AMDGPUPerfHintAnalysis.cpp 12.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
//===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Analyzes if a function potentially memory bound and if a kernel
/// kernel may benefit from limiting number of waves to reduce cache thrashing.
///
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUPerfHintAnalysis.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ValueMap.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"

using namespace llvm;

#define DEBUG_TYPE "amdgpu-perf-hint"

static cl::opt<unsigned>
    MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
                   cl::desc("Function mem bound threshold in %"));

static cl::opt<unsigned>
    LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
                    cl::desc("Kernel limit wave threshold in %"));

static cl::opt<unsigned>
    IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
             cl::desc("Indirect access memory instruction weight"));

static cl::opt<unsigned>
    LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
             cl::desc("Large stride memory access weight"));

static cl::opt<unsigned>
    LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
                      cl::desc("Large stride memory access threshold"));

STATISTIC(NumMemBound, "Number of functions marked as memory bound");
STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");

char llvm::AMDGPUPerfHintAnalysis::ID = 0;
char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID;

INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE,
                "Analysis if a function is memory bound", true, true)

namespace {

struct AMDGPUPerfHint {
  friend AMDGPUPerfHintAnalysis;

public:
  AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
                 const TargetLowering *TLI_)
      : FIM(FIM_), DL(nullptr), TLI(TLI_) {}

  bool runOnFunction(Function &F);

private:
  struct MemAccessInfo {
    const Value *V;
    const Value *Base;
    int64_t Offset;
    MemAccessInfo() : V(nullptr), Base(nullptr), Offset(0) {}
    bool isLargeStride(MemAccessInfo &Reference) const;
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    Printable print() const {
      return Printable([this](raw_ostream &OS) {
        OS << "Value: " << *V << '\n'
           << "Base: " << *Base << " Offset: " << Offset << '\n';
      });
    }
#endif
  };

  MemAccessInfo makeMemAccessInfo(Instruction *) const;

  MemAccessInfo LastAccess; // Last memory access info

  AMDGPUPerfHintAnalysis::FuncInfoMap &FIM;

  const DataLayout *DL;

  const TargetLowering *TLI;

  AMDGPUPerfHintAnalysis::FuncInfo *visit(const Function &F);
  static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
  static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);

  bool isIndirectAccess(const Instruction *Inst) const;

  /// Check if the instruction is large stride.
  /// The purpose is to identify memory access pattern like:
  /// x = a[i];
  /// y = a[i+1000];
  /// z = a[i+2000];
  /// In the above example, the second and third memory access will be marked
  /// large stride memory access.
  bool isLargeStride(const Instruction *Inst);

  bool isGlobalAddr(const Value *V) const;
  bool isLocalAddr(const Value *V) const;
  bool isConstantAddr(const Value *V) const;
};

static const Value *getMemoryInstrPtr(const Instruction *Inst) {
  if (auto LI = dyn_cast<LoadInst>(Inst)) {
    return LI->getPointerOperand();
  }
  if (auto SI = dyn_cast<StoreInst>(Inst)) {
    return SI->getPointerOperand();
  }
  if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst)) {
    return AI->getPointerOperand();
  }
  if (auto AI = dyn_cast<AtomicRMWInst>(Inst)) {
    return AI->getPointerOperand();
  }
  if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
    return MI->getRawDest();
  }

  return nullptr;
}

bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
  LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
  SmallSet<const Value *, 32> WorkSet;
  SmallSet<const Value *, 32> Visited;
  if (const Value *MO = getMemoryInstrPtr(Inst)) {
    if (isGlobalAddr(MO))
      WorkSet.insert(MO);
  }

  while (!WorkSet.empty()) {
    const Value *V = *WorkSet.begin();
    WorkSet.erase(*WorkSet.begin());
    if (!Visited.insert(V).second)
      continue;
    LLVM_DEBUG(dbgs() << "  check: " << *V << '\n');

    if (auto LD = dyn_cast<LoadInst>(V)) {
      auto M = LD->getPointerOperand();
      if (isGlobalAddr(M) || isLocalAddr(M) || isConstantAddr(M)) {
        LLVM_DEBUG(dbgs() << "    is IA\n");
        return true;
      }
      continue;
    }

    if (auto GEP = dyn_cast<GetElementPtrInst>(V)) {
      auto P = GEP->getPointerOperand();
      WorkSet.insert(P);
      for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
        WorkSet.insert(GEP->getOperand(I));
      continue;
    }

    if (auto U = dyn_cast<UnaryInstruction>(V)) {
      WorkSet.insert(U->getOperand(0));
      continue;
    }

    if (auto BO = dyn_cast<BinaryOperator>(V)) {
      WorkSet.insert(BO->getOperand(0));
      WorkSet.insert(BO->getOperand(1));
      continue;
    }

    if (auto S = dyn_cast<SelectInst>(V)) {
      WorkSet.insert(S->getFalseValue());
      WorkSet.insert(S->getTrueValue());
      continue;
    }

    if (auto E = dyn_cast<ExtractElementInst>(V)) {
      WorkSet.insert(E->getVectorOperand());
      continue;
    }

    LLVM_DEBUG(dbgs() << "    dropped\n");
  }

  LLVM_DEBUG(dbgs() << "  is not IA\n");
  return false;
}

AMDGPUPerfHintAnalysis::FuncInfo *AMDGPUPerfHint::visit(const Function &F) {
  AMDGPUPerfHintAnalysis::FuncInfo &FI = FIM[&F];

  LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');

  for (auto &B : F) {
    LastAccess = MemAccessInfo();
    for (auto &I : B) {
      if (getMemoryInstrPtr(&I)) {
        if (isIndirectAccess(&I))
          ++FI.IAMInstCount;
        if (isLargeStride(&I))
          ++FI.LSMInstCount;
        ++FI.MemInstCount;
        ++FI.InstCount;
        continue;
      }
      if (auto *CB = dyn_cast<CallBase>(&I)) {
        Function *Callee = CB->getCalledFunction();
        if (!Callee || Callee->isDeclaration()) {
          ++FI.InstCount;
          continue;
        }
        if (&F == Callee) // Handle immediate recursion
          continue;

        auto Loc = FIM.find(Callee);
        if (Loc == FIM.end())
          continue;

        FI.MemInstCount += Loc->second.MemInstCount;
        FI.InstCount += Loc->second.InstCount;
        FI.IAMInstCount += Loc->second.IAMInstCount;
        FI.LSMInstCount += Loc->second.LSMInstCount;
      } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
        TargetLoweringBase::AddrMode AM;
        auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
        AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
        AM.HasBaseReg = !AM.BaseGV;
        if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
                                       GEP->getPointerAddressSpace()))
          // Offset will likely be folded into load or store
          continue;
        ++FI.InstCount;
      } else {
        ++FI.InstCount;
      }
    }
  }

  return &FI;
}

bool AMDGPUPerfHint::runOnFunction(Function &F) {
  const Module &M = *F.getParent();
  DL = &M.getDataLayout();

  if (F.hasFnAttribute("amdgpu-wave-limiter") &&
      F.hasFnAttribute("amdgpu-memory-bound"))
    return false;

  const AMDGPUPerfHintAnalysis::FuncInfo *Info = visit(F);

  LLVM_DEBUG(dbgs() << F.getName() << " MemInst: " << Info->MemInstCount
                    << '\n'
                    << " IAMInst: " << Info->IAMInstCount << '\n'
                    << " LSMInst: " << Info->LSMInstCount << '\n'
                    << " TotalInst: " << Info->InstCount << '\n');

  if (isMemBound(*Info)) {
    LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
    NumMemBound++;
    F.addFnAttr("amdgpu-memory-bound", "true");
  }

  if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(*Info)) {
    LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
    NumLimitWave++;
    F.addFnAttr("amdgpu-wave-limiter", "true");
  }

  return true;
}

bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
  return FI.MemInstCount * 100 / FI.InstCount > MemBoundThresh;
}

bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
  return ((FI.MemInstCount + FI.IAMInstCount * IAWeight +
           FI.LSMInstCount * LSWeight) *
          100 / FI.InstCount) > LimitWaveThresh;
}

bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
  if (auto PT = dyn_cast<PointerType>(V->getType())) {
    unsigned As = PT->getAddressSpace();
    // Flat likely points to global too.
    return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS;
  }
  return false;
}

bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
  if (auto PT = dyn_cast<PointerType>(V->getType()))
    return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS;
  return false;
}

bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
  LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');

  MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
  bool IsLargeStride = MAI.isLargeStride(LastAccess);
  if (MAI.Base)
    LastAccess = std::move(MAI);

  return IsLargeStride;
}

AMDGPUPerfHint::MemAccessInfo
AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
  MemAccessInfo MAI;
  const Value *MO = getMemoryInstrPtr(Inst);

  LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
  // Do not treat local-addr memory access as large stride.
  if (isLocalAddr(MO))
    return MAI;

  MAI.V = MO;
  MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
  return MAI;
}

bool AMDGPUPerfHint::isConstantAddr(const Value *V) const {
  if (auto PT = dyn_cast<PointerType>(V->getType())) {
    unsigned As = PT->getAddressSpace();
    return As == AMDGPUAS::CONSTANT_ADDRESS ||
           As == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
  }
  return false;
}

bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
    MemAccessInfo &Reference) const {

  if (!Base || !Reference.Base || Base != Reference.Base)
    return false;

  uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
                                            : Reference.Offset - Offset;
  bool Result = Diff > LargeStrideThresh;
  LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
               << print() << "<=>\n"
               << Reference.print() << "Result:" << Result << '\n');
  return Result;
}
} // namespace

bool AMDGPUPerfHintAnalysis::runOnSCC(CallGraphSCC &SCC) {
  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  if (!TPC)
    return false;

  const TargetMachine &TM = TPC->getTM<TargetMachine>();

  bool Changed = false;
  for (CallGraphNode *I : SCC) {
    Function *F = I->getFunction();
    if (!F || F->isDeclaration())
      continue;

    const TargetSubtargetInfo *ST = TM.getSubtargetImpl(*F);
    AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering());

    if (Analyzer.runOnFunction(*F))
      Changed = true;
  }

  return Changed;
}

bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const {
  auto FI = FIM.find(F);
  if (FI == FIM.end())
    return false;

  return AMDGPUPerfHint::isMemBound(FI->second);
}

bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const {
  auto FI = FIM.find(F);
  if (FI == FIM.end())
    return false;

  return AMDGPUPerfHint::needLimitWave(FI->second);
}