AArch64PromoteConstant.cpp 22.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
//==- AArch64PromoteConstant.cpp - Promote constant to global for AArch64 --==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64PromoteConstant pass which promotes constants
// to global variables when this is likely to be more efficient. Currently only
// types related to constant vector (i.e., constant vector, array of constant
// vectors, constant structure with a constant vector field, etc.) are promoted
// to global variables. Constant vectors are likely to be lowered in target
// constant pool during instruction selection already; therefore, the access
// will remain the same (memory load), but the structure types are not split
// into different constant pool accesses for each field. A bonus side effect is
// that created globals may be merged by the global merge pass.
//
// FIXME: This pass may be useful for other targets too.
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "aarch64-promote-const"

// Stress testing mode - disable heuristics.
static cl::opt<bool> Stress("aarch64-stress-promote-const", cl::Hidden,
                            cl::desc("Promote all vector constants"));

STATISTIC(NumPromoted, "Number of promoted constants");
STATISTIC(NumPromotedUses, "Number of promoted constants uses");

//===----------------------------------------------------------------------===//
//                       AArch64PromoteConstant
//===----------------------------------------------------------------------===//

namespace {

/// Promotes interesting constant into global variables.
/// The motivating example is:
/// static const uint16_t TableA[32] = {
///   41944, 40330, 38837, 37450, 36158, 34953, 33826, 32768,
///   31776, 30841, 29960, 29128, 28340, 27595, 26887, 26215,
///   25576, 24967, 24386, 23832, 23302, 22796, 22311, 21846,
///   21400, 20972, 20561, 20165, 19785, 19419, 19066, 18725,
/// };
///
/// uint8x16x4_t LoadStatic(void) {
///   uint8x16x4_t ret;
///   ret.val[0] = vld1q_u16(TableA +  0);
///   ret.val[1] = vld1q_u16(TableA +  8);
///   ret.val[2] = vld1q_u16(TableA + 16);
///   ret.val[3] = vld1q_u16(TableA + 24);
///   return ret;
/// }
///
/// The constants in this example are folded into the uses. Thus, 4 different
/// constants are created.
///
/// As their type is vector the cheapest way to create them is to load them
/// for the memory.
///
/// Therefore the final assembly final has 4 different loads. With this pass
/// enabled, only one load is issued for the constants.
class AArch64PromoteConstant : public ModulePass {
public:
  struct PromotedConstant {
    bool ShouldConvert = false;
    GlobalVariable *GV = nullptr;
  };
  using PromotionCacheTy = SmallDenseMap<Constant *, PromotedConstant, 16>;

  struct UpdateRecord {
    Constant *C;
    Instruction *User;
    unsigned Op;

    UpdateRecord(Constant *C, Instruction *User, unsigned Op)
        : C(C), User(User), Op(Op) {}
  };

  static char ID;

  AArch64PromoteConstant() : ModulePass(ID) {
    initializeAArch64PromoteConstantPass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override { return "AArch64 Promote Constant"; }

  /// Iterate over the functions and promote the interesting constants into
  /// global variables with module scope.
  bool runOnModule(Module &M) override {
    LLVM_DEBUG(dbgs() << getPassName() << '\n');
    if (skipModule(M))
      return false;
    bool Changed = false;
    PromotionCacheTy PromotionCache;
    for (auto &MF : M) {
      Changed |= runOnFunction(MF, PromotionCache);
    }
    return Changed;
  }

private:
  /// Look for interesting constants used within the given function.
  /// Promote them into global variables, load these global variables within
  /// the related function, so that the number of inserted load is minimal.
  bool runOnFunction(Function &F, PromotionCacheTy &PromotionCache);

  // This transformation requires dominator info
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }

  /// Type to store a list of Uses.
  using Uses = SmallVector<std::pair<Instruction *, unsigned>, 4>;
  /// Map an insertion point to all the uses it dominates.
  using InsertionPoints = DenseMap<Instruction *, Uses>;

  /// Find the closest point that dominates the given Use.
  Instruction *findInsertionPoint(Instruction &User, unsigned OpNo);

  /// Check if the given insertion point is dominated by an existing
  /// insertion point.
  /// If true, the given use is added to the list of dominated uses for
  /// the related existing point.
  /// \param NewPt the insertion point to be checked
  /// \param User the user of the constant
  /// \param OpNo the operand number of the use
  /// \param InsertPts existing insertion points
  /// \pre NewPt and all instruction in InsertPts belong to the same function
  /// \return true if one of the insertion point in InsertPts dominates NewPt,
  ///         false otherwise
  bool isDominated(Instruction *NewPt, Instruction *User, unsigned OpNo,
                   InsertionPoints &InsertPts);

  /// Check if the given insertion point can be merged with an existing
  /// insertion point in a common dominator.
  /// If true, the given use is added to the list of the created insertion
  /// point.
  /// \param NewPt the insertion point to be checked
  /// \param User the user of the constant
  /// \param OpNo the operand number of the use
  /// \param InsertPts existing insertion points
  /// \pre NewPt and all instruction in InsertPts belong to the same function
  /// \pre isDominated returns false for the exact same parameters.
  /// \return true if it exists an insertion point in InsertPts that could
  ///         have been merged with NewPt in a common dominator,
  ///         false otherwise
  bool tryAndMerge(Instruction *NewPt, Instruction *User, unsigned OpNo,
                   InsertionPoints &InsertPts);

  /// Compute the minimal insertion points to dominates all the interesting
  /// uses of value.
  /// Insertion points are group per function and each insertion point
  /// contains a list of all the uses it dominates within the related function
  /// \param User the user of the constant
  /// \param OpNo the operand number of the constant
  /// \param[out] InsertPts output storage of the analysis
  void computeInsertionPoint(Instruction *User, unsigned OpNo,
                             InsertionPoints &InsertPts);

  /// Insert a definition of a new global variable at each point contained in
  /// InsPtsPerFunc and update the related uses (also contained in
  /// InsPtsPerFunc).
  void insertDefinitions(Function &F, GlobalVariable &GV,
                         InsertionPoints &InsertPts);

  /// Do the constant promotion indicated by the Updates records, keeping track
  /// of globals in PromotionCache.
  void promoteConstants(Function &F, SmallVectorImpl<UpdateRecord> &Updates,
                        PromotionCacheTy &PromotionCache);

  /// Transfer the list of dominated uses of IPI to NewPt in InsertPts.
  /// Append Use to this list and delete the entry of IPI in InsertPts.
  static void appendAndTransferDominatedUses(Instruction *NewPt,
                                             Instruction *User, unsigned OpNo,
                                             InsertionPoints::iterator &IPI,
                                             InsertionPoints &InsertPts) {
    // Record the dominated use.
    IPI->second.emplace_back(User, OpNo);
    // Transfer the dominated uses of IPI to NewPt
    // Inserting into the DenseMap may invalidate existing iterator.
    // Keep a copy of the key to find the iterator to erase.  Keep a copy of the
    // value so that we don't have to dereference IPI->second.
    Instruction *OldInstr = IPI->first;
    Uses OldUses = std::move(IPI->second);
    InsertPts[NewPt] = std::move(OldUses);
    // Erase IPI.
    InsertPts.erase(OldInstr);
  }
};

} // end anonymous namespace

char AArch64PromoteConstant::ID = 0;

INITIALIZE_PASS_BEGIN(AArch64PromoteConstant, "aarch64-promote-const",
                      "AArch64 Promote Constant Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(AArch64PromoteConstant, "aarch64-promote-const",
                    "AArch64 Promote Constant Pass", false, false)

ModulePass *llvm::createAArch64PromoteConstantPass() {
  return new AArch64PromoteConstant();
}

/// Check if the given type uses a vector type.
static bool isConstantUsingVectorTy(const Type *CstTy) {
  if (CstTy->isVectorTy())
    return true;
  if (CstTy->isStructTy()) {
    for (unsigned EltIdx = 0, EndEltIdx = CstTy->getStructNumElements();
         EltIdx < EndEltIdx; ++EltIdx)
      if (isConstantUsingVectorTy(CstTy->getStructElementType(EltIdx)))
        return true;
  } else if (CstTy->isArrayTy())
    return isConstantUsingVectorTy(CstTy->getArrayElementType());
  return false;
}

// Returns true if \p C contains only ConstantData leafs and no global values,
// block addresses or constant expressions. Traverses ConstantAggregates.
static bool containsOnlyConstantData(const Constant *C) {
  if (isa<ConstantData>(C))
    return true;

  if (isa<GlobalValue>(C) || isa<BlockAddress>(C) || isa<ConstantExpr>(C))
    return false;

  return all_of(C->operands(), [](const Use &U) {
    return containsOnlyConstantData(cast<Constant>(&U));
  });
}

/// Check if the given use (Instruction + OpIdx) of Cst should be converted into
/// a load of a global variable initialized with Cst.
/// A use should be converted if it is legal to do so.
/// For instance, it is not legal to turn the mask operand of a shuffle vector
/// into a load of a global variable.
static bool shouldConvertUse(const Constant *Cst, const Instruction *Instr,
                             unsigned OpIdx) {
  // shufflevector instruction expects a const for the mask argument, i.e., the
  // third argument. Do not promote this use in that case.
  if (isa<const ShuffleVectorInst>(Instr) && OpIdx == 2)
    return false;

  // extractvalue instruction expects a const idx.
  if (isa<const ExtractValueInst>(Instr) && OpIdx > 0)
    return false;

  // extractvalue instruction expects a const idx.
  if (isa<const InsertValueInst>(Instr) && OpIdx > 1)
    return false;

  if (isa<const AllocaInst>(Instr) && OpIdx > 0)
    return false;

  // Alignment argument must be constant.
  if (isa<const LoadInst>(Instr) && OpIdx > 0)
    return false;

  // Alignment argument must be constant.
  if (isa<const StoreInst>(Instr) && OpIdx > 1)
    return false;

  // Index must be constant.
  if (isa<const GetElementPtrInst>(Instr) && OpIdx > 0)
    return false;

  // Personality function and filters must be constant.
  // Give up on that instruction.
  if (isa<const LandingPadInst>(Instr))
    return false;

  // Switch instruction expects constants to compare to.
  if (isa<const SwitchInst>(Instr))
    return false;

  // Expected address must be a constant.
  if (isa<const IndirectBrInst>(Instr))
    return false;

  // Do not mess with intrinsics.
  if (isa<const IntrinsicInst>(Instr))
    return false;

  // Do not mess with inline asm.
  const CallInst *CI = dyn_cast<const CallInst>(Instr);
  return !(CI && CI->isInlineAsm());
}

/// Check if the given Cst should be converted into
/// a load of a global variable initialized with Cst.
/// A constant should be converted if it is likely that the materialization of
/// the constant will be tricky. Thus, we give up on zero or undef values.
///
/// \todo Currently, accept only vector related types.
/// Also we give up on all simple vector type to keep the existing
/// behavior. Otherwise, we should push here all the check of the lowering of
/// BUILD_VECTOR. By giving up, we lose the potential benefit of merging
/// constant via global merge and the fact that the same constant is stored
/// only once with this method (versus, as many function that uses the constant
/// for the regular approach, even for float).
/// Again, the simplest solution would be to promote every
/// constant and rematerialize them when they are actually cheap to create.
static bool shouldConvertImpl(const Constant *Cst) {
  if (isa<const UndefValue>(Cst))
    return false;

  // FIXME: In some cases, it may be interesting to promote in memory
  // a zero initialized constant.
  // E.g., when the type of Cst require more instructions than the
  // adrp/add/load sequence or when this sequence can be shared by several
  // instances of Cst.
  // Ideally, we could promote this into a global and rematerialize the constant
  // when it was a bad idea.
  if (Cst->isZeroValue())
    return false;

  if (Stress)
    return true;

  // FIXME: see function \todo
  if (Cst->getType()->isVectorTy())
    return false;
  return isConstantUsingVectorTy(Cst->getType());
}

static bool
shouldConvert(Constant &C,
              AArch64PromoteConstant::PromotionCacheTy &PromotionCache) {
  auto Converted = PromotionCache.insert(
      std::make_pair(&C, AArch64PromoteConstant::PromotedConstant()));
  if (Converted.second)
    Converted.first->second.ShouldConvert = shouldConvertImpl(&C);
  return Converted.first->second.ShouldConvert;
}

Instruction *AArch64PromoteConstant::findInsertionPoint(Instruction &User,
                                                        unsigned OpNo) {
  // If this user is a phi, the insertion point is in the related
  // incoming basic block.
  if (PHINode *PhiInst = dyn_cast<PHINode>(&User))
    return PhiInst->getIncomingBlock(OpNo)->getTerminator();

  return &User;
}

bool AArch64PromoteConstant::isDominated(Instruction *NewPt, Instruction *User,
                                         unsigned OpNo,
                                         InsertionPoints &InsertPts) {
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
      *NewPt->getParent()->getParent()).getDomTree();

  // Traverse all the existing insertion points and check if one is dominating
  // NewPt. If it is, remember that.
  for (auto &IPI : InsertPts) {
    if (NewPt == IPI.first || DT.dominates(IPI.first, NewPt) ||
        // When IPI.first is a terminator instruction, DT may think that
        // the result is defined on the edge.
        // Here we are testing the insertion point, not the definition.
        (IPI.first->getParent() != NewPt->getParent() &&
         DT.dominates(IPI.first->getParent(), NewPt->getParent()))) {
      // No need to insert this point. Just record the dominated use.
      LLVM_DEBUG(dbgs() << "Insertion point dominated by:\n");
      LLVM_DEBUG(IPI.first->print(dbgs()));
      LLVM_DEBUG(dbgs() << '\n');
      IPI.second.emplace_back(User, OpNo);
      return true;
    }
  }
  return false;
}

bool AArch64PromoteConstant::tryAndMerge(Instruction *NewPt, Instruction *User,
                                         unsigned OpNo,
                                         InsertionPoints &InsertPts) {
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(
      *NewPt->getParent()->getParent()).getDomTree();
  BasicBlock *NewBB = NewPt->getParent();

  // Traverse all the existing insertion point and check if one is dominated by
  // NewPt and thus useless or can be combined with NewPt into a common
  // dominator.
  for (InsertionPoints::iterator IPI = InsertPts.begin(),
                                 EndIPI = InsertPts.end();
       IPI != EndIPI; ++IPI) {
    BasicBlock *CurBB = IPI->first->getParent();
    if (NewBB == CurBB) {
      // Instructions are in the same block.
      // By construction, NewPt is dominating the other.
      // Indeed, isDominated returned false with the exact same arguments.
      LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
      LLVM_DEBUG(IPI->first->print(dbgs()));
      LLVM_DEBUG(dbgs() << "\nat considered insertion point.\n");
      appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
      return true;
    }

    // Look for a common dominator
    BasicBlock *CommonDominator = DT.findNearestCommonDominator(NewBB, CurBB);
    // If none exists, we cannot merge these two points.
    if (!CommonDominator)
      continue;

    if (CommonDominator != NewBB) {
      // By construction, the CommonDominator cannot be CurBB.
      assert(CommonDominator != CurBB &&
             "Instruction has not been rejected during isDominated check!");
      // Take the last instruction of the CommonDominator as insertion point
      NewPt = CommonDominator->getTerminator();
    }
    // else, CommonDominator is the block of NewBB, hence NewBB is the last
    // possible insertion point in that block.
    LLVM_DEBUG(dbgs() << "Merge insertion point with:\n");
    LLVM_DEBUG(IPI->first->print(dbgs()));
    LLVM_DEBUG(dbgs() << '\n');
    LLVM_DEBUG(NewPt->print(dbgs()));
    LLVM_DEBUG(dbgs() << '\n');
    appendAndTransferDominatedUses(NewPt, User, OpNo, IPI, InsertPts);
    return true;
  }
  return false;
}

void AArch64PromoteConstant::computeInsertionPoint(
    Instruction *User, unsigned OpNo, InsertionPoints &InsertPts) {
  LLVM_DEBUG(dbgs() << "Considered use, opidx " << OpNo << ":\n");
  LLVM_DEBUG(User->print(dbgs()));
  LLVM_DEBUG(dbgs() << '\n');

  Instruction *InsertionPoint = findInsertionPoint(*User, OpNo);

  LLVM_DEBUG(dbgs() << "Considered insertion point:\n");
  LLVM_DEBUG(InsertionPoint->print(dbgs()));
  LLVM_DEBUG(dbgs() << '\n');

  if (isDominated(InsertionPoint, User, OpNo, InsertPts))
    return;
  // This insertion point is useful, check if we can merge some insertion
  // point in a common dominator or if NewPt dominates an existing one.
  if (tryAndMerge(InsertionPoint, User, OpNo, InsertPts))
    return;

  LLVM_DEBUG(dbgs() << "Keep considered insertion point\n");

  // It is definitely useful by its own
  InsertPts[InsertionPoint].emplace_back(User, OpNo);
}

static void ensurePromotedGV(Function &F, Constant &C,
                             AArch64PromoteConstant::PromotedConstant &PC) {
  assert(PC.ShouldConvert &&
         "Expected that we should convert this to a global");
  if (PC.GV)
    return;
  PC.GV = new GlobalVariable(
      *F.getParent(), C.getType(), true, GlobalValue::InternalLinkage, nullptr,
      "_PromotedConst", nullptr, GlobalVariable::NotThreadLocal);
  PC.GV->setInitializer(&C);
  LLVM_DEBUG(dbgs() << "Global replacement: ");
  LLVM_DEBUG(PC.GV->print(dbgs()));
  LLVM_DEBUG(dbgs() << '\n');
  ++NumPromoted;
}

void AArch64PromoteConstant::insertDefinitions(Function &F,
                                               GlobalVariable &PromotedGV,
                                               InsertionPoints &InsertPts) {
#ifndef NDEBUG
  // Do more checking for debug purposes.
  DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>(F).getDomTree();
#endif
  assert(!InsertPts.empty() && "Empty uses does not need a definition");

  for (const auto &IPI : InsertPts) {
    // Create the load of the global variable.
    IRBuilder<> Builder(IPI.first);
    LoadInst *LoadedCst =
        Builder.CreateLoad(PromotedGV.getValueType(), &PromotedGV);
    LLVM_DEBUG(dbgs() << "**********\n");
    LLVM_DEBUG(dbgs() << "New def: ");
    LLVM_DEBUG(LoadedCst->print(dbgs()));
    LLVM_DEBUG(dbgs() << '\n');

    // Update the dominated uses.
    for (auto Use : IPI.second) {
#ifndef NDEBUG
      assert(DT.dominates(LoadedCst,
                          findInsertionPoint(*Use.first, Use.second)) &&
             "Inserted definition does not dominate all its uses!");
#endif
      LLVM_DEBUG({
        dbgs() << "Use to update " << Use.second << ":";
        Use.first->print(dbgs());
        dbgs() << '\n';
      });
      Use.first->setOperand(Use.second, LoadedCst);
      ++NumPromotedUses;
    }
  }
}

void AArch64PromoteConstant::promoteConstants(
    Function &F, SmallVectorImpl<UpdateRecord> &Updates,
    PromotionCacheTy &PromotionCache) {
  // Promote the constants.
  for (auto U = Updates.begin(), E = Updates.end(); U != E;) {
    LLVM_DEBUG(dbgs() << "** Compute insertion points **\n");
    auto First = U;
    Constant *C = First->C;
    InsertionPoints InsertPts;
    do {
      computeInsertionPoint(U->User, U->Op, InsertPts);
    } while (++U != E && U->C == C);

    auto &Promotion = PromotionCache[C];
    ensurePromotedGV(F, *C, Promotion);
    insertDefinitions(F, *Promotion.GV, InsertPts);
  }
}

bool AArch64PromoteConstant::runOnFunction(Function &F,
                                           PromotionCacheTy &PromotionCache) {
  // Look for instructions using constant vector. Promote that constant to a
  // global variable. Create as few loads of this variable as possible and
  // update the uses accordingly.
  SmallVector<UpdateRecord, 64> Updates;
  for (Instruction &I : instructions(&F)) {
    // Traverse the operand, looking for constant vectors. Replace them by a
    // load of a global variable of constant vector type.
    for (Use &U : I.operands()) {
      Constant *Cst = dyn_cast<Constant>(U);
      // There is no point in promoting global values as they are already
      // global. Do not promote constants containing constant expression, global
      // values or blockaddresses either, as they may require some code
      // expansion.
      if (!Cst || isa<GlobalValue>(Cst) || !containsOnlyConstantData(Cst))
        continue;

      // Check if this constant is worth promoting.
      if (!shouldConvert(*Cst, PromotionCache))
        continue;

      // Check if this use should be promoted.
      unsigned OpNo = &U - I.op_begin();
      if (!shouldConvertUse(Cst, &I, OpNo))
        continue;

      Updates.emplace_back(Cst, &I, OpNo);
    }
  }

  if (Updates.empty())
    return false;

  promoteConstants(F, Updates, PromotionCache);
  return true;
}