push_back(Arg);
          }
        } else if (isa<FixedVectorType>(ArgType)) {
          Type *IType = NULL;
          uint32_t EleCount = cast<FixedVectorType>(ArgType)->getNumElements();
          uint32_t EleSize = ArgType->getScalarSizeInBits();
          uint32_t TotalSize = EleCount * EleSize;
          if (EleCount == 3) {
            ShuffleVectorInst *Shuffle =
                new ShuffleVectorInst(Arg, Arg, ArrayRef<int>{0, 1, 2, 2});
            Shuffle->insertBefore(Brnch);
            Arg = Shuffle;
            ArgType = Arg->getType();
            TotalSize += EleSize;
          }
          switch (EleSize) {
          default:
            EleCount = TotalSize / 64;
            IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
            break;
          case 8:
            if (EleCount >= 8) {
              EleCount = TotalSize / 64;
              IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
            } else if (EleCount >= 3) {
              EleCount = 1;
              IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
            } else {
              EleCount = 1;
              IType = dyn_cast<Type>(Type::getInt16Ty(ArgType->getContext()));
            }
            break;
          case 16:
            if (EleCount >= 3) {
              EleCount = TotalSize / 64;
              IType = dyn_cast<Type>(Type::getInt64Ty(ArgType->getContext()));
            } else {
              EleCount = 1;
              IType = dyn_cast<Type>(Type::getInt32Ty(ArgType->getContext()));
            }
            break;
          }
          if (EleCount > 1) {
            IType = FixedVectorType::get(IType, EleCount);
          }
          Arg = new BitCastInst(Arg, IType, "PrintArgVect", Brnch);
          WhatToStore.push_back(Arg);
        } else {
          WhatToStore.push_back(Arg);
        }
        for (unsigned I = 0, E = WhatToStore.size(); I != E; ++I) {
          Value *TheBtCast = WhatToStore[I];
          unsigned ArgSize =
              TD->getTypeAllocSizeInBits(TheBtCast->getType()) / 8;
          SmallVector<Value *, 1> BuffOffset;
          BuffOffset.push_back(ConstantInt::get(I32Ty, ArgSize));

          Type *ArgPointer = PointerType::get(TheBtCast->getType(), 1);
          Value *CastedGEP =
              new BitCastInst(BufferIdx, ArgPointer, "PrintBuffPtrCast", Brnch);
          StoreInst *StBuff = new StoreInst(TheBtCast, CastedGEP, Brnch);
          LLVM_DEBUG(dbgs() << "inserting store to printf buffer:\n"
                            << *StBuff << '\n');
          (void)StBuff;
          if (I + 1 == E && ArgCount + 1 == CI->getNumArgOperands())
            break;
          BufferIdx = dyn_cast<GetElementPtrInst>(GetElementPtrInst::Create(
              nullptr, BufferIdx, BuffOffset, "PrintBuffNextPtr", Brnch));
          LLVM_DEBUG(dbgs() << "inserting gep to the printf buffer:\n"
                            << *BufferIdx << '\n');
        }
      }
    }
  }

  // erase the printf calls
  for (auto CI : Printfs)
    CI->eraseFromParent();

  Printfs.clear();
  return true;
}

bool AMDGPUPrintfRuntimeBinding::runOnModule(Module &M) {
  Triple TT(M.getTargetTriple());
  if (TT.getArch() == Triple::r600)
    return false;

  auto PrintfFunction = M.getFunction("printf");
  if (!PrintfFunction)
    return false;

  for (auto &U : PrintfFunction->uses()) {
    if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
      if (CI->isCallee(&U))
        Printfs.push_back(CI);
    }
  }

  if (Printfs.empty())
    return false;

  if (auto HostcallFunction = M.getFunction("__ockl_hostcall_internal")) {
    for (auto &U : HostcallFunction->uses()) {
      if (auto *CI = dyn_cast<CallInst>(U.getUser())) {
        M.getContext().emitError(
            CI, "Cannot use both printf and hostcall in the same module");
      }
    }
  }

  TD = &M.getDataLayout();
  auto DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DT = DTWP ? &DTWP->getDomTree() : nullptr;
  auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
    return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
  };

  return lowerPrintfForGpu(M, GetTLI);
}