AArch64RegisterBankInfo.cpp 33.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
//===- AArch64RegisterBankInfo.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the RegisterBankInfo class for
/// AArch64.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//

#include "AArch64RegisterBankInfo.h"
#include "AArch64InstrInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h"
#include "llvm/CodeGen/LowLevelType.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>
#include <cassert>

#define GET_TARGET_REGBANK_IMPL
#include "AArch64GenRegisterBank.inc"

// This file will be TableGen'ed at some point.
#include "AArch64GenRegisterBankInfo.def"

using namespace llvm;

AArch64RegisterBankInfo::AArch64RegisterBankInfo(const TargetRegisterInfo &TRI)
    : AArch64GenRegisterBankInfo() {
  static llvm::once_flag InitializeRegisterBankFlag;

  static auto InitializeRegisterBankOnce = [&]() {
    // We have only one set of register banks, whatever the subtarget
    // is. Therefore, the initialization of the RegBanks table should be
    // done only once. Indeed the table of all register banks
    // (AArch64::RegBanks) is unique in the compiler. At some point, it
    // will get tablegen'ed and the whole constructor becomes empty.

    const RegisterBank &RBGPR = getRegBank(AArch64::GPRRegBankID);
    (void)RBGPR;
    assert(&AArch64::GPRRegBank == &RBGPR &&
           "The order in RegBanks is messed up");

    const RegisterBank &RBFPR = getRegBank(AArch64::FPRRegBankID);
    (void)RBFPR;
    assert(&AArch64::FPRRegBank == &RBFPR &&
           "The order in RegBanks is messed up");

    const RegisterBank &RBCCR = getRegBank(AArch64::CCRegBankID);
    (void)RBCCR;
    assert(&AArch64::CCRegBank == &RBCCR &&
           "The order in RegBanks is messed up");

    // The GPR register bank is fully defined by all the registers in
    // GR64all + its subclasses.
    assert(RBGPR.covers(*TRI.getRegClass(AArch64::GPR32RegClassID)) &&
           "Subclass not added?");
    assert(RBGPR.getSize() == 64 && "GPRs should hold up to 64-bit");

    // The FPR register bank is fully defined by all the registers in
    // GR64all + its subclasses.
    assert(RBFPR.covers(*TRI.getRegClass(AArch64::QQRegClassID)) &&
           "Subclass not added?");
    assert(RBFPR.covers(*TRI.getRegClass(AArch64::FPR64RegClassID)) &&
           "Subclass not added?");
    assert(RBFPR.getSize() == 512 &&
           "FPRs should hold up to 512-bit via QQQQ sequence");

    assert(RBCCR.covers(*TRI.getRegClass(AArch64::CCRRegClassID)) &&
           "Class not added?");
    assert(RBCCR.getSize() == 32 && "CCR should hold up to 32-bit");

    // Check that the TableGen'ed like file is in sync we our expectations.
    // First, the Idx.
    assert(checkPartialMappingIdx(PMI_FirstGPR, PMI_LastGPR,
                                  {PMI_GPR32, PMI_GPR64}) &&
           "PartialMappingIdx's are incorrectly ordered");
    assert(checkPartialMappingIdx(PMI_FirstFPR, PMI_LastFPR,
                                  {PMI_FPR16, PMI_FPR32, PMI_FPR64, PMI_FPR128,
                                   PMI_FPR256, PMI_FPR512}) &&
           "PartialMappingIdx's are incorrectly ordered");
// Now, the content.
// Check partial mapping.
#define CHECK_PARTIALMAP(Idx, ValStartIdx, ValLength, RB)                      \
  do {                                                                         \
    assert(                                                                    \
        checkPartialMap(PartialMappingIdx::Idx, ValStartIdx, ValLength, RB) && \
        #Idx " is incorrectly initialized");                                   \
  } while (false)

    CHECK_PARTIALMAP(PMI_GPR32, 0, 32, RBGPR);
    CHECK_PARTIALMAP(PMI_GPR64, 0, 64, RBGPR);
    CHECK_PARTIALMAP(PMI_FPR16, 0, 16, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR32, 0, 32, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR64, 0, 64, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR128, 0, 128, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR256, 0, 256, RBFPR);
    CHECK_PARTIALMAP(PMI_FPR512, 0, 512, RBFPR);

// Check value mapping.
#define CHECK_VALUEMAP_IMPL(RBName, Size, Offset)                              \
  do {                                                                         \
    assert(checkValueMapImpl(PartialMappingIdx::PMI_##RBName##Size,            \
                             PartialMappingIdx::PMI_First##RBName, Size,       \
                             Offset) &&                                        \
           #RBName #Size " " #Offset " is incorrectly initialized");           \
  } while (false)

#define CHECK_VALUEMAP(RBName, Size) CHECK_VALUEMAP_IMPL(RBName, Size, 0)

    CHECK_VALUEMAP(GPR, 32);
    CHECK_VALUEMAP(GPR, 64);
    CHECK_VALUEMAP(FPR, 16);
    CHECK_VALUEMAP(FPR, 32);
    CHECK_VALUEMAP(FPR, 64);
    CHECK_VALUEMAP(FPR, 128);
    CHECK_VALUEMAP(FPR, 256);
    CHECK_VALUEMAP(FPR, 512);

// Check the value mapping for 3-operands instructions where all the operands
// map to the same value mapping.
#define CHECK_VALUEMAP_3OPS(RBName, Size)                                      \
  do {                                                                         \
    CHECK_VALUEMAP_IMPL(RBName, Size, 0);                                      \
    CHECK_VALUEMAP_IMPL(RBName, Size, 1);                                      \
    CHECK_VALUEMAP_IMPL(RBName, Size, 2);                                      \
  } while (false)

    CHECK_VALUEMAP_3OPS(GPR, 32);
    CHECK_VALUEMAP_3OPS(GPR, 64);
    CHECK_VALUEMAP_3OPS(FPR, 32);
    CHECK_VALUEMAP_3OPS(FPR, 64);
    CHECK_VALUEMAP_3OPS(FPR, 128);
    CHECK_VALUEMAP_3OPS(FPR, 256);
    CHECK_VALUEMAP_3OPS(FPR, 512);

#define CHECK_VALUEMAP_CROSSREGCPY(RBNameDst, RBNameSrc, Size)                 \
  do {                                                                         \
    unsigned PartialMapDstIdx = PMI_##RBNameDst##Size - PMI_Min;               \
    unsigned PartialMapSrcIdx = PMI_##RBNameSrc##Size - PMI_Min;               \
    (void)PartialMapDstIdx;                                                    \
    (void)PartialMapSrcIdx;                                                    \
    const ValueMapping *Map = getCopyMapping(                                  \
        AArch64::RBNameDst##RegBankID, AArch64::RBNameSrc##RegBankID, Size);  \
    (void)Map;                                                                 \
    assert(Map[0].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] &&  \
           Map[0].NumBreakDowns == 1 && #RBNameDst #Size                       \
           " Dst is incorrectly initialized");                                 \
    assert(Map[1].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] &&  \
           Map[1].NumBreakDowns == 1 && #RBNameSrc #Size                       \
           " Src is incorrectly initialized");                                 \
                                                                               \
  } while (false)

    CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 32);
    CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 32);
    CHECK_VALUEMAP_CROSSREGCPY(GPR, GPR, 64);
    CHECK_VALUEMAP_CROSSREGCPY(GPR, FPR, 64);
    CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 32);
    CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 32);
    CHECK_VALUEMAP_CROSSREGCPY(FPR, FPR, 64);
    CHECK_VALUEMAP_CROSSREGCPY(FPR, GPR, 64);

#define CHECK_VALUEMAP_FPEXT(DstSize, SrcSize)                                 \
  do {                                                                         \
    unsigned PartialMapDstIdx = PMI_FPR##DstSize - PMI_Min;                    \
    unsigned PartialMapSrcIdx = PMI_FPR##SrcSize - PMI_Min;                    \
    (void)PartialMapDstIdx;                                                    \
    (void)PartialMapSrcIdx;                                                    \
    const ValueMapping *Map = getFPExtMapping(DstSize, SrcSize);               \
    (void)Map;                                                                 \
    assert(Map[0].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapDstIdx] &&  \
           Map[0].NumBreakDowns == 1 && "FPR" #DstSize                         \
                                        " Dst is incorrectly initialized");    \
    assert(Map[1].BreakDown ==                                                 \
               &AArch64GenRegisterBankInfo::PartMappings[PartialMapSrcIdx] &&  \
           Map[1].NumBreakDowns == 1 && "FPR" #SrcSize                         \
                                        " Src is incorrectly initialized");    \
                                                                               \
  } while (false)

    CHECK_VALUEMAP_FPEXT(32, 16);
    CHECK_VALUEMAP_FPEXT(64, 16);
    CHECK_VALUEMAP_FPEXT(64, 32);
    CHECK_VALUEMAP_FPEXT(128, 64);

    assert(verify(TRI) && "Invalid register bank information");
  };

  llvm::call_once(InitializeRegisterBankFlag, InitializeRegisterBankOnce);
}

unsigned AArch64RegisterBankInfo::copyCost(const RegisterBank &A,
                                           const RegisterBank &B,
                                           unsigned Size) const {
  // What do we do with different size?
  // copy are same size.
  // Will introduce other hooks for different size:
  // * extract cost.
  // * build_sequence cost.

  // Copy from (resp. to) GPR to (resp. from) FPR involves FMOV.
  // FIXME: This should be deduced from the scheduling model.
  if (&A == &AArch64::GPRRegBank && &B == &AArch64::FPRRegBank)
    // FMOVXDr or FMOVWSr.
    return 5;
  if (&A == &AArch64::FPRRegBank && &B == &AArch64::GPRRegBank)
    // FMOVDXr or FMOVSWr.
    return 4;

  return RegisterBankInfo::copyCost(A, B, Size);
}

const RegisterBank &
AArch64RegisterBankInfo::getRegBankFromRegClass(const TargetRegisterClass &RC,
                                                LLT) const {
  switch (RC.getID()) {
  case AArch64::FPR8RegClassID:
  case AArch64::FPR16RegClassID:
  case AArch64::FPR16_loRegClassID:
  case AArch64::FPR32_with_hsub_in_FPR16_loRegClassID:
  case AArch64::FPR32RegClassID:
  case AArch64::FPR64RegClassID:
  case AArch64::FPR64_loRegClassID:
  case AArch64::FPR128RegClassID:
  case AArch64::FPR128_loRegClassID:
  case AArch64::DDRegClassID:
  case AArch64::DDDRegClassID:
  case AArch64::DDDDRegClassID:
  case AArch64::QQRegClassID:
  case AArch64::QQQRegClassID:
  case AArch64::QQQQRegClassID:
    return getRegBank(AArch64::FPRRegBankID);
  case AArch64::GPR32commonRegClassID:
  case AArch64::GPR32RegClassID:
  case AArch64::GPR32spRegClassID:
  case AArch64::GPR32sponlyRegClassID:
  case AArch64::GPR32argRegClassID:
  case AArch64::GPR32allRegClassID:
  case AArch64::GPR64commonRegClassID:
  case AArch64::GPR64RegClassID:
  case AArch64::GPR64spRegClassID:
  case AArch64::GPR64sponlyRegClassID:
  case AArch64::GPR64argRegClassID:
  case AArch64::GPR64allRegClassID:
  case AArch64::GPR64noipRegClassID:
  case AArch64::GPR64common_and_GPR64noipRegClassID:
  case AArch64::GPR64noip_and_tcGPR64RegClassID:
  case AArch64::tcGPR64RegClassID:
  case AArch64::rtcGPR64RegClassID:
  case AArch64::WSeqPairsClassRegClassID:
  case AArch64::XSeqPairsClassRegClassID:
    return getRegBank(AArch64::GPRRegBankID);
  case AArch64::CCRRegClassID:
    return getRegBank(AArch64::CCRegBankID);
  default:
    llvm_unreachable("Register class not supported");
  }
}

RegisterBankInfo::InstructionMappings
AArch64RegisterBankInfo::getInstrAlternativeMappings(
    const MachineInstr &MI) const {
  const MachineFunction &MF = *MI.getParent()->getParent();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  switch (MI.getOpcode()) {
  case TargetOpcode::G_OR: {
    // 32 and 64-bit or can be mapped on either FPR or
    // GPR for the same cost.
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 32 && Size != 64)
      break;

    // If the instruction has any implicit-defs or uses,
    // do not mess with it.
    if (MI.getNumOperands() != 3)
      break;
    InstructionMappings AltMappings;
    const InstructionMapping &GPRMapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1, getValueMapping(PMI_FirstGPR, Size),
        /*NumOperands*/ 3);
    const InstructionMapping &FPRMapping = getInstructionMapping(
        /*ID*/ 2, /*Cost*/ 1, getValueMapping(PMI_FirstFPR, Size),
        /*NumOperands*/ 3);

    AltMappings.push_back(&GPRMapping);
    AltMappings.push_back(&FPRMapping);
    return AltMappings;
  }
  case TargetOpcode::G_BITCAST: {
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 32 && Size != 64)
      break;

    // If the instruction has any implicit-defs or uses,
    // do not mess with it.
    if (MI.getNumOperands() != 2)
      break;

    InstructionMappings AltMappings;
    const InstructionMapping &GPRMapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1,
        getCopyMapping(AArch64::GPRRegBankID, AArch64::GPRRegBankID, Size),
        /*NumOperands*/ 2);
    const InstructionMapping &FPRMapping = getInstructionMapping(
        /*ID*/ 2, /*Cost*/ 1,
        getCopyMapping(AArch64::FPRRegBankID, AArch64::FPRRegBankID, Size),
        /*NumOperands*/ 2);
    const InstructionMapping &GPRToFPRMapping = getInstructionMapping(
        /*ID*/ 3,
        /*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
        getCopyMapping(AArch64::FPRRegBankID, AArch64::GPRRegBankID, Size),
        /*NumOperands*/ 2);
    const InstructionMapping &FPRToGPRMapping = getInstructionMapping(
        /*ID*/ 3,
        /*Cost*/ copyCost(AArch64::GPRRegBank, AArch64::FPRRegBank, Size),
        getCopyMapping(AArch64::GPRRegBankID, AArch64::FPRRegBankID, Size),
        /*NumOperands*/ 2);

    AltMappings.push_back(&GPRMapping);
    AltMappings.push_back(&FPRMapping);
    AltMappings.push_back(&GPRToFPRMapping);
    AltMappings.push_back(&FPRToGPRMapping);
    return AltMappings;
  }
  case TargetOpcode::G_LOAD: {
    unsigned Size = getSizeInBits(MI.getOperand(0).getReg(), MRI, TRI);
    if (Size != 64)
      break;

    // If the instruction has any implicit-defs or uses,
    // do not mess with it.
    if (MI.getNumOperands() != 2)
      break;

    InstructionMappings AltMappings;
    const InstructionMapping &GPRMapping = getInstructionMapping(
        /*ID*/ 1, /*Cost*/ 1,
        getOperandsMapping({getValueMapping(PMI_FirstGPR, Size),
                            // Addresses are GPR 64-bit.
                            getValueMapping(PMI_FirstGPR, 64)}),
        /*NumOperands*/ 2);
    const InstructionMapping &FPRMapping = getInstructionMapping(
        /*ID*/ 2, /*Cost*/ 1,
        getOperandsMapping({getValueMapping(PMI_FirstFPR, Size),
                            // Addresses are GPR 64-bit.
                            getValueMapping(PMI_FirstGPR, 64)}),
        /*NumOperands*/ 2);

    AltMappings.push_back(&GPRMapping);
    AltMappings.push_back(&FPRMapping);
    return AltMappings;
  }
  default:
    break;
  }
  return RegisterBankInfo::getInstrAlternativeMappings(MI);
}

void AArch64RegisterBankInfo::applyMappingImpl(
    const OperandsMapper &OpdMapper) const {
  switch (OpdMapper.getMI().getOpcode()) {
  case TargetOpcode::G_OR:
  case TargetOpcode::G_BITCAST:
  case TargetOpcode::G_LOAD:
    // Those ID must match getInstrAlternativeMappings.
    assert((OpdMapper.getInstrMapping().getID() >= 1 &&
            OpdMapper.getInstrMapping().getID() <= 4) &&
           "Don't know how to handle that ID");
    return applyDefaultMapping(OpdMapper);
  default:
    llvm_unreachable("Don't know how to handle that operation");
  }
}

/// Returns whether opcode \p Opc is a pre-isel generic floating-point opcode,
/// having only floating-point operands.
static bool isPreISelGenericFloatingPointOpcode(unsigned Opc) {
  switch (Opc) {
  case TargetOpcode::G_FADD:
  case TargetOpcode::G_FSUB:
  case TargetOpcode::G_FMUL:
  case TargetOpcode::G_FMA:
  case TargetOpcode::G_FDIV:
  case TargetOpcode::G_FCONSTANT:
  case TargetOpcode::G_FPEXT:
  case TargetOpcode::G_FPTRUNC:
  case TargetOpcode::G_FCEIL:
  case TargetOpcode::G_FFLOOR:
  case TargetOpcode::G_FNEARBYINT:
  case TargetOpcode::G_FNEG:
  case TargetOpcode::G_FCOS:
  case TargetOpcode::G_FSIN:
  case TargetOpcode::G_FLOG10:
  case TargetOpcode::G_FLOG:
  case TargetOpcode::G_FLOG2:
  case TargetOpcode::G_FSQRT:
  case TargetOpcode::G_FABS:
  case TargetOpcode::G_FEXP:
  case TargetOpcode::G_FRINT:
  case TargetOpcode::G_INTRINSIC_TRUNC:
  case TargetOpcode::G_INTRINSIC_ROUND:
    return true;
  }
  return false;
}

const RegisterBankInfo::InstructionMapping &
AArch64RegisterBankInfo::getSameKindOfOperandsMapping(
    const MachineInstr &MI) const {
  const unsigned Opc = MI.getOpcode();
  const MachineFunction &MF = *MI.getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  unsigned NumOperands = MI.getNumOperands();
  assert(NumOperands <= 3 &&
         "This code is for instructions with 3 or less operands");

  LLT Ty = MRI.getType(MI.getOperand(0).getReg());
  unsigned Size = Ty.getSizeInBits();
  bool IsFPR = Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc);

  PartialMappingIdx RBIdx = IsFPR ? PMI_FirstFPR : PMI_FirstGPR;

#ifndef NDEBUG
  // Make sure all the operands are using similar size and type.
  // Should probably be checked by the machine verifier.
  // This code won't catch cases where the number of lanes is
  // different between the operands.
  // If we want to go to that level of details, it is probably
  // best to check that the types are the same, period.
  // Currently, we just check that the register banks are the same
  // for each types.
  for (unsigned Idx = 1; Idx != NumOperands; ++Idx) {
    LLT OpTy = MRI.getType(MI.getOperand(Idx).getReg());
    assert(
        AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(
            RBIdx, OpTy.getSizeInBits()) ==
            AArch64GenRegisterBankInfo::getRegBankBaseIdxOffset(RBIdx, Size) &&
        "Operand has incompatible size");
    bool OpIsFPR = OpTy.isVector() || isPreISelGenericFloatingPointOpcode(Opc);
    (void)OpIsFPR;
    assert(IsFPR == OpIsFPR && "Operand has incompatible type");
  }
#endif // End NDEBUG.

  return getInstructionMapping(DefaultMappingID, 1,
                               getValueMapping(RBIdx, Size), NumOperands);
}

bool AArch64RegisterBankInfo::hasFPConstraints(
    const MachineInstr &MI, const MachineRegisterInfo &MRI,
    const TargetRegisterInfo &TRI) const {
  unsigned Op = MI.getOpcode();

  // Do we have an explicit floating point instruction?
  if (isPreISelGenericFloatingPointOpcode(Op))
    return true;

  // No. Check if we have a copy-like instruction. If we do, then we could
  // still be fed by floating point instructions.
  if (Op != TargetOpcode::COPY && !MI.isPHI())
    return false;

  // MI is copy-like. Return true if it outputs an FPR.
  return getRegBank(MI.getOperand(0).getReg(), MRI, TRI) ==
         &AArch64::FPRRegBank;
}

bool AArch64RegisterBankInfo::onlyUsesFP(const MachineInstr &MI,
                                         const MachineRegisterInfo &MRI,
                                         const TargetRegisterInfo &TRI) const {
  switch (MI.getOpcode()) {
  case TargetOpcode::G_FPTOSI:
  case TargetOpcode::G_FPTOUI:
  case TargetOpcode::G_FCMP:
    return true;
  default:
    break;
  }
  return hasFPConstraints(MI, MRI, TRI);
}

bool AArch64RegisterBankInfo::onlyDefinesFP(
    const MachineInstr &MI, const MachineRegisterInfo &MRI,
    const TargetRegisterInfo &TRI) const {
  switch (MI.getOpcode()) {
  case AArch64::G_DUP:
  case TargetOpcode::G_SITOFP:
  case TargetOpcode::G_UITOFP:
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    return true;
  default:
    break;
  }
  return hasFPConstraints(MI, MRI, TRI);
}

const RegisterBankInfo::InstructionMapping &
AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
  const unsigned Opc = MI.getOpcode();

  // Try the default logic for non-generic instructions that are either copies
  // or already have some operands assigned to banks.
  if ((Opc != TargetOpcode::COPY && !isPreISelGenericOpcode(Opc)) ||
      Opc == TargetOpcode::G_PHI) {
    const RegisterBankInfo::InstructionMapping &Mapping =
        getInstrMappingImpl(MI);
    if (Mapping.isValid())
      return Mapping;
  }

  const MachineFunction &MF = *MI.getParent()->getParent();
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  const TargetSubtargetInfo &STI = MF.getSubtarget();
  const TargetRegisterInfo &TRI = *STI.getRegisterInfo();

  switch (Opc) {
    // G_{F|S|U}REM are not listed because they are not legal.
    // Arithmetic ops.
  case TargetOpcode::G_ADD:
  case TargetOpcode::G_SUB:
  case TargetOpcode::G_PTR_ADD:
  case TargetOpcode::G_MUL:
  case TargetOpcode::G_SDIV:
  case TargetOpcode::G_UDIV:
    // Bitwise ops.
  case TargetOpcode::G_AND:
  case TargetOpcode::G_OR:
  case TargetOpcode::G_XOR:
    // Floating point ops.
  case TargetOpcode::G_FADD:
  case TargetOpcode::G_FSUB:
  case TargetOpcode::G_FMUL:
  case TargetOpcode::G_FDIV:
    return getSameKindOfOperandsMapping(MI);
  case TargetOpcode::G_FPEXT: {
    LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    return getInstructionMapping(
        DefaultMappingID, /*Cost*/ 1,
        getFPExtMapping(DstTy.getSizeInBits(), SrcTy.getSizeInBits()),
        /*NumOperands*/ 2);
  }
    // Shifts.
  case TargetOpcode::G_SHL:
  case TargetOpcode::G_LSHR:
  case TargetOpcode::G_ASHR: {
    LLT ShiftAmtTy = MRI.getType(MI.getOperand(2).getReg());
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    if (ShiftAmtTy.getSizeInBits() == 64 && SrcTy.getSizeInBits() == 32)
      return getInstructionMapping(DefaultMappingID, 1,
                                   &ValMappings[Shift64Imm], 3);
    return getSameKindOfOperandsMapping(MI);
  }
  case TargetOpcode::COPY: {
    Register DstReg = MI.getOperand(0).getReg();
    Register SrcReg = MI.getOperand(1).getReg();
    // Check if one of the register is not a generic register.
    if ((Register::isPhysicalRegister(DstReg) ||
         !MRI.getType(DstReg).isValid()) ||
        (Register::isPhysicalRegister(SrcReg) ||
         !MRI.getType(SrcReg).isValid())) {
      const RegisterBank *DstRB = getRegBank(DstReg, MRI, TRI);
      const RegisterBank *SrcRB = getRegBank(SrcReg, MRI, TRI);
      if (!DstRB)
        DstRB = SrcRB;
      else if (!SrcRB)
        SrcRB = DstRB;
      // If both RB are null that means both registers are generic.
      // We shouldn't be here.
      assert(DstRB && SrcRB && "Both RegBank were nullptr");
      unsigned Size = getSizeInBits(DstReg, MRI, TRI);
      return getInstructionMapping(
          DefaultMappingID, copyCost(*DstRB, *SrcRB, Size),
          getCopyMapping(DstRB->getID(), SrcRB->getID(), Size),
          // We only care about the mapping of the destination.
          /*NumOperands*/ 1);
    }
    // Both registers are generic, use G_BITCAST.
    LLVM_FALLTHROUGH;
  }
  case TargetOpcode::G_BITCAST: {
    LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    unsigned Size = DstTy.getSizeInBits();
    bool DstIsGPR = !DstTy.isVector() && DstTy.getSizeInBits() <= 64;
    bool SrcIsGPR = !SrcTy.isVector() && SrcTy.getSizeInBits() <= 64;
    const RegisterBank &DstRB =
        DstIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
    const RegisterBank &SrcRB =
        SrcIsGPR ? AArch64::GPRRegBank : AArch64::FPRRegBank;
    return getInstructionMapping(
        DefaultMappingID, copyCost(DstRB, SrcRB, Size),
        getCopyMapping(DstRB.getID(), SrcRB.getID(), Size),
        // We only care about the mapping of the destination for COPY.
        /*NumOperands*/ Opc == TargetOpcode::G_BITCAST ? 2 : 1);
  }
  default:
    break;
  }

  unsigned NumOperands = MI.getNumOperands();

  // Track the size and bank of each register.  We don't do partial mappings.
  SmallVector<unsigned, 4> OpSize(NumOperands);
  SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
  for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
    auto &MO = MI.getOperand(Idx);
    if (!MO.isReg() || !MO.getReg())
      continue;

    LLT Ty = MRI.getType(MO.getReg());
    OpSize[Idx] = Ty.getSizeInBits();

    // As a top-level guess, vectors go in FPRs, scalars and pointers in GPRs.
    // For floating-point instructions, scalars go in FPRs.
    if (Ty.isVector() || isPreISelGenericFloatingPointOpcode(Opc) ||
        Ty.getSizeInBits() > 64)
      OpRegBankIdx[Idx] = PMI_FirstFPR;
    else
      OpRegBankIdx[Idx] = PMI_FirstGPR;
  }

  unsigned Cost = 1;
  // Some of the floating-point instructions have mixed GPR and FPR operands:
  // fine-tune the computed mapping.
  switch (Opc) {
  case AArch64::G_DUP: {
    Register ScalarReg = MI.getOperand(1).getReg();
    auto ScalarDef = MRI.getVRegDef(ScalarReg);
    if (getRegBank(ScalarReg, MRI, TRI) == &AArch64::FPRRegBank ||
        onlyDefinesFP(*ScalarDef, MRI, TRI))
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
    else
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
    break;
  }
  case TargetOpcode::G_TRUNC: {
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    if (!SrcTy.isVector() && SrcTy.getSizeInBits() == 128)
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstFPR};
    break;
  }
  case TargetOpcode::G_SITOFP:
  case TargetOpcode::G_UITOFP:
    if (MRI.getType(MI.getOperand(0).getReg()).isVector())
      break;
    OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR};
    break;
  case TargetOpcode::G_FPTOSI:
  case TargetOpcode::G_FPTOUI:
    if (MRI.getType(MI.getOperand(0).getReg()).isVector())
      break;
    OpRegBankIdx = {PMI_FirstGPR, PMI_FirstFPR};
    break;
  case TargetOpcode::G_FCMP:
    OpRegBankIdx = {PMI_FirstGPR,
                    /* Predicate */ PMI_None, PMI_FirstFPR, PMI_FirstFPR};
    break;
  case TargetOpcode::G_BITCAST:
    // This is going to be a cross register bank copy and this is expensive.
    if (OpRegBankIdx[0] != OpRegBankIdx[1])
      Cost = copyCost(
          *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[0]].RegBank,
          *AArch64GenRegisterBankInfo::PartMappings[OpRegBankIdx[1]].RegBank,
          OpSize[0]);
    break;
  case TargetOpcode::G_LOAD:
    // Loading in vector unit is slightly more expensive.
    // This is actually only true for the LD1R and co instructions,
    // but anyway for the fast mode this number does not matter and
    // for the greedy mode the cost of the cross bank copy will
    // offset this number.
    // FIXME: Should be derived from the scheduling model.
    if (OpRegBankIdx[0] != PMI_FirstGPR)
      Cost = 2;
    else
      // Check if that load feeds fp instructions.
      // In that case, we want the default mapping to be on FPR
      // instead of blind map every scalar to GPR.
      for (const MachineInstr &UseMI :
           MRI.use_nodbg_instructions(MI.getOperand(0).getReg())) {
        // If we have at least one direct use in a FP instruction,
        // assume this was a floating point load in the IR.
        // If it was not, we would have had a bitcast before
        // reaching that instruction.
        if (onlyUsesFP(UseMI, MRI, TRI)) {
          OpRegBankIdx[0] = PMI_FirstFPR;
          break;
        }
      }
    break;
  case TargetOpcode::G_STORE:
    // Check if that store is fed by fp instructions.
    if (OpRegBankIdx[0] == PMI_FirstGPR) {
      Register VReg = MI.getOperand(0).getReg();
      if (!VReg)
        break;
      MachineInstr *DefMI = MRI.getVRegDef(VReg);
      if (onlyDefinesFP(*DefMI, MRI, TRI))
        OpRegBankIdx[0] = PMI_FirstFPR;
      break;
    }
    break;
  case TargetOpcode::G_SELECT: {
    // If the destination is FPR, preserve that.
    if (OpRegBankIdx[0] != PMI_FirstGPR)
      break;

    // If we're taking in vectors, we have no choice but to put everything on
    // FPRs, except for the condition. The condition must always be on a GPR.
    LLT SrcTy = MRI.getType(MI.getOperand(2).getReg());
    if (SrcTy.isVector()) {
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR};
      break;
    }

    // Try to minimize the number of copies. If we have more floating point
    // constrained values than not, then we'll put everything on FPR. Otherwise,
    // everything has to be on GPR.
    unsigned NumFP = 0;

    // Check if the uses of the result always produce floating point values.
    //
    // For example:
    //
    // %z = G_SELECT %cond %x %y
    // fpr = G_FOO %z ...
    if (any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
               [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); }))
      ++NumFP;

    // Check if the defs of the source values always produce floating point
    // values.
    //
    // For example:
    //
    // %x = G_SOMETHING_ALWAYS_FLOAT %a ...
    // %z = G_SELECT %cond %x %y
    //
    // Also check whether or not the sources have already been decided to be
    // FPR. Keep track of this.
    //
    // This doesn't check the condition, since it's just whatever is in NZCV.
    // This isn't passed explicitly in a register to fcsel/csel.
    for (unsigned Idx = 2; Idx < 4; ++Idx) {
      Register VReg = MI.getOperand(Idx).getReg();
      MachineInstr *DefMI = MRI.getVRegDef(VReg);
      if (getRegBank(VReg, MRI, TRI) == &AArch64::FPRRegBank ||
          onlyDefinesFP(*DefMI, MRI, TRI))
        ++NumFP;
    }

    // If we have more FP constraints than not, then move everything over to
    // FPR.
    if (NumFP >= 2)
      OpRegBankIdx = {PMI_FirstFPR, PMI_FirstGPR, PMI_FirstFPR, PMI_FirstFPR};

    break;
  }
  case TargetOpcode::G_UNMERGE_VALUES: {
    // If the first operand belongs to a FPR register bank, then make sure that
    // we preserve that.
    if (OpRegBankIdx[0] != PMI_FirstGPR)
      break;

    LLT SrcTy = MRI.getType(MI.getOperand(MI.getNumOperands()-1).getReg());
    // UNMERGE into scalars from a vector should always use FPR.
    // Likewise if any of the uses are FP instructions.
    if (SrcTy.isVector() || SrcTy == LLT::scalar(128) ||
        any_of(MRI.use_nodbg_instructions(MI.getOperand(0).getReg()),
               [&](MachineInstr &MI) { return onlyUsesFP(MI, MRI, TRI); })) {
      // Set the register bank of every operand to FPR.
      for (unsigned Idx = 0, NumOperands = MI.getNumOperands();
           Idx < NumOperands; ++Idx)
        OpRegBankIdx[Idx] = PMI_FirstFPR;
    }
    break;
  }
  case TargetOpcode::G_EXTRACT_VECTOR_ELT:
    // Destination and source need to be FPRs.
    OpRegBankIdx[0] = PMI_FirstFPR;
    OpRegBankIdx[1] = PMI_FirstFPR;

    // Index needs to be a GPR.
    OpRegBankIdx[2] = PMI_FirstGPR;
    break;
  case TargetOpcode::G_INSERT_VECTOR_ELT:
    OpRegBankIdx[0] = PMI_FirstFPR;
    OpRegBankIdx[1] = PMI_FirstFPR;

    // The element may be either a GPR or FPR. Preserve that behaviour.
    if (getRegBank(MI.getOperand(2).getReg(), MRI, TRI) == &AArch64::FPRRegBank)
      OpRegBankIdx[2] = PMI_FirstFPR;
    else
      OpRegBankIdx[2] = PMI_FirstGPR;

    // Index needs to be a GPR.
    OpRegBankIdx[3] = PMI_FirstGPR;
    break;
  case TargetOpcode::G_EXTRACT: {
    // For s128 sources we have to use fpr.
    LLT SrcTy = MRI.getType(MI.getOperand(1).getReg());
    if (SrcTy.getSizeInBits() == 128) {
      OpRegBankIdx[0] = PMI_FirstFPR;
      OpRegBankIdx[1] = PMI_FirstFPR;
    }
    break;
  }
  case TargetOpcode::G_BUILD_VECTOR:
    // If the first source operand belongs to a FPR register bank, then make
    // sure that we preserve that.
    if (OpRegBankIdx[1] != PMI_FirstGPR)
      break;
    Register VReg = MI.getOperand(1).getReg();
    if (!VReg)
      break;

    // Get the instruction that defined the source operand reg, and check if
    // it's a floating point operation. Or, if it's a type like s16 which
    // doesn't have a exact size gpr register class.
    MachineInstr *DefMI = MRI.getVRegDef(VReg);
    unsigned DefOpc = DefMI->getOpcode();
    const LLT SrcTy = MRI.getType(VReg);
    if (isPreISelGenericFloatingPointOpcode(DefOpc) ||
        SrcTy.getSizeInBits() < 32) {
      // Have a floating point op.
      // Make sure every operand gets mapped to a FPR register class.
      unsigned NumOperands = MI.getNumOperands();
      for (unsigned Idx = 0; Idx < NumOperands; ++Idx)
        OpRegBankIdx[Idx] = PMI_FirstFPR;
    }
    break;
  }

  // Finally construct the computed mapping.
  SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
  for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
    if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
      auto Mapping = getValueMapping(OpRegBankIdx[Idx], OpSize[Idx]);
      if (!Mapping->isValid())
        return getInvalidInstructionMapping();

      OpdsMapping[Idx] = Mapping;
    }
  }

  return getInstructionMapping(DefaultMappingID, Cost,
                               getOperandsMapping(OpdsMapping), NumOperands);
}