AMDGPUCallLowering.cpp 28.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
//===-- llvm/lib/Target/AMDGPU/AMDGPUCallLowering.cpp - Call lowering -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements the lowering of LLVM calls to machine code calls for
/// GlobalISel.
///
//===----------------------------------------------------------------------===//

#include "AMDGPUCallLowering.h"
#include "AMDGPU.h"
#include "AMDGPUISelLowering.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "SIISelLowering.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/Support/LowLevelTypeImpl.h"

using namespace llvm;

namespace {

struct OutgoingValueHandler : public CallLowering::ValueHandler {
  OutgoingValueHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
                       MachineInstrBuilder MIB, CCAssignFn *AssignFn)
      : ValueHandler(B, MRI, AssignFn), MIB(MIB) {}

  MachineInstrBuilder MIB;

  bool isIncomingArgumentHandler() const override { return false; }

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    llvm_unreachable("not implemented");
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t Size,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    llvm_unreachable("not implemented");
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    Register ExtReg;
    if (VA.getLocVT().getSizeInBits() < 32) {
      // 16-bit types are reported as legal for 32-bit registers. We need to
      // extend and do a 32-bit copy to avoid the verifier complaining about it.
      ExtReg = MIRBuilder.buildAnyExt(LLT::scalar(32), ValVReg).getReg(0);
    } else
      ExtReg = extendRegister(ValVReg, VA);

    // If this is a scalar return, insert a readfirstlane just in case the value
    // ends up in a VGPR.
    // FIXME: Assert this is a shader return.
    const SIRegisterInfo *TRI
      = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
    if (TRI->isSGPRReg(MRI, PhysReg)) {
      auto ToSGPR = MIRBuilder.buildIntrinsic(Intrinsic::amdgcn_readfirstlane,
                                              {MRI.getType(ExtReg)}, false)
        .addReg(ExtReg);
      ExtReg = ToSGPR.getReg(0);
    }

    MIRBuilder.buildCopy(PhysReg, ExtReg);
    MIB.addUse(PhysReg, RegState::Implicit);
  }

  bool assignArg(unsigned ValNo, MVT ValVT, MVT LocVT,
                 CCValAssign::LocInfo LocInfo,
                 const CallLowering::ArgInfo &Info,
                 ISD::ArgFlagsTy Flags,
                 CCState &State) override {
    return AssignFn(ValNo, ValVT, LocVT, LocInfo, Flags, State);
  }
};

struct IncomingArgHandler : public CallLowering::ValueHandler {
  uint64_t StackUsed = 0;

  IncomingArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
                     CCAssignFn *AssignFn)
    : ValueHandler(B, MRI, AssignFn) {}

  Register getStackAddress(uint64_t Size, int64_t Offset,
                           MachinePointerInfo &MPO) override {
    auto &MFI = MIRBuilder.getMF().getFrameInfo();
    int FI = MFI.CreateFixedObject(Size, Offset, true);
    MPO = MachinePointerInfo::getFixedStack(MIRBuilder.getMF(), FI);
    auto AddrReg = MIRBuilder.buildFrameIndex(
        LLT::pointer(AMDGPUAS::PRIVATE_ADDRESS, 32), FI);
    StackUsed = std::max(StackUsed, Size + Offset);
    return AddrReg.getReg(0);
  }

  void assignValueToReg(Register ValVReg, Register PhysReg,
                        CCValAssign &VA) override {
    markPhysRegUsed(PhysReg);

    if (VA.getLocVT().getSizeInBits() < 32) {
      // 16-bit types are reported as legal for 32-bit registers. We need to do
      // a 32-bit copy, and truncate to avoid the verifier complaining about it.
      auto Copy = MIRBuilder.buildCopy(LLT::scalar(32), PhysReg);
      MIRBuilder.buildTrunc(ValVReg, Copy);
      return;
    }

    switch (VA.getLocInfo()) {
    case CCValAssign::LocInfo::SExt:
    case CCValAssign::LocInfo::ZExt:
    case CCValAssign::LocInfo::AExt: {
      auto Copy = MIRBuilder.buildCopy(LLT{VA.getLocVT()}, PhysReg);
      MIRBuilder.buildTrunc(ValVReg, Copy);
      break;
    }
    default:
      MIRBuilder.buildCopy(ValVReg, PhysReg);
      break;
    }
  }

  void assignValueToAddress(Register ValVReg, Register Addr, uint64_t MemSize,
                            MachinePointerInfo &MPO, CCValAssign &VA) override {
    MachineFunction &MF = MIRBuilder.getMF();

    // The reported memory location may be wider than the value.
    const LLT RegTy = MRI.getType(ValVReg);
    MemSize = std::min(static_cast<uint64_t>(RegTy.getSizeInBytes()), MemSize);

    // FIXME: Get alignment
    auto MMO = MF.getMachineMemOperand(
        MPO, MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, MemSize,
        inferAlignFromPtrInfo(MF, MPO));
    MIRBuilder.buildLoad(ValVReg, Addr, *MMO);
  }

  /// How the physical register gets marked varies between formal
  /// parameters (it's a basic-block live-in), and a call instruction
  /// (it's an implicit-def of the BL).
  virtual void markPhysRegUsed(unsigned PhysReg) = 0;

  // FIXME: What is the point of this being a callback?
  bool isIncomingArgumentHandler() const override { return true; }
};

struct FormalArgHandler : public IncomingArgHandler {
  FormalArgHandler(MachineIRBuilder &B, MachineRegisterInfo &MRI,
                   CCAssignFn *AssignFn)
    : IncomingArgHandler(B, MRI, AssignFn) {}

  void markPhysRegUsed(unsigned PhysReg) override {
    MIRBuilder.getMBB().addLiveIn(PhysReg);
  }
};

}

AMDGPUCallLowering::AMDGPUCallLowering(const AMDGPUTargetLowering &TLI)
  : CallLowering(&TLI) {
}

// FIXME: Compatability shim
static ISD::NodeType extOpcodeToISDExtOpcode(unsigned MIOpc) {
  switch (MIOpc) {
  case TargetOpcode::G_SEXT:
    return ISD::SIGN_EXTEND;
  case TargetOpcode::G_ZEXT:
    return ISD::ZERO_EXTEND;
  case TargetOpcode::G_ANYEXT:
    return ISD::ANY_EXTEND;
  default:
    llvm_unreachable("not an extend opcode");
  }
}

void AMDGPUCallLowering::splitToValueTypes(
  MachineIRBuilder &B,
  const ArgInfo &OrigArg, unsigned OrigArgIdx,
  SmallVectorImpl<ArgInfo> &SplitArgs,
  const DataLayout &DL, CallingConv::ID CallConv,
  SplitArgTy PerformArgSplit) const {
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  LLVMContext &Ctx = OrigArg.Ty->getContext();

  if (OrigArg.Ty->isVoidTy())
    return;

  SmallVector<EVT, 4> SplitVTs;
  ComputeValueVTs(TLI, DL, OrigArg.Ty, SplitVTs);

  assert(OrigArg.Regs.size() == SplitVTs.size());

  int SplitIdx = 0;
  for (EVT VT : SplitVTs) {
    Register Reg = OrigArg.Regs[SplitIdx];
    Type *Ty = VT.getTypeForEVT(Ctx);
    LLT LLTy = getLLTForType(*Ty, DL);

    if (OrigArgIdx == AttributeList::ReturnIndex && VT.isScalarInteger()) {
      unsigned ExtendOp = TargetOpcode::G_ANYEXT;
      if (OrigArg.Flags[0].isSExt()) {
        assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
        ExtendOp = TargetOpcode::G_SEXT;
      } else if (OrigArg.Flags[0].isZExt()) {
        assert(OrigArg.Regs.size() == 1 && "expect only simple return values");
        ExtendOp = TargetOpcode::G_ZEXT;
      }

      EVT ExtVT = TLI.getTypeForExtReturn(Ctx, VT,
                                          extOpcodeToISDExtOpcode(ExtendOp));
      if (ExtVT != VT) {
        VT = ExtVT;
        Ty = ExtVT.getTypeForEVT(Ctx);
        LLTy = getLLTForType(*Ty, DL);
        Reg = B.buildInstr(ExtendOp, {LLTy}, {Reg}).getReg(0);
      }
    }

    unsigned NumParts = TLI.getNumRegistersForCallingConv(Ctx, CallConv, VT);
    MVT RegVT = TLI.getRegisterTypeForCallingConv(Ctx, CallConv, VT);

    if (NumParts == 1) {
      // No splitting to do, but we want to replace the original type (e.g. [1 x
      // double] -> double).
      SplitArgs.emplace_back(Reg, Ty, OrigArg.Flags, OrigArg.IsFixed);

      ++SplitIdx;
      continue;
    }

    SmallVector<Register, 8> SplitRegs;
    Type *PartTy = EVT(RegVT).getTypeForEVT(Ctx);
    LLT PartLLT = getLLTForType(*PartTy, DL);
    MachineRegisterInfo &MRI = *B.getMRI();

    // FIXME: Should we be reporting all of the part registers for a single
    // argument, and let handleAssignments take care of the repacking?
    for (unsigned i = 0; i < NumParts; ++i) {
      Register PartReg = MRI.createGenericVirtualRegister(PartLLT);
      SplitRegs.push_back(PartReg);
      SplitArgs.emplace_back(ArrayRef<Register>(PartReg), PartTy, OrigArg.Flags);
    }

    PerformArgSplit(SplitRegs, Reg, LLTy, PartLLT, SplitIdx);

    ++SplitIdx;
  }
}

// Get the appropriate type to make \p OrigTy \p Factor times bigger.
static LLT getMultipleType(LLT OrigTy, int Factor) {
  if (OrigTy.isVector()) {
    return LLT::vector(OrigTy.getNumElements() * Factor,
                       OrigTy.getElementType());
  }

  return LLT::scalar(OrigTy.getSizeInBits() * Factor);
}

// TODO: Move to generic code
static void unpackRegsToOrigType(MachineIRBuilder &B,
                                 ArrayRef<Register> DstRegs,
                                 Register SrcReg,
                                 const CallLowering::ArgInfo &Info,
                                 LLT SrcTy,
                                 LLT PartTy) {
  assert(DstRegs.size() > 1 && "Nothing to unpack");

  const unsigned SrcSize = SrcTy.getSizeInBits();
  const unsigned PartSize = PartTy.getSizeInBits();

  if (SrcTy.isVector() && !PartTy.isVector() &&
      PartSize > SrcTy.getElementType().getSizeInBits()) {
    // Vector was scalarized, and the elements extended.
    auto UnmergeToEltTy = B.buildUnmerge(SrcTy.getElementType(),
                                                  SrcReg);
    for (int i = 0, e = DstRegs.size(); i != e; ++i)
      B.buildAnyExt(DstRegs[i], UnmergeToEltTy.getReg(i));
    return;
  }

  if (SrcSize % PartSize == 0) {
    B.buildUnmerge(DstRegs, SrcReg);
    return;
  }

  const int NumRoundedParts = (SrcSize + PartSize - 1) / PartSize;

  LLT BigTy = getMultipleType(PartTy, NumRoundedParts);
  auto ImpDef = B.buildUndef(BigTy);

  auto Big = B.buildInsert(BigTy, ImpDef.getReg(0), SrcReg, 0).getReg(0);

  int64_t Offset = 0;
  for (unsigned i = 0, e = DstRegs.size(); i != e; ++i, Offset += PartSize)
    B.buildExtract(DstRegs[i], Big, Offset);
}

/// Lower the return value for the already existing \p Ret. This assumes that
/// \p B's insertion point is correct.
bool AMDGPUCallLowering::lowerReturnVal(MachineIRBuilder &B,
                                        const Value *Val, ArrayRef<Register> VRegs,
                                        MachineInstrBuilder &Ret) const {
  if (!Val)
    return true;

  auto &MF = B.getMF();
  const auto &F = MF.getFunction();
  const DataLayout &DL = MF.getDataLayout();
  MachineRegisterInfo *MRI = B.getMRI();

  CallingConv::ID CC = F.getCallingConv();
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();

  ArgInfo OrigRetInfo(VRegs, Val->getType());
  setArgFlags(OrigRetInfo, AttributeList::ReturnIndex, DL, F);
  SmallVector<ArgInfo, 4> SplitRetInfos;

  splitToValueTypes(
    B, OrigRetInfo, AttributeList::ReturnIndex, SplitRetInfos, DL, CC,
    [&](ArrayRef<Register> Regs, Register SrcReg, LLT LLTy, LLT PartLLT,
        int VTSplitIdx) {
      unpackRegsToOrigType(B, Regs, SrcReg,
                           SplitRetInfos[VTSplitIdx],
                           LLTy, PartLLT);
    });

  CCAssignFn *AssignFn = TLI.CCAssignFnForReturn(CC, F.isVarArg());
  OutgoingValueHandler RetHandler(B, *MRI, Ret, AssignFn);
  return handleAssignments(B, SplitRetInfos, RetHandler);
}

bool AMDGPUCallLowering::lowerReturn(MachineIRBuilder &B,
                                     const Value *Val,
                                     ArrayRef<Register> VRegs) const {

  MachineFunction &MF = B.getMF();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  MFI->setIfReturnsVoid(!Val);

  assert(!Val == VRegs.empty() && "Return value without a vreg");

  CallingConv::ID CC = B.getMF().getFunction().getCallingConv();
  const bool IsShader = AMDGPU::isShader(CC);
  const bool IsWaveEnd = (IsShader && MFI->returnsVoid()) ||
                         AMDGPU::isKernel(CC);
  if (IsWaveEnd) {
    B.buildInstr(AMDGPU::S_ENDPGM)
      .addImm(0);
    return true;
  }

  auto const &ST = MF.getSubtarget<GCNSubtarget>();

  unsigned ReturnOpc =
      IsShader ? AMDGPU::SI_RETURN_TO_EPILOG : AMDGPU::S_SETPC_B64_return;

  auto Ret = B.buildInstrNoInsert(ReturnOpc);
  Register ReturnAddrVReg;
  if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
    ReturnAddrVReg = MRI.createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass);
    Ret.addUse(ReturnAddrVReg);
  }

  if (!lowerReturnVal(B, Val, VRegs, Ret))
    return false;

  if (ReturnOpc == AMDGPU::S_SETPC_B64_return) {
    const SIRegisterInfo *TRI = ST.getRegisterInfo();
    Register LiveInReturn = MF.addLiveIn(TRI->getReturnAddressReg(MF),
                                         &AMDGPU::SGPR_64RegClass);
    B.buildCopy(ReturnAddrVReg, LiveInReturn);
  }

  // TODO: Handle CalleeSavedRegsViaCopy.

  B.insertInstr(Ret);
  return true;
}

Register AMDGPUCallLowering::lowerParameterPtr(MachineIRBuilder &B,
                                               Type *ParamTy,
                                               uint64_t Offset) const {

  MachineFunction &MF = B.getMF();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  const Function &F = MF.getFunction();
  const DataLayout &DL = F.getParent()->getDataLayout();
  PointerType *PtrTy = PointerType::get(ParamTy, AMDGPUAS::CONSTANT_ADDRESS);
  LLT PtrType = getLLTForType(*PtrTy, DL);
  Register KernArgSegmentPtr =
    MFI->getPreloadedReg(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
  Register KernArgSegmentVReg = MRI.getLiveInVirtReg(KernArgSegmentPtr);

  auto OffsetReg = B.buildConstant(LLT::scalar(64), Offset);

  return B.buildPtrAdd(PtrType, KernArgSegmentVReg, OffsetReg).getReg(0);
}

void AMDGPUCallLowering::lowerParameter(MachineIRBuilder &B, Type *ParamTy,
                                        uint64_t Offset, Align Alignment,
                                        Register DstReg) const {
  MachineFunction &MF = B.getMF();
  const Function &F = MF.getFunction();
  const DataLayout &DL = F.getParent()->getDataLayout();
  MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
  unsigned TypeSize = DL.getTypeStoreSize(ParamTy);
  Register PtrReg = lowerParameterPtr(B, ParamTy, Offset);

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      PtrInfo,
      MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
          MachineMemOperand::MOInvariant,
      TypeSize, Alignment);

  B.buildLoad(DstReg, PtrReg, *MMO);
}

// Allocate special inputs passed in user SGPRs.
static void allocateHSAUserSGPRs(CCState &CCInfo,
                                 MachineIRBuilder &B,
                                 MachineFunction &MF,
                                 const SIRegisterInfo &TRI,
                                 SIMachineFunctionInfo &Info) {
  // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
  if (Info.hasPrivateSegmentBuffer()) {
    Register PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
    MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
    CCInfo.AllocateReg(PrivateSegmentBufferReg);
  }

  if (Info.hasDispatchPtr()) {
    Register DispatchPtrReg = Info.addDispatchPtr(TRI);
    MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(DispatchPtrReg);
  }

  if (Info.hasQueuePtr()) {
    Register QueuePtrReg = Info.addQueuePtr(TRI);
    MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(QueuePtrReg);
  }

  if (Info.hasKernargSegmentPtr()) {
    MachineRegisterInfo &MRI = MF.getRegInfo();
    Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
    const LLT P4 = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
    Register VReg = MRI.createGenericVirtualRegister(P4);
    MRI.addLiveIn(InputPtrReg, VReg);
    B.getMBB().addLiveIn(InputPtrReg);
    B.buildCopy(VReg, InputPtrReg);
    CCInfo.AllocateReg(InputPtrReg);
  }

  if (Info.hasDispatchID()) {
    Register DispatchIDReg = Info.addDispatchID(TRI);
    MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(DispatchIDReg);
  }

  if (Info.hasFlatScratchInit()) {
    Register FlatScratchInitReg = Info.addFlatScratchInit(TRI);
    MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(FlatScratchInitReg);
  }

  // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
  // these from the dispatch pointer.
}

bool AMDGPUCallLowering::lowerFormalArgumentsKernel(
    MachineIRBuilder &B, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  MachineFunction &MF = B.getMF();
  const GCNSubtarget *Subtarget = &MF.getSubtarget<GCNSubtarget>();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
  const SITargetLowering &TLI = *getTLI<SITargetLowering>();

  const DataLayout &DL = F.getParent()->getDataLayout();

  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());

  allocateHSAUserSGPRs(CCInfo, B, MF, *TRI, *Info);

  unsigned i = 0;
  const Align KernArgBaseAlign(16);
  const unsigned BaseOffset = Subtarget->getExplicitKernelArgOffset(F);
  uint64_t ExplicitArgOffset = 0;

  // TODO: Align down to dword alignment and extract bits for extending loads.
  for (auto &Arg : F.args()) {
    Type *ArgTy = Arg.getType();
    unsigned AllocSize = DL.getTypeAllocSize(ArgTy);
    if (AllocSize == 0)
      continue;

    Align ABIAlign = DL.getABITypeAlign(ArgTy);

    uint64_t ArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + BaseOffset;
    ExplicitArgOffset = alignTo(ExplicitArgOffset, ABIAlign) + AllocSize;

    if (Arg.use_empty()) {
      ++i;
      continue;
    }

    ArrayRef<Register> OrigArgRegs = VRegs[i];
    Register ArgReg =
      OrigArgRegs.size() == 1
      ? OrigArgRegs[0]
      : MRI.createGenericVirtualRegister(getLLTForType(*ArgTy, DL));

    Align Alignment = commonAlignment(KernArgBaseAlign, ArgOffset);
    lowerParameter(B, ArgTy, ArgOffset, Alignment, ArgReg);
    if (OrigArgRegs.size() > 1)
      unpackRegs(OrigArgRegs, ArgReg, ArgTy, B);
    ++i;
  }

  TLI.allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
  TLI.allocateSystemSGPRs(CCInfo, MF, *Info, F.getCallingConv(), false);
  return true;
}

/// Pack values \p SrcRegs to cover the vector type result \p DstRegs.
static MachineInstrBuilder mergeVectorRegsToResultRegs(
  MachineIRBuilder &B, ArrayRef<Register> DstRegs, ArrayRef<Register> SrcRegs) {
  MachineRegisterInfo &MRI = *B.getMRI();
  LLT LLTy = MRI.getType(DstRegs[0]);
  LLT PartLLT = MRI.getType(SrcRegs[0]);

  // Deal with v3s16 split into v2s16
  LLT LCMTy = getLCMType(LLTy, PartLLT);
  if (LCMTy == LLTy) {
    // Common case where no padding is needed.
    assert(DstRegs.size() == 1);
    return B.buildConcatVectors(DstRegs[0], SrcRegs);
  }

  const int NumWide =  LCMTy.getSizeInBits() / PartLLT.getSizeInBits();
  Register Undef = B.buildUndef(PartLLT).getReg(0);

  // Build vector of undefs.
  SmallVector<Register, 8> WidenedSrcs(NumWide, Undef);

  // Replace the first sources with the real registers.
  std::copy(SrcRegs.begin(), SrcRegs.end(), WidenedSrcs.begin());

  auto Widened = B.buildConcatVectors(LCMTy, WidenedSrcs);
  int NumDst = LCMTy.getSizeInBits() / LLTy.getSizeInBits();

  SmallVector<Register, 8> PadDstRegs(NumDst);
  std::copy(DstRegs.begin(), DstRegs.end(), PadDstRegs.begin());

  // Create the excess dead defs for the unmerge.
  for (int I = DstRegs.size(); I != NumDst; ++I)
    PadDstRegs[I] = MRI.createGenericVirtualRegister(LLTy);

  return B.buildUnmerge(PadDstRegs, Widened);
}

// TODO: Move this to generic code
static void packSplitRegsToOrigType(MachineIRBuilder &B,
                                    ArrayRef<Register> OrigRegs,
                                    ArrayRef<Register> Regs,
                                    LLT LLTy,
                                    LLT PartLLT) {
  MachineRegisterInfo &MRI = *B.getMRI();

  if (!LLTy.isVector() && !PartLLT.isVector()) {
    assert(OrigRegs.size() == 1);
    LLT OrigTy = MRI.getType(OrigRegs[0]);

    unsigned SrcSize = PartLLT.getSizeInBits() * Regs.size();
    if (SrcSize == OrigTy.getSizeInBits())
      B.buildMerge(OrigRegs[0], Regs);
    else {
      auto Widened = B.buildMerge(LLT::scalar(SrcSize), Regs);
      B.buildTrunc(OrigRegs[0], Widened);
    }

    return;
  }

  if (LLTy.isVector() && PartLLT.isVector()) {
    assert(OrigRegs.size() == 1);
    assert(LLTy.getElementType() == PartLLT.getElementType());
    mergeVectorRegsToResultRegs(B, OrigRegs, Regs);
    return;
  }

  assert(LLTy.isVector() && !PartLLT.isVector());

  LLT DstEltTy = LLTy.getElementType();

  // Pointer information was discarded. We'll need to coerce some register types
  // to avoid violating type constraints.
  LLT RealDstEltTy = MRI.getType(OrigRegs[0]).getElementType();

  assert(DstEltTy.getSizeInBits() == RealDstEltTy.getSizeInBits());

  if (DstEltTy == PartLLT) {
    // Vector was trivially scalarized.

    if (RealDstEltTy.isPointer()) {
      for (Register Reg : Regs)
        MRI.setType(Reg, RealDstEltTy);
    }

    B.buildBuildVector(OrigRegs[0], Regs);
  } else if (DstEltTy.getSizeInBits() > PartLLT.getSizeInBits()) {
    // Deal with vector with 64-bit elements decomposed to 32-bit
    // registers. Need to create intermediate 64-bit elements.
    SmallVector<Register, 8> EltMerges;
    int PartsPerElt = DstEltTy.getSizeInBits() / PartLLT.getSizeInBits();

    assert(DstEltTy.getSizeInBits() % PartLLT.getSizeInBits() == 0);

    for (int I = 0, NumElts = LLTy.getNumElements(); I != NumElts; ++I)  {
      auto Merge = B.buildMerge(RealDstEltTy, Regs.take_front(PartsPerElt));
      // Fix the type in case this is really a vector of pointers.
      MRI.setType(Merge.getReg(0), RealDstEltTy);
      EltMerges.push_back(Merge.getReg(0));
      Regs = Regs.drop_front(PartsPerElt);
    }

    B.buildBuildVector(OrigRegs[0], EltMerges);
  } else {
    // Vector was split, and elements promoted to a wider type.
    LLT BVType = LLT::vector(LLTy.getNumElements(), PartLLT);
    auto BV = B.buildBuildVector(BVType, Regs);
    B.buildTrunc(OrigRegs[0], BV);
  }
}

bool AMDGPUCallLowering::lowerFormalArguments(
    MachineIRBuilder &B, const Function &F,
    ArrayRef<ArrayRef<Register>> VRegs) const {
  CallingConv::ID CC = F.getCallingConv();

  // The infrastructure for normal calling convention lowering is essentially
  // useless for kernels. We want to avoid any kind of legalization or argument
  // splitting.
  if (CC == CallingConv::AMDGPU_KERNEL)
    return lowerFormalArgumentsKernel(B, F, VRegs);

  const bool IsShader = AMDGPU::isShader(CC);
  const bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CC);

  MachineFunction &MF = B.getMF();
  MachineBasicBlock &MBB = B.getMBB();
  MachineRegisterInfo &MRI = MF.getRegInfo();
  SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
  const GCNSubtarget &Subtarget = MF.getSubtarget<GCNSubtarget>();
  const SIRegisterInfo *TRI = Subtarget.getRegisterInfo();
  const DataLayout &DL = F.getParent()->getDataLayout();


  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(CC, F.isVarArg(), MF, ArgLocs, F.getContext());

  if (!IsEntryFunc) {
    Register ReturnAddrReg = TRI->getReturnAddressReg(MF);
    Register LiveInReturn = MF.addLiveIn(ReturnAddrReg,
                                         &AMDGPU::SGPR_64RegClass);
    MBB.addLiveIn(ReturnAddrReg);
    B.buildCopy(LiveInReturn, ReturnAddrReg);
  }

  if (Info->hasImplicitBufferPtr()) {
    Register ImplicitBufferPtrReg = Info->addImplicitBufferPtr(*TRI);
    MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
    CCInfo.AllocateReg(ImplicitBufferPtrReg);
  }


  SmallVector<ArgInfo, 32> SplitArgs;
  unsigned Idx = 0;
  unsigned PSInputNum = 0;

  for (auto &Arg : F.args()) {
    if (DL.getTypeStoreSize(Arg.getType()) == 0)
      continue;

    const bool InReg = Arg.hasAttribute(Attribute::InReg);

    // SGPR arguments to functions not implemented.
    if (!IsShader && InReg)
      return false;

    if (Arg.hasAttribute(Attribute::SwiftSelf) ||
        Arg.hasAttribute(Attribute::SwiftError) ||
        Arg.hasAttribute(Attribute::Nest))
      return false;

    if (CC == CallingConv::AMDGPU_PS && !InReg && PSInputNum <= 15) {
      const bool ArgUsed = !Arg.use_empty();
      bool SkipArg = !ArgUsed && !Info->isPSInputAllocated(PSInputNum);

      if (!SkipArg) {
        Info->markPSInputAllocated(PSInputNum);
        if (ArgUsed)
          Info->markPSInputEnabled(PSInputNum);
      }

      ++PSInputNum;

      if (SkipArg) {
        for (int I = 0, E = VRegs[Idx].size(); I != E; ++I)
          B.buildUndef(VRegs[Idx][I]);

        ++Idx;
        continue;
      }
    }

    ArgInfo OrigArg(VRegs[Idx], Arg.getType());
    const unsigned OrigArgIdx = Idx + AttributeList::FirstArgIndex;
    setArgFlags(OrigArg, OrigArgIdx, DL, F);

    splitToValueTypes(
      B, OrigArg, OrigArgIdx, SplitArgs, DL, CC,
      // FIXME: We should probably be passing multiple registers to
      // handleAssignments to do this
      [&](ArrayRef<Register> Regs, Register DstReg,
          LLT LLTy, LLT PartLLT, int VTSplitIdx) {
        assert(DstReg == VRegs[Idx][VTSplitIdx]);
        packSplitRegsToOrigType(B, VRegs[Idx][VTSplitIdx], Regs,
                                LLTy, PartLLT);
      });

    ++Idx;
  }

  // At least one interpolation mode must be enabled or else the GPU will
  // hang.
  //
  // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
  // set PSInputAddr, the user wants to enable some bits after the compilation
  // based on run-time states. Since we can't know what the final PSInputEna
  // will look like, so we shouldn't do anything here and the user should take
  // responsibility for the correct programming.
  //
  // Otherwise, the following restrictions apply:
  // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
  // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
  //   enabled too.
  if (CC == CallingConv::AMDGPU_PS) {
    if ((Info->getPSInputAddr() & 0x7F) == 0 ||
        ((Info->getPSInputAddr() & 0xF) == 0 &&
         Info->isPSInputAllocated(11))) {
      CCInfo.AllocateReg(AMDGPU::VGPR0);
      CCInfo.AllocateReg(AMDGPU::VGPR1);
      Info->markPSInputAllocated(0);
      Info->markPSInputEnabled(0);
    }

    if (Subtarget.isAmdPalOS()) {
      // For isAmdPalOS, the user does not enable some bits after compilation
      // based on run-time states; the register values being generated here are
      // the final ones set in hardware. Therefore we need to apply the
      // workaround to PSInputAddr and PSInputEnable together.  (The case where
      // a bit is set in PSInputAddr but not PSInputEnable is where the frontend
      // set up an input arg for a particular interpolation mode, but nothing
      // uses that input arg. Really we should have an earlier pass that removes
      // such an arg.)
      unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
      if ((PsInputBits & 0x7F) == 0 ||
          ((PsInputBits & 0xF) == 0 &&
           (PsInputBits >> 11 & 1)))
        Info->markPSInputEnabled(
          countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
    }
  }

  const SITargetLowering &TLI = *getTLI<SITargetLowering>();
  CCAssignFn *AssignFn = TLI.CCAssignFnForCall(CC, F.isVarArg());

  if (!MBB.empty())
    B.setInstr(*MBB.begin());

  if (!IsEntryFunc) {
    // For the fixed ABI, pass workitem IDs in the last argument register.
    if (AMDGPUTargetMachine::EnableFixedFunctionABI)
      TLI.allocateSpecialInputVGPRsFixed(CCInfo, MF, *TRI, *Info);
  }

  FormalArgHandler Handler(B, MRI, AssignFn);
  if (!handleAssignments(CCInfo, ArgLocs, B, SplitArgs, Handler))
    return false;

  if (!IsEntryFunc && !AMDGPUTargetMachine::EnableFixedFunctionABI) {
    // Special inputs come after user arguments.
    TLI.allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
  }

  // Start adding system SGPRs.
  if (IsEntryFunc) {
    TLI.allocateSystemSGPRs(CCInfo, MF, *Info, CC, IsShader);
  } else {
    CCInfo.AllocateReg(Info->getScratchRSrcReg());
    TLI.allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
  }

  // Move back to the end of the basic block.
  B.setMBB(MBB);

  return true;
}