AMDGPUISelDAGToDAG.cpp 102 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
//===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//==-----------------------------------------------------------------------===//
//
/// \file
/// Defines an instruction selector for the AMDGPU target.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUArgumentUsageInfo.h"
#include "AMDGPUISelLowering.h" // For AMDGPUISD
#include "AMDGPUInstrInfo.h"
#include "AMDGPUPerfHintAnalysis.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIDefines.h"
#include "SIISelLowering.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/InitializePasses.h"
#ifdef EXPENSIVE_CHECKS
#include "llvm/IR/Dominators.h"
#endif
#include "llvm/IR/Instruction.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstdint>
#include <new>
#include <vector>

#define DEBUG_TYPE "isel"

using namespace llvm;

namespace llvm {

class R600InstrInfo;

} // end namespace llvm

//===----------------------------------------------------------------------===//
// Instruction Selector Implementation
//===----------------------------------------------------------------------===//

namespace {

static bool isNullConstantOrUndef(SDValue V) {
  if (V.isUndef())
    return true;

  ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
  return Const != nullptr && Const->isNullValue();
}

static bool getConstantValue(SDValue N, uint32_t &Out) {
  // This is only used for packed vectors, where ussing 0 for undef should
  // always be good.
  if (N.isUndef()) {
    Out = 0;
    return true;
  }

  if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
    Out = C->getAPIntValue().getSExtValue();
    return true;
  }

  if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
    Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
    return true;
  }

  return false;
}

// TODO: Handle undef as zero
static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
                                 bool Negate = false) {
  assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
  uint32_t LHSVal, RHSVal;
  if (getConstantValue(N->getOperand(0), LHSVal) &&
      getConstantValue(N->getOperand(1), RHSVal)) {
    SDLoc SL(N);
    uint32_t K = Negate ?
      (-LHSVal & 0xffff) | (-RHSVal << 16) :
      (LHSVal & 0xffff) | (RHSVal << 16);
    return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
                              DAG.getTargetConstant(K, SL, MVT::i32));
  }

  return nullptr;
}

static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
  return packConstantV2I16(N, DAG, true);
}

/// AMDGPU specific code to select AMDGPU machine instructions for
/// SelectionDAG operations.
class AMDGPUDAGToDAGISel : public SelectionDAGISel {
  // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
  // make the right decision when generating code for different targets.
  const GCNSubtarget *Subtarget;

  // Default FP mode for the current function.
  AMDGPU::SIModeRegisterDefaults Mode;

  bool EnableLateStructurizeCFG;

public:
  explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
                              CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
    : SelectionDAGISel(*TM, OptLevel) {
    EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
  }
  ~AMDGPUDAGToDAGISel() override = default;

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AMDGPUArgumentUsageInfo>();
    AU.addRequired<LegacyDivergenceAnalysis>();
#ifdef EXPENSIVE_CHECKS
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<LoopInfoWrapperPass>();
#endif
    SelectionDAGISel::getAnalysisUsage(AU);
  }

  bool matchLoadD16FromBuildVector(SDNode *N) const;

  bool runOnMachineFunction(MachineFunction &MF) override;
  void PreprocessISelDAG() override;
  void Select(SDNode *N) override;
  StringRef getPassName() const override;
  void PostprocessISelDAG() override;

protected:
  void SelectBuildVector(SDNode *N, unsigned RegClassID);

private:
  std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
  bool isNoNanSrc(SDValue N) const;
  bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
  bool isNegInlineImmediate(const SDNode *N) const {
    return isInlineImmediate(N, true);
  }

  bool isInlineImmediate16(int64_t Imm) const {
    return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm());
  }

  bool isInlineImmediate32(int64_t Imm) const {
    return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm());
  }

  bool isInlineImmediate64(int64_t Imm) const {
    return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm());
  }

  bool isInlineImmediate(const APFloat &Imm) const {
    return Subtarget->getInstrInfo()->isInlineConstant(Imm);
  }

  bool isVGPRImm(const SDNode *N) const;
  bool isUniformLoad(const SDNode *N) const;
  bool isUniformBr(const SDNode *N) const;

  MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;

  SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const;
  SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
  SDNode *glueCopyToM0LDSInit(SDNode *N) const;

  const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
  virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
  virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
  bool isDSOffsetLegal(SDValue Base, unsigned Offset,
                       unsigned OffsetBits) const;
  bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
  bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
                                 SDValue &Offset1) const;
  bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
                   SDValue &SOffset, SDValue &Offset, SDValue &Offen,
                   SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
                   SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
  bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
                         SDValue &SOffset, SDValue &Offset, SDValue &GLC,
                         SDValue &SLC, SDValue &TFE, SDValue &DLC,
                         SDValue &SWZ) const;
  bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
                         SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
                         SDValue &SLC) const;
  bool SelectMUBUFScratchOffen(SDNode *Parent,
                               SDValue Addr, SDValue &RSrc, SDValue &VAddr,
                               SDValue &SOffset, SDValue &ImmOffset) const;
  bool SelectMUBUFScratchOffset(SDNode *Parent,
                                SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
                                SDValue &Offset) const;

  bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
                         SDValue &Offset, SDValue &GLC, SDValue &SLC,
                         SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
  bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
                         SDValue &Offset, SDValue &SLC) const;
  bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
                         SDValue &Offset) const;

  template <bool IsSigned>
  bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
                        SDValue &Offset, SDValue &SLC) const;
  bool SelectFlatAtomic(SDNode *N, SDValue Addr, SDValue &VAddr,
                        SDValue &Offset, SDValue &SLC) const;
  bool SelectFlatAtomicSigned(SDNode *N, SDValue Addr, SDValue &VAddr,
                              SDValue &Offset, SDValue &SLC) const;

  bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
                        bool &Imm) const;
  SDValue Expand32BitAddress(SDValue Addr) const;
  bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
                  bool &Imm) const;
  bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
  bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
  bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
  bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
  bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
  bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;

  bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
  bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
  bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
  bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
  bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
                       SDValue &Clamp, SDValue &Omod) const;
  bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
                         SDValue &Clamp, SDValue &Omod) const;

  bool SelectVOP3OMods(SDValue In, SDValue &Src,
                       SDValue &Clamp, SDValue &Omod) const;

  bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;

  bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;

  bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
  bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
  bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;

  SDValue getHi16Elt(SDValue In) const;

  SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const;

  void SelectADD_SUB_I64(SDNode *N);
  void SelectAddcSubb(SDNode *N);
  void SelectUADDO_USUBO(SDNode *N);
  void SelectDIV_SCALE(SDNode *N);
  void SelectMAD_64_32(SDNode *N);
  void SelectFMA_W_CHAIN(SDNode *N);
  void SelectFMUL_W_CHAIN(SDNode *N);

  SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
                   uint32_t Offset, uint32_t Width);
  void SelectS_BFEFromShifts(SDNode *N);
  void SelectS_BFE(SDNode *N);
  bool isCBranchSCC(const SDNode *N) const;
  void SelectBRCOND(SDNode *N);
  void SelectFMAD_FMA(SDNode *N);
  void SelectATOMIC_CMP_SWAP(SDNode *N);
  void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
  void SelectDS_GWS(SDNode *N, unsigned IntrID);
  void SelectInterpP1F16(SDNode *N);
  void SelectINTRINSIC_W_CHAIN(SDNode *N);
  void SelectINTRINSIC_WO_CHAIN(SDNode *N);
  void SelectINTRINSIC_VOID(SDNode *N);

protected:
  // Include the pieces autogenerated from the target description.
#include "AMDGPUGenDAGISel.inc"
};

class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
  const R600Subtarget *Subtarget;

  bool isConstantLoad(const MemSDNode *N, int cbID) const;
  bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
  bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
                                       SDValue& Offset);
public:
  explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
      AMDGPUDAGToDAGISel(TM, OptLevel) {}

  void Select(SDNode *N) override;

  bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
                          SDValue &Offset) override;
  bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
                          SDValue &Offset) override;

  bool runOnMachineFunction(MachineFunction &MF) override;

  void PreprocessISelDAG() override {}

protected:
  // Include the pieces autogenerated from the target description.
#include "R600GenDAGISel.inc"
};

static SDValue stripBitcast(SDValue Val) {
  return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
}

// Figure out if this is really an extract of the high 16-bits of a dword.
static bool isExtractHiElt(SDValue In, SDValue &Out) {
  In = stripBitcast(In);
  if (In.getOpcode() != ISD::TRUNCATE)
    return false;

  SDValue Srl = In.getOperand(0);
  if (Srl.getOpcode() == ISD::SRL) {
    if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
      if (ShiftAmt->getZExtValue() == 16) {
        Out = stripBitcast(Srl.getOperand(0));
        return true;
      }
    }
  }

  return false;
}

// Look through operations that obscure just looking at the low 16-bits of the
// same register.
static SDValue stripExtractLoElt(SDValue In) {
  if (In.getOpcode() == ISD::TRUNCATE) {
    SDValue Src = In.getOperand(0);
    if (Src.getValueType().getSizeInBits() == 32)
      return stripBitcast(Src);
  }

  return In;
}

}  // end anonymous namespace

INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
                      "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
#ifdef EXPENSIVE_CHECKS
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
#endif
INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
                    "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)

/// This pass converts a legalized DAG into a AMDGPU-specific
// DAG, ready for instruction scheduling.
FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
                                        CodeGenOpt::Level OptLevel) {
  return new AMDGPUDAGToDAGISel(TM, OptLevel);
}

/// This pass converts a legalized DAG into a R600-specific
// DAG, ready for instruction scheduling.
FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
                                      CodeGenOpt::Level OptLevel) {
  return new R600DAGToDAGISel(TM, OptLevel);
}

bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
#ifdef EXPENSIVE_CHECKS
  DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  for (auto &L : LI->getLoopsInPreorder()) {
    assert(L->isLCSSAForm(DT));
  }
#endif
  Subtarget = &MF.getSubtarget<GCNSubtarget>();
  Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction());
  return SelectionDAGISel::runOnMachineFunction(MF);
}

bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
  assert(Subtarget->d16PreservesUnusedBits());
  MVT VT = N->getValueType(0).getSimpleVT();
  if (VT != MVT::v2i16 && VT != MVT::v2f16)
    return false;

  SDValue Lo = N->getOperand(0);
  SDValue Hi = N->getOperand(1);

  LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));

  // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
  // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
  // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo

  // Need to check for possible indirect dependencies on the other half of the
  // vector to avoid introducing a cycle.
  if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
    SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);

    SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
    SDValue Ops[] = {
      LdHi->getChain(), LdHi->getBasePtr(), TiedIn
    };

    unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
    if (LdHi->getMemoryVT() == MVT::i8) {
      LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
        AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
    } else {
      assert(LdHi->getMemoryVT() == MVT::i16);
    }

    SDValue NewLoadHi =
      CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
                                  Ops, LdHi->getMemoryVT(),
                                  LdHi->getMemOperand());

    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
    return true;
  }

  // build_vector (load ptr), hi -> load_d16_lo ptr, hi
  // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
  // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
  LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
  if (LdLo && Lo.hasOneUse()) {
    SDValue TiedIn = getHi16Elt(Hi);
    if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
      return false;

    SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
    unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
    if (LdLo->getMemoryVT() == MVT::i8) {
      LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
        AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
    } else {
      assert(LdLo->getMemoryVT() == MVT::i16);
    }

    TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);

    SDValue Ops[] = {
      LdLo->getChain(), LdLo->getBasePtr(), TiedIn
    };

    SDValue NewLoadLo =
      CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
                                  Ops, LdLo->getMemoryVT(),
                                  LdLo->getMemOperand());

    CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
    CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
    return true;
  }

  return false;
}

void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
  if (!Subtarget->d16PreservesUnusedBits())
    return;

  SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();

  bool MadeChange = false;
  while (Position != CurDAG->allnodes_begin()) {
    SDNode *N = &*--Position;
    if (N->use_empty())
      continue;

    switch (N->getOpcode()) {
    case ISD::BUILD_VECTOR:
      MadeChange |= matchLoadD16FromBuildVector(N);
      break;
    default:
      break;
    }
  }

  if (MadeChange) {
    CurDAG->RemoveDeadNodes();
    LLVM_DEBUG(dbgs() << "After PreProcess:\n";
               CurDAG->dump(););
  }
}

bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
  if (TM.Options.NoNaNsFPMath)
    return true;

  // TODO: Move into isKnownNeverNaN
  if (N->getFlags().isDefined())
    return N->getFlags().hasNoNaNs();

  return CurDAG->isKnownNeverNaN(N);
}

bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
                                           bool Negated) const {
  if (N->isUndef())
    return true;

  const SIInstrInfo *TII = Subtarget->getInstrInfo();
  if (Negated) {
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
      return TII->isInlineConstant(-C->getAPIntValue());

    if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
      return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());

  } else {
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
      return TII->isInlineConstant(C->getAPIntValue());

    if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
      return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
  }

  return false;
}

/// Determine the register class for \p OpNo
/// \returns The register class of the virtual register that will be used for
/// the given operand number \OpNo or NULL if the register class cannot be
/// determined.
const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
                                                          unsigned OpNo) const {
  if (!N->isMachineOpcode()) {
    if (N->getOpcode() == ISD::CopyToReg) {
      unsigned Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
      if (Register::isVirtualRegister(Reg)) {
        MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
        return MRI.getRegClass(Reg);
      }

      const SIRegisterInfo *TRI
        = static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
      return TRI->getPhysRegClass(Reg);
    }

    return nullptr;
  }

  switch (N->getMachineOpcode()) {
  default: {
    const MCInstrDesc &Desc =
        Subtarget->getInstrInfo()->get(N->getMachineOpcode());
    unsigned OpIdx = Desc.getNumDefs() + OpNo;
    if (OpIdx >= Desc.getNumOperands())
      return nullptr;
    int RegClass = Desc.OpInfo[OpIdx].RegClass;
    if (RegClass == -1)
      return nullptr;

    return Subtarget->getRegisterInfo()->getRegClass(RegClass);
  }
  case AMDGPU::REG_SEQUENCE: {
    unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
    const TargetRegisterClass *SuperRC =
        Subtarget->getRegisterInfo()->getRegClass(RCID);

    SDValue SubRegOp = N->getOperand(OpNo + 1);
    unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
    return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
                                                              SubRegIdx);
  }
  }
}

SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
                                         SDValue Glue) const {
  SmallVector <SDValue, 8> Ops;
  Ops.push_back(NewChain); // Replace the chain.
  for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
    Ops.push_back(N->getOperand(i));

  Ops.push_back(Glue);
  return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
}

SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
  const SITargetLowering& Lowering =
    *static_cast<const SITargetLowering*>(getTargetLowering());

  assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");

  SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
  return glueCopyToOp(N, M0, M0.getValue(1));
}

SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
  unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
  if (AS == AMDGPUAS::LOCAL_ADDRESS) {
    if (Subtarget->ldsRequiresM0Init())
      return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
  } else if (AS == AMDGPUAS::REGION_ADDRESS) {
    MachineFunction &MF = CurDAG->getMachineFunction();
    unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
    return
        glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
  }
  return N;
}

MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
                                                  EVT VT) const {
  SDNode *Lo = CurDAG->getMachineNode(
      AMDGPU::S_MOV_B32, DL, MVT::i32,
      CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
  SDNode *Hi =
      CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
                             CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
  const SDValue Ops[] = {
      CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
      SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
      SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};

  return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
}

void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
  EVT VT = N->getValueType(0);
  unsigned NumVectorElts = VT.getVectorNumElements();
  EVT EltVT = VT.getVectorElementType();
  SDLoc DL(N);
  SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);

  if (NumVectorElts == 1) {
    CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
                         RegClass);
    return;
  }

  assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
                                  "supported yet");
  // 32 = Max Num Vector Elements
  // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
  // 1 = Vector Register Class
  SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);

  bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
               Triple::amdgcn;
  RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
  bool IsRegSeq = true;
  unsigned NOps = N->getNumOperands();
  for (unsigned i = 0; i < NOps; i++) {
    // XXX: Why is this here?
    if (isa<RegisterSDNode>(N->getOperand(i))) {
      IsRegSeq = false;
      break;
    }
    unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
                         : R600RegisterInfo::getSubRegFromChannel(i);
    RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
    RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
  }
  if (NOps != NumVectorElts) {
    // Fill in the missing undef elements if this was a scalar_to_vector.
    assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
    MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
                                                   DL, EltVT);
    for (unsigned i = NOps; i < NumVectorElts; ++i) {
      unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
                           : R600RegisterInfo::getSubRegFromChannel(i);
      RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
      RegSeqArgs[1 + (2 * i) + 1] =
          CurDAG->getTargetConstant(Sub, DL, MVT::i32);
    }
  }

  if (!IsRegSeq)
    SelectCode(N);
  CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
}

void AMDGPUDAGToDAGISel::Select(SDNode *N) {
  unsigned int Opc = N->getOpcode();
  if (N->isMachineOpcode()) {
    N->setNodeId(-1);
    return;   // Already selected.
  }

  // isa<MemSDNode> almost works but is slightly too permissive for some DS
  // intrinsics.
  if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
      (Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
       Opc == ISD::ATOMIC_LOAD_FADD ||
       Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
       Opc == AMDGPUISD::ATOMIC_LOAD_FMAX ||
       Opc == AMDGPUISD::ATOMIC_LOAD_CSUB)) {
    N = glueCopyToM0LDSInit(N);
    SelectCode(N);
    return;
  }

  switch (Opc) {
  default:
    break;
  // We are selecting i64 ADD here instead of custom lower it during
  // DAG legalization, so we can fold some i64 ADDs used for address
  // calculation into the LOAD and STORE instructions.
  case ISD::ADDC:
  case ISD::ADDE:
  case ISD::SUBC:
  case ISD::SUBE: {
    if (N->getValueType(0) != MVT::i64)
      break;

    SelectADD_SUB_I64(N);
    return;
  }
  case ISD::ADDCARRY:
  case ISD::SUBCARRY:
    if (N->getValueType(0) != MVT::i32)
      break;

    SelectAddcSubb(N);
    return;
  case ISD::UADDO:
  case ISD::USUBO: {
    SelectUADDO_USUBO(N);
    return;
  }
  case AMDGPUISD::FMUL_W_CHAIN: {
    SelectFMUL_W_CHAIN(N);
    return;
  }
  case AMDGPUISD::FMA_W_CHAIN: {
    SelectFMA_W_CHAIN(N);
    return;
  }

  case ISD::SCALAR_TO_VECTOR:
  case ISD::BUILD_VECTOR: {
    EVT VT = N->getValueType(0);
    unsigned NumVectorElts = VT.getVectorNumElements();
    if (VT.getScalarSizeInBits() == 16) {
      if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
        if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
          ReplaceNode(N, Packed);
          return;
        }
      }

      break;
    }

    assert(VT.getVectorElementType().bitsEq(MVT::i32));
    unsigned RegClassID =
        SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
    SelectBuildVector(N, RegClassID);
    return;
  }
  case ISD::BUILD_PAIR: {
    SDValue RC, SubReg0, SubReg1;
    SDLoc DL(N);
    if (N->getValueType(0) == MVT::i128) {
      RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
    } else if (N->getValueType(0) == MVT::i64) {
      RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
      SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
      SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
    } else {
      llvm_unreachable("Unhandled value type for BUILD_PAIR");
    }
    const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
                            N->getOperand(1), SubReg1 };
    ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
                                          N->getValueType(0), Ops));
    return;
  }

  case ISD::Constant:
  case ISD::ConstantFP: {
    if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
      break;

    uint64_t Imm;
    if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
      Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
    else {
      ConstantSDNode *C = cast<ConstantSDNode>(N);
      Imm = C->getZExtValue();
    }

    SDLoc DL(N);
    ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
    return;
  }
  case AMDGPUISD::BFE_I32:
  case AMDGPUISD::BFE_U32: {
    // There is a scalar version available, but unlike the vector version which
    // has a separate operand for the offset and width, the scalar version packs
    // the width and offset into a single operand. Try to move to the scalar
    // version if the offsets are constant, so that we can try to keep extended
    // loads of kernel arguments in SGPRs.

    // TODO: Technically we could try to pattern match scalar bitshifts of
    // dynamic values, but it's probably not useful.
    ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
    if (!Offset)
      break;

    ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
    if (!Width)
      break;

    bool Signed = Opc == AMDGPUISD::BFE_I32;

    uint32_t OffsetVal = Offset->getZExtValue();
    uint32_t WidthVal = Width->getZExtValue();

    ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
                            SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
    return;
  }
  case AMDGPUISD::DIV_SCALE: {
    SelectDIV_SCALE(N);
    return;
  }
  case AMDGPUISD::MAD_I64_I32:
  case AMDGPUISD::MAD_U64_U32: {
    SelectMAD_64_32(N);
    return;
  }
  case ISD::CopyToReg: {
    const SITargetLowering& Lowering =
      *static_cast<const SITargetLowering*>(getTargetLowering());
    N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
    break;
  }
  case ISD::AND:
  case ISD::SRL:
  case ISD::SRA:
  case ISD::SIGN_EXTEND_INREG:
    if (N->getValueType(0) != MVT::i32)
      break;

    SelectS_BFE(N);
    return;
  case ISD::BRCOND:
    SelectBRCOND(N);
    return;
  case ISD::FMAD:
  case ISD::FMA:
    SelectFMAD_FMA(N);
    return;
  case AMDGPUISD::ATOMIC_CMP_SWAP:
    SelectATOMIC_CMP_SWAP(N);
    return;
  case AMDGPUISD::CVT_PKRTZ_F16_F32:
  case AMDGPUISD::CVT_PKNORM_I16_F32:
  case AMDGPUISD::CVT_PKNORM_U16_F32:
  case AMDGPUISD::CVT_PK_U16_U32:
  case AMDGPUISD::CVT_PK_I16_I32: {
    // Hack around using a legal type if f16 is illegal.
    if (N->getValueType(0) == MVT::i32) {
      MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
      N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
                              { N->getOperand(0), N->getOperand(1) });
      SelectCode(N);
      return;
    }

    break;
  }
  case ISD::INTRINSIC_W_CHAIN: {
    SelectINTRINSIC_W_CHAIN(N);
    return;
  }
  case ISD::INTRINSIC_WO_CHAIN: {
    SelectINTRINSIC_WO_CHAIN(N);
    return;
  }
  case ISD::INTRINSIC_VOID: {
    SelectINTRINSIC_VOID(N);
    return;
  }
  }

  SelectCode(N);
}

bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
  const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
  const Instruction *Term = BB->getTerminator();
  return Term->getMetadata("amdgpu.uniform") ||
         Term->getMetadata("structurizecfg.uniform");
}

StringRef AMDGPUDAGToDAGISel::getPassName() const {
  return "AMDGPU DAG->DAG Pattern Instruction Selection";
}

//===----------------------------------------------------------------------===//
// Complex Patterns
//===----------------------------------------------------------------------===//

bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
                                            SDValue &Offset) {
  return false;
}

bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
                                            SDValue &Offset) {
  ConstantSDNode *C;
  SDLoc DL(Addr);

  if ((C = dyn_cast<ConstantSDNode>(Addr))) {
    Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
  } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
    Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
  } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
            (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
    Base = Addr.getOperand(0);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
  } else {
    Base = Addr;
    Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
  }

  return true;
}

SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
                                                       const SDLoc &DL) const {
  SDNode *Mov = CurDAG->getMachineNode(
    AMDGPU::S_MOV_B32, DL, MVT::i32,
    CurDAG->getTargetConstant(Val, DL, MVT::i32));
  return SDValue(Mov, 0);
}

// FIXME: Should only handle addcarry/subcarry
void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
  SDLoc DL(N);
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);

  unsigned Opcode = N->getOpcode();
  bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
  bool ProduceCarry =
      ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
  bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;

  SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
  SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);

  SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                       DL, MVT::i32, LHS, Sub0);
  SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                       DL, MVT::i32, LHS, Sub1);

  SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                       DL, MVT::i32, RHS, Sub0);
  SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
                                       DL, MVT::i32, RHS, Sub1);

  SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);

  static const unsigned OpcMap[2][2][2] = {
      {{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
       {AMDGPU::V_SUB_I32_e32, AMDGPU::V_ADD_I32_e32}},
      {{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
       {AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};

  unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
  unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];

  SDNode *AddLo;
  if (!ConsumeCarry) {
    SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
    AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
  } else {
    SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
    AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
  }
  SDValue AddHiArgs[] = {
    SDValue(Hi0, 0),
    SDValue(Hi1, 0),
    SDValue(AddLo, 1)
  };
  SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);

  SDValue RegSequenceArgs[] = {
    CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
    SDValue(AddLo,0),
    Sub0,
    SDValue(AddHi,0),
    Sub1,
  };
  SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
                                               MVT::i64, RegSequenceArgs);

  if (ProduceCarry) {
    // Replace the carry-use
    ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
  }

  // Replace the remaining uses.
  ReplaceNode(N, RegSequence);
}

void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
  SDLoc DL(N);
  SDValue LHS = N->getOperand(0);
  SDValue RHS = N->getOperand(1);
  SDValue CI = N->getOperand(2);

  if (N->isDivergent()) {
    unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
                                                   : AMDGPU::V_SUBB_U32_e64;
    CurDAG->SelectNodeTo(
        N, Opc, N->getVTList(),
        {LHS, RHS, CI,
         CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
  } else {
    unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO
                                                   : AMDGPU::S_SUB_CO_PSEUDO;
    CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
  }
}

void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
  // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
  // carry out despite the _i32 name. These were renamed in VI to _U32.
  // FIXME: We should probably rename the opcodes here.
  bool IsAdd = N->getOpcode() == ISD::UADDO;
  bool IsVALU = N->isDivergent();

  for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
       ++UI)
    if (UI.getUse().getResNo() == 1) {
      if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) ||
          (!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) {
        IsVALU = true;
        break;
      }
    }

  if (IsVALU) {
    unsigned Opc = IsAdd ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;

    CurDAG->SelectNodeTo(
        N, Opc, N->getVTList(),
        {N->getOperand(0), N->getOperand(1),
         CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
  } else {
    unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
                                                : AMDGPU::S_USUBO_PSEUDO;

    CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
                         {N->getOperand(0), N->getOperand(1)});
  }
}

void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
  SDLoc SL(N);
  //  src0_modifiers, src0,  src1_modifiers, src1, src2_modifiers, src2, clamp, omod
  SDValue Ops[10];

  SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
  SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
  SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
  Ops[8] = N->getOperand(0);
  Ops[9] = N->getOperand(4);

  CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
}

void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
  SDLoc SL(N);
  //    src0_modifiers, src0,  src1_modifiers, src1, clamp, omod
  SDValue Ops[8];

  SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
  SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
  Ops[6] = N->getOperand(0);
  Ops[7] = N->getOperand(3);

  CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
}

// We need to handle this here because tablegen doesn't support matching
// instructions with multiple outputs.
void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
  SDLoc SL(N);
  EVT VT = N->getValueType(0);

  assert(VT == MVT::f32 || VT == MVT::f64);

  unsigned Opc
    = (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;

  SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
  CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
}

// We need to handle this here because tablegen doesn't support matching
// instructions with multiple outputs.
void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
  SDLoc SL(N);
  bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
  unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;

  SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
  SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
                    Clamp };
  CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
}

bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
                                         unsigned OffsetBits) const {
  if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
      (OffsetBits == 8 && !isUInt<8>(Offset)))
    return false;

  if (Subtarget->hasUsableDSOffset() ||
      Subtarget->unsafeDSOffsetFoldingEnabled())
    return true;

  // On Southern Islands instruction with a negative base value and an offset
  // don't seem to work.
  return CurDAG->SignBitIsZero(Base);
}

bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
                                              SDValue &Offset) const {
  SDLoc DL(Addr);
  if (CurDAG->isBaseWithConstantOffset(Addr)) {
    SDValue N0 = Addr.getOperand(0);
    SDValue N1 = Addr.getOperand(1);
    ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
    if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
      // (add n0, c0)
      Base = N0;
      Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
      return true;
    }
  } else if (Addr.getOpcode() == ISD::SUB) {
    // sub C, x -> add (sub 0, x), C
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
      int64_t ByteOffset = C->getSExtValue();
      if (isUInt<16>(ByteOffset)) {
        SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);

        // XXX - This is kind of hacky. Create a dummy sub node so we can check
        // the known bits in isDSOffsetLegal. We need to emit the selected node
        // here, so this is thrown away.
        SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
                                      Zero, Addr.getOperand(1));

        if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
          SmallVector<SDValue, 3> Opnds;
          Opnds.push_back(Zero);
          Opnds.push_back(Addr.getOperand(1));

          // FIXME: Select to VOP3 version for with-carry.
          unsigned SubOp = AMDGPU::V_SUB_I32_e32;
          if (Subtarget->hasAddNoCarry()) {
            SubOp = AMDGPU::V_SUB_U32_e64;
            Opnds.push_back(
                CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
          }

          MachineSDNode *MachineSub =
              CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);

          Base = SDValue(MachineSub, 0);
          Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
          return true;
        }
      }
    }
  } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
    // If we have a constant address, prefer to put the constant into the
    // offset. This can save moves to load the constant address since multiple
    // operations can share the zero base address register, and enables merging
    // into read2 / write2 instructions.

    SDLoc DL(Addr);

    if (isUInt<16>(CAddr->getZExtValue())) {
      SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
      MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
                                 DL, MVT::i32, Zero);
      Base = SDValue(MovZero, 0);
      Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
      return true;
    }
  }

  // default case
  Base = Addr;
  Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
  return true;
}

// TODO: If offset is too big, put low 16-bit into offset.
bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
                                                   SDValue &Offset0,
                                                   SDValue &Offset1) const {
  SDLoc DL(Addr);

  if (CurDAG->isBaseWithConstantOffset(Addr)) {
    SDValue N0 = Addr.getOperand(0);
    SDValue N1 = Addr.getOperand(1);
    ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
    unsigned DWordOffset0 = C1->getZExtValue() / 4;
    unsigned DWordOffset1 = DWordOffset0 + 1;
    // (add n0, c0)
    if (isDSOffsetLegal(N0, DWordOffset1, 8)) {
      Base = N0;
      Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
      Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
      return true;
    }
  } else if (Addr.getOpcode() == ISD::SUB) {
    // sub C, x -> add (sub 0, x), C
    if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
      unsigned DWordOffset0 = C->getZExtValue() / 4;
      unsigned DWordOffset1 = DWordOffset0 + 1;

      if (isUInt<8>(DWordOffset0)) {
        SDLoc DL(Addr);
        SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);

        // XXX - This is kind of hacky. Create a dummy sub node so we can check
        // the known bits in isDSOffsetLegal. We need to emit the selected node
        // here, so this is thrown away.
        SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
                                      Zero, Addr.getOperand(1));

        if (isDSOffsetLegal(Sub, DWordOffset1, 8)) {
          SmallVector<SDValue, 3> Opnds;
          Opnds.push_back(Zero);
          Opnds.push_back(Addr.getOperand(1));
          unsigned SubOp = AMDGPU::V_SUB_I32_e32;
          if (Subtarget->hasAddNoCarry()) {
            SubOp = AMDGPU::V_SUB_U32_e64;
            Opnds.push_back(
                CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
          }

          MachineSDNode *MachineSub
            = CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);

          Base = SDValue(MachineSub, 0);
          Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
          Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
          return true;
        }
      }
    }
  } else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
    unsigned DWordOffset0 = CAddr->getZExtValue() / 4;
    unsigned DWordOffset1 = DWordOffset0 + 1;
    assert(4 * DWordOffset0 == CAddr->getZExtValue());

    if (isUInt<8>(DWordOffset0) && isUInt<8>(DWordOffset1)) {
      SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
      MachineSDNode *MovZero
        = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
                                 DL, MVT::i32, Zero);
      Base = SDValue(MovZero, 0);
      Offset0 = CurDAG->getTargetConstant(DWordOffset0, DL, MVT::i8);
      Offset1 = CurDAG->getTargetConstant(DWordOffset1, DL, MVT::i8);
      return true;
    }
  }

  // default case

  Base = Addr;
  Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
  Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
  return true;
}

bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
                                     SDValue &VAddr, SDValue &SOffset,
                                     SDValue &Offset, SDValue &Offen,
                                     SDValue &Idxen, SDValue &Addr64,
                                     SDValue &GLC, SDValue &SLC,
                                     SDValue &TFE, SDValue &DLC,
                                     SDValue &SWZ) const {
  // Subtarget prefers to use flat instruction
  // FIXME: This should be a pattern predicate and not reach here
  if (Subtarget->useFlatForGlobal())
    return false;

  SDLoc DL(Addr);

  if (!GLC.getNode())
    GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
  if (!SLC.getNode())
    SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
  TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
  DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
  SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1);

  Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
  Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
  Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
  SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);

  ConstantSDNode *C1 = nullptr;
  SDValue N0 = Addr;
  if (CurDAG->isBaseWithConstantOffset(Addr)) {
    C1 = cast<ConstantSDNode>(Addr.getOperand(1));
    if (isUInt<32>(C1->getZExtValue()))
      N0 = Addr.getOperand(0);
    else
      C1 = nullptr;
  }

  if (N0.getOpcode() == ISD::ADD) {
    // (add N2, N3) -> addr64, or
    // (add (add N2, N3), C1) -> addr64
    SDValue N2 = N0.getOperand(0);
    SDValue N3 = N0.getOperand(1);
    Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);

    if (N2->isDivergent()) {
      if (N3->isDivergent()) {
        // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
        // addr64, and construct the resource from a 0 address.
        Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
        VAddr = N0;
      } else {
        // N2 is divergent, N3 is not.
        Ptr = N3;
        VAddr = N2;
      }
    } else {
      // N2 is not divergent.
      Ptr = N2;
      VAddr = N3;
    }
    Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
  } else if (N0->isDivergent()) {
    // N0 is divergent. Use it as the addr64, and construct the resource from a
    // 0 address.
    Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
    VAddr = N0;
    Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
  } else {
    // N0 -> offset, or
    // (N0 + C1) -> offset
    VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
    Ptr = N0;
  }

  if (!C1) {
    // No offset.
    Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
    return true;
  }

  if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
    // Legal offset for instruction.
    Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
    return true;
  }

  // Illegal offset, store it in soffset.
  Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
  SOffset =
      SDValue(CurDAG->getMachineNode(
                  AMDGPU::S_MOV_B32, DL, MVT::i32,
                  CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
              0);
  return true;
}

bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
                                           SDValue &VAddr, SDValue &SOffset,
                                           SDValue &Offset, SDValue &GLC,
                                           SDValue &SLC, SDValue &TFE,
                                           SDValue &DLC, SDValue &SWZ) const {
  SDValue Ptr, Offen, Idxen, Addr64;

  // addr64 bit was removed for volcanic islands.
  // FIXME: This should be a pattern predicate and not reach here
  if (!Subtarget->hasAddr64())
    return false;

  if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
              GLC, SLC, TFE, DLC, SWZ))
    return false;

  ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
  if (C->getSExtValue()) {
    SDLoc DL(Addr);

    const SITargetLowering& Lowering =
      *static_cast<const SITargetLowering*>(getTargetLowering());

    SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
    return true;
  }

  return false;
}

bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
                                           SDValue &VAddr, SDValue &SOffset,
                                           SDValue &Offset,
                                           SDValue &SLC) const {
  SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
  SDValue GLC, TFE, DLC, SWZ;

  return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ);
}

static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
  auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
  return PSV && PSV->isStack();
}

std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
  SDLoc DL(N);
  const MachineFunction &MF = CurDAG->getMachineFunction();
  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();

  if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
    SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
                                              FI->getValueType(0));

    // If we can resolve this to a frame index access, this will be relative to
    // either the stack or frame pointer SGPR.
    return std::make_pair(
        TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
  }

  // If we don't know this private access is a local stack object, it needs to
  // be relative to the entry point's scratch wave offset.
  return std::make_pair(N, CurDAG->getTargetConstant(0, DL, MVT::i32));
}

bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
                                                 SDValue Addr, SDValue &Rsrc,
                                                 SDValue &VAddr, SDValue &SOffset,
                                                 SDValue &ImmOffset) const {

  SDLoc DL(Addr);
  MachineFunction &MF = CurDAG->getMachineFunction();
  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();

  Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);

  if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
    int64_t Imm = CAddr->getSExtValue();
    const int64_t NullPtr =
        AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
    // Don't fold null pointer.
    if (Imm != NullPtr) {
      SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
      MachineSDNode *MovHighBits = CurDAG->getMachineNode(
        AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
      VAddr = SDValue(MovHighBits, 0);

      // In a call sequence, stores to the argument stack area are relative to the
      // stack pointer.
      const MachinePointerInfo &PtrInfo
        = cast<MemSDNode>(Parent)->getPointerInfo();
      SOffset = isStackPtrRelative(PtrInfo)
        ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
        : CurDAG->getTargetConstant(0, DL, MVT::i32);
      ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
      return true;
    }
  }

  if (CurDAG->isBaseWithConstantOffset(Addr)) {
    // (add n0, c1)

    SDValue N0 = Addr.getOperand(0);
    SDValue N1 = Addr.getOperand(1);

    // Offsets in vaddr must be positive if range checking is enabled.
    //
    // The total computation of vaddr + soffset + offset must not overflow.  If
    // vaddr is negative, even if offset is 0 the sgpr offset add will end up
    // overflowing.
    //
    // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
    // always perform a range check. If a negative vaddr base index was used,
    // this would fail the range check. The overall address computation would
    // compute a valid address, but this doesn't happen due to the range
    // check. For out-of-bounds MUBUF loads, a 0 is returned.
    //
    // Therefore it should be safe to fold any VGPR offset on gfx9 into the
    // MUBUF vaddr, but not on older subtargets which can only do this if the
    // sign bit is known 0.
    ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
    if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
        (!Subtarget->privateMemoryResourceIsRangeChecked() ||
         CurDAG->SignBitIsZero(N0))) {
      std::tie(VAddr, SOffset) = foldFrameIndex(N0);
      ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
      return true;
    }
  }

  // (node)
  std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
  ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
  return true;
}

bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
                                                  SDValue Addr,
                                                  SDValue &SRsrc,
                                                  SDValue &SOffset,
                                                  SDValue &Offset) const {
  ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
  if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
    return false;

  SDLoc DL(Addr);
  MachineFunction &MF = CurDAG->getMachineFunction();
  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();

  SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);

  const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();

  // FIXME: Get from MachinePointerInfo? We should only be using the frame
  // offset if we know this is in a call sequence.
  SOffset = isStackPtrRelative(PtrInfo)
                ? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
                : CurDAG->getTargetConstant(0, DL, MVT::i32);

  Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
  return true;
}

bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
                                           SDValue &SOffset, SDValue &Offset,
                                           SDValue &GLC, SDValue &SLC,
                                           SDValue &TFE, SDValue &DLC,
                                           SDValue &SWZ) const {
  SDValue Ptr, VAddr, Offen, Idxen, Addr64;
  const SIInstrInfo *TII =
    static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());

  if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
              GLC, SLC, TFE, DLC, SWZ))
    return false;

  if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
      !cast<ConstantSDNode>(Idxen)->getSExtValue() &&
      !cast<ConstantSDNode>(Addr64)->getSExtValue()) {
    uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
                    APInt::getAllOnesValue(32).getZExtValue(); // Size
    SDLoc DL(Addr);

    const SITargetLowering& Lowering =
      *static_cast<const SITargetLowering*>(getTargetLowering());

    SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
    return true;
  }
  return false;
}

bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
                                           SDValue &Soffset, SDValue &Offset
                                           ) const {
  SDValue GLC, SLC, TFE, DLC, SWZ;

  return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
}
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
                                           SDValue &Soffset, SDValue &Offset,
                                           SDValue &SLC) const {
  SDValue GLC, TFE, DLC, SWZ;

  return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
}

// Find a load or store from corresponding pattern root.
// Roots may be build_vector, bitconvert or their combinations.
static MemSDNode* findMemSDNode(SDNode *N) {
  N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
  if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
    return MN;
  assert(isa<BuildVectorSDNode>(N));
  for (SDValue V : N->op_values())
    if (MemSDNode *MN =
          dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
      return MN;
  llvm_unreachable("cannot find MemSDNode in the pattern!");
}

static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr,
                                          SDValue &N0, SDValue &N1) {
  if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST &&
      Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
    // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
    // (i64 (bitcast (v2i32 (build_vector
    //                        (or (extract_vector_elt V, 0), OFFSET),
    //                        (extract_vector_elt V, 1)))))
    SDValue Lo = Addr.getOperand(0).getOperand(0);
    if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) {
      SDValue BaseLo = Lo.getOperand(0);
      SDValue BaseHi = Addr.getOperand(0).getOperand(1);
      // Check that split base (Lo and Hi) are extracted from the same one.
      if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
          BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
          BaseLo.getOperand(0) == BaseHi.getOperand(0) &&
          // Lo is statically extracted from index 0.
          isa<ConstantSDNode>(BaseLo.getOperand(1)) &&
          BaseLo.getConstantOperandVal(1) == 0 &&
          // Hi is statically extracted from index 0.
          isa<ConstantSDNode>(BaseHi.getOperand(1)) &&
          BaseHi.getConstantOperandVal(1) == 1) {
        N0 = BaseLo.getOperand(0).getOperand(0);
        N1 = Lo.getOperand(1);
        return true;
      }
    }
  }
  return false;
}

template <bool IsSigned>
bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
                                          SDValue Addr,
                                          SDValue &VAddr,
                                          SDValue &Offset,
                                          SDValue &SLC) const {
  int64_t OffsetVal = 0;

  if (Subtarget->hasFlatInstOffsets() &&
      (!Subtarget->hasFlatSegmentOffsetBug() ||
       findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) {
    SDValue N0, N1;
    if (CurDAG->isBaseWithConstantOffset(Addr)) {
      N0 = Addr.getOperand(0);
      N1 = Addr.getOperand(1);
    } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
      assert(N0 && N1 && isa<ConstantSDNode>(N1));
    }
    if (N0 && N1) {
      uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();

      const SIInstrInfo *TII = Subtarget->getInstrInfo();
      unsigned AS = findMemSDNode(N)->getAddressSpace();
      if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) {
        Addr = N0;
        OffsetVal = COffsetVal;
      } else {
        // If the offset doesn't fit, put the low bits into the offset field and
        // add the rest.

        SDLoc DL(N);
        uint64_t ImmField;
        const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned);
        if (IsSigned) {
          ImmField = SignExtend64(COffsetVal, NumBits);

          // Don't use a negative offset field if the base offset is positive.
          // Since the scheduler currently relies on the offset field, doing so
          // could result in strange scheduling decisions.

          // TODO: Should we not do this in the opposite direction as well?
          if (static_cast<int64_t>(COffsetVal) > 0) {
            if (static_cast<int64_t>(ImmField) < 0) {
              const uint64_t OffsetMask =
                  maskTrailingOnes<uint64_t>(NumBits - 1);
              ImmField = COffsetVal & OffsetMask;
            }
          }
        } else {
          // TODO: Should we do this for a negative offset?
          const uint64_t OffsetMask = maskTrailingOnes<uint64_t>(NumBits);
          ImmField = COffsetVal & OffsetMask;
        }

        uint64_t RemainderOffset = COffsetVal - ImmField;

        assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned));
        assert(RemainderOffset + ImmField == COffsetVal);

        OffsetVal = ImmField;

        // TODO: Should this try to use a scalar add pseudo if the base address
        // is uniform and saddr is usable?
        SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
        SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);

        SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
                                              MVT::i32, N0, Sub0);
        SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
                                              MVT::i32, N0, Sub1);

        SDValue AddOffsetLo =
            getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
        SDValue AddOffsetHi =
            getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);

        SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
        SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);

        SDNode *Add =
            CurDAG->getMachineNode(AMDGPU::V_ADD_I32_e64, DL, VTs,
                                   {AddOffsetLo, SDValue(N0Lo, 0), Clamp});

        SDNode *Addc = CurDAG->getMachineNode(
            AMDGPU::V_ADDC_U32_e64, DL, VTs,
            {AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});

        SDValue RegSequenceArgs[] = {
            CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
            SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1};

        Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
                                              MVT::i64, RegSequenceArgs),
                       0);
      }
    }
  }

  VAddr = Addr;
  Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
  SLC = CurDAG->getTargetConstant(0, SDLoc(), MVT::i1);
  return true;
}

bool AMDGPUDAGToDAGISel::SelectFlatAtomic(SDNode *N,
                                          SDValue Addr,
                                          SDValue &VAddr,
                                          SDValue &Offset,
                                          SDValue &SLC) const {
  return SelectFlatOffset<false>(N, Addr, VAddr, Offset, SLC);
}

bool AMDGPUDAGToDAGISel::SelectFlatAtomicSigned(SDNode *N,
                                                SDValue Addr,
                                                SDValue &VAddr,
                                                SDValue &Offset,
                                                SDValue &SLC) const {
  return SelectFlatOffset<true>(N, Addr, VAddr, Offset, SLC);
}

bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
                                          SDValue &Offset, bool &Imm) const {
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
  if (!C) {
    if (ByteOffsetNode.getValueType().isScalarInteger() &&
        ByteOffsetNode.getValueType().getSizeInBits() == 32) {
      Offset = ByteOffsetNode;
      Imm = false;
      return true;
    }
    if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
      if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
        Offset = ByteOffsetNode.getOperand(0);
        Imm = false;
        return true;
      }
    }
    return false;
  }

  SDLoc SL(ByteOffsetNode);
  // GFX9 and GFX10 have signed byte immediate offsets.
  int64_t ByteOffset = C->getSExtValue();
  Optional<int64_t> EncodedOffset =
      AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false);
  if (EncodedOffset) {
    Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
    Imm = true;
    return true;
  }

  // SGPR and literal offsets are unsigned.
  if (ByteOffset < 0)
    return false;

  EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
  if (EncodedOffset) {
    Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
    return true;
  }

  if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
    return false;

  SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
  Offset = SDValue(
      CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);

  return true;
}

SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
  if (Addr.getValueType() != MVT::i32)
    return Addr;

  // Zero-extend a 32-bit address.
  SDLoc SL(Addr);

  const MachineFunction &MF = CurDAG->getMachineFunction();
  const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  unsigned AddrHiVal = Info->get32BitAddressHighBits();
  SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);

  const SDValue Ops[] = {
    CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
    Addr,
    CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
    SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
            0),
    CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
  };

  return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
                                        Ops), 0);
}

bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
                                     SDValue &Offset, bool &Imm) const {
  SDLoc SL(Addr);

  // A 32-bit (address + offset) should not cause unsigned 32-bit integer
  // wraparound, because s_load instructions perform the addition in 64 bits.
  if ((Addr.getValueType() != MVT::i32 ||
       Addr->getFlags().hasNoUnsignedWrap())) {
    SDValue N0, N1;
    // Extract the base and offset if possible.
    if (CurDAG->isBaseWithConstantOffset(Addr) ||
        Addr.getOpcode() == ISD::ADD) {
      N0 = Addr.getOperand(0);
      N1 = Addr.getOperand(1);
    } else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
      assert(N0 && N1 && isa<ConstantSDNode>(N1));
    }
    if (N0 && N1) {
      if (SelectSMRDOffset(N1, Offset, Imm)) {
        SBase = Expand32BitAddress(N0);
        return true;
      }
    }
  }
  SBase = Expand32BitAddress(Addr);
  Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
  Imm = true;
  return true;
}

bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
                                       SDValue &Offset) const {
  bool Imm = false;
  return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
}

bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
                                         SDValue &Offset) const {

  assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);

  bool Imm = false;
  if (!SelectSMRD(Addr, SBase, Offset, Imm))
    return false;

  return !Imm && isa<ConstantSDNode>(Offset);
}

bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
                                        SDValue &Offset) const {
  bool Imm = false;
  return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
         !isa<ConstantSDNode>(Offset);
}

bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
                                             SDValue &Offset) const {
  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
    // The immediate offset for S_BUFFER instructions is unsigned.
    if (auto Imm =
            AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) {
      Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
      return true;
    }
  }

  return false;
}

bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
                                               SDValue &Offset) const {
  assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);

  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
    if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget,
                                                         C->getZExtValue())) {
      Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
      return true;
    }
  }

  return false;
}

bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
                                            SDValue &Base,
                                            SDValue &Offset) const {
  SDLoc DL(Index);

  if (CurDAG->isBaseWithConstantOffset(Index)) {
    SDValue N0 = Index.getOperand(0);
    SDValue N1 = Index.getOperand(1);
    ConstantSDNode *C1 = cast<ConstantSDNode>(N1);

    // (add n0, c0)
    // Don't peel off the offset (c0) if doing so could possibly lead
    // the base (n0) to be negative.
    // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
    if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
        (Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
      Base = N0;
      Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
      return true;
    }
  }

  if (isa<ConstantSDNode>(Index))
    return false;

  Base = Index;
  Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
  return true;
}

SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
                                     SDValue Val, uint32_t Offset,
                                     uint32_t Width) {
  // Transformation function, pack the offset and width of a BFE into
  // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
  // source, bits [5:0] contain the offset and bits [22:16] the width.
  uint32_t PackedVal = Offset | (Width << 16);
  SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);

  return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
}

void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
  // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
  // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
  // Predicate: 0 < b <= c < 32

  const SDValue &Shl = N->getOperand(0);
  ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
  ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));

  if (B && C) {
    uint32_t BVal = B->getZExtValue();
    uint32_t CVal = C->getZExtValue();

    if (0 < BVal && BVal <= CVal && CVal < 32) {
      bool Signed = N->getOpcode() == ISD::SRA;
      unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;

      ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
                              32 - CVal));
      return;
    }
  }
  SelectCode(N);
}

void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
  switch (N->getOpcode()) {
  case ISD::AND:
    if (N->getOperand(0).getOpcode() == ISD::SRL) {
      // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
      // Predicate: isMask(mask)
      const SDValue &Srl = N->getOperand(0);
      ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
      ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));

      if (Shift && Mask) {
        uint32_t ShiftVal = Shift->getZExtValue();
        uint32_t MaskVal = Mask->getZExtValue();

        if (isMask_32(MaskVal)) {
          uint32_t WidthVal = countPopulation(MaskVal);

          ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
                                  Srl.getOperand(0), ShiftVal, WidthVal));
          return;
        }
      }
    }
    break;
  case ISD::SRL:
    if (N->getOperand(0).getOpcode() == ISD::AND) {
      // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
      // Predicate: isMask(mask >> b)
      const SDValue &And = N->getOperand(0);
      ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
      ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));

      if (Shift && Mask) {
        uint32_t ShiftVal = Shift->getZExtValue();
        uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;

        if (isMask_32(MaskVal)) {
          uint32_t WidthVal = countPopulation(MaskVal);

          ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
                                  And.getOperand(0), ShiftVal, WidthVal));
          return;
        }
      }
    } else if (N->getOperand(0).getOpcode() == ISD::SHL) {
      SelectS_BFEFromShifts(N);
      return;
    }
    break;
  case ISD::SRA:
    if (N->getOperand(0).getOpcode() == ISD::SHL) {
      SelectS_BFEFromShifts(N);
      return;
    }
    break;

  case ISD::SIGN_EXTEND_INREG: {
    // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
    SDValue Src = N->getOperand(0);
    if (Src.getOpcode() != ISD::SRL)
      break;

    const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
    if (!Amt)
      break;

    unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
    ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
                            Amt->getZExtValue(), Width));
    return;
  }
  }

  SelectCode(N);
}

bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
  assert(N->getOpcode() == ISD::BRCOND);
  if (!N->hasOneUse())
    return false;

  SDValue Cond = N->getOperand(1);
  if (Cond.getOpcode() == ISD::CopyToReg)
    Cond = Cond.getOperand(2);

  if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
    return false;

  MVT VT = Cond.getOperand(0).getSimpleValueType();
  if (VT == MVT::i32)
    return true;

  if (VT == MVT::i64) {
    auto ST = static_cast<const GCNSubtarget *>(Subtarget);

    ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
    return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
  }

  return false;
}

void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
  SDValue Cond = N->getOperand(1);

  if (Cond.isUndef()) {
    CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
                         N->getOperand(2), N->getOperand(0));
    return;
  }

  const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
  const SIRegisterInfo *TRI = ST->getRegisterInfo();

  bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
  unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
  Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
  SDLoc SL(N);

  if (!UseSCCBr) {
    // This is the case that we are selecting to S_CBRANCH_VCCNZ.  We have not
    // analyzed what generates the vcc value, so we do not know whether vcc
    // bits for disabled lanes are 0.  Thus we need to mask out bits for
    // disabled lanes.
    //
    // For the case that we select S_CBRANCH_SCC1 and it gets
    // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
    // SIInstrInfo::moveToVALU which inserts the S_AND).
    //
    // We could add an analysis of what generates the vcc value here and omit
    // the S_AND when is unnecessary. But it would be better to add a separate
    // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
    // catches both cases.
    Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
                                                         : AMDGPU::S_AND_B64,
                     SL, MVT::i1,
                     CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
                                                        : AMDGPU::EXEC,
                                         MVT::i1),
                    Cond),
                   0);
  }

  SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
  CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
                       N->getOperand(2), // Basic Block
                       VCC.getValue(0));
}

void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
  MVT VT = N->getSimpleValueType(0);
  bool IsFMA = N->getOpcode() == ISD::FMA;
  if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
                         !Subtarget->hasFmaMixInsts()) ||
      ((IsFMA && Subtarget->hasMadMixInsts()) ||
       (!IsFMA && Subtarget->hasFmaMixInsts()))) {
    SelectCode(N);
    return;
  }

  SDValue Src0 = N->getOperand(0);
  SDValue Src1 = N->getOperand(1);
  SDValue Src2 = N->getOperand(2);
  unsigned Src0Mods, Src1Mods, Src2Mods;

  // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
  // using the conversion from f16.
  bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
  bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
  bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);

  assert((IsFMA || !Mode.allFP32Denormals()) &&
         "fmad selected with denormals enabled");
  // TODO: We can select this with f32 denormals enabled if all the sources are
  // converted from f16 (in which case fmad isn't legal).

  if (Sel0 || Sel1 || Sel2) {
    // For dummy operands.
    SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
    SDValue Ops[] = {
      CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
      CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
      CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
      CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
      Zero, Zero
    };

    CurDAG->SelectNodeTo(N,
                         IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
                         MVT::f32, Ops);
  } else {
    SelectCode(N);
  }
}

// This is here because there isn't a way to use the generated sub0_sub1 as the
// subreg index to EXTRACT_SUBREG in tablegen.
void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
  MemSDNode *Mem = cast<MemSDNode>(N);
  unsigned AS = Mem->getAddressSpace();
  if (AS == AMDGPUAS::FLAT_ADDRESS) {
    SelectCode(N);
    return;
  }

  MVT VT = N->getSimpleValueType(0);
  bool Is32 = (VT == MVT::i32);
  SDLoc SL(N);

  MachineSDNode *CmpSwap = nullptr;
  if (Subtarget->hasAddr64()) {
    SDValue SRsrc, VAddr, SOffset, Offset, SLC;

    if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
      unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
        AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
      SDValue CmpVal = Mem->getOperand(2);

      // XXX - Do we care about glue operands?

      SDValue Ops[] = {
        CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
      };

      CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
    }
  }

  if (!CmpSwap) {
    SDValue SRsrc, SOffset, Offset, SLC;
    if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
      unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
        AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;

      SDValue CmpVal = Mem->getOperand(2);
      SDValue Ops[] = {
        CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
      };

      CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
    }
  }

  if (!CmpSwap) {
    SelectCode(N);
    return;
  }

  MachineMemOperand *MMO = Mem->getMemOperand();
  CurDAG->setNodeMemRefs(CmpSwap, {MMO});

  unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
  SDValue Extract
    = CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));

  ReplaceUses(SDValue(N, 0), Extract);
  ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
  CurDAG->RemoveDeadNode(N);
}

void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
  // The address is assumed to be uniform, so if it ends up in a VGPR, it will
  // be copied to an SGPR with readfirstlane.
  unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
    AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;

  SDValue Chain = N->getOperand(0);
  SDValue Ptr = N->getOperand(2);
  MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
  MachineMemOperand *MMO = M->getMemOperand();
  bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;

  SDValue Offset;
  if (CurDAG->isBaseWithConstantOffset(Ptr)) {
    SDValue PtrBase = Ptr.getOperand(0);
    SDValue PtrOffset = Ptr.getOperand(1);

    const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
    if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
      N = glueCopyToM0(N, PtrBase);
      Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
    }
  }

  if (!Offset) {
    N = glueCopyToM0(N, Ptr);
    Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
  }

  SDValue Ops[] = {
    Offset,
    CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
    Chain,
    N->getOperand(N->getNumOperands() - 1) // New glue
  };

  SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
}

static unsigned gwsIntrinToOpcode(unsigned IntrID) {
  switch (IntrID) {
  case Intrinsic::amdgcn_ds_gws_init:
    return AMDGPU::DS_GWS_INIT;
  case Intrinsic::amdgcn_ds_gws_barrier:
    return AMDGPU::DS_GWS_BARRIER;
  case Intrinsic::amdgcn_ds_gws_sema_v:
    return AMDGPU::DS_GWS_SEMA_V;
  case Intrinsic::amdgcn_ds_gws_sema_br:
    return AMDGPU::DS_GWS_SEMA_BR;
  case Intrinsic::amdgcn_ds_gws_sema_p:
    return AMDGPU::DS_GWS_SEMA_P;
  case Intrinsic::amdgcn_ds_gws_sema_release_all:
    return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
  default:
    llvm_unreachable("not a gws intrinsic");
  }
}

void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
  if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
      !Subtarget->hasGWSSemaReleaseAll()) {
    // Let this error.
    SelectCode(N);
    return;
  }

  // Chain, intrinsic ID, vsrc, offset
  const bool HasVSrc = N->getNumOperands() == 4;
  assert(HasVSrc || N->getNumOperands() == 3);

  SDLoc SL(N);
  SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
  int ImmOffset = 0;
  MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
  MachineMemOperand *MMO = M->getMemOperand();

  // Don't worry if the offset ends up in a VGPR. Only one lane will have
  // effect, so SIFixSGPRCopies will validly insert readfirstlane.

  // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
  // offset field) % 64. Some versions of the programming guide omit the m0
  // part, or claim it's from offset 0.
  if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
    // If we have a constant offset, try to use the 0 in m0 as the base.
    // TODO: Look into changing the default m0 initialization value. If the
    // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
    // the immediate offset.
    glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
    ImmOffset = ConstOffset->getZExtValue();
  } else {
    if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
      ImmOffset = BaseOffset.getConstantOperandVal(1);
      BaseOffset = BaseOffset.getOperand(0);
    }

    // Prefer to do the shift in an SGPR since it should be possible to use m0
    // as the result directly. If it's already an SGPR, it will be eliminated
    // later.
    SDNode *SGPROffset
      = CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
                               BaseOffset);
    // Shift to offset in m0
    SDNode *M0Base
      = CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
                               SDValue(SGPROffset, 0),
                               CurDAG->getTargetConstant(16, SL, MVT::i32));
    glueCopyToM0(N, SDValue(M0Base, 0));
  }

  SDValue Chain = N->getOperand(0);
  SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);

  // TODO: Can this just be removed from the instruction?
  SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);

  const unsigned Opc = gwsIntrinToOpcode(IntrID);
  SmallVector<SDValue, 5> Ops;
  if (HasVSrc)
    Ops.push_back(N->getOperand(2));
  Ops.push_back(OffsetField);
  Ops.push_back(GDS);
  Ops.push_back(Chain);

  SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
}

void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
  if (Subtarget->getLDSBankCount() != 16) {
    // This is a single instruction with a pattern.
    SelectCode(N);
    return;
  }

  SDLoc DL(N);

  // This requires 2 instructions. It is possible to write a pattern to support
  // this, but the generated isel emitter doesn't correctly deal with multiple
  // output instructions using the same physical register input. The copy to m0
  // is incorrectly placed before the second instruction.
  //
  // TODO: Match source modifiers.
  //
  // def : Pat <
  //   (int_amdgcn_interp_p1_f16
  //    (VOP3Mods f32:$src0, i32:$src0_modifiers),
  //                             (i32 timm:$attrchan), (i32 timm:$attr),
  //                             (i1 timm:$high), M0),
  //   (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
  //       timm:$attrchan, 0,
  //       (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
  //   let Predicates = [has16BankLDS];
  // }

  // 16 bank LDS
  SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
                                      N->getOperand(5), SDValue());

  SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);

  SDNode *InterpMov =
    CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
        CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
        N->getOperand(3),  // Attr
        N->getOperand(2),  // Attrchan
        ToM0.getValue(1) // In glue
  });

  SDNode *InterpP1LV =
    CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
        CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
        N->getOperand(1), // Src0
        N->getOperand(3), // Attr
        N->getOperand(2), // Attrchan
        CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
        SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
        N->getOperand(4), // high
        CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
        CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
        SDValue(InterpMov, 1)
  });

  CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
}

void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
  unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
  switch (IntrID) {
  case Intrinsic::amdgcn_ds_append:
  case Intrinsic::amdgcn_ds_consume: {
    if (N->getValueType(0) != MVT::i32)
      break;
    SelectDSAppendConsume(N, IntrID);
    return;
  }
  }

  SelectCode(N);
}

void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
  unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
  unsigned Opcode;
  switch (IntrID) {
  case Intrinsic::amdgcn_wqm:
    Opcode = AMDGPU::WQM;
    break;
  case Intrinsic::amdgcn_softwqm:
    Opcode = AMDGPU::SOFT_WQM;
    break;
  case Intrinsic::amdgcn_wwm:
    Opcode = AMDGPU::WWM;
    break;
  case Intrinsic::amdgcn_interp_p1_f16:
    SelectInterpP1F16(N);
    return;
  default:
    SelectCode(N);
    return;
  }

  SDValue Src = N->getOperand(1);
  CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
}

void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
  unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
  switch (IntrID) {
  case Intrinsic::amdgcn_ds_gws_init:
  case Intrinsic::amdgcn_ds_gws_barrier:
  case Intrinsic::amdgcn_ds_gws_sema_v:
  case Intrinsic::amdgcn_ds_gws_sema_br:
  case Intrinsic::amdgcn_ds_gws_sema_p:
  case Intrinsic::amdgcn_ds_gws_sema_release_all:
    SelectDS_GWS(N, IntrID);
    return;
  default:
    break;
  }

  SelectCode(N);
}

bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
                                            unsigned &Mods) const {
  Mods = 0;
  Src = In;

  if (Src.getOpcode() == ISD::FNEG) {
    Mods |= SISrcMods::NEG;
    Src = Src.getOperand(0);
  }

  if (Src.getOpcode() == ISD::FABS) {
    Mods |= SISrcMods::ABS;
    Src = Src.getOperand(0);
  }

  return true;
}

bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
                                        SDValue &SrcMods) const {
  unsigned Mods;
  if (SelectVOP3ModsImpl(In, Src, Mods)) {
    SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
    return true;
  }

  return false;
}

bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
                                             SDValue &SrcMods) const {
  SelectVOP3Mods(In, Src, SrcMods);
  return isNoNanSrc(Src);
}

bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
  if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
    return false;

  Src = In;
  return true;
}

bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
                                         SDValue &SrcMods, SDValue &Clamp,
                                         SDValue &Omod) const {
  SDLoc DL(In);
  Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
  Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);

  return SelectVOP3Mods(In, Src, SrcMods);
}

bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
                                         SDValue &Clamp, SDValue &Omod) const {
  Src = In;

  SDLoc DL(In);
  Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
  Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);

  return true;
}

bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
                                         SDValue &SrcMods) const {
  unsigned Mods = 0;
  Src = In;

  if (Src.getOpcode() == ISD::FNEG) {
    Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
    Src = Src.getOperand(0);
  }

  if (Src.getOpcode() == ISD::BUILD_VECTOR) {
    unsigned VecMods = Mods;

    SDValue Lo = stripBitcast(Src.getOperand(0));
    SDValue Hi = stripBitcast(Src.getOperand(1));

    if (Lo.getOpcode() == ISD::FNEG) {
      Lo = stripBitcast(Lo.getOperand(0));
      Mods ^= SISrcMods::NEG;
    }

    if (Hi.getOpcode() == ISD::FNEG) {
      Hi = stripBitcast(Hi.getOperand(0));
      Mods ^= SISrcMods::NEG_HI;
    }

    if (isExtractHiElt(Lo, Lo))
      Mods |= SISrcMods::OP_SEL_0;

    if (isExtractHiElt(Hi, Hi))
      Mods |= SISrcMods::OP_SEL_1;

    Lo = stripExtractLoElt(Lo);
    Hi = stripExtractLoElt(Hi);

    if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
      // Really a scalar input. Just select from the low half of the register to
      // avoid packing.

      Src = Lo;
      SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
      return true;
    }

    Mods = VecMods;
  }

  // Packed instructions do not have abs modifiers.
  Mods |= SISrcMods::OP_SEL_1;

  SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
  return true;
}

bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
                                         SDValue &SrcMods) const {
  Src = In;
  // FIXME: Handle op_sel
  SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
  return true;
}

bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
                                             SDValue &SrcMods) const {
  // FIXME: Handle op_sel
  return SelectVOP3Mods(In, Src, SrcMods);
}

// The return value is not whether the match is possible (which it always is),
// but whether or not it a conversion is really used.
bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
                                                   unsigned &Mods) const {
  Mods = 0;
  SelectVOP3ModsImpl(In, Src, Mods);

  if (Src.getOpcode() == ISD::FP_EXTEND) {
    Src = Src.getOperand(0);
    assert(Src.getValueType() == MVT::f16);
    Src = stripBitcast(Src);

    // Be careful about folding modifiers if we already have an abs. fneg is
    // applied last, so we don't want to apply an earlier fneg.
    if ((Mods & SISrcMods::ABS) == 0) {
      unsigned ModsTmp;
      SelectVOP3ModsImpl(Src, Src, ModsTmp);

      if ((ModsTmp & SISrcMods::NEG) != 0)
        Mods ^= SISrcMods::NEG;

      if ((ModsTmp & SISrcMods::ABS) != 0)
        Mods |= SISrcMods::ABS;
    }

    // op_sel/op_sel_hi decide the source type and source.
    // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
    // If the sources's op_sel is set, it picks the high half of the source
    // register.

    Mods |= SISrcMods::OP_SEL_1;
    if (isExtractHiElt(Src, Src)) {
      Mods |= SISrcMods::OP_SEL_0;

      // TODO: Should we try to look for neg/abs here?
    }

    return true;
  }

  return false;
}

bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
                                               SDValue &SrcMods) const {
  unsigned Mods = 0;
  SelectVOP3PMadMixModsImpl(In, Src, Mods);
  SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
  return true;
}

SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
  if (In.isUndef())
    return CurDAG->getUNDEF(MVT::i32);

  if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
    SDLoc SL(In);
    return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
  }

  if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
    SDLoc SL(In);
    return CurDAG->getConstant(
      C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
  }

  SDValue Src;
  if (isExtractHiElt(In, Src))
    return Src;

  return SDValue();
}

bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
  assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);

  const SIRegisterInfo *SIRI =
    static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
  const SIInstrInfo * SII =
    static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());

  unsigned Limit = 0;
  bool AllUsesAcceptSReg = true;
  for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
    Limit < 10 && U != E; ++U, ++Limit) {
    const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());

    // If the register class is unknown, it could be an unknown
    // register class that needs to be an SGPR, e.g. an inline asm
    // constraint
    if (!RC || SIRI->isSGPRClass(RC))
      return false;

    if (RC != &AMDGPU::VS_32RegClass) {
      AllUsesAcceptSReg = false;
      SDNode * User = *U;
      if (User->isMachineOpcode()) {
        unsigned Opc = User->getMachineOpcode();
        MCInstrDesc Desc = SII->get(Opc);
        if (Desc.isCommutable()) {
          unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
          unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
          if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
            unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
            const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
            if (CommutedRC == &AMDGPU::VS_32RegClass)
              AllUsesAcceptSReg = true;
          }
        }
      }
      // If "AllUsesAcceptSReg == false" so far we haven't suceeded
      // commuting current user. This means have at least one use
      // that strictly require VGPR. Thus, we will not attempt to commute
      // other user instructions.
      if (!AllUsesAcceptSReg)
        break;
    }
  }
  return !AllUsesAcceptSReg && (Limit < 10);
}

bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
  auto Ld = cast<LoadSDNode>(N);

  return Ld->getAlignment() >= 4 &&
        (
          (
            (
              Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS       ||
              Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
            )
            &&
            !N->isDivergent()
          )
          ||
          (
            Subtarget->getScalarizeGlobalBehavior() &&
            Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
            Ld->isSimple() &&
            !N->isDivergent() &&
            static_cast<const SITargetLowering *>(
              getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
          )
        );
}

void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
  const AMDGPUTargetLowering& Lowering =
    *static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
  bool IsModified = false;
  do {
    IsModified = false;

    // Go over all selected nodes and try to fold them a bit more
    SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
    while (Position != CurDAG->allnodes_end()) {
      SDNode *Node = &*Position++;
      MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
      if (!MachineNode)
        continue;

      SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
      if (ResNode != Node) {
        if (ResNode)
          ReplaceUses(Node, ResNode);
        IsModified = true;
      }
    }
    CurDAG->RemoveDeadNodes();
  } while (IsModified);
}

bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
  Subtarget = &MF.getSubtarget<R600Subtarget>();
  return SelectionDAGISel::runOnMachineFunction(MF);
}

bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
  if (!N->readMem())
    return false;
  if (CbId == -1)
    return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
           N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;

  return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
}

bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
                                                         SDValue& IntPtr) {
  if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
    IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
                                       true);
    return true;
  }
  return false;
}

bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
    SDValue& BaseReg, SDValue &Offset) {
  if (!isa<ConstantSDNode>(Addr)) {
    BaseReg = Addr;
    Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
    return true;
  }
  return false;
}

void R600DAGToDAGISel::Select(SDNode *N) {
  unsigned int Opc = N->getOpcode();
  if (N->isMachineOpcode()) {
    N->setNodeId(-1);
    return;   // Already selected.
  }

  switch (Opc) {
  default: break;
  case AMDGPUISD::BUILD_VERTICAL_VECTOR:
  case ISD::SCALAR_TO_VECTOR:
  case ISD::BUILD_VECTOR: {
    EVT VT = N->getValueType(0);
    unsigned NumVectorElts = VT.getVectorNumElements();
    unsigned RegClassID;
    // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
    // that adds a 128 bits reg copy when going through TwoAddressInstructions
    // pass. We want to avoid 128 bits copies as much as possible because they
    // can't be bundled by our scheduler.
    switch(NumVectorElts) {
    case 2: RegClassID = R600::R600_Reg64RegClassID; break;
    case 4:
      if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
        RegClassID = R600::R600_Reg128VerticalRegClassID;
      else
        RegClassID = R600::R600_Reg128RegClassID;
      break;
    default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
    }
    SelectBuildVector(N, RegClassID);
    return;
  }
  }

  SelectCode(N);
}

bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
                                          SDValue &Offset) {
  ConstantSDNode *C;
  SDLoc DL(Addr);

  if ((C = dyn_cast<ConstantSDNode>(Addr))) {
    Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
  } else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
             (C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
    Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
  } else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
            (C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
    Base = Addr.getOperand(0);
    Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
  } else {
    Base = Addr;
    Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
  }

  return true;
}

bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
                                          SDValue &Offset) {
  ConstantSDNode *IMMOffset;

  if (Addr.getOpcode() == ISD::ADD
      && (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
      && isInt<16>(IMMOffset->getZExtValue())) {

      Base = Addr.getOperand(0);
      Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
                                         MVT::i32);
      return true;
  // If the pointer address is constant, we can move it to the offset field.
  } else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
             && isInt<16>(IMMOffset->getZExtValue())) {
    Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
                                  SDLoc(CurDAG->getEntryNode()),
                                  R600::ZERO, MVT::i32);
    Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
                                       MVT::i32);
    return true;
  }

  // Default case, no offset
  Base = Addr;
  Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
  return true;
}