AMDGPUCodeGenPrepare.cpp 46.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass does misc. AMDGPU optimizations on IR before instruction
/// selection.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Transforms/Utils/IntegerDivision.h"
#include <cassert>
#include <iterator>

#define DEBUG_TYPE "amdgpu-codegenprepare"

using namespace llvm;

namespace {

static cl::opt<bool> WidenLoads(
  "amdgpu-codegenprepare-widen-constant-loads",
  cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
  cl::ReallyHidden,
  cl::init(false));

static cl::opt<bool> UseMul24Intrin(
  "amdgpu-codegenprepare-mul24",
  cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
  cl::ReallyHidden,
  cl::init(true));

// Legalize 64-bit division by using the generic IR expansion.
static cl::opt<bool> ExpandDiv64InIR(
  "amdgpu-codegenprepare-expand-div64",
  cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
  cl::ReallyHidden,
  cl::init(false));

// Leave all division operations as they are. This supersedes ExpandDiv64InIR
// and is used for testing the legalizer.
static cl::opt<bool> DisableIDivExpand(
  "amdgpu-codegenprepare-disable-idiv-expansion",
  cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
  cl::ReallyHidden,
  cl::init(false));

class AMDGPUCodeGenPrepare : public FunctionPass,
                             public InstVisitor<AMDGPUCodeGenPrepare, bool> {
  const GCNSubtarget *ST = nullptr;
  AssumptionCache *AC = nullptr;
  DominatorTree *DT = nullptr;
  LegacyDivergenceAnalysis *DA = nullptr;
  Module *Mod = nullptr;
  const DataLayout *DL = nullptr;
  bool HasUnsafeFPMath = false;
  bool HasFP32Denormals = false;

  /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
  /// binary operation \p V.
  ///
  /// \returns Binary operation \p V.
  /// \returns \p T's base element bit width.
  unsigned getBaseElementBitWidth(const Type *T) const;

  /// \returns Equivalent 32 bit integer type for given type \p T. For example,
  /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
  /// is returned.
  Type *getI32Ty(IRBuilder<> &B, const Type *T) const;

  /// \returns True if binary operation \p I is a signed binary operation, false
  /// otherwise.
  bool isSigned(const BinaryOperator &I) const;

  /// \returns True if the condition of 'select' operation \p I comes from a
  /// signed 'icmp' operation, false otherwise.
  bool isSigned(const SelectInst &I) const;

  /// \returns True if type \p T needs to be promoted to 32 bit integer type,
  /// false otherwise.
  bool needsPromotionToI32(const Type *T) const;

  /// Promotes uniform binary operation \p I to equivalent 32 bit binary
  /// operation.
  ///
  /// \details \p I's base element bit width must be greater than 1 and less
  /// than or equal 16. Promotion is done by sign or zero extending operands to
  /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
  /// truncating the result of 32 bit binary operation back to \p I's original
  /// type. Division operation is not promoted.
  ///
  /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
  /// false otherwise.
  bool promoteUniformOpToI32(BinaryOperator &I) const;

  /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
  ///
  /// \details \p I's base element bit width must be greater than 1 and less
  /// than or equal 16. Promotion is done by sign or zero extending operands to
  /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
  ///
  /// \returns True.
  bool promoteUniformOpToI32(ICmpInst &I) const;

  /// Promotes uniform 'select' operation \p I to 32 bit 'select'
  /// operation.
  ///
  /// \details \p I's base element bit width must be greater than 1 and less
  /// than or equal 16. Promotion is done by sign or zero extending operands to
  /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
  /// result of 32 bit 'select' operation back to \p I's original type.
  ///
  /// \returns True.
  bool promoteUniformOpToI32(SelectInst &I) const;

  /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
  /// intrinsic.
  ///
  /// \details \p I's base element bit width must be greater than 1 and less
  /// than or equal 16. Promotion is done by zero extending the operand to 32
  /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
  /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
  /// shift amount is 32 minus \p I's base element bit width), and truncating
  /// the result of the shift operation back to \p I's original type.
  ///
  /// \returns True.
  bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;


  unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
  unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
  bool isI24(Value *V, unsigned ScalarSize) const;
  bool isU24(Value *V, unsigned ScalarSize) const;

  /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
  /// SelectionDAG has an issue where an and asserting the bits are known
  bool replaceMulWithMul24(BinaryOperator &I) const;

  /// Perform same function as equivalently named function in DAGCombiner. Since
  /// we expand some divisions here, we need to perform this before obscuring.
  bool foldBinOpIntoSelect(BinaryOperator &I) const;

  bool divHasSpecialOptimization(BinaryOperator &I,
                                 Value *Num, Value *Den) const;
  int getDivNumBits(BinaryOperator &I,
                    Value *Num, Value *Den,
                    unsigned AtLeast, bool Signed) const;

  /// Expands 24 bit div or rem.
  Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
                        Value *Num, Value *Den,
                        bool IsDiv, bool IsSigned) const;

  Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
                            Value *Num, Value *Den, unsigned NumBits,
                            bool IsDiv, bool IsSigned) const;

  /// Expands 32 bit div or rem.
  Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
                        Value *Num, Value *Den) const;

  Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
                        Value *Num, Value *Den) const;
  void expandDivRem64(BinaryOperator &I) const;

  /// Widen a scalar load.
  ///
  /// \details \p Widen scalar load for uniform, small type loads from constant
  //  memory / to a full 32-bits and then truncate the input to allow a scalar
  //  load instead of a vector load.
  //
  /// \returns True.

  bool canWidenScalarExtLoad(LoadInst &I) const;

public:
  static char ID;

  AMDGPUCodeGenPrepare() : FunctionPass(ID) {}

  bool visitFDiv(BinaryOperator &I);

  bool visitInstruction(Instruction &I) { return false; }
  bool visitBinaryOperator(BinaryOperator &I);
  bool visitLoadInst(LoadInst &I);
  bool visitICmpInst(ICmpInst &I);
  bool visitSelectInst(SelectInst &I);

  bool visitIntrinsicInst(IntrinsicInst &I);
  bool visitBitreverseIntrinsicInst(IntrinsicInst &I);

  bool doInitialization(Module &M) override;
  bool runOnFunction(Function &F) override;

  StringRef getPassName() const override { return "AMDGPU IR optimizations"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<AssumptionCacheTracker>();
    AU.addRequired<LegacyDivergenceAnalysis>();

    // FIXME: Division expansion needs to preserve the dominator tree.
    if (!ExpandDiv64InIR)
      AU.setPreservesAll();
 }
};

} // end anonymous namespace

unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
  assert(needsPromotionToI32(T) && "T does not need promotion to i32");

  if (T->isIntegerTy())
    return T->getIntegerBitWidth();
  return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
}

Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
  assert(needsPromotionToI32(T) && "T does not need promotion to i32");

  if (T->isIntegerTy())
    return B.getInt32Ty();
  return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
}

bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
  return I.getOpcode() == Instruction::AShr ||
      I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
}

bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
  return isa<ICmpInst>(I.getOperand(0)) ?
      cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
}

bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
  const IntegerType *IntTy = dyn_cast<IntegerType>(T);
  if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
    return true;

  if (const VectorType *VT = dyn_cast<VectorType>(T)) {
    // TODO: The set of packed operations is more limited, so may want to
    // promote some anyway.
    if (ST->hasVOP3PInsts())
      return false;

    return needsPromotionToI32(VT->getElementType());
  }

  return false;
}

// Return true if the op promoted to i32 should have nsw set.
static bool promotedOpIsNSW(const Instruction &I) {
  switch (I.getOpcode()) {
  case Instruction::Shl:
  case Instruction::Add:
  case Instruction::Sub:
    return true;
  case Instruction::Mul:
    return I.hasNoUnsignedWrap();
  default:
    return false;
  }
}

// Return true if the op promoted to i32 should have nuw set.
static bool promotedOpIsNUW(const Instruction &I) {
  switch (I.getOpcode()) {
  case Instruction::Shl:
  case Instruction::Add:
  case Instruction::Mul:
    return true;
  case Instruction::Sub:
    return I.hasNoUnsignedWrap();
  default:
    return false;
  }
}

bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
  Type *Ty = I.getType();
  const DataLayout &DL = Mod->getDataLayout();
  int TySize = DL.getTypeSizeInBits(Ty);
  Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);

  return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
}

bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
  assert(needsPromotionToI32(I.getType()) &&
         "I does not need promotion to i32");

  if (I.getOpcode() == Instruction::SDiv ||
      I.getOpcode() == Instruction::UDiv ||
      I.getOpcode() == Instruction::SRem ||
      I.getOpcode() == Instruction::URem)
    return false;

  IRBuilder<> Builder(&I);
  Builder.SetCurrentDebugLocation(I.getDebugLoc());

  Type *I32Ty = getI32Ty(Builder, I.getType());
  Value *ExtOp0 = nullptr;
  Value *ExtOp1 = nullptr;
  Value *ExtRes = nullptr;
  Value *TruncRes = nullptr;

  if (isSigned(I)) {
    ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
    ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
  } else {
    ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
    ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
  }

  ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
  if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
    if (promotedOpIsNSW(cast<Instruction>(I)))
      Inst->setHasNoSignedWrap();

    if (promotedOpIsNUW(cast<Instruction>(I)))
      Inst->setHasNoUnsignedWrap();

    if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
      Inst->setIsExact(ExactOp->isExact());
  }

  TruncRes = Builder.CreateTrunc(ExtRes, I.getType());

  I.replaceAllUsesWith(TruncRes);
  I.eraseFromParent();

  return true;
}

bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
  assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
         "I does not need promotion to i32");

  IRBuilder<> Builder(&I);
  Builder.SetCurrentDebugLocation(I.getDebugLoc());

  Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
  Value *ExtOp0 = nullptr;
  Value *ExtOp1 = nullptr;
  Value *NewICmp  = nullptr;

  if (I.isSigned()) {
    ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
    ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
  } else {
    ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
    ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
  }
  NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);

  I.replaceAllUsesWith(NewICmp);
  I.eraseFromParent();

  return true;
}

bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
  assert(needsPromotionToI32(I.getType()) &&
         "I does not need promotion to i32");

  IRBuilder<> Builder(&I);
  Builder.SetCurrentDebugLocation(I.getDebugLoc());

  Type *I32Ty = getI32Ty(Builder, I.getType());
  Value *ExtOp1 = nullptr;
  Value *ExtOp2 = nullptr;
  Value *ExtRes = nullptr;
  Value *TruncRes = nullptr;

  if (isSigned(I)) {
    ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
    ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
  } else {
    ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
    ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
  }
  ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
  TruncRes = Builder.CreateTrunc(ExtRes, I.getType());

  I.replaceAllUsesWith(TruncRes);
  I.eraseFromParent();

  return true;
}

bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
    IntrinsicInst &I) const {
  assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
         "I must be bitreverse intrinsic");
  assert(needsPromotionToI32(I.getType()) &&
         "I does not need promotion to i32");

  IRBuilder<> Builder(&I);
  Builder.SetCurrentDebugLocation(I.getDebugLoc());

  Type *I32Ty = getI32Ty(Builder, I.getType());
  Function *I32 =
      Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
  Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
  Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
  Value *LShrOp =
      Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
  Value *TruncRes =
      Builder.CreateTrunc(LShrOp, I.getType());

  I.replaceAllUsesWith(TruncRes);
  I.eraseFromParent();

  return true;
}

unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
                                               unsigned ScalarSize) const {
  KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
  return ScalarSize - Known.countMinLeadingZeros();
}

unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
                                             unsigned ScalarSize) const {
  // In order for this to be a signed 24-bit value, bit 23, must
  // be a sign bit.
  return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
}

bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
  return ScalarSize >= 24 && // Types less than 24-bit should be treated
                                     // as unsigned 24-bit values.
    numBitsSigned(V, ScalarSize) < 24;
}

bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
  return numBitsUnsigned(V, ScalarSize) <= 24;
}

static void extractValues(IRBuilder<> &Builder,
                          SmallVectorImpl<Value *> &Values, Value *V) {
  auto *VT = dyn_cast<FixedVectorType>(V->getType());
  if (!VT) {
    Values.push_back(V);
    return;
  }

  for (int I = 0, E = VT->getNumElements(); I != E; ++I)
    Values.push_back(Builder.CreateExtractElement(V, I));
}

static Value *insertValues(IRBuilder<> &Builder,
                           Type *Ty,
                           SmallVectorImpl<Value *> &Values) {
  if (Values.size() == 1)
    return Values[0];

  Value *NewVal = UndefValue::get(Ty);
  for (int I = 0, E = Values.size(); I != E; ++I)
    NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);

  return NewVal;
}

bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
  if (I.getOpcode() != Instruction::Mul)
    return false;

  Type *Ty = I.getType();
  unsigned Size = Ty->getScalarSizeInBits();
  if (Size <= 16 && ST->has16BitInsts())
    return false;

  // Prefer scalar if this could be s_mul_i32
  if (DA->isUniform(&I))
    return false;

  Value *LHS = I.getOperand(0);
  Value *RHS = I.getOperand(1);
  IRBuilder<> Builder(&I);
  Builder.SetCurrentDebugLocation(I.getDebugLoc());

  Intrinsic::ID IntrID = Intrinsic::not_intrinsic;

  // TODO: Should this try to match mulhi24?
  if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
    IntrID = Intrinsic::amdgcn_mul_u24;
  } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
    IntrID = Intrinsic::amdgcn_mul_i24;
  } else
    return false;

  SmallVector<Value *, 4> LHSVals;
  SmallVector<Value *, 4> RHSVals;
  SmallVector<Value *, 4> ResultVals;
  extractValues(Builder, LHSVals, LHS);
  extractValues(Builder, RHSVals, RHS);


  IntegerType *I32Ty = Builder.getInt32Ty();
  FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
  for (int I = 0, E = LHSVals.size(); I != E; ++I) {
    Value *LHS, *RHS;
    if (IntrID == Intrinsic::amdgcn_mul_u24) {
      LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
      RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
    } else {
      LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
      RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
    }

    Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});

    if (IntrID == Intrinsic::amdgcn_mul_u24) {
      ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
                                                     LHSVals[I]->getType()));
    } else {
      ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
                                                     LHSVals[I]->getType()));
    }
  }

  Value *NewVal = insertValues(Builder, Ty, ResultVals);
  NewVal->takeName(&I);
  I.replaceAllUsesWith(NewVal);
  I.eraseFromParent();

  return true;
}

// Find a select instruction, which may have been casted. This is mostly to deal
// with cases where i16 selects were promoted here to i32.
static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
  Cast = nullptr;
  if (SelectInst *Sel = dyn_cast<SelectInst>(V))
    return Sel;

  if ((Cast = dyn_cast<CastInst>(V))) {
    if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
      return Sel;
  }

  return nullptr;
}

bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
  // Don't do this unless the old select is going away. We want to eliminate the
  // binary operator, not replace a binop with a select.
  int SelOpNo = 0;

  CastInst *CastOp;

  // TODO: Should probably try to handle some cases with multiple
  // users. Duplicating the select may be profitable for division.
  SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
  if (!Sel || !Sel->hasOneUse()) {
    SelOpNo = 1;
    Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
  }

  if (!Sel || !Sel->hasOneUse())
    return false;

  Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
  Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
  Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
  if (!CBO || !CT || !CF)
    return false;

  if (CastOp) {
    if (!CastOp->hasOneUse())
      return false;
    CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
    CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
  }

  // TODO: Handle special 0/-1 cases DAG combine does, although we only really
  // need to handle divisions here.
  Constant *FoldedT = SelOpNo ?
    ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
    ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
  if (isa<ConstantExpr>(FoldedT))
    return false;

  Constant *FoldedF = SelOpNo ?
    ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
    ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
  if (isa<ConstantExpr>(FoldedF))
    return false;

  IRBuilder<> Builder(&BO);
  Builder.SetCurrentDebugLocation(BO.getDebugLoc());
  if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
    Builder.setFastMathFlags(FPOp->getFastMathFlags());

  Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
                                          FoldedT, FoldedF);
  NewSelect->takeName(&BO);
  BO.replaceAllUsesWith(NewSelect);
  BO.eraseFromParent();
  if (CastOp)
    CastOp->eraseFromParent();
  Sel->eraseFromParent();
  return true;
}

// Optimize fdiv with rcp:
//
// 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
//               allowed with unsafe-fp-math or afn.
//
// a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
                              bool RcpIsAccurate, IRBuilder<> &Builder,
                              Module *Mod) {

  if (!AllowInaccurateRcp && !RcpIsAccurate)
    return nullptr;

  Type *Ty = Den->getType();
  if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
    if (AllowInaccurateRcp || RcpIsAccurate) {
      if (CLHS->isExactlyValue(1.0)) {
        Function *Decl = Intrinsic::getDeclaration(
          Mod, Intrinsic::amdgcn_rcp, Ty);

        // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
        // the CI documentation has a worst case error of 1 ulp.
        // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
        // use it as long as we aren't trying to use denormals.
        //
        // v_rcp_f16 and v_rsq_f16 DO support denormals.

        // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
        //       insert rsq intrinsic here.

        // 1.0 / x -> rcp(x)
        return Builder.CreateCall(Decl, { Den });
      }

       // Same as for 1.0, but expand the sign out of the constant.
      if (CLHS->isExactlyValue(-1.0)) {
        Function *Decl = Intrinsic::getDeclaration(
          Mod, Intrinsic::amdgcn_rcp, Ty);

         // -1.0 / x -> rcp (fneg x)
         Value *FNeg = Builder.CreateFNeg(Den);
         return Builder.CreateCall(Decl, { FNeg });
       }
    }
  }

  if (AllowInaccurateRcp) {
    Function *Decl = Intrinsic::getDeclaration(
      Mod, Intrinsic::amdgcn_rcp, Ty);

    // Turn into multiply by the reciprocal.
    // x / y -> x * (1.0 / y)
    Value *Recip = Builder.CreateCall(Decl, { Den });
    return Builder.CreateFMul(Num, Recip);
  }
  return nullptr;
}

// optimize with fdiv.fast:
//
// a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
// 1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
//
// NOTE: optimizeWithRcp should be tried first because rcp is the preference.
static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
                                   bool HasDenormals, IRBuilder<> &Builder,
                                   Module *Mod) {
  // fdiv.fast can achieve 2.5 ULP accuracy.
  if (ReqdAccuracy < 2.5f)
    return nullptr;

  // Only have fdiv.fast for f32.
  Type *Ty = Den->getType();
  if (!Ty->isFloatTy())
    return nullptr;

  bool NumIsOne = false;
  if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
    if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
      NumIsOne = true;
  }

  // fdiv does not support denormals. But 1.0/x is always fine to use it.
  if (HasDenormals && !NumIsOne)
    return nullptr;

  Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
  return Builder.CreateCall(Decl, { Num, Den });
}

// Optimizations is performed based on fpmath, fast math flags as well as
// denormals to optimize fdiv with either rcp or fdiv.fast.
//
// With rcp:
//   1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
//                 allowed with unsafe-fp-math or afn.
//
//   a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
//
// With fdiv.fast:
//   a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
//
//   1/x -> fdiv.fast(1,x)  when !fpmath >= 2.5ulp.
//
// NOTE: rcp is the preference in cases that both are legal.
bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {

  Type *Ty = FDiv.getType()->getScalarType();

  // No intrinsic for fdiv16 if target does not support f16.
  if (Ty->isHalfTy() && !ST->has16BitInsts())
    return false;

  const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
  const float ReqdAccuracy =  FPOp->getFPAccuracy();

  // Inaccurate rcp is allowed with unsafe-fp-math or afn.
  FastMathFlags FMF = FPOp->getFastMathFlags();
  const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();

  // rcp_f16 is accurate for !fpmath >= 1.0ulp.
  // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
  // rcp_f64 is never accurate.
  const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
            (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);

  IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
  Builder.setFastMathFlags(FMF);
  Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());

  Value *Num = FDiv.getOperand(0);
  Value *Den = FDiv.getOperand(1);

  Value *NewFDiv = nullptr;
  if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
    NewFDiv = UndefValue::get(VT);

    // FIXME: Doesn't do the right thing for cases where the vector is partially
    // constant. This works when the scalarizer pass is run first.
    for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
      Value *NumEltI = Builder.CreateExtractElement(Num, I);
      Value *DenEltI = Builder.CreateExtractElement(Den, I);
      // Try rcp first.
      Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
                                      RcpIsAccurate, Builder, Mod);
      if (!NewElt) // Try fdiv.fast.
        NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
                                      HasFP32Denormals, Builder, Mod);
      if (!NewElt) // Keep the original.
        NewElt = Builder.CreateFDiv(NumEltI, DenEltI);

      NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
    }
  } else { // Scalar FDiv.
    // Try rcp first.
    NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
                              Builder, Mod);
    if (!NewFDiv) { // Try fdiv.fast.
      NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
                                     Builder, Mod);
    }
  }

  if (NewFDiv) {
    FDiv.replaceAllUsesWith(NewFDiv);
    NewFDiv->takeName(&FDiv);
    FDiv.eraseFromParent();
  }

  return !!NewFDiv;
}

static bool hasUnsafeFPMath(const Function &F) {
  Attribute Attr = F.getFnAttribute("unsafe-fp-math");
  return Attr.getValueAsString() == "true";
}

static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
                                          Value *LHS, Value *RHS) {
  Type *I32Ty = Builder.getInt32Ty();
  Type *I64Ty = Builder.getInt64Ty();

  Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
  Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
  Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
  Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
  Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
  Hi = Builder.CreateTrunc(Hi, I32Ty);
  return std::make_pair(Lo, Hi);
}

static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
  return getMul64(Builder, LHS, RHS).second;
}

/// Figure out how many bits are really needed for this ddivision. \p AtLeast is
/// an optimization hint to bypass the second ComputeNumSignBits call if we the
/// first one is insufficient. Returns -1 on failure.
int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
                                        Value *Num, Value *Den,
                                        unsigned AtLeast, bool IsSigned) const {
  const DataLayout &DL = Mod->getDataLayout();
  unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
  if (LHSSignBits < AtLeast)
    return -1;

  unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
  if (RHSSignBits < AtLeast)
    return -1;

  unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
  unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
  if (IsSigned)
    ++DivBits;
  return DivBits;
}

// The fractional part of a float is enough to accurately represent up to
// a 24-bit signed integer.
Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
                                            BinaryOperator &I,
                                            Value *Num, Value *Den,
                                            bool IsDiv, bool IsSigned) const {
  int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
  if (DivBits == -1)
    return nullptr;
  return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
}

Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
                                                BinaryOperator &I,
                                                Value *Num, Value *Den,
                                                unsigned DivBits,
                                                bool IsDiv, bool IsSigned) const {
  Type *I32Ty = Builder.getInt32Ty();
  Num = Builder.CreateTrunc(Num, I32Ty);
  Den = Builder.CreateTrunc(Den, I32Ty);

  Type *F32Ty = Builder.getFloatTy();
  ConstantInt *One = Builder.getInt32(1);
  Value *JQ = One;

  if (IsSigned) {
    // char|short jq = ia ^ ib;
    JQ = Builder.CreateXor(Num, Den);

    // jq = jq >> (bitsize - 2)
    JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));

    // jq = jq | 0x1
    JQ = Builder.CreateOr(JQ, One);
  }

  // int ia = (int)LHS;
  Value *IA = Num;

  // int ib, (int)RHS;
  Value *IB = Den;

  // float fa = (float)ia;
  Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
                       : Builder.CreateUIToFP(IA, F32Ty);

  // float fb = (float)ib;
  Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
                       : Builder.CreateUIToFP(IB,F32Ty);

  Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
                                                Builder.getFloatTy());
  Value *RCP = Builder.CreateCall(RcpDecl, { FB });
  Value *FQM = Builder.CreateFMul(FA, RCP);

  // fq = trunc(fqm);
  CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
  FQ->copyFastMathFlags(Builder.getFastMathFlags());

  // float fqneg = -fq;
  Value *FQNeg = Builder.CreateFNeg(FQ);

  // float fr = mad(fqneg, fb, fa);
  auto FMAD = !ST->hasMadMacF32Insts()
                  ? Intrinsic::fma
                  : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
  Value *FR = Builder.CreateIntrinsic(FMAD,
                                      {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);

  // int iq = (int)fq;
  Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
                       : Builder.CreateFPToUI(FQ, I32Ty);

  // fr = fabs(fr);
  FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);

  // fb = fabs(fb);
  FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);

  // int cv = fr >= fb;
  Value *CV = Builder.CreateFCmpOGE(FR, FB);

  // jq = (cv ? jq : 0);
  JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));

  // dst = iq + jq;
  Value *Div = Builder.CreateAdd(IQ, JQ);

  Value *Res = Div;
  if (!IsDiv) {
    // Rem needs compensation, it's easier to recompute it
    Value *Rem = Builder.CreateMul(Div, Den);
    Res = Builder.CreateSub(Num, Rem);
  }

  if (DivBits != 0 && DivBits < 32) {
    // Extend in register from the number of bits this divide really is.
    if (IsSigned) {
      int InRegBits = 32 - DivBits;

      Res = Builder.CreateShl(Res, InRegBits);
      Res = Builder.CreateAShr(Res, InRegBits);
    } else {
      ConstantInt *TruncMask
        = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
      Res = Builder.CreateAnd(Res, TruncMask);
    }
  }

  return Res;
}

// Try to recognize special cases the DAG will emit special, better expansions
// than the general expansion we do here.

// TODO: It would be better to just directly handle those optimizations here.
bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
  BinaryOperator &I, Value *Num, Value *Den) const {
  if (Constant *C = dyn_cast<Constant>(Den)) {
    // Arbitrary constants get a better expansion as long as a wider mulhi is
    // legal.
    if (C->getType()->getScalarSizeInBits() <= 32)
      return true;

    // TODO: Sdiv check for not exact for some reason.

    // If there's no wider mulhi, there's only a better expansion for powers of
    // two.
    // TODO: Should really know for each vector element.
    if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
      return true;

    return false;
  }

  if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
    // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
    if (BinOpDen->getOpcode() == Instruction::Shl &&
        isa<Constant>(BinOpDen->getOperand(0)) &&
        isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
                               0, AC, &I, DT)) {
      return true;
    }
  }

  return false;
}

static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
  // Check whether the sign can be determined statically.
  KnownBits Known = computeKnownBits(V, *DL);
  if (Known.isNegative())
    return Constant::getAllOnesValue(V->getType());
  if (Known.isNonNegative())
    return Constant::getNullValue(V->getType());
  return Builder.CreateAShr(V, Builder.getInt32(31));
}

Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
                                            BinaryOperator &I, Value *X,
                                            Value *Y) const {
  Instruction::BinaryOps Opc = I.getOpcode();
  assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
         Opc == Instruction::SRem || Opc == Instruction::SDiv);

  FastMathFlags FMF;
  FMF.setFast();
  Builder.setFastMathFlags(FMF);

  if (divHasSpecialOptimization(I, X, Y))
    return nullptr;  // Keep it for later optimization.

  bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
  bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;

  Type *Ty = X->getType();
  Type *I32Ty = Builder.getInt32Ty();
  Type *F32Ty = Builder.getFloatTy();

  if (Ty->getScalarSizeInBits() < 32) {
    if (IsSigned) {
      X = Builder.CreateSExt(X, I32Ty);
      Y = Builder.CreateSExt(Y, I32Ty);
    } else {
      X = Builder.CreateZExt(X, I32Ty);
      Y = Builder.CreateZExt(Y, I32Ty);
    }
  }

  if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
    return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
                      Builder.CreateZExtOrTrunc(Res, Ty);
  }

  ConstantInt *Zero = Builder.getInt32(0);
  ConstantInt *One = Builder.getInt32(1);

  Value *Sign = nullptr;
  if (IsSigned) {
    Value *SignX = getSign32(X, Builder, DL);
    Value *SignY = getSign32(Y, Builder, DL);
    // Remainder sign is the same as LHS
    Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;

    X = Builder.CreateAdd(X, SignX);
    Y = Builder.CreateAdd(Y, SignY);

    X = Builder.CreateXor(X, SignX);
    Y = Builder.CreateXor(Y, SignY);
  }

  // The algorithm here is based on ideas from "Software Integer Division", Tom
  // Rodeheffer, August 2008.
  //
  // unsigned udiv(unsigned x, unsigned y) {
  //   // Initial estimate of inv(y). The constant is less than 2^32 to ensure
  //   // that this is a lower bound on inv(y), even if some of the calculations
  //   // round up.
  //   unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
  //
  //   // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
  //   // Empirically this is guaranteed to give a "two-y" lower bound on
  //   // inv(y).
  //   z += umulh(z, -y * z);
  //
  //   // Quotient/remainder estimate.
  //   unsigned q = umulh(x, z);
  //   unsigned r = x - q * y;
  //
  //   // Two rounds of quotient/remainder refinement.
  //   if (r >= y) {
  //     ++q;
  //     r -= y;
  //   }
  //   if (r >= y) {
  //     ++q;
  //     r -= y;
  //   }
  //
  //   return q;
  // }

  // Initial estimate of inv(y).
  Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
  Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
  Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
  Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
  Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
  Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);

  // One round of UNR.
  Value *NegY = Builder.CreateSub(Zero, Y);
  Value *NegYZ = Builder.CreateMul(NegY, Z);
  Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));

  // Quotient/remainder estimate.
  Value *Q = getMulHu(Builder, X, Z);
  Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));

  // First quotient/remainder refinement.
  Value *Cond = Builder.CreateICmpUGE(R, Y);
  if (IsDiv)
    Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
  R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);

  // Second quotient/remainder refinement.
  Cond = Builder.CreateICmpUGE(R, Y);
  Value *Res;
  if (IsDiv)
    Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
  else
    Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);

  if (IsSigned) {
    Res = Builder.CreateXor(Res, Sign);
    Res = Builder.CreateSub(Res, Sign);
  }

  Res = Builder.CreateTrunc(Res, Ty);

  return Res;
}

Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
                                            BinaryOperator &I,
                                            Value *Num, Value *Den) const {
  if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
    return nullptr;  // Keep it for later optimization.

  Instruction::BinaryOps Opc = I.getOpcode();

  bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
  bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;

  int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
  if (NumDivBits == -1)
    return nullptr;

  Value *Narrowed = nullptr;
  if (NumDivBits <= 24) {
    Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
                                  IsDiv, IsSigned);
  } else if (NumDivBits <= 32) {
    Narrowed = expandDivRem32(Builder, I, Num, Den);
  }

  if (Narrowed) {
    return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
                      Builder.CreateZExt(Narrowed, Num->getType());
  }

  return nullptr;
}

void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
  Instruction::BinaryOps Opc = I.getOpcode();
  // Do the general expansion.
  if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
    expandDivisionUpTo64Bits(&I);
    return;
  }

  if (Opc == Instruction::URem || Opc == Instruction::SRem) {
    expandRemainderUpTo64Bits(&I);
    return;
  }

  llvm_unreachable("not a division");
}

bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
  if (foldBinOpIntoSelect(I))
    return true;

  if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
      DA->isUniform(&I) && promoteUniformOpToI32(I))
    return true;

  if (UseMul24Intrin && replaceMulWithMul24(I))
    return true;

  bool Changed = false;
  Instruction::BinaryOps Opc = I.getOpcode();
  Type *Ty = I.getType();
  Value *NewDiv = nullptr;
  unsigned ScalarSize = Ty->getScalarSizeInBits();

  SmallVector<BinaryOperator *, 8> Div64ToExpand;

  if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
       Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
      ScalarSize <= 64 &&
      !DisableIDivExpand) {
    Value *Num = I.getOperand(0);
    Value *Den = I.getOperand(1);
    IRBuilder<> Builder(&I);
    Builder.SetCurrentDebugLocation(I.getDebugLoc());

    if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
      NewDiv = UndefValue::get(VT);

      for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
        Value *NumEltN = Builder.CreateExtractElement(Num, N);
        Value *DenEltN = Builder.CreateExtractElement(Den, N);

        Value *NewElt;
        if (ScalarSize <= 32) {
          NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
          if (!NewElt)
            NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
        } else {
          // See if this 64-bit division can be shrunk to 32/24-bits before
          // producing the general expansion.
          NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
          if (!NewElt) {
            // The general 64-bit expansion introduces control flow and doesn't
            // return the new value. Just insert a scalar copy and defer
            // expanding it.
            NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
            Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
          }
        }

        NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
      }
    } else {
      if (ScalarSize <= 32)
        NewDiv = expandDivRem32(Builder, I, Num, Den);
      else {
        NewDiv = shrinkDivRem64(Builder, I, Num, Den);
        if (!NewDiv)
          Div64ToExpand.push_back(&I);
      }
    }

    if (NewDiv) {
      I.replaceAllUsesWith(NewDiv);
      I.eraseFromParent();
      Changed = true;
    }
  }

  if (ExpandDiv64InIR) {
    // TODO: We get much worse code in specially handled constant cases.
    for (BinaryOperator *Div : Div64ToExpand) {
      expandDivRem64(*Div);
      Changed = true;
    }
  }

  return Changed;
}

bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
  if (!WidenLoads)
    return false;

  if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
       I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
      canWidenScalarExtLoad(I)) {
    IRBuilder<> Builder(&I);
    Builder.SetCurrentDebugLocation(I.getDebugLoc());

    Type *I32Ty = Builder.getInt32Ty();
    Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
    Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
    LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
    WidenLoad->copyMetadata(I);

    // If we have range metadata, we need to convert the type, and not make
    // assumptions about the high bits.
    if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
      ConstantInt *Lower =
        mdconst::extract<ConstantInt>(Range->getOperand(0));

      if (Lower->getValue().isNullValue()) {
        WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
      } else {
        Metadata *LowAndHigh[] = {
          ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
          // Don't make assumptions about the high bits.
          ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
        };

        WidenLoad->setMetadata(LLVMContext::MD_range,
                               MDNode::get(Mod->getContext(), LowAndHigh));
      }
    }

    int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
    Type *IntNTy = Builder.getIntNTy(TySize);
    Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
    Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
    I.replaceAllUsesWith(ValOrig);
    I.eraseFromParent();
    return true;
  }

  return false;
}

bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
  bool Changed = false;

  if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
      DA->isUniform(&I))
    Changed |= promoteUniformOpToI32(I);

  return Changed;
}

bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
  bool Changed = false;

  if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
      DA->isUniform(&I))
    Changed |= promoteUniformOpToI32(I);

  return Changed;
}

bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
  switch (I.getIntrinsicID()) {
  case Intrinsic::bitreverse:
    return visitBitreverseIntrinsicInst(I);
  default:
    return false;
  }
}

bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
  bool Changed = false;

  if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
      DA->isUniform(&I))
    Changed |= promoteUniformBitreverseToI32(I);

  return Changed;
}

bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
  Mod = &M;
  DL = &Mod->getDataLayout();
  return false;
}

bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
  if (skipFunction(F))
    return false;

  auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
  if (!TPC)
    return false;

  const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
  ST = &TM.getSubtarget<GCNSubtarget>(F);
  AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  DA = &getAnalysis<LegacyDivergenceAnalysis>();

  auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
  DT = DTWP ? &DTWP->getDomTree() : nullptr;

  HasUnsafeFPMath = hasUnsafeFPMath(F);

  AMDGPU::SIModeRegisterDefaults Mode(F);
  HasFP32Denormals = Mode.allFP32Denormals();

  bool MadeChange = false;

  Function::iterator NextBB;
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
    BasicBlock *BB = &*FI;
    NextBB = std::next(FI);

    BasicBlock::iterator Next;
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
      Next = std::next(I);

      MadeChange |= visit(*I);

      if (Next != E) { // Control flow changed
        BasicBlock *NextInstBB = Next->getParent();
        if (NextInstBB != BB) {
          BB = NextInstBB;
          E = BB->end();
          FE = F.end();
        }
      }
    }
  }

  return MadeChange;
}

INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
                      "AMDGPU IR optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
                    false, false)

char AMDGPUCodeGenPrepare::ID = 0;

FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
  return new AMDGPUCodeGenPrepare();
}