AArch64TargetTransformInfo.cpp 42.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
//===-- AArch64TargetTransformInfo.cpp - AArch64 specific TTI -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "AArch64ExpandImm.h"
#include "AArch64TargetTransformInfo.h"
#include "MCTargetDesc/AArch64AddressingModes.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/Support/Debug.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "aarch64tti"

static cl::opt<bool> EnableFalkorHWPFUnrollFix("enable-falkor-hwpf-unroll-fix",
                                               cl::init(true), cl::Hidden);

bool AArch64TTIImpl::areInlineCompatible(const Function *Caller,
                                         const Function *Callee) const {
  const TargetMachine &TM = getTLI()->getTargetMachine();

  const FeatureBitset &CallerBits =
      TM.getSubtargetImpl(*Caller)->getFeatureBits();
  const FeatureBitset &CalleeBits =
      TM.getSubtargetImpl(*Callee)->getFeatureBits();

  // Inline a callee if its target-features are a subset of the callers
  // target-features.
  return (CallerBits & CalleeBits) == CalleeBits;
}

/// Calculate the cost of materializing a 64-bit value. This helper
/// method might only calculate a fraction of a larger immediate. Therefore it
/// is valid to return a cost of ZERO.
int AArch64TTIImpl::getIntImmCost(int64_t Val) {
  // Check if the immediate can be encoded within an instruction.
  if (Val == 0 || AArch64_AM::isLogicalImmediate(Val, 64))
    return 0;

  if (Val < 0)
    Val = ~Val;

  // Calculate how many moves we will need to materialize this constant.
  SmallVector<AArch64_IMM::ImmInsnModel, 4> Insn;
  AArch64_IMM::expandMOVImm(Val, 64, Insn);
  return Insn.size();
}

/// Calculate the cost of materializing the given constant.
int AArch64TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
                                  TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  if (BitSize == 0)
    return ~0U;

  // Sign-extend all constants to a multiple of 64-bit.
  APInt ImmVal = Imm;
  if (BitSize & 0x3f)
    ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);

  // Split the constant into 64-bit chunks and calculate the cost for each
  // chunk.
  int Cost = 0;
  for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
    APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
    int64_t Val = Tmp.getSExtValue();
    Cost += getIntImmCost(Val);
  }
  // We need at least one instruction to materialze the constant.
  return std::max(1, Cost);
}

int AArch64TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
                                      const APInt &Imm, Type *Ty,
                                      TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  unsigned ImmIdx = ~0U;
  switch (Opcode) {
  default:
    return TTI::TCC_Free;
  case Instruction::GetElementPtr:
    // Always hoist the base address of a GetElementPtr.
    if (Idx == 0)
      return 2 * TTI::TCC_Basic;
    return TTI::TCC_Free;
  case Instruction::Store:
    ImmIdx = 0;
    break;
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
  case Instruction::UDiv:
  case Instruction::SDiv:
  case Instruction::URem:
  case Instruction::SRem:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::ICmp:
    ImmIdx = 1;
    break;
  // Always return TCC_Free for the shift value of a shift instruction.
  case Instruction::Shl:
  case Instruction::LShr:
  case Instruction::AShr:
    if (Idx == 1)
      return TTI::TCC_Free;
    break;
  case Instruction::Trunc:
  case Instruction::ZExt:
  case Instruction::SExt:
  case Instruction::IntToPtr:
  case Instruction::PtrToInt:
  case Instruction::BitCast:
  case Instruction::PHI:
  case Instruction::Call:
  case Instruction::Select:
  case Instruction::Ret:
  case Instruction::Load:
    break;
  }

  if (Idx == ImmIdx) {
    int NumConstants = (BitSize + 63) / 64;
    int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
    return (Cost <= NumConstants * TTI::TCC_Basic)
               ? static_cast<int>(TTI::TCC_Free)
               : Cost;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

int AArch64TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
                                        const APInt &Imm, Type *Ty,
                                        TTI::TargetCostKind CostKind) {
  assert(Ty->isIntegerTy());

  unsigned BitSize = Ty->getPrimitiveSizeInBits();
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
  // here, so that constant hoisting will ignore this constant.
  if (BitSize == 0)
    return TTI::TCC_Free;

  // Most (all?) AArch64 intrinsics do not support folding immediates into the
  // selected instruction, so we compute the materialization cost for the
  // immediate directly.
  if (IID >= Intrinsic::aarch64_addg && IID <= Intrinsic::aarch64_udiv)
    return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);

  switch (IID) {
  default:
    return TTI::TCC_Free;
  case Intrinsic::sadd_with_overflow:
  case Intrinsic::uadd_with_overflow:
  case Intrinsic::ssub_with_overflow:
  case Intrinsic::usub_with_overflow:
  case Intrinsic::smul_with_overflow:
  case Intrinsic::umul_with_overflow:
    if (Idx == 1) {
      int NumConstants = (BitSize + 63) / 64;
      int Cost = AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
      return (Cost <= NumConstants * TTI::TCC_Basic)
                 ? static_cast<int>(TTI::TCC_Free)
                 : Cost;
    }
    break;
  case Intrinsic::experimental_stackmap:
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  case Intrinsic::experimental_patchpoint_void:
  case Intrinsic::experimental_patchpoint_i64:
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
      return TTI::TCC_Free;
    break;
  }
  return AArch64TTIImpl::getIntImmCost(Imm, Ty, CostKind);
}

TargetTransformInfo::PopcntSupportKind
AArch64TTIImpl::getPopcntSupport(unsigned TyWidth) {
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
  if (TyWidth == 32 || TyWidth == 64)
    return TTI::PSK_FastHardware;
  // TODO: AArch64TargetLowering::LowerCTPOP() supports 128bit popcount.
  return TTI::PSK_Software;
}

bool AArch64TTIImpl::isWideningInstruction(Type *DstTy, unsigned Opcode,
                                           ArrayRef<const Value *> Args) {

  // A helper that returns a vector type from the given type. The number of
  // elements in type Ty determine the vector width.
  auto toVectorTy = [&](Type *ArgTy) {
    return FixedVectorType::get(ArgTy->getScalarType(),
                                cast<FixedVectorType>(DstTy)->getNumElements());
  };

  // Exit early if DstTy is not a vector type whose elements are at least
  // 16-bits wide.
  if (!DstTy->isVectorTy() || DstTy->getScalarSizeInBits() < 16)
    return false;

  // Determine if the operation has a widening variant. We consider both the
  // "long" (e.g., usubl) and "wide" (e.g., usubw) versions of the
  // instructions.
  //
  // TODO: Add additional widening operations (e.g., mul, shl, etc.) once we
  //       verify that their extending operands are eliminated during code
  //       generation.
  switch (Opcode) {
  case Instruction::Add: // UADDL(2), SADDL(2), UADDW(2), SADDW(2).
  case Instruction::Sub: // USUBL(2), SSUBL(2), USUBW(2), SSUBW(2).
    break;
  default:
    return false;
  }

  // To be a widening instruction (either the "wide" or "long" versions), the
  // second operand must be a sign- or zero extend having a single user. We
  // only consider extends having a single user because they may otherwise not
  // be eliminated.
  if (Args.size() != 2 ||
      (!isa<SExtInst>(Args[1]) && !isa<ZExtInst>(Args[1])) ||
      !Args[1]->hasOneUse())
    return false;
  auto *Extend = cast<CastInst>(Args[1]);

  // Legalize the destination type and ensure it can be used in a widening
  // operation.
  auto DstTyL = TLI->getTypeLegalizationCost(DL, DstTy);
  unsigned DstElTySize = DstTyL.second.getScalarSizeInBits();
  if (!DstTyL.second.isVector() || DstElTySize != DstTy->getScalarSizeInBits())
    return false;

  // Legalize the source type and ensure it can be used in a widening
  // operation.
  auto *SrcTy = toVectorTy(Extend->getSrcTy());
  auto SrcTyL = TLI->getTypeLegalizationCost(DL, SrcTy);
  unsigned SrcElTySize = SrcTyL.second.getScalarSizeInBits();
  if (!SrcTyL.second.isVector() || SrcElTySize != SrcTy->getScalarSizeInBits())
    return false;

  // Get the total number of vector elements in the legalized types.
  unsigned NumDstEls = DstTyL.first * DstTyL.second.getVectorNumElements();
  unsigned NumSrcEls = SrcTyL.first * SrcTyL.second.getVectorNumElements();

  // Return true if the legalized types have the same number of vector elements
  // and the destination element type size is twice that of the source type.
  return NumDstEls == NumSrcEls && 2 * SrcElTySize == DstElTySize;
}

int AArch64TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
                                     TTI::TargetCostKind CostKind,
                                     const Instruction *I) {
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // If the cast is observable, and it is used by a widening instruction (e.g.,
  // uaddl, saddw, etc.), it may be free.
  if (I && I->hasOneUse()) {
    auto *SingleUser = cast<Instruction>(*I->user_begin());
    SmallVector<const Value *, 4> Operands(SingleUser->operand_values());
    if (isWideningInstruction(Dst, SingleUser->getOpcode(), Operands)) {
      // If the cast is the second operand, it is free. We will generate either
      // a "wide" or "long" version of the widening instruction.
      if (I == SingleUser->getOperand(1))
        return 0;
      // If the cast is not the second operand, it will be free if it looks the
      // same as the second operand. In this case, we will generate a "long"
      // version of the widening instruction.
      if (auto *Cast = dyn_cast<CastInst>(SingleUser->getOperand(1)))
        if (I->getOpcode() == unsigned(Cast->getOpcode()) &&
            cast<CastInst>(I)->getSrcTy() == Cast->getSrcTy())
          return 0;
    }
  }

  // TODO: Allow non-throughput costs that aren't binary.
  auto AdjustCost = [&CostKind](int Cost) {
    if (CostKind != TTI::TCK_RecipThroughput)
      return Cost == 0 ? 0 : 1;
    return Cost;
  };

  EVT SrcTy = TLI->getValueType(DL, Src);
  EVT DstTy = TLI->getValueType(DL, Dst);

  if (!SrcTy.isSimple() || !DstTy.isSimple())
    return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I));

  static const TypeConversionCostTblEntry
  ConversionTbl[] = {
    { ISD::TRUNCATE, MVT::v4i16, MVT::v4i32,  1 },
    { ISD::TRUNCATE, MVT::v4i32, MVT::v4i64,  0 },
    { ISD::TRUNCATE, MVT::v8i8,  MVT::v8i32,  3 },
    { ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },

    // The number of shll instructions for the extension.
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  3 },
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 2 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,  7 },
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16, 6 },
    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 6 },
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 6 },

    // LowerVectorINT_TO_FP:
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },

    // Complex: to v2f32
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i8,  3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i16, 3 },
    { ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 2 },

    // Complex: to v4f32
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i8,  4 },
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i8,  3 },
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i16, 2 },

    // Complex: to v8f32
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i8,  10 },
    { ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },

    // Complex: to v16f32
    { ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },
    { ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 21 },

    // Complex: to v2f64
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i8,  4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i16, 4 },
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 2 },


    // LowerVectorFP_TO_INT
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },

    // Complex, from v2f32: legal type is v2i32 (no cost) or v2i64 (1 ext).
    { ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f32, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f32, 1 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f32, 1 },

    // Complex, from v4f32: legal type is v4i16, 1 narrowing => ~2
    { ISD::FP_TO_SINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_SINT, MVT::v4i8,  MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i16, MVT::v4f32, 2 },
    { ISD::FP_TO_UINT, MVT::v4i8,  MVT::v4f32, 2 },

    // Complex, from v2f64: legal type is v2i32, 1 narrowing => ~2.
    { ISD::FP_TO_SINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_SINT, MVT::v2i8,  MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i32, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i16, MVT::v2f64, 2 },
    { ISD::FP_TO_UINT, MVT::v2i8,  MVT::v2f64, 2 },
  };

  if (const auto *Entry = ConvertCostTableLookup(ConversionTbl, ISD,
                                                 DstTy.getSimpleVT(),
                                                 SrcTy.getSimpleVT()))
    return AdjustCost(Entry->Cost);

  return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I));
}

int AArch64TTIImpl::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
                                             VectorType *VecTy,
                                             unsigned Index) {

  // Make sure we were given a valid extend opcode.
  assert((Opcode == Instruction::SExt || Opcode == Instruction::ZExt) &&
         "Invalid opcode");

  // We are extending an element we extract from a vector, so the source type
  // of the extend is the element type of the vector.
  auto *Src = VecTy->getElementType();

  // Sign- and zero-extends are for integer types only.
  assert(isa<IntegerType>(Dst) && isa<IntegerType>(Src) && "Invalid type");

  // Get the cost for the extract. We compute the cost (if any) for the extend
  // below.
  auto Cost = getVectorInstrCost(Instruction::ExtractElement, VecTy, Index);

  // Legalize the types.
  auto VecLT = TLI->getTypeLegalizationCost(DL, VecTy);
  auto DstVT = TLI->getValueType(DL, Dst);
  auto SrcVT = TLI->getValueType(DL, Src);
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;

  // If the resulting type is still a vector and the destination type is legal,
  // we may get the extension for free. If not, get the default cost for the
  // extend.
  if (!VecLT.second.isVector() || !TLI->isTypeLegal(DstVT))
    return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind);

  // The destination type should be larger than the element type. If not, get
  // the default cost for the extend.
  if (DstVT.getSizeInBits() < SrcVT.getSizeInBits())
    return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind);

  switch (Opcode) {
  default:
    llvm_unreachable("Opcode should be either SExt or ZExt");

  // For sign-extends, we only need a smov, which performs the extension
  // automatically.
  case Instruction::SExt:
    return Cost;

  // For zero-extends, the extend is performed automatically by a umov unless
  // the destination type is i64 and the element type is i8 or i16.
  case Instruction::ZExt:
    if (DstVT.getSizeInBits() != 64u || SrcVT.getSizeInBits() == 32u)
      return Cost;
  }

  // If we are unable to perform the extend for free, get the default cost.
  return Cost + getCastInstrCost(Opcode, Dst, Src, CostKind);
}

unsigned AArch64TTIImpl::getCFInstrCost(unsigned Opcode,
                                        TTI::TargetCostKind CostKind) {
  if (CostKind != TTI::TCK_RecipThroughput)
    return Opcode == Instruction::PHI ? 0 : 1;
  assert(CostKind == TTI::TCK_RecipThroughput && "unexpected CostKind");
  // Branches are assumed to be predicted.
  return 0;
}

int AArch64TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
                                       unsigned Index) {
  assert(Val->isVectorTy() && "This must be a vector type");

  if (Index != -1U) {
    // Legalize the type.
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);

    // This type is legalized to a scalar type.
    if (!LT.second.isVector())
      return 0;

    // The type may be split. Normalize the index to the new type.
    unsigned Width = LT.second.getVectorNumElements();
    Index = Index % Width;

    // The element at index zero is already inside the vector.
    if (Index == 0)
      return 0;
  }

  // All other insert/extracts cost this much.
  return ST->getVectorInsertExtractBaseCost();
}

int AArch64TTIImpl::getArithmeticInstrCost(
    unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
    TTI::OperandValueKind Opd1Info,
    TTI::OperandValueKind Opd2Info, TTI::OperandValueProperties Opd1PropInfo,
    TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
    const Instruction *CxtI) {
  // TODO: Handle more cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
                                         Opd2Info, Opd1PropInfo,
                                         Opd2PropInfo, Args, CxtI);

  // Legalize the type.
  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);

  // If the instruction is a widening instruction (e.g., uaddl, saddw, etc.),
  // add in the widening overhead specified by the sub-target. Since the
  // extends feeding widening instructions are performed automatically, they
  // aren't present in the generated code and have a zero cost. By adding a
  // widening overhead here, we attach the total cost of the combined operation
  // to the widening instruction.
  int Cost = 0;
  if (isWideningInstruction(Ty, Opcode, Args))
    Cost += ST->getWideningBaseCost();

  int ISD = TLI->InstructionOpcodeToISD(Opcode);

  switch (ISD) {
  default:
    return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
                                                Opd2Info,
                                                Opd1PropInfo, Opd2PropInfo);
  case ISD::SDIV:
    if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue &&
        Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
      // On AArch64, scalar signed division by constants power-of-two are
      // normally expanded to the sequence ADD + CMP + SELECT + SRA.
      // The OperandValue properties many not be same as that of previous
      // operation; conservatively assume OP_None.
      Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
                                     Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind,
                                     Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::Select, Ty, CostKind,
                                     Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      Cost += getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
                                     Opd1Info, Opd2Info,
                                     TargetTransformInfo::OP_None,
                                     TargetTransformInfo::OP_None);
      return Cost;
    }
    LLVM_FALLTHROUGH;
  case ISD::UDIV:
    if (Opd2Info == TargetTransformInfo::OK_UniformConstantValue) {
      auto VT = TLI->getValueType(DL, Ty);
      if (TLI->isOperationLegalOrCustom(ISD::MULHU, VT)) {
        // Vector signed division by constant are expanded to the
        // sequence MULHS + ADD/SUB + SRA + SRL + ADD, and unsigned division
        // to MULHS + SUB + SRL + ADD + SRL.
        int MulCost = getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
                                             Opd1Info, Opd2Info,
                                             TargetTransformInfo::OP_None,
                                             TargetTransformInfo::OP_None);
        int AddCost = getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
                                             Opd1Info, Opd2Info,
                                             TargetTransformInfo::OP_None,
                                             TargetTransformInfo::OP_None);
        int ShrCost = getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
                                             Opd1Info, Opd2Info,
                                             TargetTransformInfo::OP_None,
                                             TargetTransformInfo::OP_None);
        return MulCost * 2 + AddCost * 2 + ShrCost * 2 + 1;
      }
    }

    Cost += BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
                                          Opd2Info,
                                          Opd1PropInfo, Opd2PropInfo);
    if (Ty->isVectorTy()) {
      // On AArch64, vector divisions are not supported natively and are
      // expanded into scalar divisions of each pair of elements.
      Cost += getArithmeticInstrCost(Instruction::ExtractElement, Ty, CostKind,
                                     Opd1Info, Opd2Info, Opd1PropInfo,
                                     Opd2PropInfo);
      Cost += getArithmeticInstrCost(Instruction::InsertElement, Ty, CostKind,
                                     Opd1Info, Opd2Info, Opd1PropInfo,
                                     Opd2PropInfo);
      // TODO: if one of the arguments is scalar, then it's not necessary to
      // double the cost of handling the vector elements.
      Cost += Cost;
    }
    return Cost;

  case ISD::ADD:
  case ISD::MUL:
  case ISD::XOR:
  case ISD::OR:
  case ISD::AND:
    // These nodes are marked as 'custom' for combining purposes only.
    // We know that they are legal. See LowerAdd in ISelLowering.
    return (Cost + 1) * LT.first;

  case ISD::FADD:
    // These nodes are marked as 'custom' just to lower them to SVE.
    // We know said lowering will incur no additional cost.
    if (isa<FixedVectorType>(Ty) && !Ty->getScalarType()->isFP128Ty())
      return (Cost + 2) * LT.first;

    return Cost + BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Opd1Info,
                                                Opd2Info,
                                                Opd1PropInfo, Opd2PropInfo);
  }
}

int AArch64TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
                                              const SCEV *Ptr) {
  // Address computations in vectorized code with non-consecutive addresses will
  // likely result in more instructions compared to scalar code where the
  // computation can more often be merged into the index mode. The resulting
  // extra micro-ops can significantly decrease throughput.
  unsigned NumVectorInstToHideOverhead = 10;
  int MaxMergeDistance = 64;

  if (Ty->isVectorTy() && SE &&
      !BaseT::isConstantStridedAccessLessThan(SE, Ptr, MaxMergeDistance + 1))
    return NumVectorInstToHideOverhead;

  // In many cases the address computation is not merged into the instruction
  // addressing mode.
  return 1;
}

int AArch64TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
                                       Type *CondTy,
                                       TTI::TargetCostKind CostKind,
                                       const Instruction *I) {
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);

  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  // We don't lower some vector selects well that are wider than the register
  // width.
  if (ValTy->isVectorTy() && ISD == ISD::SELECT) {
    // We would need this many instructions to hide the scalarization happening.
    const int AmortizationCost = 20;
    static const TypeConversionCostTblEntry
    VectorSelectTbl[] = {
      { ISD::SELECT, MVT::v16i1, MVT::v16i16, 16 },
      { ISD::SELECT, MVT::v8i1, MVT::v8i32, 8 },
      { ISD::SELECT, MVT::v16i1, MVT::v16i32, 16 },
      { ISD::SELECT, MVT::v4i1, MVT::v4i64, 4 * AmortizationCost },
      { ISD::SELECT, MVT::v8i1, MVT::v8i64, 8 * AmortizationCost },
      { ISD::SELECT, MVT::v16i1, MVT::v16i64, 16 * AmortizationCost }
    };

    EVT SelCondTy = TLI->getValueType(DL, CondTy);
    EVT SelValTy = TLI->getValueType(DL, ValTy);
    if (SelCondTy.isSimple() && SelValTy.isSimple()) {
      if (const auto *Entry = ConvertCostTableLookup(VectorSelectTbl, ISD,
                                                     SelCondTy.getSimpleVT(),
                                                     SelValTy.getSimpleVT()))
        return Entry->Cost;
    }
  }
  return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind, I);
}

AArch64TTIImpl::TTI::MemCmpExpansionOptions
AArch64TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
  TTI::MemCmpExpansionOptions Options;
  if (ST->requiresStrictAlign()) {
    // TODO: Add cost modeling for strict align. Misaligned loads expand to
    // a bunch of instructions when strict align is enabled.
    return Options;
  }
  Options.AllowOverlappingLoads = true;
  Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
  Options.NumLoadsPerBlock = Options.MaxNumLoads;
  // TODO: Though vector loads usually perform well on AArch64, in some targets
  // they may wake up the FP unit, which raises the power consumption.  Perhaps
  // they could be used with no holds barred (-O3).
  Options.LoadSizes = {8, 4, 2, 1};
  return Options;
}

int AArch64TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Ty,
                                    MaybeAlign Alignment, unsigned AddressSpace,
                                    TTI::TargetCostKind CostKind,
                                    const Instruction *I) {
  // TODO: Handle other cost kinds.
  if (CostKind != TTI::TCK_RecipThroughput)
    return 1;

  // Type legalization can't handle structs
  if (TLI->getValueType(DL, Ty,  true) == MVT::Other)
    return BaseT::getMemoryOpCost(Opcode, Ty, Alignment, AddressSpace,
                                  CostKind);

  auto LT = TLI->getTypeLegalizationCost(DL, Ty);

  if (ST->isMisaligned128StoreSlow() && Opcode == Instruction::Store &&
      LT.second.is128BitVector() && (!Alignment || *Alignment < Align(16))) {
    // Unaligned stores are extremely inefficient. We don't split all
    // unaligned 128-bit stores because the negative impact that has shown in
    // practice on inlined block copy code.
    // We make such stores expensive so that we will only vectorize if there
    // are 6 other instructions getting vectorized.
    const int AmortizationCost = 6;

    return LT.first * 2 * AmortizationCost;
  }

  if (Ty->isVectorTy() &&
      cast<VectorType>(Ty)->getElementType()->isIntegerTy(8)) {
    unsigned ProfitableNumElements;
    if (Opcode == Instruction::Store)
      // We use a custom trunc store lowering so v.4b should be profitable.
      ProfitableNumElements = 4;
    else
      // We scalarize the loads because there is not v.4b register and we
      // have to promote the elements to v.2.
      ProfitableNumElements = 8;

    if (cast<FixedVectorType>(Ty)->getNumElements() < ProfitableNumElements) {
      unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
      unsigned NumVectorizableInstsToAmortize = NumVecElts * 2;
      // We generate 2 instructions per vector element.
      return NumVectorizableInstsToAmortize * NumVecElts * 2;
    }
  }

  return LT.first;
}

int AArch64TTIImpl::getInterleavedMemoryOpCost(
    unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
    Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
    bool UseMaskForCond, bool UseMaskForGaps) {
  assert(Factor >= 2 && "Invalid interleave factor");
  auto *VecVTy = cast<FixedVectorType>(VecTy);

  if (!UseMaskForCond && !UseMaskForGaps &&
      Factor <= TLI->getMaxSupportedInterleaveFactor()) {
    unsigned NumElts = VecVTy->getNumElements();
    auto *SubVecTy =
        FixedVectorType::get(VecTy->getScalarType(), NumElts / Factor);

    // ldN/stN only support legal vector types of size 64 or 128 in bits.
    // Accesses having vector types that are a multiple of 128 bits can be
    // matched to more than one ldN/stN instruction.
    if (NumElts % Factor == 0 &&
        TLI->isLegalInterleavedAccessType(SubVecTy, DL))
      return Factor * TLI->getNumInterleavedAccesses(SubVecTy, DL);
  }

  return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
                                           Alignment, AddressSpace, CostKind,
                                           UseMaskForCond, UseMaskForGaps);
}

int AArch64TTIImpl::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) {
  int Cost = 0;
  TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
  for (auto *I : Tys) {
    if (!I->isVectorTy())
      continue;
    if (I->getScalarSizeInBits() * cast<FixedVectorType>(I)->getNumElements() ==
        128)
      Cost += getMemoryOpCost(Instruction::Store, I, Align(128), 0, CostKind) +
              getMemoryOpCost(Instruction::Load, I, Align(128), 0, CostKind);
  }
  return Cost;
}

unsigned AArch64TTIImpl::getMaxInterleaveFactor(unsigned VF) {
  return ST->getMaxInterleaveFactor();
}

// For Falkor, we want to avoid having too many strided loads in a loop since
// that can exhaust the HW prefetcher resources.  We adjust the unroller
// MaxCount preference below to attempt to ensure unrolling doesn't create too
// many strided loads.
static void
getFalkorUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                              TargetTransformInfo::UnrollingPreferences &UP) {
  enum { MaxStridedLoads = 7 };
  auto countStridedLoads = [](Loop *L, ScalarEvolution &SE) {
    int StridedLoads = 0;
    // FIXME? We could make this more precise by looking at the CFG and
    // e.g. not counting loads in each side of an if-then-else diamond.
    for (const auto BB : L->blocks()) {
      for (auto &I : *BB) {
        LoadInst *LMemI = dyn_cast<LoadInst>(&I);
        if (!LMemI)
          continue;

        Value *PtrValue = LMemI->getPointerOperand();
        if (L->isLoopInvariant(PtrValue))
          continue;

        const SCEV *LSCEV = SE.getSCEV(PtrValue);
        const SCEVAddRecExpr *LSCEVAddRec = dyn_cast<SCEVAddRecExpr>(LSCEV);
        if (!LSCEVAddRec || !LSCEVAddRec->isAffine())
          continue;

        // FIXME? We could take pairing of unrolled load copies into account
        // by looking at the AddRec, but we would probably have to limit this
        // to loops with no stores or other memory optimization barriers.
        ++StridedLoads;
        // We've seen enough strided loads that seeing more won't make a
        // difference.
        if (StridedLoads > MaxStridedLoads / 2)
          return StridedLoads;
      }
    }
    return StridedLoads;
  };

  int StridedLoads = countStridedLoads(L, SE);
  LLVM_DEBUG(dbgs() << "falkor-hwpf: detected " << StridedLoads
                    << " strided loads\n");
  // Pick the largest power of 2 unroll count that won't result in too many
  // strided loads.
  if (StridedLoads) {
    UP.MaxCount = 1 << Log2_32(MaxStridedLoads / StridedLoads);
    LLVM_DEBUG(dbgs() << "falkor-hwpf: setting unroll MaxCount to "
                      << UP.MaxCount << '\n');
  }
}

void AArch64TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
                                             TTI::UnrollingPreferences &UP) {
  // Enable partial unrolling and runtime unrolling.
  BaseT::getUnrollingPreferences(L, SE, UP);

  // For inner loop, it is more likely to be a hot one, and the runtime check
  // can be promoted out from LICM pass, so the overhead is less, let's try
  // a larger threshold to unroll more loops.
  if (L->getLoopDepth() > 1)
    UP.PartialThreshold *= 2;

  // Disable partial & runtime unrolling on -Os.
  UP.PartialOptSizeThreshold = 0;

  if (ST->getProcFamily() == AArch64Subtarget::Falkor &&
      EnableFalkorHWPFUnrollFix)
    getFalkorUnrollingPreferences(L, SE, UP);
}

void AArch64TTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
                                           TTI::PeelingPreferences &PP) {
  BaseT::getPeelingPreferences(L, SE, PP);
}

Value *AArch64TTIImpl::getOrCreateResultFromMemIntrinsic(IntrinsicInst *Inst,
                                                         Type *ExpectedType) {
  switch (Inst->getIntrinsicID()) {
  default:
    return nullptr;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4: {
    // Create a struct type
    StructType *ST = dyn_cast<StructType>(ExpectedType);
    if (!ST)
      return nullptr;
    unsigned NumElts = Inst->getNumArgOperands() - 1;
    if (ST->getNumElements() != NumElts)
      return nullptr;
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      if (Inst->getArgOperand(i)->getType() != ST->getElementType(i))
        return nullptr;
    }
    Value *Res = UndefValue::get(ExpectedType);
    IRBuilder<> Builder(Inst);
    for (unsigned i = 0, e = NumElts; i != e; ++i) {
      Value *L = Inst->getArgOperand(i);
      Res = Builder.CreateInsertValue(Res, L, i);
    }
    return Res;
  }
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    if (Inst->getType() == ExpectedType)
      return Inst;
    return nullptr;
  }
}

bool AArch64TTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
                                        MemIntrinsicInfo &Info) {
  switch (Inst->getIntrinsicID()) {
  default:
    break;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_ld4:
    Info.ReadMem = true;
    Info.WriteMem = false;
    Info.PtrVal = Inst->getArgOperand(0);
    break;
  case Intrinsic::aarch64_neon_st2:
  case Intrinsic::aarch64_neon_st3:
  case Intrinsic::aarch64_neon_st4:
    Info.ReadMem = false;
    Info.WriteMem = true;
    Info.PtrVal = Inst->getArgOperand(Inst->getNumArgOperands() - 1);
    break;
  }

  switch (Inst->getIntrinsicID()) {
  default:
    return false;
  case Intrinsic::aarch64_neon_ld2:
  case Intrinsic::aarch64_neon_st2:
    Info.MatchingId = VECTOR_LDST_TWO_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld3:
  case Intrinsic::aarch64_neon_st3:
    Info.MatchingId = VECTOR_LDST_THREE_ELEMENTS;
    break;
  case Intrinsic::aarch64_neon_ld4:
  case Intrinsic::aarch64_neon_st4:
    Info.MatchingId = VECTOR_LDST_FOUR_ELEMENTS;
    break;
  }
  return true;
}

/// See if \p I should be considered for address type promotion. We check if \p
/// I is a sext with right type and used in memory accesses. If it used in a
/// "complex" getelementptr, we allow it to be promoted without finding other
/// sext instructions that sign extended the same initial value. A getelementptr
/// is considered as "complex" if it has more than 2 operands.
bool AArch64TTIImpl::shouldConsiderAddressTypePromotion(
    const Instruction &I, bool &AllowPromotionWithoutCommonHeader) {
  bool Considerable = false;
  AllowPromotionWithoutCommonHeader = false;
  if (!isa<SExtInst>(&I))
    return false;
  Type *ConsideredSExtType =
      Type::getInt64Ty(I.getParent()->getParent()->getContext());
  if (I.getType() != ConsideredSExtType)
    return false;
  // See if the sext is the one with the right type and used in at least one
  // GetElementPtrInst.
  for (const User *U : I.users()) {
    if (const GetElementPtrInst *GEPInst = dyn_cast<GetElementPtrInst>(U)) {
      Considerable = true;
      // A getelementptr is considered as "complex" if it has more than 2
      // operands. We will promote a SExt used in such complex GEP as we
      // expect some computation to be merged if they are done on 64 bits.
      if (GEPInst->getNumOperands() > 2) {
        AllowPromotionWithoutCommonHeader = true;
        break;
      }
    }
  }
  return Considerable;
}

bool AArch64TTIImpl::useReductionIntrinsic(unsigned Opcode, Type *Ty,
                                           TTI::ReductionFlags Flags) const {
  auto *VTy = cast<VectorType>(Ty);
  unsigned ScalarBits = Ty->getScalarSizeInBits();
  switch (Opcode) {
  case Instruction::FAdd:
  case Instruction::FMul:
  case Instruction::And:
  case Instruction::Or:
  case Instruction::Xor:
  case Instruction::Mul:
    return false;
  case Instruction::Add:
    return ScalarBits * cast<FixedVectorType>(VTy)->getNumElements() >= 128;
  case Instruction::ICmp:
    return (ScalarBits < 64) &&
           (ScalarBits * cast<FixedVectorType>(VTy)->getNumElements() >= 128);
  case Instruction::FCmp:
    return Flags.NoNaN;
  default:
    llvm_unreachable("Unhandled reduction opcode");
  }
  return false;
}

int AArch64TTIImpl::getArithmeticReductionCost(unsigned Opcode,
                                               VectorType *ValTy,
                                               bool IsPairwiseForm,
                                               TTI::TargetCostKind CostKind) {

  if (IsPairwiseForm)
    return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm,
                                             CostKind);

  std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
  MVT MTy = LT.second;
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
  assert(ISD && "Invalid opcode");

  // Horizontal adds can use the 'addv' instruction. We model the cost of these
  // instructions as normal vector adds. This is the only arithmetic vector
  // reduction operation for which we have an instruction.
  static const CostTblEntry CostTblNoPairwise[]{
      {ISD::ADD, MVT::v8i8,  1},
      {ISD::ADD, MVT::v16i8, 1},
      {ISD::ADD, MVT::v4i16, 1},
      {ISD::ADD, MVT::v8i16, 1},
      {ISD::ADD, MVT::v4i32, 1},
  };

  if (const auto *Entry = CostTableLookup(CostTblNoPairwise, ISD, MTy))
    return LT.first * Entry->Cost;

  return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwiseForm,
                                           CostKind);
}

int AArch64TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
                                   int Index, VectorType *SubTp) {
  if (Kind == TTI::SK_Broadcast || Kind == TTI::SK_Transpose ||
      Kind == TTI::SK_Select || Kind == TTI::SK_PermuteSingleSrc) {
    static const CostTblEntry ShuffleTbl[] = {
      // Broadcast shuffle kinds can be performed with 'dup'.
      { TTI::SK_Broadcast, MVT::v8i8,  1 },
      { TTI::SK_Broadcast, MVT::v16i8, 1 },
      { TTI::SK_Broadcast, MVT::v4i16, 1 },
      { TTI::SK_Broadcast, MVT::v8i16, 1 },
      { TTI::SK_Broadcast, MVT::v2i32, 1 },
      { TTI::SK_Broadcast, MVT::v4i32, 1 },
      { TTI::SK_Broadcast, MVT::v2i64, 1 },
      { TTI::SK_Broadcast, MVT::v2f32, 1 },
      { TTI::SK_Broadcast, MVT::v4f32, 1 },
      { TTI::SK_Broadcast, MVT::v2f64, 1 },
      // Transpose shuffle kinds can be performed with 'trn1/trn2' and
      // 'zip1/zip2' instructions.
      { TTI::SK_Transpose, MVT::v8i8,  1 },
      { TTI::SK_Transpose, MVT::v16i8, 1 },
      { TTI::SK_Transpose, MVT::v4i16, 1 },
      { TTI::SK_Transpose, MVT::v8i16, 1 },
      { TTI::SK_Transpose, MVT::v2i32, 1 },
      { TTI::SK_Transpose, MVT::v4i32, 1 },
      { TTI::SK_Transpose, MVT::v2i64, 1 },
      { TTI::SK_Transpose, MVT::v2f32, 1 },
      { TTI::SK_Transpose, MVT::v4f32, 1 },
      { TTI::SK_Transpose, MVT::v2f64, 1 },
      // Select shuffle kinds.
      // TODO: handle vXi8/vXi16.
      { TTI::SK_Select, MVT::v2i32, 1 }, // mov.
      { TTI::SK_Select, MVT::v4i32, 2 }, // rev+trn (or similar).
      { TTI::SK_Select, MVT::v2i64, 1 }, // mov.
      { TTI::SK_Select, MVT::v2f32, 1 }, // mov.
      { TTI::SK_Select, MVT::v4f32, 2 }, // rev+trn (or similar).
      { TTI::SK_Select, MVT::v2f64, 1 }, // mov.
      // PermuteSingleSrc shuffle kinds.
      // TODO: handle vXi8/vXi16.
      { TTI::SK_PermuteSingleSrc, MVT::v2i32, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v4i32, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v2i64, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v2f32, 1 }, // mov.
      { TTI::SK_PermuteSingleSrc, MVT::v4f32, 3 }, // perfectshuffle worst case.
      { TTI::SK_PermuteSingleSrc, MVT::v2f64, 1 }, // mov.
    };
    std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Tp);
    if (const auto *Entry = CostTableLookup(ShuffleTbl, Kind, LT.second))
      return LT.first * Entry->Cost;
  }

  return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}