AArch64InstrInfo.td 375 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667
//=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// AArch64 Instruction definitions.
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// ARM Instruction Predicate Definitions.
//
def HasV8_1a         : Predicate<"Subtarget->hasV8_1aOps()">,
                                 AssemblerPredicate<(all_of HasV8_1aOps), "armv8.1a">;
def HasV8_2a         : Predicate<"Subtarget->hasV8_2aOps()">,
                                 AssemblerPredicate<(all_of HasV8_2aOps), "armv8.2a">;
def HasV8_3a         : Predicate<"Subtarget->hasV8_3aOps()">,
                                 AssemblerPredicate<(all_of HasV8_3aOps), "armv8.3a">;
def HasV8_4a         : Predicate<"Subtarget->hasV8_4aOps()">,
                                 AssemblerPredicate<(all_of HasV8_4aOps), "armv8.4a">;
def HasV8_5a         : Predicate<"Subtarget->hasV8_5aOps()">,
                                 AssemblerPredicate<(all_of HasV8_5aOps), "armv8.5a">;
def HasV8_6a         : Predicate<"Subtarget->hasV8_6aOps()">,
                                 AssemblerPredicate<(all_of HasV8_6aOps), "armv8.6a">;
def HasVH            : Predicate<"Subtarget->hasVH()">,
                       AssemblerPredicate<(all_of FeatureVH), "vh">;

def HasLOR           : Predicate<"Subtarget->hasLOR()">,
                       AssemblerPredicate<(all_of FeatureLOR), "lor">;

def HasPA            : Predicate<"Subtarget->hasPA()">,
                       AssemblerPredicate<(all_of FeaturePA), "pa">;

def HasJS            : Predicate<"Subtarget->hasJS()">,
                       AssemblerPredicate<(all_of FeatureJS), "jsconv">;

def HasCCIDX         : Predicate<"Subtarget->hasCCIDX()">,
                       AssemblerPredicate<(all_of FeatureCCIDX), "ccidx">;

def HasComplxNum      : Predicate<"Subtarget->hasComplxNum()">,
                       AssemblerPredicate<(all_of FeatureComplxNum), "complxnum">;

def HasNV            : Predicate<"Subtarget->hasNV()">,
                       AssemblerPredicate<(all_of FeatureNV), "nv">;

def HasRASv8_4       : Predicate<"Subtarget->hasRASv8_4()">,
                       AssemblerPredicate<(all_of FeatureRASv8_4), "rasv8_4">;

def HasMPAM          : Predicate<"Subtarget->hasMPAM()">,
                       AssemblerPredicate<(all_of FeatureMPAM), "mpam">;

def HasDIT           : Predicate<"Subtarget->hasDIT()">,
                       AssemblerPredicate<(all_of FeatureDIT), "dit">;

def HasTRACEV8_4         : Predicate<"Subtarget->hasTRACEV8_4()">,
                       AssemblerPredicate<(all_of FeatureTRACEV8_4), "tracev8.4">;

def HasAM            : Predicate<"Subtarget->hasAM()">,
                       AssemblerPredicate<(all_of FeatureAM), "am">;

def HasSEL2          : Predicate<"Subtarget->hasSEL2()">,
                       AssemblerPredicate<(all_of FeatureSEL2), "sel2">;

def HasPMU           : Predicate<"Subtarget->hasPMU()">,
                       AssemblerPredicate<(all_of FeaturePMU), "pmu">;

def HasTLB_RMI          : Predicate<"Subtarget->hasTLB_RMI()">,
                       AssemblerPredicate<(all_of FeatureTLB_RMI), "tlb-rmi">;

def HasFMI           : Predicate<"Subtarget->hasFMI()">,
                       AssemblerPredicate<(all_of FeatureFMI), "fmi">;

def HasRCPC_IMMO      : Predicate<"Subtarget->hasRCPCImm()">,
                       AssemblerPredicate<(all_of FeatureRCPC_IMMO), "rcpc-immo">;

def HasFPARMv8       : Predicate<"Subtarget->hasFPARMv8()">,
                               AssemblerPredicate<(all_of FeatureFPARMv8), "fp-armv8">;
def HasNEON          : Predicate<"Subtarget->hasNEON()">,
                                 AssemblerPredicate<(all_of FeatureNEON), "neon">;
def HasCrypto        : Predicate<"Subtarget->hasCrypto()">,
                                 AssemblerPredicate<(all_of FeatureCrypto), "crypto">;
def HasSM4           : Predicate<"Subtarget->hasSM4()">,
                                 AssemblerPredicate<(all_of FeatureSM4), "sm4">;
def HasSHA3          : Predicate<"Subtarget->hasSHA3()">,
                                 AssemblerPredicate<(all_of FeatureSHA3), "sha3">;
def HasSHA2          : Predicate<"Subtarget->hasSHA2()">,
                                 AssemblerPredicate<(all_of FeatureSHA2), "sha2">;
def HasAES           : Predicate<"Subtarget->hasAES()">,
                                 AssemblerPredicate<(all_of FeatureAES), "aes">;
def HasDotProd       : Predicate<"Subtarget->hasDotProd()">,
                                 AssemblerPredicate<(all_of FeatureDotProd), "dotprod">;
def HasCRC           : Predicate<"Subtarget->hasCRC()">,
                                 AssemblerPredicate<(all_of FeatureCRC), "crc">;
def HasLSE           : Predicate<"Subtarget->hasLSE()">,
                                 AssemblerPredicate<(all_of FeatureLSE), "lse">;
def HasRAS           : Predicate<"Subtarget->hasRAS()">,
                                 AssemblerPredicate<(all_of FeatureRAS), "ras">;
def HasRDM           : Predicate<"Subtarget->hasRDM()">,
                                 AssemblerPredicate<(all_of FeatureRDM), "rdm">;
def HasPerfMon       : Predicate<"Subtarget->hasPerfMon()">;
def HasFullFP16      : Predicate<"Subtarget->hasFullFP16()">,
                                 AssemblerPredicate<(all_of FeatureFullFP16), "fullfp16">;
def HasFP16FML       : Predicate<"Subtarget->hasFP16FML()">,
                                 AssemblerPredicate<(all_of FeatureFP16FML), "fp16fml">;
def HasSPE           : Predicate<"Subtarget->hasSPE()">,
                                 AssemblerPredicate<(all_of FeatureSPE), "spe">;
def HasFuseAES       : Predicate<"Subtarget->hasFuseAES()">,
                                 AssemblerPredicate<(all_of FeatureFuseAES),
                                 "fuse-aes">;
def HasSVE           : Predicate<"Subtarget->hasSVE()">,
                                 AssemblerPredicate<(all_of FeatureSVE), "sve">;
def HasSVE2          : Predicate<"Subtarget->hasSVE2()">,
                                 AssemblerPredicate<(all_of FeatureSVE2), "sve2">;
def HasSVE2AES       : Predicate<"Subtarget->hasSVE2AES()">,
                                 AssemblerPredicate<(all_of FeatureSVE2AES), "sve2-aes">;
def HasSVE2SM4       : Predicate<"Subtarget->hasSVE2SM4()">,
                                 AssemblerPredicate<(all_of FeatureSVE2SM4), "sve2-sm4">;
def HasSVE2SHA3      : Predicate<"Subtarget->hasSVE2SHA3()">,
                                 AssemblerPredicate<(all_of FeatureSVE2SHA3), "sve2-sha3">;
def HasSVE2BitPerm   : Predicate<"Subtarget->hasSVE2BitPerm()">,
                                 AssemblerPredicate<(all_of FeatureSVE2BitPerm), "sve2-bitperm">;
def HasRCPC          : Predicate<"Subtarget->hasRCPC()">,
                                 AssemblerPredicate<(all_of FeatureRCPC), "rcpc">;
def HasAltNZCV       : Predicate<"Subtarget->hasAlternativeNZCV()">,
                       AssemblerPredicate<(all_of FeatureAltFPCmp), "altnzcv">;
def HasFRInt3264     : Predicate<"Subtarget->hasFRInt3264()">,
                       AssemblerPredicate<(all_of FeatureFRInt3264), "frint3264">;
def HasSB            : Predicate<"Subtarget->hasSB()">,
                       AssemblerPredicate<(all_of FeatureSB), "sb">;
def HasPredRes      : Predicate<"Subtarget->hasPredRes()">,
                       AssemblerPredicate<(all_of FeaturePredRes), "predres">;
def HasCCDP          : Predicate<"Subtarget->hasCCDP()">,
                       AssemblerPredicate<(all_of FeatureCacheDeepPersist), "ccdp">;
def HasBTI           : Predicate<"Subtarget->hasBTI()">,
                       AssemblerPredicate<(all_of FeatureBranchTargetId), "bti">;
def HasMTE           : Predicate<"Subtarget->hasMTE()">,
                       AssemblerPredicate<(all_of FeatureMTE), "mte">;
def HasTME           : Predicate<"Subtarget->hasTME()">,
                       AssemblerPredicate<(all_of FeatureTME), "tme">;
def HasETE           : Predicate<"Subtarget->hasETE()">,
                       AssemblerPredicate<(all_of FeatureETE), "ete">;
def HasTRBE          : Predicate<"Subtarget->hasTRBE()">,
                       AssemblerPredicate<(all_of FeatureTRBE), "trbe">;
def HasBF16          : Predicate<"Subtarget->hasBF16()">,
                       AssemblerPredicate<(all_of FeatureBF16), "bf16">;
def HasMatMulInt8    : Predicate<"Subtarget->hasMatMulInt8()">,
                       AssemblerPredicate<(all_of FeatureMatMulInt8), "i8mm">;
def HasMatMulFP32    : Predicate<"Subtarget->hasMatMulFP32()">,
                       AssemblerPredicate<(all_of FeatureMatMulFP32), "f32mm">;
def HasMatMulFP64    : Predicate<"Subtarget->hasMatMulFP64()">,
                       AssemblerPredicate<(all_of FeatureMatMulFP64), "f64mm">;
def IsLE             : Predicate<"Subtarget->isLittleEndian()">;
def IsBE             : Predicate<"!Subtarget->isLittleEndian()">;
def IsWindows        : Predicate<"Subtarget->isTargetWindows()">;
def UseExperimentalZeroingPseudos
    : Predicate<"Subtarget->useExperimentalZeroingPseudos()">;
def UseAlternateSExtLoadCVTF32
    : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;

def UseNegativeImmediates
    : Predicate<"false">, AssemblerPredicate<(all_of (not FeatureNoNegativeImmediates)),
                                             "NegativeImmediates">;

def AArch64LocalRecover : SDNode<"ISD::LOCAL_RECOVER",
                                  SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
                                                       SDTCisInt<1>]>>;


//===----------------------------------------------------------------------===//
// AArch64-specific DAG Nodes.
//

// SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
                                              [SDTCisSameAs<0, 2>,
                                               SDTCisSameAs<0, 3>,
                                               SDTCisInt<0>, SDTCisVT<1, i32>]>;

// SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
                                            [SDTCisSameAs<0, 1>,
                                             SDTCisSameAs<0, 2>,
                                             SDTCisInt<0>,
                                             SDTCisVT<3, i32>]>;

// SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
                                            [SDTCisSameAs<0, 2>,
                                             SDTCisSameAs<0, 3>,
                                             SDTCisInt<0>,
                                             SDTCisVT<1, i32>,
                                             SDTCisVT<4, i32>]>;

def SDT_AArch64Brcond  : SDTypeProfile<0, 3,
                                     [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
                                      SDTCisVT<2, i32>]>;
def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
                                        SDTCisVT<2, OtherVT>]>;


def SDT_AArch64CSel  : SDTypeProfile<1, 4,
                                   [SDTCisSameAs<0, 1>,
                                    SDTCisSameAs<0, 2>,
                                    SDTCisInt<3>,
                                    SDTCisVT<4, i32>]>;
def SDT_AArch64CCMP : SDTypeProfile<1, 5,
                                    [SDTCisVT<0, i32>,
                                     SDTCisInt<1>,
                                     SDTCisSameAs<1, 2>,
                                     SDTCisInt<3>,
                                     SDTCisInt<4>,
                                     SDTCisVT<5, i32>]>;
def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
                                     [SDTCisVT<0, i32>,
                                      SDTCisFP<1>,
                                      SDTCisSameAs<1, 2>,
                                      SDTCisInt<3>,
                                      SDTCisInt<4>,
                                      SDTCisVT<5, i32>]>;
def SDT_AArch64FCmp   : SDTypeProfile<0, 2,
                                   [SDTCisFP<0>,
                                    SDTCisSameAs<0, 1>]>;
def SDT_AArch64Dup   : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
def SDT_AArch64DupLane   : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
def SDT_AArch64Insr  : SDTypeProfile<1, 2, [SDTCisVec<0>]>;
def SDT_AArch64Zip   : SDTypeProfile<1, 2, [SDTCisVec<0>,
                                          SDTCisSameAs<0, 1>,
                                          SDTCisSameAs<0, 2>]>;
def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
                                           SDTCisInt<2>, SDTCisInt<3>]>;
def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
                                          SDTCisSameAs<0,2>, SDTCisInt<3>]>;
def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;

def SDT_AArch64vshiftinsert : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisInt<3>,
                                                 SDTCisSameAs<0,1>,
                                                 SDTCisSameAs<0,2>]>;

def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
def SDT_AArch64fcmp  : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
                                           SDTCisSameAs<0,2>]>;
def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
                                           SDTCisSameAs<0,2>,
                                           SDTCisSameAs<0,3>]>;
def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;

def SDT_AArch64ITOF  : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;

def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
                                                 SDTCisPtrTy<1>]>;

def SDT_AArch64ldp : SDTypeProfile<2, 1, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
def SDT_AArch64stp : SDTypeProfile<0, 3, [SDTCisVT<0, i64>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;
def SDT_AArch64stnp : SDTypeProfile<0, 3, [SDTCisVT<0, v4i32>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>;

// Generates the general dynamic sequences, i.e.
//  adrp  x0, :tlsdesc:var
//  ldr   x1, [x0, #:tlsdesc_lo12:var]
//  add   x0, x0, #:tlsdesc_lo12:var
//  .tlsdesccall var
//  blr   x1

// (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
// number of operands (the variable)
def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
                                          [SDTCisPtrTy<0>]>;

def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
                                        [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
                                         SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
                                         SDTCisSameAs<1, 4>]>;

def SDT_AArch64TBL : SDTypeProfile<1, 2, [
  SDTCisVec<0>, SDTCisSameAs<0, 1>, SDTCisInt<2>
]>;

// non-extending masked load fragment.
def nonext_masked_load :
  PatFrag<(ops node:$ptr, node:$pred, node:$def),
          (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
  return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
         cast<MaskedLoadSDNode>(N)->isUnindexed() &&
         !cast<MaskedLoadSDNode>(N)->isNonTemporal();
}]>;
// sign extending masked load fragments.
def asext_masked_load :
  PatFrag<(ops node:$ptr, node:$pred, node:$def),
          (masked_ld node:$ptr, undef, node:$pred, node:$def),[{
  return (cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD ||
          cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD) &&
         cast<MaskedLoadSDNode>(N)->isUnindexed();
}]>;
def asext_masked_load_i8 :
  PatFrag<(ops node:$ptr, node:$pred, node:$def),
          (asext_masked_load node:$ptr, node:$pred, node:$def), [{
  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
}]>;
def asext_masked_load_i16 :
  PatFrag<(ops node:$ptr, node:$pred, node:$def),
          (asext_masked_load node:$ptr, node:$pred, node:$def), [{
  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
}]>;
def asext_masked_load_i32 :
  PatFrag<(ops node:$ptr, node:$pred, node:$def),
          (asext_masked_load node:$ptr, node:$pred, node:$def), [{
  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
}]>;
// zero extending masked load fragments.
def zext_masked_load :
  PatFrag<(ops node:$ptr, node:$pred, node:$def),
          (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
  return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD &&
         cast<MaskedLoadSDNode>(N)->isUnindexed();
}]>;
def zext_masked_load_i8 :
  PatFrag<(ops node:$ptr, node:$pred, node:$def),
          (zext_masked_load node:$ptr, node:$pred, node:$def), [{
  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
}]>;
def zext_masked_load_i16 :
  PatFrag<(ops node:$ptr, node:$pred, node:$def),
          (zext_masked_load node:$ptr, node:$pred, node:$def), [{
  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
}]>;
def zext_masked_load_i32 :
  PatFrag<(ops node:$ptr, node:$pred, node:$def),
          (zext_masked_load node:$ptr, node:$pred, node:$def), [{
  return cast<MaskedLoadSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
}]>;

def non_temporal_load :
   PatFrag<(ops node:$ptr, node:$pred, node:$def),
           (masked_ld node:$ptr, undef, node:$pred, node:$def), [{
   return cast<MaskedLoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD &&
          cast<MaskedLoadSDNode>(N)->isUnindexed() &&
          cast<MaskedLoadSDNode>(N)->isNonTemporal();
}]>;

// non-truncating masked store fragment.
def nontrunc_masked_store :
  PatFrag<(ops node:$val, node:$ptr, node:$pred),
          (masked_st node:$val, node:$ptr, undef, node:$pred), [{
  return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
         cast<MaskedStoreSDNode>(N)->isUnindexed() &&
         !cast<MaskedStoreSDNode>(N)->isNonTemporal();
}]>;
// truncating masked store fragments.
def trunc_masked_store :
  PatFrag<(ops node:$val, node:$ptr, node:$pred),
          (masked_st node:$val, node:$ptr, undef, node:$pred), [{
  return cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
         cast<MaskedStoreSDNode>(N)->isUnindexed();
}]>;
def trunc_masked_store_i8 :
  PatFrag<(ops node:$val, node:$ptr, node:$pred),
          (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
  return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i8;
}]>;
def trunc_masked_store_i16 :
  PatFrag<(ops node:$val, node:$ptr, node:$pred),
          (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
  return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i16;
}]>;
def trunc_masked_store_i32 :
  PatFrag<(ops node:$val, node:$ptr, node:$pred),
          (trunc_masked_store node:$val, node:$ptr, node:$pred), [{
  return cast<MaskedStoreSDNode>(N)->getMemoryVT().getScalarType() == MVT::i32;
}]>;

def non_temporal_store :
  PatFrag<(ops node:$val, node:$ptr, node:$pred),
          (masked_st node:$val, node:$ptr, undef, node:$pred), [{
  return !cast<MaskedStoreSDNode>(N)->isTruncatingStore() &&
         cast<MaskedStoreSDNode>(N)->isUnindexed() &&
         cast<MaskedStoreSDNode>(N)->isNonTemporal();
}]>;

// Node definitions.
def AArch64adrp          : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
def AArch64adr           : SDNode<"AArch64ISD::ADR", SDTIntUnaryOp, []>;
def AArch64addlow        : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
def AArch64LOADgot       : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
                                SDCallSeqStart<[ SDTCisVT<0, i32>,
                                                 SDTCisVT<1, i32> ]>,
                                [SDNPHasChain, SDNPOutGlue]>;
def AArch64callseq_end   : SDNode<"ISD::CALLSEQ_END",
                                SDCallSeqEnd<[ SDTCisVT<0, i32>,
                                               SDTCisVT<1, i32> ]>,
                                [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
def AArch64call          : SDNode<"AArch64ISD::CALL",
                                SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
                                [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
                                 SDNPVariadic]>;
def AArch64brcond        : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
                                [SDNPHasChain]>;
def AArch64cbz           : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
                                [SDNPHasChain]>;
def AArch64cbnz           : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
                                [SDNPHasChain]>;
def AArch64tbz           : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
                                [SDNPHasChain]>;
def AArch64tbnz           : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
                                [SDNPHasChain]>;


def AArch64csel          : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
def AArch64csinv         : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
def AArch64csneg         : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
def AArch64csinc         : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
def AArch64retflag       : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
                                [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
def AArch64adc       : SDNode<"AArch64ISD::ADC",  SDTBinaryArithWithFlagsIn >;
def AArch64sbc       : SDNode<"AArch64ISD::SBC",  SDTBinaryArithWithFlagsIn>;
def AArch64add_flag  : SDNode<"AArch64ISD::ADDS",  SDTBinaryArithWithFlagsOut,
                            [SDNPCommutative]>;
def AArch64sub_flag  : SDNode<"AArch64ISD::SUBS",  SDTBinaryArithWithFlagsOut>;
def AArch64and_flag  : SDNode<"AArch64ISD::ANDS",  SDTBinaryArithWithFlagsOut,
                            [SDNPCommutative]>;
def AArch64adc_flag  : SDNode<"AArch64ISD::ADCS",  SDTBinaryArithWithFlagsInOut>;
def AArch64sbc_flag  : SDNode<"AArch64ISD::SBCS",  SDTBinaryArithWithFlagsInOut>;

def AArch64ccmp      : SDNode<"AArch64ISD::CCMP",  SDT_AArch64CCMP>;
def AArch64ccmn      : SDNode<"AArch64ISD::CCMN",  SDT_AArch64CCMP>;
def AArch64fccmp     : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;

def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;

def AArch64fcmp         : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
def AArch64strict_fcmp  : SDNode<"AArch64ISD::STRICT_FCMP", SDT_AArch64FCmp,
                                 [SDNPHasChain]>;
def AArch64strict_fcmpe : SDNode<"AArch64ISD::STRICT_FCMPE", SDT_AArch64FCmp,
                                 [SDNPHasChain]>;
def AArch64any_fcmp     : PatFrags<(ops node:$lhs, node:$rhs),
                                   [(AArch64strict_fcmp node:$lhs, node:$rhs),
                                    (AArch64fcmp node:$lhs, node:$rhs)]>;

def AArch64dup       : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
def AArch64duplane8  : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;

def AArch64insr      : SDNode<"AArch64ISD::INSR", SDT_AArch64Insr>;

def AArch64zip1      : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
def AArch64zip2      : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
def AArch64uzp1      : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
def AArch64uzp2      : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
def AArch64trn1      : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
def AArch64trn2      : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;

def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;

def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;

def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
def AArch64vsli : SDNode<"AArch64ISD::VSLI", SDT_AArch64vshiftinsert>;
def AArch64vsri : SDNode<"AArch64ISD::VSRI", SDT_AArch64vshiftinsert>;

def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
def AArch64bsp: SDNode<"AArch64ISD::BSP", SDT_AArch64trivec>;

def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;

def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;

def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
                        (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;

def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;

def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;

def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;

def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
                  [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;

def AArch64Prefetch        : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
                               [SDNPHasChain, SDNPSideEffect]>;

def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;

def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
                                    SDT_AArch64TLSDescCallSeq,
                                    [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
                                     SDNPVariadic]>;


def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
                                 SDT_AArch64WrapperLarge>;

def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;

def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
                                    SDTCisSameAs<1, 2>]>;
def AArch64smull    : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
def AArch64umull    : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;

def AArch64frecpe   : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
def AArch64frecps   : SDNode<"AArch64ISD::FRECPS", SDTFPBinOp>;
def AArch64frsqrte  : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
def AArch64frsqrts  : SDNode<"AArch64ISD::FRSQRTS", SDTFPBinOp>;

def AArch64saddv    : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
def AArch64uaddv    : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
def AArch64sminv    : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
def AArch64uminv    : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
def AArch64smaxv    : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
def AArch64umaxv    : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;

def AArch64srhadd   : SDNode<"AArch64ISD::SRHADD", SDT_AArch64binvec>;
def AArch64urhadd   : SDNode<"AArch64ISD::URHADD", SDT_AArch64binvec>;

def SDT_AArch64SETTAG : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>;
def AArch64stg : SDNode<"AArch64ISD::STG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def AArch64stzg : SDNode<"AArch64ISD::STZG", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def AArch64st2g : SDNode<"AArch64ISD::ST2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def AArch64stz2g : SDNode<"AArch64ISD::STZ2G", SDT_AArch64SETTAG, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;

def SDT_AArch64unpk : SDTypeProfile<1, 1, [
    SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>
]>;
def AArch64sunpkhi : SDNode<"AArch64ISD::SUNPKHI", SDT_AArch64unpk>;
def AArch64sunpklo : SDNode<"AArch64ISD::SUNPKLO", SDT_AArch64unpk>;
def AArch64uunpkhi : SDNode<"AArch64ISD::UUNPKHI", SDT_AArch64unpk>;
def AArch64uunpklo : SDNode<"AArch64ISD::UUNPKLO", SDT_AArch64unpk>;

def AArch64ldp : SDNode<"AArch64ISD::LDP", SDT_AArch64ldp, [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def AArch64stp : SDNode<"AArch64ISD::STP", SDT_AArch64stp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;
def AArch64stnp : SDNode<"AArch64ISD::STNP", SDT_AArch64stnp, [SDNPHasChain, SDNPMayStore, SDNPMemOperand]>;

def AArch64tbl : SDNode<"AArch64ISD::TBL", SDT_AArch64TBL>;

//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//

// AArch64 Instruction Predicate Definitions.
// We could compute these on a per-module basis but doing so requires accessing
// the Function object through the <Target>Subtarget and objections were raised
// to that (see post-commit review comments for r301750).
let RecomputePerFunction = 1 in {
  def ForCodeSize   : Predicate<"shouldOptForSize(MF)">;
  def NotForCodeSize   : Predicate<"!shouldOptForSize(MF)">;
  // Avoid generating STRQro if it is slow, unless we're optimizing for code size.
  def UseSTRQro : Predicate<"!Subtarget->isSTRQroSlow() || shouldOptForSize(MF)">;

  def UseBTI : Predicate<[{ MF->getFunction().hasFnAttribute("branch-target-enforcement") }]>;
  def NotUseBTI : Predicate<[{ !MF->getFunction().hasFnAttribute("branch-target-enforcement") }]>;

  def SLSBLRMitigation : Predicate<[{ MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>;
  def NoSLSBLRMitigation : Predicate<[{ !MF->getSubtarget<AArch64Subtarget>().hardenSlsBlr() }]>;
  // Toggles patterns which aren't beneficial in GlobalISel when we aren't
  // optimizing. This allows us to selectively use patterns without impacting
  // SelectionDAG's behaviour.
  // FIXME: One day there will probably be a nicer way to check for this, but
  // today is not that day.
  def OptimizedGISelOrOtherSelector : Predicate<"!MF->getFunction().hasOptNone() || MF->getProperties().hasProperty(MachineFunctionProperties::Property::FailedISel) || !MF->getProperties().hasProperty(MachineFunctionProperties::Property::Legalized)">;
}

include "AArch64InstrFormats.td"
include "SVEInstrFormats.td"

//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// Miscellaneous instructions.
//===----------------------------------------------------------------------===//

let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
// We set Sched to empty list because we expect these instructions to simply get
// removed in most cases.
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                              [(AArch64callseq_start timm:$amt1, timm:$amt2)]>,
                              Sched<[]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
                            [(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
                            Sched<[]>;
} // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1

let isReMaterializable = 1, isCodeGenOnly = 1 in {
// FIXME: The following pseudo instructions are only needed because remat
// cannot handle multiple instructions.  When that changes, they can be
// removed, along with the AArch64Wrapper node.

let AddedComplexity = 10 in
def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
                     [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
              Sched<[WriteLDAdr]>;

// The MOVaddr instruction should match only when the add is not folded
// into a load or store address.
def MOVaddr
    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
                                            tglobaladdr:$low))]>,
      Sched<[WriteAdrAdr]>;
def MOVaddrJT
    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
                                             tjumptable:$low))]>,
      Sched<[WriteAdrAdr]>;
def MOVaddrCP
    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
                                             tconstpool:$low))]>,
      Sched<[WriteAdrAdr]>;
def MOVaddrBA
    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
                                             tblockaddress:$low))]>,
      Sched<[WriteAdrAdr]>;
def MOVaddrTLS
    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
             [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
                                            tglobaltlsaddr:$low))]>,
      Sched<[WriteAdrAdr]>;
def MOVaddrEXT
    : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
             [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
                                            texternalsym:$low))]>,
      Sched<[WriteAdrAdr]>;
// Normally AArch64addlow either gets folded into a following ldr/str,
// or together with an adrp into MOVaddr above. For cases with TLS, it
// might appear without either of them, so allow lowering it into a plain
// add.
def ADDlowTLS
    : Pseudo<(outs GPR64:$dst), (ins GPR64:$src, i64imm:$low),
             [(set GPR64:$dst, (AArch64addlow GPR64:$src,
                                            tglobaltlsaddr:$low))]>,
      Sched<[WriteAdr]>;

} // isReMaterializable, isCodeGenOnly

def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
          (LOADgot tglobaltlsaddr:$addr)>;

def : Pat<(AArch64LOADgot texternalsym:$addr),
          (LOADgot texternalsym:$addr)>;

def : Pat<(AArch64LOADgot tconstpool:$addr),
          (LOADgot tconstpool:$addr)>;

// 32-bit jump table destination is actually only 2 instructions since we can
// use the table itself as a PC-relative base. But optimization occurs after
// branch relaxation so be pessimistic.
let Size = 12, Constraints = "@earlyclobber $dst,@earlyclobber $scratch" in {
def JumpTableDest32 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
                             (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
                      Sched<[]>;
def JumpTableDest16 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
                             (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
                      Sched<[]>;
def JumpTableDest8 : Pseudo<(outs GPR64:$dst, GPR64sp:$scratch),
                            (ins GPR64:$table, GPR64:$entry, i32imm:$jti), []>,
                     Sched<[]>;
}

// Space-consuming pseudo to aid testing of placement and reachability
// algorithms. Immediate operand is the number of bytes this "instruction"
// occupies; register operands can be used to enforce dependency and constrain
// the scheduler.
let hasSideEffects = 1, mayLoad = 1, mayStore = 1 in
def SPACE : Pseudo<(outs GPR64:$Rd), (ins i32imm:$size, GPR64:$Rn),
                   [(set GPR64:$Rd, (int_aarch64_space imm:$size, GPR64:$Rn))]>,
            Sched<[]>;

let hasSideEffects = 1, isCodeGenOnly = 1 in {
  def SpeculationSafeValueX
      : Pseudo<(outs GPR64:$dst), (ins GPR64:$src), []>, Sched<[]>;
  def SpeculationSafeValueW
      : Pseudo<(outs GPR32:$dst), (ins GPR32:$src), []>, Sched<[]>;
}

// SpeculationBarrierEndBB must only be used after an unconditional control
// flow, i.e. after a terminator for which isBarrier is True.
let hasSideEffects = 1, isCodeGenOnly = 1, isTerminator = 1, isBarrier = 1 in {
  def SpeculationBarrierISBDSBEndBB
      : Pseudo<(outs), (ins), []>, Sched<[]>;
  def SpeculationBarrierSBEndBB
      : Pseudo<(outs), (ins), []>, Sched<[]>;
}

//===----------------------------------------------------------------------===//
// System instructions.
//===----------------------------------------------------------------------===//

def HINT : HintI<"hint">;
def : InstAlias<"nop",  (HINT 0b000)>;
def : InstAlias<"yield",(HINT 0b001)>;
def : InstAlias<"wfe",  (HINT 0b010)>;
def : InstAlias<"wfi",  (HINT 0b011)>;
def : InstAlias<"sev",  (HINT 0b100)>;
def : InstAlias<"sevl", (HINT 0b101)>;
def : InstAlias<"dgh",  (HINT 0b110)>;
def : InstAlias<"esb",  (HINT 0b10000)>, Requires<[HasRAS]>;
def : InstAlias<"csdb", (HINT 20)>;
// In order to be able to write readable assembly, LLVM should accept assembly
// inputs that use Branch Target Indentification mnemonics, even with BTI disabled.
// However, in order to be compatible with other assemblers (e.g. GAS), LLVM
// should not emit these mnemonics unless BTI is enabled.
def : InstAlias<"bti",  (HINT 32), 0>;
def : InstAlias<"bti $op", (HINT btihint_op:$op), 0>;
def : InstAlias<"bti",  (HINT 32)>, Requires<[HasBTI]>;
def : InstAlias<"bti $op", (HINT btihint_op:$op)>, Requires<[HasBTI]>;

// v8.2a Statistical Profiling extension
def : InstAlias<"psb $op",  (HINT psbhint_op:$op)>, Requires<[HasSPE]>;

// As far as LLVM is concerned this writes to the system's exclusive monitors.
let mayLoad = 1, mayStore = 1 in
def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;

// NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
// model patterns with sufficiently fine granularity.
let mayLoad = ?, mayStore = ? in {
def DMB   : CRmSystemI<barrier_op, 0b101, "dmb",
                       [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;

def DSB   : CRmSystemI<barrier_op, 0b100, "dsb",
                       [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;

def ISB   : CRmSystemI<barrier_op, 0b110, "isb",
                       [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;

def TSB   : CRmSystemI<barrier_op, 0b010, "tsb", []> {
  let CRm        = 0b0010;
  let Inst{12}   = 0;
  let Predicates = [HasTRACEV8_4];
}
}

// ARMv8.2-A Dot Product
let Predicates = [HasDotProd] in {
defm SDOT : SIMDThreeSameVectorDot<0, 0, "sdot", int_aarch64_neon_sdot>;
defm UDOT : SIMDThreeSameVectorDot<1, 0, "udot", int_aarch64_neon_udot>;
defm SDOTlane : SIMDThreeSameVectorDotIndex<0, 0, 0b10, "sdot", int_aarch64_neon_sdot>;
defm UDOTlane : SIMDThreeSameVectorDotIndex<1, 0, 0b10, "udot", int_aarch64_neon_udot>;
}

// ARMv8.6-A BFloat
let Predicates = [HasBF16] in {
defm BFDOT       : SIMDThreeSameVectorBFDot<1, "bfdot">;
defm BF16DOTlane : SIMDThreeSameVectorBF16DotI<0, "bfdot">;
def BFMMLA       : SIMDThreeSameVectorBF16MatrixMul<"bfmmla">;
def BFMLALB      : SIMDBF16MLAL<0, "bfmlalb", int_aarch64_neon_bfmlalb>;
def BFMLALT      : SIMDBF16MLAL<1, "bfmlalt", int_aarch64_neon_bfmlalt>;
def BFMLALBIdx   : SIMDBF16MLALIndex<0, "bfmlalb", int_aarch64_neon_bfmlalb>;
def BFMLALTIdx   : SIMDBF16MLALIndex<1, "bfmlalt", int_aarch64_neon_bfmlalt>;
def BFCVTN       : SIMD_BFCVTN;
def BFCVTN2      : SIMD_BFCVTN2;
def BFCVT        : BF16ToSinglePrecision<"bfcvt">;
}

// ARMv8.6A AArch64 matrix multiplication
let Predicates = [HasMatMulInt8] in {
def  SMMLA : SIMDThreeSameVectorMatMul<0, 0, "smmla", int_aarch64_neon_smmla>;
def  UMMLA : SIMDThreeSameVectorMatMul<0, 1, "ummla", int_aarch64_neon_ummla>;
def USMMLA : SIMDThreeSameVectorMatMul<1, 0, "usmmla", int_aarch64_neon_usmmla>;
defm USDOT : SIMDThreeSameVectorDot<0, 1, "usdot", int_aarch64_neon_usdot>;
defm USDOTlane : SIMDThreeSameVectorDotIndex<0, 1, 0b10, "usdot", int_aarch64_neon_usdot>;

// sudot lane has a pattern where usdot is expected (there is no sudot).
// The second operand is used in the dup operation to repeat the indexed
// element.
class BaseSIMDSUDOTIndex<bit Q, string dst_kind, string lhs_kind,
                         string rhs_kind, RegisterOperand RegType,
                         ValueType AccumType, ValueType InputType>
      : BaseSIMDThreeSameVectorDotIndex<Q, 0, 1, 0b00, "sudot", dst_kind,
                                        lhs_kind, rhs_kind, RegType, AccumType,
                                        InputType, null_frag> {
  let Pattern = [(set (AccumType RegType:$dst),
                      (AccumType (int_aarch64_neon_usdot (AccumType RegType:$Rd),
                                 (InputType (bitconvert (AccumType
                                    (AArch64duplane32 (v4i32 V128:$Rm),
                                        VectorIndexS:$idx)))),
                                 (InputType RegType:$Rn))))];
}

multiclass SIMDSUDOTIndex {
  def v8i8  : BaseSIMDSUDOTIndex<0, ".2s", ".8b", ".4b", V64, v2i32, v8i8>;
  def v16i8 : BaseSIMDSUDOTIndex<1, ".4s", ".16b", ".4b", V128, v4i32, v16i8>;
}

defm SUDOTlane : SIMDSUDOTIndex;

}

// ARMv8.2-A FP16 Fused Multiply-Add Long
let Predicates = [HasNEON, HasFP16FML] in {
defm FMLAL      : SIMDThreeSameVectorFML<0, 1, 0b001, "fmlal", int_aarch64_neon_fmlal>;
defm FMLSL      : SIMDThreeSameVectorFML<0, 1, 0b101, "fmlsl", int_aarch64_neon_fmlsl>;
defm FMLAL2     : SIMDThreeSameVectorFML<1, 0, 0b001, "fmlal2", int_aarch64_neon_fmlal2>;
defm FMLSL2     : SIMDThreeSameVectorFML<1, 0, 0b101, "fmlsl2", int_aarch64_neon_fmlsl2>;
defm FMLALlane  : SIMDThreeSameVectorFMLIndex<0, 0b0000, "fmlal", int_aarch64_neon_fmlal>;
defm FMLSLlane  : SIMDThreeSameVectorFMLIndex<0, 0b0100, "fmlsl", int_aarch64_neon_fmlsl>;
defm FMLAL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1000, "fmlal2", int_aarch64_neon_fmlal2>;
defm FMLSL2lane : SIMDThreeSameVectorFMLIndex<1, 0b1100, "fmlsl2", int_aarch64_neon_fmlsl2>;
}

// Armv8.2-A Crypto extensions
let Predicates = [HasSHA3] in {
def SHA512H   : CryptoRRRTied<0b0, 0b00, "sha512h">;
def SHA512H2  : CryptoRRRTied<0b0, 0b01, "sha512h2">;
def SHA512SU0 : CryptoRRTied_2D<0b0, 0b00, "sha512su0">;
def SHA512SU1 : CryptoRRRTied_2D<0b0, 0b10, "sha512su1">;
def RAX1      : CryptoRRR_2D<0b0,0b11, "rax1">;
def EOR3      : CryptoRRRR_16B<0b00, "eor3">;
def BCAX      : CryptoRRRR_16B<0b01, "bcax">;
def XAR       : CryptoRRRi6<"xar">;
} // HasSHA3

let Predicates = [HasSM4] in {
def SM3TT1A   : CryptoRRRi2Tied<0b0, 0b00, "sm3tt1a">;
def SM3TT1B   : CryptoRRRi2Tied<0b0, 0b01, "sm3tt1b">;
def SM3TT2A   : CryptoRRRi2Tied<0b0, 0b10, "sm3tt2a">;
def SM3TT2B   : CryptoRRRi2Tied<0b0, 0b11, "sm3tt2b">;
def SM3SS1    : CryptoRRRR_4S<0b10, "sm3ss1">;
def SM3PARTW1 : CryptoRRRTied_4S<0b1, 0b00, "sm3partw1">;
def SM3PARTW2 : CryptoRRRTied_4S<0b1, 0b01, "sm3partw2">;
def SM4ENCKEY : CryptoRRR_4S<0b1, 0b10, "sm4ekey">;
def SM4E      : CryptoRRTied_4S<0b0, 0b01, "sm4e">;
} // HasSM4

let Predicates = [HasRCPC] in {
  // v8.3 Release Consistent Processor Consistent support, optional in v8.2.
  def LDAPRB  : RCPCLoad<0b00, "ldaprb", GPR32>;
  def LDAPRH  : RCPCLoad<0b01, "ldaprh", GPR32>;
  def LDAPRW  : RCPCLoad<0b10, "ldapr", GPR32>;
  def LDAPRX  : RCPCLoad<0b11, "ldapr", GPR64>;
}

// v8.3a complex add and multiply-accumulate. No predicate here, that is done
// inside the multiclass as the FP16 versions need different predicates.
defm FCMLA : SIMDThreeSameVectorTiedComplexHSD<1, 0b110, complexrotateop,
                                               "fcmla", null_frag>;
defm FCADD : SIMDThreeSameVectorComplexHSD<1, 0b111, complexrotateopodd,
                                           "fcadd", null_frag>;
defm FCMLA : SIMDIndexedTiedComplexHSD<1, 0, 1, complexrotateop, "fcmla",
                                       null_frag>;

let Predicates = [HasComplxNum, HasNEON, HasFullFP16] in {
  def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot90 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
            (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 0))>;
  def : Pat<(v4f16 (int_aarch64_neon_vcadd_rot270 (v4f16 V64:$Rn), (v4f16 V64:$Rm))),
            (FCADDv4f16 (v4f16 V64:$Rn), (v4f16 V64:$Rm), (i32 1))>;
  def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot90 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
            (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 0))>;
  def : Pat<(v8f16 (int_aarch64_neon_vcadd_rot270 (v8f16 V128:$Rn), (v8f16 V128:$Rm))),
            (FCADDv8f16 (v8f16 V128:$Rn), (v8f16 V128:$Rm), (i32 1))>;
}
let Predicates = [HasComplxNum, HasNEON] in {
  def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot90 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
            (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 0))>;
  def : Pat<(v2f32 (int_aarch64_neon_vcadd_rot270 (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
            (FCADDv2f32 (v2f32 V64:$Rn), (v2f32 V64:$Rm), (i32 1))>;
  foreach Ty = [v4f32, v2f64] in {
    def : Pat<(Ty (int_aarch64_neon_vcadd_rot90 (Ty V128:$Rn), (Ty V128:$Rm))),
              (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 0))>;
    def : Pat<(Ty (int_aarch64_neon_vcadd_rot270 (Ty V128:$Rn), (Ty V128:$Rm))),
              (!cast<Instruction>("FCADD"#Ty) (Ty V128:$Rn), (Ty V128:$Rm), (i32 1))>;
  }
}

// v8.3a Pointer Authentication
// These instructions inhabit part of the hint space and so can be used for
// armv8 targets. Keeping the old HINT mnemonic when compiling without PA is
// important for compatibility with other assemblers (e.g. GAS) when building
// software compatible with both CPUs that do or don't implement PA.
let Uses = [LR], Defs = [LR] in {
  def PACIAZ   : SystemNoOperands<0b000, "hint\t#24">;
  def PACIBZ   : SystemNoOperands<0b010, "hint\t#26">;
  let isAuthenticated = 1 in {
    def AUTIAZ   : SystemNoOperands<0b100, "hint\t#28">;
    def AUTIBZ   : SystemNoOperands<0b110, "hint\t#30">;
  }
}
let Uses = [LR, SP], Defs = [LR] in {
  def PACIASP  : SystemNoOperands<0b001, "hint\t#25">;
  def PACIBSP  : SystemNoOperands<0b011, "hint\t#27">;
  let isAuthenticated = 1 in {
    def AUTIASP  : SystemNoOperands<0b101, "hint\t#29">;
    def AUTIBSP  : SystemNoOperands<0b111, "hint\t#31">;
  }
}
let Uses = [X16, X17], Defs = [X17], CRm = 0b0001 in {
  def PACIA1716  : SystemNoOperands<0b000, "hint\t#8">;
  def PACIB1716  : SystemNoOperands<0b010, "hint\t#10">;
  let isAuthenticated = 1 in {
    def AUTIA1716  : SystemNoOperands<0b100, "hint\t#12">;
    def AUTIB1716  : SystemNoOperands<0b110, "hint\t#14">;
  }
}

let Uses = [LR], Defs = [LR], CRm = 0b0000 in {
  def XPACLRI   : SystemNoOperands<0b111, "hint\t#7">;
}

// In order to be able to write readable assembly, LLVM should accept assembly
// inputs that use pointer authentication mnemonics, even with PA disabled.
// However, in order to be compatible with other assemblers (e.g. GAS), LLVM
// should not emit these mnemonics unless PA is enabled.
def : InstAlias<"paciaz", (PACIAZ), 0>;
def : InstAlias<"pacibz", (PACIBZ), 0>;
def : InstAlias<"autiaz", (AUTIAZ), 0>;
def : InstAlias<"autibz", (AUTIBZ), 0>;
def : InstAlias<"paciasp", (PACIASP), 0>;
def : InstAlias<"pacibsp", (PACIBSP), 0>;
def : InstAlias<"autiasp", (AUTIASP), 0>;
def : InstAlias<"autibsp", (AUTIBSP), 0>;
def : InstAlias<"pacia1716", (PACIA1716), 0>;
def : InstAlias<"pacib1716", (PACIB1716), 0>;
def : InstAlias<"autia1716", (AUTIA1716), 0>;
def : InstAlias<"autib1716", (AUTIB1716), 0>;
def : InstAlias<"xpaclri", (XPACLRI), 0>;

// These pointer authentication instructions require armv8.3a
let Predicates = [HasPA] in {

  // When PA is enabled, a better mnemonic should be emitted.
  def : InstAlias<"paciaz", (PACIAZ), 1>;
  def : InstAlias<"pacibz", (PACIBZ), 1>;
  def : InstAlias<"autiaz", (AUTIAZ), 1>;
  def : InstAlias<"autibz", (AUTIBZ), 1>;
  def : InstAlias<"paciasp", (PACIASP), 1>;
  def : InstAlias<"pacibsp", (PACIBSP), 1>;
  def : InstAlias<"autiasp", (AUTIASP), 1>;
  def : InstAlias<"autibsp", (AUTIBSP), 1>;
  def : InstAlias<"pacia1716", (PACIA1716), 1>;
  def : InstAlias<"pacib1716", (PACIB1716), 1>;
  def : InstAlias<"autia1716", (AUTIA1716), 1>;
  def : InstAlias<"autib1716", (AUTIB1716), 1>;
  def : InstAlias<"xpaclri", (XPACLRI), 1>;

  multiclass SignAuth<bits<3> prefix, bits<3> prefix_z, string asm> {
    def IA   : SignAuthOneData<prefix, 0b00, !strconcat(asm, "ia")>;
    def IB   : SignAuthOneData<prefix, 0b01, !strconcat(asm, "ib")>;
    def DA   : SignAuthOneData<prefix, 0b10, !strconcat(asm, "da")>;
    def DB   : SignAuthOneData<prefix, 0b11, !strconcat(asm, "db")>;
    def IZA  : SignAuthZero<prefix_z, 0b00, !strconcat(asm, "iza")>;
    def DZA  : SignAuthZero<prefix_z, 0b10, !strconcat(asm, "dza")>;
    def IZB  : SignAuthZero<prefix_z, 0b01, !strconcat(asm, "izb")>;
    def DZB  : SignAuthZero<prefix_z, 0b11, !strconcat(asm, "dzb")>;
  }

  defm PAC : SignAuth<0b000, 0b010, "pac">;
  defm AUT : SignAuth<0b001, 0b011, "aut">;

  def XPACI : SignAuthZero<0b100, 0b00, "xpaci">;
  def XPACD : SignAuthZero<0b100, 0b01, "xpacd">;
  def PACGA : SignAuthTwoOperand<0b1100, "pacga", null_frag>;

  // Combined Instructions
  let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1  in {
    def BRAA    : AuthBranchTwoOperands<0, 0, "braa">;
    def BRAB    : AuthBranchTwoOperands<0, 1, "brab">;
  }
  let isCall = 1, Defs = [LR], Uses = [SP] in {
    def BLRAA   : AuthBranchTwoOperands<1, 0, "blraa">;
    def BLRAB   : AuthBranchTwoOperands<1, 1, "blrab">;
  }

  let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1  in {
    def BRAAZ   : AuthOneOperand<0b000, 0, "braaz">;
    def BRABZ   : AuthOneOperand<0b000, 1, "brabz">;
  }
  let isCall = 1, Defs = [LR], Uses = [SP] in {
    def BLRAAZ  : AuthOneOperand<0b001, 0, "blraaz">;
    def BLRABZ  : AuthOneOperand<0b001, 1, "blrabz">;
  }

  let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
    def RETAA   : AuthReturn<0b010, 0, "retaa">;
    def RETAB   : AuthReturn<0b010, 1, "retab">;
    def ERETAA  : AuthReturn<0b100, 0, "eretaa">;
    def ERETAB  : AuthReturn<0b100, 1, "eretab">;
  }

  defm LDRAA  : AuthLoad<0, "ldraa", simm10Scaled>;
  defm LDRAB  : AuthLoad<1, "ldrab", simm10Scaled>;

}

// v8.3a floating point conversion for javascript
let Predicates = [HasJS, HasFPARMv8] in
def FJCVTZS  : BaseFPToIntegerUnscaled<0b01, 0b11, 0b110, FPR64, GPR32,
                                      "fjcvtzs",
                                      [(set GPR32:$Rd,
                                         (int_aarch64_fjcvtzs FPR64:$Rn))]> {
  let Inst{31} = 0;
} // HasJS, HasFPARMv8

// v8.4 Flag manipulation instructions
let Predicates = [HasFMI] in {
def CFINV : SimpleSystemI<0, (ins), "cfinv", "">, Sched<[WriteSys]> {
  let Inst{20-5} = 0b0000001000000000;
}
def SETF8  : BaseFlagManipulation<0, 0, (ins GPR32:$Rn), "setf8", "{\t$Rn}">;
def SETF16 : BaseFlagManipulation<0, 1, (ins GPR32:$Rn), "setf16", "{\t$Rn}">;
def RMIF   : FlagRotate<(ins GPR64:$Rn, uimm6:$imm, imm0_15:$mask), "rmif",
                        "{\t$Rn, $imm, $mask}">;
} // HasFMI

// v8.5 flag manipulation instructions
let Predicates = [HasAltNZCV], Uses = [NZCV], Defs = [NZCV] in {

def XAFLAG : PstateWriteSimple<(ins), "xaflag", "">, Sched<[WriteSys]> {
  let Inst{18-16} = 0b000;
  let Inst{11-8} = 0b0000;
  let Unpredictable{11-8} = 0b1111;
  let Inst{7-5} = 0b001;
}

def AXFLAG : PstateWriteSimple<(ins), "axflag", "">, Sched<[WriteSys]> {
  let Inst{18-16} = 0b000;
  let Inst{11-8} = 0b0000;
  let Unpredictable{11-8} = 0b1111;
  let Inst{7-5} = 0b010;
}
} // HasAltNZCV


// Armv8.5-A speculation barrier
def SB : SimpleSystemI<0, (ins), "sb", "">, Sched<[]> {
  let Inst{20-5} = 0b0001100110000111;
  let Unpredictable{11-8} = 0b1111;
  let Predicates = [HasSB];
  let hasSideEffects = 1;
}

def : InstAlias<"clrex", (CLREX 0xf)>;
def : InstAlias<"isb", (ISB 0xf)>;
def : InstAlias<"ssbb", (DSB 0)>;
def : InstAlias<"pssbb", (DSB 4)>;

def MRS    : MRSI;
def MSR    : MSRI;
def MSRpstateImm1 : MSRpstateImm0_1;
def MSRpstateImm4 : MSRpstateImm0_15;

// The thread pointer (on Linux, at least, where this has been implemented) is
// TPIDR_EL0.
def MOVbaseTLS : Pseudo<(outs GPR64:$dst), (ins),
                       [(set GPR64:$dst, AArch64threadpointer)]>, Sched<[WriteSys]>;

let Uses = [ X9 ], Defs = [ X16, X17, LR, NZCV ] in {
def HWASAN_CHECK_MEMACCESS : Pseudo<
  (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
  [(int_hwasan_check_memaccess X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
  Sched<[]>;
def HWASAN_CHECK_MEMACCESS_SHORTGRANULES : Pseudo<
  (outs), (ins GPR64noip:$ptr, i32imm:$accessinfo),
  [(int_hwasan_check_memaccess_shortgranules X9, GPR64noip:$ptr, (i32 timm:$accessinfo))]>,
  Sched<[]>;
}

// The cycle counter PMC register is PMCCNTR_EL0.
let Predicates = [HasPerfMon] in
def : Pat<(readcyclecounter), (MRS 0xdce8)>;

// FPCR register
def : Pat<(i64 (int_aarch64_get_fpcr)), (MRS 0xda20)>;

// Generic system instructions
def SYSxt  : SystemXtI<0, "sys">;
def SYSLxt : SystemLXtI<1, "sysl">;

def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
                (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
                 sys_cr_op:$Cm, imm0_7:$op2, XZR)>;


let Predicates = [HasTME] in {

def TSTART : TMSystemI<0b0000, "tstart",
                      [(set GPR64:$Rt, (int_aarch64_tstart))]>;

def TCOMMIT : TMSystemINoOperand<0b0000, "tcommit", [(int_aarch64_tcommit)]>;

def TCANCEL : TMSystemException<0b011, "tcancel",
                                [(int_aarch64_tcancel i64_imm0_65535:$imm)]>;

def TTEST : TMSystemI<0b0001, "ttest", [(set GPR64:$Rt, (int_aarch64_ttest))]> {
  let mayLoad = 0;
  let mayStore = 0;
}
} // HasTME

//===----------------------------------------------------------------------===//
// Move immediate instructions.
//===----------------------------------------------------------------------===//

defm MOVK : InsertImmediate<0b11, "movk">;
defm MOVN : MoveImmediate<0b00, "movn">;

let PostEncoderMethod = "fixMOVZ" in
defm MOVZ : MoveImmediate<0b10, "movz">;

// First group of aliases covers an implicit "lsl #0".
def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, i32_imm0_65535:$imm, 0), 0>;
def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, i32_imm0_65535:$imm, 0), 0>;
def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;
def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, i32_imm0_65535:$imm, 0)>;
def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, i32_imm0_65535:$imm, 0)>;

// Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;

def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g3:$sym, 48)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g2:$sym, 32)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g1:$sym, 16)>;
def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movw_symbol_g0:$sym, 0)>;

def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g3:$sym, 48), 0>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g2:$sym, 32), 0>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g1:$sym, 16), 0>;
def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movw_symbol_g0:$sym, 0), 0>;

def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;

def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g1:$sym, 16)>;
def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movw_symbol_g0:$sym, 0)>;

def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g1:$sym, 16), 0>;
def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movw_symbol_g0:$sym, 0), 0>;

// Final group of aliases covers true "mov $Rd, $imm" cases.
multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
                          int width, int shift> {
  def _asmoperand : AsmOperandClass {
    let Name = basename # width # "_lsl" # shift # "MovAlias";
    let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
                               # shift # ">";
    let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
  }

  def _movimm : Operand<i32> {
    let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
  }

  def : InstAlias<"mov $Rd, $imm",
                  (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
}

defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;

defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;

defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;

defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;

let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
    isAsCheapAsAMove = 1 in {
// FIXME: The following pseudo instructions are only needed because remat
// cannot handle multiple instructions.  When that changes, we can select
// directly to the real instructions and get rid of these pseudos.

def MOVi32imm
    : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
             [(set GPR32:$dst, imm:$src)]>,
      Sched<[WriteImm]>;
def MOVi64imm
    : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
             [(set GPR64:$dst, imm:$src)]>,
      Sched<[WriteImm]>;
} // isReMaterializable, isCodeGenOnly

// If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
// eventual expansion code fewer bits to worry about getting right. Marshalling
// the types is a little tricky though:
def i64imm_32bit : ImmLeaf<i64, [{
  return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
}]>;

def s64imm_32bit : ImmLeaf<i64, [{
  int64_t Imm64 = static_cast<int64_t>(Imm);
  return Imm64 >= std::numeric_limits<int32_t>::min() &&
         Imm64 <= std::numeric_limits<int32_t>::max();
}]>;

def trunc_imm : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;

def gi_trunc_imm : GICustomOperandRenderer<"renderTruncImm">,
  GISDNodeXFormEquiv<trunc_imm>;

let Predicates = [OptimizedGISelOrOtherSelector] in {
// The SUBREG_TO_REG isn't eliminated at -O0, which can result in pointless
// copies.
def : Pat<(i64 i64imm_32bit:$src),
          (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
}

// Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(
  N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
}]>;

def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
return CurDAG->getTargetConstant(
  N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
}]>;


def : Pat<(f32 fpimm:$in),
  (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
def : Pat<(f64 fpimm:$in),
  (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;


// Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
// sequences.
def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
                             tglobaladdr:$g1, tglobaladdr:$g0),
          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g0, 0),
                                  tglobaladdr:$g1, 16),
                          tglobaladdr:$g2, 32),
                  tglobaladdr:$g3, 48)>;

def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
                             tblockaddress:$g1, tblockaddress:$g0),
          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g0, 0),
                                  tblockaddress:$g1, 16),
                          tblockaddress:$g2, 32),
                  tblockaddress:$g3, 48)>;

def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
                             tconstpool:$g1, tconstpool:$g0),
          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g0, 0),
                                  tconstpool:$g1, 16),
                          tconstpool:$g2, 32),
                  tconstpool:$g3, 48)>;

def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
                             tjumptable:$g1, tjumptable:$g0),
          (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g0, 0),
                                  tjumptable:$g1, 16),
                          tjumptable:$g2, 32),
                  tjumptable:$g3, 48)>;


//===----------------------------------------------------------------------===//
// Arithmetic instructions.
//===----------------------------------------------------------------------===//

// Add/subtract with carry.
defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;

def : InstAlias<"ngc $dst, $src",  (SBCWr  GPR32:$dst, WZR, GPR32:$src)>;
def : InstAlias<"ngc $dst, $src",  (SBCXr  GPR64:$dst, XZR, GPR64:$src)>;
def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;

// Add/subtract
defm ADD : AddSub<0, "add", "sub", add>;
defm SUB : AddSub<1, "sub", "add">;

def : InstAlias<"mov $dst, $src",
                (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
def : InstAlias<"mov $dst, $src",
                (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
def : InstAlias<"mov $dst, $src",
                (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
def : InstAlias<"mov $dst, $src",
                (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;

defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;

// Use SUBS instead of SUB to enable CSE between SUBS and SUB.
def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
          (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
          (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
          (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
          (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
          (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
          (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
let AddedComplexity = 1 in {
def : Pat<(sub GPR32sp:$R2, arith_extended_reg32_i32:$R3),
          (SUBSWrx GPR32sp:$R2, arith_extended_reg32_i32:$R3)>;
def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64_i64:$R3),
          (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64_i64:$R3)>;
}

// Because of the immediate format for add/sub-imm instructions, the
// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
//  These patterns capture that transformation.
let AddedComplexity = 1 in {
def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
          (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
          (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
          (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
          (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
}

// Because of the immediate format for add/sub-imm instructions, the
// expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
//  These patterns capture that transformation.
let AddedComplexity = 1 in {
def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
          (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
          (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
          (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
          (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
}

def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
def : InstAlias<"neg $dst, $src$shift",
                (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
def : InstAlias<"neg $dst, $src$shift",
                (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;

def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
def : InstAlias<"negs $dst, $src$shift",
                (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
def : InstAlias<"negs $dst, $src$shift",
                (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;


// Unsigned/Signed divide
defm UDIV : Div<0, "udiv", udiv>;
defm SDIV : Div<1, "sdiv", sdiv>;

def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr GPR64:$Rn, GPR64:$Rm)>;
def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr GPR32:$Rn, GPR32:$Rm)>;
def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr GPR64:$Rn, GPR64:$Rm)>;

// Variable shift
defm ASRV : Shift<0b10, "asr", sra>;
defm LSLV : Shift<0b00, "lsl", shl>;
defm LSRV : Shift<0b01, "lsr", srl>;
defm RORV : Shift<0b11, "ror", rotr>;

def : ShiftAlias<"asrv", ASRVWr, GPR32>;
def : ShiftAlias<"asrv", ASRVXr, GPR64>;
def : ShiftAlias<"lslv", LSLVWr, GPR32>;
def : ShiftAlias<"lslv", LSLVXr, GPR64>;
def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
def : ShiftAlias<"rorv", RORVWr, GPR32>;
def : ShiftAlias<"rorv", RORVXr, GPR64>;

// Multiply-add
let AddedComplexity = 5 in {
defm MADD : MulAccum<0, "madd", add>;
defm MSUB : MulAccum<1, "msub", sub>;

def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
          (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
          (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;

def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
          (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
          (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
          (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
          (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
} // AddedComplexity = 5

let AddedComplexity = 5 in {
def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;

def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
          (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
          (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;

def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
          (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
          (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;

def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
          (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
          (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
          (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
                     (MOVi32imm (trunc_imm imm:$C)), XZR)>;

def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
          (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
          (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
          (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
                     (MOVi32imm (trunc_imm imm:$C)), XZR)>;

def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
          (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
          (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
                    GPR64:$Ra)),
          (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
                     (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;

def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
          (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
          (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
                                    (s64imm_32bit:$C)))),
          (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
                     (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
} // AddedComplexity = 5

def : MulAccumWAlias<"mul", MADDWrrr>;
def : MulAccumXAlias<"mul", MADDXrrr>;
def : MulAccumWAlias<"mneg", MSUBWrrr>;
def : MulAccumXAlias<"mneg", MSUBXrrr>;
def : WideMulAccumAlias<"smull", SMADDLrrr>;
def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
def : WideMulAccumAlias<"umull", UMADDLrrr>;
def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;

// Multiply-high
def SMULHrr : MulHi<0b010, "smulh", mulhs>;
def UMULHrr : MulHi<0b110, "umulh", mulhu>;

// CRC32
def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;

def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;

// v8.1 atomic CAS
defm CAS   : CompareAndSwap<0, 0, "">;
defm CASA  : CompareAndSwap<1, 0, "a">;
defm CASL  : CompareAndSwap<0, 1, "l">;
defm CASAL : CompareAndSwap<1, 1, "al">;

// v8.1 atomic CASP
defm CASP   : CompareAndSwapPair<0, 0, "">;
defm CASPA  : CompareAndSwapPair<1, 0, "a">;
defm CASPL  : CompareAndSwapPair<0, 1, "l">;
defm CASPAL : CompareAndSwapPair<1, 1, "al">;

// v8.1 atomic SWP
defm SWP   : Swap<0, 0, "">;
defm SWPA  : Swap<1, 0, "a">;
defm SWPL  : Swap<0, 1, "l">;
defm SWPAL : Swap<1, 1, "al">;

// v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
defm LDADD   : LDOPregister<0b000, "add", 0, 0, "">;
defm LDADDA  : LDOPregister<0b000, "add", 1, 0, "a">;
defm LDADDL  : LDOPregister<0b000, "add", 0, 1, "l">;
defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;

defm LDCLR   : LDOPregister<0b001, "clr", 0, 0, "">;
defm LDCLRA  : LDOPregister<0b001, "clr", 1, 0, "a">;
defm LDCLRL  : LDOPregister<0b001, "clr", 0, 1, "l">;
defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;

defm LDEOR   : LDOPregister<0b010, "eor", 0, 0, "">;
defm LDEORA  : LDOPregister<0b010, "eor", 1, 0, "a">;
defm LDEORL  : LDOPregister<0b010, "eor", 0, 1, "l">;
defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;

defm LDSET   : LDOPregister<0b011, "set", 0, 0, "">;
defm LDSETA  : LDOPregister<0b011, "set", 1, 0, "a">;
defm LDSETL  : LDOPregister<0b011, "set", 0, 1, "l">;
defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;

defm LDSMAX   : LDOPregister<0b100, "smax", 0, 0, "">;
defm LDSMAXA  : LDOPregister<0b100, "smax", 1, 0, "a">;
defm LDSMAXL  : LDOPregister<0b100, "smax", 0, 1, "l">;
defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;

defm LDSMIN   : LDOPregister<0b101, "smin", 0, 0, "">;
defm LDSMINA  : LDOPregister<0b101, "smin", 1, 0, "a">;
defm LDSMINL  : LDOPregister<0b101, "smin", 0, 1, "l">;
defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;

defm LDUMAX   : LDOPregister<0b110, "umax", 0, 0, "">;
defm LDUMAXA  : LDOPregister<0b110, "umax", 1, 0, "a">;
defm LDUMAXL  : LDOPregister<0b110, "umax", 0, 1, "l">;
defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;

defm LDUMIN   : LDOPregister<0b111, "umin", 0, 0, "">;
defm LDUMINA  : LDOPregister<0b111, "umin", 1, 0, "a">;
defm LDUMINL  : LDOPregister<0b111, "umin", 0, 1, "l">;
defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;

// v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
defm : STOPregister<"stadd","LDADD">; // STADDx
defm : STOPregister<"stclr","LDCLR">; // STCLRx
defm : STOPregister<"steor","LDEOR">; // STEORx
defm : STOPregister<"stset","LDSET">; // STSETx
defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
defm : STOPregister<"stumin","LDUMIN">;// STUMINx

// v8.5 Memory Tagging Extension
let Predicates = [HasMTE] in {

def IRG   : BaseTwoOperand<0b0100, GPR64sp, "irg", int_aarch64_irg, GPR64sp, GPR64>,
            Sched<[]>{
  let Inst{31} = 1;
}
def GMI   : BaseTwoOperand<0b0101, GPR64, "gmi", int_aarch64_gmi, GPR64sp>, Sched<[]>{
  let Inst{31} = 1;
  let isNotDuplicable = 1;
}
def ADDG  : AddSubG<0, "addg", null_frag>;
def SUBG  : AddSubG<1, "subg", null_frag>;

def : InstAlias<"irg $dst, $src", (IRG GPR64sp:$dst, GPR64sp:$src, XZR), 1>;

def SUBP : SUBP<0, "subp", int_aarch64_subp>, Sched<[]>;
def SUBPS : SUBP<1, "subps", null_frag>, Sched<[]>{
  let Defs = [NZCV];
}

def : InstAlias<"cmpp $lhs, $rhs", (SUBPS XZR, GPR64sp:$lhs, GPR64sp:$rhs), 0>;

def LDG : MemTagLoad<"ldg", "\t$Rt, [$Rn, $offset]">;

def : Pat<(int_aarch64_addg (am_indexedu6s128 GPR64sp:$Rn, uimm6s16:$imm6), imm0_15:$imm4),
          (ADDG GPR64sp:$Rn, imm0_63:$imm6, imm0_15:$imm4)>;
def : Pat<(int_aarch64_ldg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn,  simm9s16:$offset)),
          (LDG GPR64:$Rt, GPR64sp:$Rn,  simm9s16:$offset)>;

def : InstAlias<"ldg $Rt, [$Rn]", (LDG GPR64:$Rt, GPR64sp:$Rn, 0), 1>;

def LDGM : MemTagVector<1, "ldgm", "\t$Rt, [$Rn]",
                   (outs GPR64:$Rt), (ins GPR64sp:$Rn)>;
def STGM : MemTagVector<0, "stgm", "\t$Rt, [$Rn]",
                   (outs), (ins GPR64:$Rt, GPR64sp:$Rn)>;
def STZGM : MemTagVector<0, "stzgm", "\t$Rt, [$Rn]",
                   (outs), (ins GPR64:$Rt, GPR64sp:$Rn)> {
  let Inst{23} = 0;
}

defm STG   : MemTagStore<0b00, "stg">;
defm STZG  : MemTagStore<0b01, "stzg">;
defm ST2G  : MemTagStore<0b10, "st2g">;
defm STZ2G : MemTagStore<0b11, "stz2g">;

def : Pat<(AArch64stg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
          (STGOffset $Rn, $Rm, $imm)>;
def : Pat<(AArch64stzg GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
          (STZGOffset $Rn, $Rm, $imm)>;
def : Pat<(AArch64st2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
          (ST2GOffset $Rn, $Rm, $imm)>;
def : Pat<(AArch64stz2g GPR64sp:$Rn, (am_indexeds9s128 GPR64sp:$Rm, simm9s16:$imm)),
          (STZ2GOffset $Rn, $Rm, $imm)>;

defm STGP     : StorePairOffset <0b01, 0, GPR64z, simm7s16, "stgp">;
def  STGPpre  : StorePairPreIdx <0b01, 0, GPR64z, simm7s16, "stgp">;
def  STGPpost : StorePairPostIdx<0b01, 0, GPR64z, simm7s16, "stgp">;

def : Pat<(int_aarch64_stg GPR64:$Rt, (am_indexeds9s128 GPR64sp:$Rn, simm9s16:$offset)),
          (STGOffset GPR64:$Rt, GPR64sp:$Rn,  simm9s16:$offset)>;

def : Pat<(int_aarch64_stgp (am_indexed7s128 GPR64sp:$Rn, simm7s16:$imm), GPR64:$Rt, GPR64:$Rt2),
          (STGPi $Rt, $Rt2, $Rn, $imm)>;

def IRGstack
    : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rsp, GPR64:$Rm), []>,
      Sched<[]>;
def TAGPstack
    : Pseudo<(outs GPR64sp:$Rd), (ins GPR64sp:$Rn, uimm6s16:$imm6, GPR64sp:$Rm, imm0_15:$imm4), []>,
      Sched<[]>;

// Explicit SP in the first operand prevents ShrinkWrap optimization
// from leaving this instruction out of the stack frame. When IRGstack
// is transformed into IRG, this operand is replaced with the actual
// register / expression for the tagged base pointer of the current function.
def : Pat<(int_aarch64_irg_sp i64:$Rm), (IRGstack SP, i64:$Rm)>;

// Large STG to be expanded into a loop. $sz is the size, $Rn is start address.
// $Rn_wback is one past the end of the range. $Rm is the loop counter.
let isCodeGenOnly=1, mayStore=1 in {
def STGloop_wback
    : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
             [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
      Sched<[WriteAdr, WriteST]>;

def STZGloop_wback
    : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn_wback), (ins i64imm:$sz, GPR64sp:$Rn),
             [], "$Rn = $Rn_wback,@earlyclobber $Rn_wback,@earlyclobber $Rm" >,
      Sched<[WriteAdr, WriteST]>;

// A variant of the above where $Rn2 is an independent register not tied to the input register $Rn.
// Their purpose is to use a FrameIndex operand as $Rn (which of course can not be written back).
def STGloop
    : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
             [], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
      Sched<[WriteAdr, WriteST]>;

def STZGloop
    : Pseudo<(outs GPR64common:$Rm, GPR64sp:$Rn2), (ins i64imm:$sz, GPR64sp:$Rn),
             [], "@earlyclobber $Rn2,@earlyclobber $Rm" >,
      Sched<[WriteAdr, WriteST]>;
}

} // Predicates = [HasMTE]

//===----------------------------------------------------------------------===//
// Logical instructions.
//===----------------------------------------------------------------------===//

// (immediate)
defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
defm AND  : LogicalImm<0b00, "and", and, "bic">;
defm EOR  : LogicalImm<0b10, "eor", xor, "eon">;
defm ORR  : LogicalImm<0b01, "orr", or, "orn">;

// FIXME: these aliases *are* canonical sometimes (when movz can't be
// used). Actually, it seems to be working right now, but putting logical_immXX
// here is a bit dodgy on the AsmParser side too.
def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
                                          logical_imm32:$imm), 0>;
def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
                                          logical_imm64:$imm), 0>;


// (register)
defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
defm BICS : LogicalRegS<0b11, 1, "bics",
                        BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
defm AND  : LogicalReg<0b00, 0, "and", and>;
defm BIC  : LogicalReg<0b00, 1, "bic",
                       BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
defm EON  : LogicalReg<0b10, 1, "eon",
                       BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
defm EOR  : LogicalReg<0b10, 0, "eor", xor>;
defm ORN  : LogicalReg<0b01, 1, "orn",
                       BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
defm ORR  : LogicalReg<0b01, 0, "orr", or>;

def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;

def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;

def : InstAlias<"mvn $Wd, $Wm$sh",
                (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
def : InstAlias<"mvn $Xd, $Xm$sh",
                (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;

def : InstAlias<"tst $src1, $src2",
                (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
def : InstAlias<"tst $src1, $src2",
                (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;

def : InstAlias<"tst $src1, $src2",
                        (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
def : InstAlias<"tst $src1, $src2",
                        (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;

def : InstAlias<"tst $src1, $src2$sh",
               (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
def : InstAlias<"tst $src1, $src2$sh",
               (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;


def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;


//===----------------------------------------------------------------------===//
// One operand data processing instructions.
//===----------------------------------------------------------------------===//

defm CLS    : OneOperandData<0b101, "cls">;
defm CLZ    : OneOperandData<0b100, "clz", ctlz>;
defm RBIT   : OneOperandData<0b000, "rbit", bitreverse>;

def  REV16Wr : OneWRegData<0b001, "rev16",
                                  UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
def  REV16Xr : OneXRegData<0b001, "rev16", null_frag>;

def : Pat<(cttz GPR32:$Rn),
          (CLZWr (RBITWr GPR32:$Rn))>;
def : Pat<(cttz GPR64:$Rn),
          (CLZXr (RBITXr GPR64:$Rn))>;
def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
                (i32 1))),
          (CLSWr GPR32:$Rn)>;
def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
                (i64 1))),
          (CLSXr GPR64:$Rn)>;
def : Pat<(int_aarch64_cls GPR32:$Rn), (CLSWr GPR32:$Rn)>;
def : Pat<(int_aarch64_cls64 GPR64:$Rm), (EXTRACT_SUBREG (CLSXr GPR64:$Rm), sub_32)>;

// Unlike the other one operand instructions, the instructions with the "rev"
// mnemonic do *not* just different in the size bit, but actually use different
// opcode bits for the different sizes.
def REVWr   : OneWRegData<0b010, "rev", bswap>;
def REVXr   : OneXRegData<0b011, "rev", bswap>;
def REV32Xr : OneXRegData<0b010, "rev32",
                                 UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;

def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;

// The bswap commutes with the rotr so we want a pattern for both possible
// orders.
def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;

//===----------------------------------------------------------------------===//
// Bitfield immediate extraction instruction.
//===----------------------------------------------------------------------===//
let hasSideEffects = 0 in
defm EXTR : ExtractImm<"extr">;
def : InstAlias<"ror $dst, $src, $shift",
            (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
def : InstAlias<"ror $dst, $src, $shift",
            (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;

def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
          (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
          (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;

//===----------------------------------------------------------------------===//
// Other bitfield immediate instructions.
//===----------------------------------------------------------------------===//
let hasSideEffects = 0 in {
defm BFM  : BitfieldImmWith2RegArgs<0b01, "bfm">;
defm SBFM : BitfieldImm<0b00, "sbfm">;
defm UBFM : BitfieldImm<0b10, "ubfm">;
}

def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
  uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;

def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
  uint64_t enc = 31 - N->getZExtValue();
  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;

// min(7, 31 - shift_amt)
def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
  uint64_t enc = 31 - N->getZExtValue();
  enc = enc > 7 ? 7 : enc;
  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;

// min(15, 31 - shift_amt)
def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
  uint64_t enc = 31 - N->getZExtValue();
  enc = enc > 15 ? 15 : enc;
  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;

def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
  uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;

def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
  uint64_t enc = 63 - N->getZExtValue();
  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;

// min(7, 63 - shift_amt)
def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
  uint64_t enc = 63 - N->getZExtValue();
  enc = enc > 7 ? 7 : enc;
  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;

// min(15, 63 - shift_amt)
def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
  uint64_t enc = 63 - N->getZExtValue();
  enc = enc > 15 ? 15 : enc;
  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;

// min(31, 63 - shift_amt)
def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
  uint64_t enc = 63 - N->getZExtValue();
  enc = enc > 31 ? 31 : enc;
  return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
}]>;

def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
          (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
                              (i64 (i32shift_b imm0_31:$imm)))>;
def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
          (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
                              (i64 (i64shift_b imm0_63:$imm)))>;

let AddedComplexity = 10 in {
def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
          (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
          (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
}

def : InstAlias<"asr $dst, $src, $shift",
                (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
def : InstAlias<"asr $dst, $src, $shift",
                (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;

def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
          (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
          (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;

def : InstAlias<"lsr $dst, $src, $shift",
                (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
def : InstAlias<"lsr $dst, $src, $shift",
                (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;

//===----------------------------------------------------------------------===//
// Conditional comparison instructions.
//===----------------------------------------------------------------------===//
defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;

//===----------------------------------------------------------------------===//
// Conditional select instructions.
//===----------------------------------------------------------------------===//
defm CSEL  : CondSelect<0, 0b00, "csel">;

def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;

def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
          (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
          (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
          (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
          (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
          (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
          (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;

def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
          (CSINCWr WZR, WZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
          (CSINCXr XZR, XZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel GPR32:$tval, (i32 1), (i32 imm:$cc), NZCV),
          (CSINCWr GPR32:$tval, WZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel GPR64:$tval, (i64 1), (i32 imm:$cc), NZCV),
          (CSINCXr GPR64:$tval, XZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel (i32 1), GPR32:$fval, (i32 imm:$cc), NZCV),
          (CSINCWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
def : Pat<(AArch64csel (i64 1), GPR64:$fval, (i32 imm:$cc), NZCV),
          (CSINCXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
          (CSINVWr WZR, WZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
          (CSINVXr XZR, XZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
          (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
          (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
          (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
          (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;

// The inverse of the condition code from the alias instruction is what is used
// in the aliased instruction. The parser all ready inverts the condition code
// for these aliases.
def : InstAlias<"cset $dst, $cc",
                (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
def : InstAlias<"cset $dst, $cc",
                (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;

def : InstAlias<"csetm $dst, $cc",
                (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
def : InstAlias<"csetm $dst, $cc",
                (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;

def : InstAlias<"cinc $dst, $src, $cc",
                (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
def : InstAlias<"cinc $dst, $src, $cc",
                (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;

def : InstAlias<"cinv $dst, $src, $cc",
                (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
def : InstAlias<"cinv $dst, $src, $cc",
                (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;

def : InstAlias<"cneg $dst, $src, $cc",
                (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
def : InstAlias<"cneg $dst, $src, $cc",
                (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;

//===----------------------------------------------------------------------===//
// PC-relative instructions.
//===----------------------------------------------------------------------===//
let isReMaterializable = 1 in {
let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
def ADR  : ADRI<0, "adr", adrlabel,
                [(set GPR64:$Xd, (AArch64adr tglobaladdr:$label))]>;
} // hasSideEffects = 0

def ADRP : ADRI<1, "adrp", adrplabel,
                [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
} // isReMaterializable = 1

// page address of a constant pool entry, block address
def : Pat<(AArch64adr tconstpool:$cp), (ADR tconstpool:$cp)>;
def : Pat<(AArch64adr tblockaddress:$cp), (ADR tblockaddress:$cp)>;
def : Pat<(AArch64adr texternalsym:$sym), (ADR texternalsym:$sym)>;
def : Pat<(AArch64adr tjumptable:$sym), (ADR tjumptable:$sym)>;
def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
def : Pat<(AArch64adrp texternalsym:$sym), (ADRP texternalsym:$sym)>;

//===----------------------------------------------------------------------===//
// Unconditional branch (register) instructions.
//===----------------------------------------------------------------------===//

let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
def RET  : BranchReg<0b0010, "ret", []>;
def DRPS : SpecialReturn<0b0101, "drps">;
def ERET : SpecialReturn<0b0100, "eret">;
} // isReturn = 1, isTerminator = 1, isBarrier = 1

// Default to the LR register.
def : InstAlias<"ret", (RET LR)>;

let isCall = 1, Defs = [LR], Uses = [SP] in {
  def BLR : BranchReg<0b0001, "blr", []>;
  def BLRNoIP : Pseudo<(outs), (ins GPR64noip:$Rn), []>,
                Sched<[WriteBrReg]>,
                PseudoInstExpansion<(BLR GPR64:$Rn)>;
} // isCall

def : Pat<(AArch64call GPR64:$Rn),
          (BLR GPR64:$Rn)>,
      Requires<[NoSLSBLRMitigation]>;
def : Pat<(AArch64call GPR64noip:$Rn),
          (BLRNoIP GPR64noip:$Rn)>,
      Requires<[SLSBLRMitigation]>;

let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
def BR  : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
} // isBranch, isTerminator, isBarrier, isIndirectBranch

// Create a separate pseudo-instruction for codegen to use so that we don't
// flag lr as used in every function. It'll be restored before the RET by the
// epilogue if it's legitimately used.
def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
                   Sched<[WriteBrReg]> {
  let isTerminator = 1;
  let isBarrier = 1;
  let isReturn = 1;
}

// This is a directive-like pseudo-instruction. The purpose is to insert an
// R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
// (which in the usual case is a BLR).
let hasSideEffects = 1 in
def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
  let AsmString = ".tlsdesccall $sym";
}

// Pseudo instruction to tell the streamer to emit a 'B' character into the
// augmentation string.
def EMITBKEY : Pseudo<(outs), (ins), []>, Sched<[]> {}

// FIXME: maybe the scratch register used shouldn't be fixed to X1?
// FIXME: can "hasSideEffects be dropped?
let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
    isCodeGenOnly = 1 in
def TLSDESC_CALLSEQ
    : Pseudo<(outs), (ins i64imm:$sym),
             [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
      Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
          (TLSDESC_CALLSEQ texternalsym:$sym)>;

//===----------------------------------------------------------------------===//
// Conditional branch (immediate) instruction.
//===----------------------------------------------------------------------===//
def Bcc : BranchCond;

//===----------------------------------------------------------------------===//
// Compare-and-branch instructions.
//===----------------------------------------------------------------------===//
defm CBZ  : CmpBranch<0, "cbz", AArch64cbz>;
defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;

//===----------------------------------------------------------------------===//
// Test-bit-and-branch instructions.
//===----------------------------------------------------------------------===//
defm TBZ  : TestBranch<0, "tbz", AArch64tbz>;
defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;

//===----------------------------------------------------------------------===//
// Unconditional branch (immediate) instructions.
//===----------------------------------------------------------------------===//
let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
def B  : BranchImm<0, "b", [(br bb:$addr)]>;
} // isBranch, isTerminator, isBarrier

let isCall = 1, Defs = [LR], Uses = [SP] in {
def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
} // isCall
def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;

//===----------------------------------------------------------------------===//
// Exception generation instructions.
//===----------------------------------------------------------------------===//
let isTrap = 1 in {
def BRK   : ExceptionGeneration<0b001, 0b00, "brk">;
}
def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
def HLT   : ExceptionGeneration<0b010, 0b00, "hlt">;
def HVC   : ExceptionGeneration<0b000, 0b10, "hvc">;
def SMC   : ExceptionGeneration<0b000, 0b11, "smc">;
def SVC   : ExceptionGeneration<0b000, 0b01, "svc">;

// DCPSn defaults to an immediate operand of zero if unspecified.
def : InstAlias<"dcps1", (DCPS1 0)>;
def : InstAlias<"dcps2", (DCPS2 0)>;
def : InstAlias<"dcps3", (DCPS3 0)>;

def UDF : UDFType<0, "udf">;

//===----------------------------------------------------------------------===//
// Load instructions.
//===----------------------------------------------------------------------===//

// Pair (indexed, offset)
defm LDPW : LoadPairOffset<0b00, 0, GPR32z, simm7s4, "ldp">;
defm LDPX : LoadPairOffset<0b10, 0, GPR64z, simm7s8, "ldp">;
defm LDPS : LoadPairOffset<0b00, 1, FPR32Op, simm7s4, "ldp">;
defm LDPD : LoadPairOffset<0b01, 1, FPR64Op, simm7s8, "ldp">;
defm LDPQ : LoadPairOffset<0b10, 1, FPR128Op, simm7s16, "ldp">;

defm LDPSW : LoadPairOffset<0b01, 0, GPR64z, simm7s4, "ldpsw">;

// Pair (pre-indexed)
def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;

def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;

// Pair (post-indexed)
def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32z, simm7s4, "ldp">;
def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64z, simm7s8, "ldp">;
def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32Op, simm7s4, "ldp">;
def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64Op, simm7s8, "ldp">;
def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128Op, simm7s16, "ldp">;

def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64z, simm7s4, "ldpsw">;


// Pair (no allocate)
defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32z, simm7s4, "ldnp">;
defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64z, simm7s8, "ldnp">;
defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32Op, simm7s4, "ldnp">;
defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64Op, simm7s8, "ldnp">;
defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128Op, simm7s16, "ldnp">;

def : Pat<(AArch64ldp (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
          (LDPXi GPR64sp:$Rn, simm7s8:$offset)>;

//---
// (register offset)
//---

// Integer
defm LDRBB : Load8RO<0b00,  0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
defm LDRW  : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
defm LDRX  : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;

// Floating-point
defm LDRB : Load8RO<0b00,   1, 0b01, FPR8Op,   "ldr", untyped, load>;
defm LDRH : Load16RO<0b01,  1, 0b01, FPR16Op,  "ldr", f16, load>;
defm LDRS : Load32RO<0b10,  1, 0b01, FPR32Op,  "ldr", f32, load>;
defm LDRD : Load64RO<0b11,  1, 0b01, FPR64Op,  "ldr", f64, load>;
defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128Op, "ldr", f128, load>;

// Load sign-extended half-word
defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;

// Load sign-extended byte
defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;

// Load sign-extended word
defm LDRSW  : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;

// Pre-fetch.
defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;

// For regular load, we do not have any alignment requirement.
// Thus, it is safe to directly map the vector loads with interesting
// addressing modes.
// FIXME: We could do the same for bitconvert to floating point vectors.
multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
                              ValueType ScalTy, ValueType VecTy,
                              Instruction LOADW, Instruction LOADX,
                              SubRegIndex sub> {
  def : Pat<(VecTy (scalar_to_vector (ScalTy
              (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
            (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
                           (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
                           sub)>;

  def : Pat<(VecTy (scalar_to_vector (ScalTy
              (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
            (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
                           (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
                           sub)>;
}

let AddedComplexity = 10 in {
defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v8i8,  LDRBroW, LDRBroX, bsub>;
defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v16i8, LDRBroW, LDRBroX, bsub>;

defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;

defm : ScalToVecROLoadPat<ro16, load,       i32, v4f16, LDRHroW, LDRHroX, hsub>;
defm : ScalToVecROLoadPat<ro16, load,       i32, v8f16, LDRHroW, LDRHroX, hsub>;

defm : ScalToVecROLoadPat<ro32, load,       i32, v2i32, LDRSroW, LDRSroX, ssub>;
defm : ScalToVecROLoadPat<ro32, load,       i32, v4i32, LDRSroW, LDRSroX, ssub>;

defm : ScalToVecROLoadPat<ro32, load,       f32, v2f32, LDRSroW, LDRSroX, ssub>;
defm : ScalToVecROLoadPat<ro32, load,       f32, v4f32, LDRSroW, LDRSroX, ssub>;

defm : ScalToVecROLoadPat<ro64, load,       i64, v2i64, LDRDroW, LDRDroX, dsub>;

defm : ScalToVecROLoadPat<ro64, load,       f64, v2f64, LDRDroW, LDRDroX, dsub>;


def : Pat <(v1i64 (scalar_to_vector (i64
                      (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
                                           ro_Wextend64:$extend))))),
           (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;

def : Pat <(v1i64 (scalar_to_vector (i64
                      (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
                                           ro_Xextend64:$extend))))),
           (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
}

// Match all load 64 bits width whose type is compatible with FPR64
multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
                        Instruction LOADW, Instruction LOADX> {

  def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
            (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;

  def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
            (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
}

let AddedComplexity = 10 in {
let Predicates = [IsLE] in {
  // We must do vector loads with LD1 in big-endian.
  defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
  defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
  defm : VecROLoadPat<ro64, v8i8,  LDRDroW, LDRDroX>;
  defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
  defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
  defm : VecROLoadPat<ro64, v4bf16, LDRDroW, LDRDroX>;
}

defm : VecROLoadPat<ro64, v1i64,  LDRDroW, LDRDroX>;
defm : VecROLoadPat<ro64, v1f64,  LDRDroW, LDRDroX>;

// Match all load 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
  // We must do vector loads with LD1 in big-endian.
  defm : VecROLoadPat<ro128, v2i64,  LDRQroW, LDRQroX>;
  defm : VecROLoadPat<ro128, v2f64,  LDRQroW, LDRQroX>;
  defm : VecROLoadPat<ro128, v4i32,  LDRQroW, LDRQroX>;
  defm : VecROLoadPat<ro128, v4f32,  LDRQroW, LDRQroX>;
  defm : VecROLoadPat<ro128, v8i16,  LDRQroW, LDRQroX>;
  defm : VecROLoadPat<ro128, v8f16,  LDRQroW, LDRQroX>;
  defm : VecROLoadPat<ro128, v8bf16,  LDRQroW, LDRQroX>;
  defm : VecROLoadPat<ro128, v16i8,  LDRQroW, LDRQroX>;
}
} // AddedComplexity = 10

// zextload -> i64
multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
                            Instruction INSTW, Instruction INSTX> {
  def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
            (SUBREG_TO_REG (i64 0),
                           (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
                           sub_32)>;

  def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
            (SUBREG_TO_REG (i64 0),
                           (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
                           sub_32)>;
}

let AddedComplexity = 10 in {
  defm : ExtLoadTo64ROPat<ro8,  zextloadi8,  LDRBBroW, LDRBBroX>;
  defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
  defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW,  LDRWroX>;

  // zextloadi1 -> zextloadi8
  defm : ExtLoadTo64ROPat<ro8,  zextloadi1,  LDRBBroW, LDRBBroX>;

  // extload -> zextload
  defm : ExtLoadTo64ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
  defm : ExtLoadTo64ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
  defm : ExtLoadTo64ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;

  // extloadi1 -> zextloadi8
  defm : ExtLoadTo64ROPat<ro8,  extloadi1,   LDRBBroW, LDRBBroX>;
}


// zextload -> i64
multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
                            Instruction INSTW, Instruction INSTX> {
  def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
            (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;

  def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
            (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;

}

let AddedComplexity = 10 in {
  // extload -> zextload
  defm : ExtLoadTo32ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
  defm : ExtLoadTo32ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
  defm : ExtLoadTo32ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;

  // zextloadi1 -> zextloadi8
  defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
}

//---
// (unsigned immediate)
//---
defm LDRX : LoadUI<0b11, 0, 0b01, GPR64z, uimm12s8, "ldr",
                   [(set GPR64z:$Rt,
                         (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
defm LDRW : LoadUI<0b10, 0, 0b01, GPR32z, uimm12s4, "ldr",
                   [(set GPR32z:$Rt,
                         (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
defm LDRB : LoadUI<0b00, 1, 0b01, FPR8Op, uimm12s1, "ldr",
                   [(set FPR8Op:$Rt,
                         (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
defm LDRH : LoadUI<0b01, 1, 0b01, FPR16Op, uimm12s2, "ldr",
                   [(set (f16 FPR16Op:$Rt),
                         (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
defm LDRS : LoadUI<0b10, 1, 0b01, FPR32Op, uimm12s4, "ldr",
                   [(set (f32 FPR32Op:$Rt),
                         (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
defm LDRD : LoadUI<0b11, 1, 0b01, FPR64Op, uimm12s8, "ldr",
                   [(set (f64 FPR64Op:$Rt),
                         (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128Op, uimm12s16, "ldr",
                 [(set (f128 FPR128Op:$Rt),
                       (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;

// bf16 load pattern
def : Pat <(bf16 (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;

// For regular load, we do not have any alignment requirement.
// Thus, it is safe to directly map the vector loads with interesting
// addressing modes.
// FIXME: We could do the same for bitconvert to floating point vectors.
def : Pat <(v8i8 (scalar_to_vector (i32
               (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
           (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
def : Pat <(v16i8 (scalar_to_vector (i32
               (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
def : Pat <(v4i16 (scalar_to_vector (i32
               (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
           (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
def : Pat <(v8i16 (scalar_to_vector (i32
               (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
           (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
def : Pat <(v2i32 (scalar_to_vector (i32
               (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
           (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
def : Pat <(v4i32 (scalar_to_vector (i32
               (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
           (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
def : Pat <(v1i64 (scalar_to_vector (i64
               (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat <(v2i64 (scalar_to_vector (i64
               (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
                          (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;

// Match all load 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
  // We must use LD1 to perform vector loads in big-endian.
  def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(v4bf16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
}
def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
          (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
          (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;

// Match all load 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
  // We must use LD1 to perform vector loads in big-endian.
  def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(v8bf16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
            (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
}
def : Pat<(f128  (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
          (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;

defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
                    [(set GPR32:$Rt,
                          (zextloadi16 (am_indexed16 GPR64sp:$Rn,
                                                     uimm12s2:$offset)))]>;
defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
                    [(set GPR32:$Rt,
                          (zextloadi8 (am_indexed8 GPR64sp:$Rn,
                                                   uimm12s1:$offset)))]>;
// zextload -> i64
def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
    (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;

// zextloadi1 -> zextloadi8
def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;

// extload -> zextload
def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
          (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
    (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
    (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
    (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;

// load sign-extended half-word
defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
                     [(set GPR32:$Rt,
                           (sextloadi16 (am_indexed16 GPR64sp:$Rn,
                                                      uimm12s2:$offset)))]>;
defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
                     [(set GPR64:$Rt,
                           (sextloadi16 (am_indexed16 GPR64sp:$Rn,
                                                      uimm12s2:$offset)))]>;

// load sign-extended byte
defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
                     [(set GPR32:$Rt,
                           (sextloadi8 (am_indexed8 GPR64sp:$Rn,
                                                    uimm12s1:$offset)))]>;
defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
                     [(set GPR64:$Rt,
                           (sextloadi8 (am_indexed8 GPR64sp:$Rn,
                                                    uimm12s1:$offset)))]>;

// load sign-extended word
defm LDRSW  : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
                     [(set GPR64:$Rt,
                           (sextloadi32 (am_indexed32 GPR64sp:$Rn,
                                                      uimm12s4:$offset)))]>;

// load zero-extended word
def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
      (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;

// Pre-fetch.
def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
                        [(AArch64Prefetch imm:$Rt,
                                        (am_indexed64 GPR64sp:$Rn,
                                                      uimm12s8:$offset))]>;

def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;

//---
// (literal)

def alignedglobal : PatLeaf<(iPTR iPTR:$label), [{
  if (auto *G = dyn_cast<GlobalAddressSDNode>(N)) {
    const DataLayout &DL = MF->getDataLayout();
    Align Align = G->getGlobal()->getPointerAlignment(DL);
    return Align >= 4 && G->getOffset() % 4 == 0;
  }
  if (auto *C = dyn_cast<ConstantPoolSDNode>(N))
    return C->getAlign() >= 4 && C->getOffset() % 4 == 0;
  return false;
}]>;

def LDRWl : LoadLiteral<0b00, 0, GPR32z, "ldr",
  [(set GPR32z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
def LDRXl : LoadLiteral<0b01, 0, GPR64z, "ldr",
  [(set GPR64z:$Rt, (load (AArch64adr alignedglobal:$label)))]>;
def LDRSl : LoadLiteral<0b00, 1, FPR32Op, "ldr",
  [(set (f32 FPR32Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
def LDRDl : LoadLiteral<0b01, 1, FPR64Op, "ldr",
  [(set (f64 FPR64Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;
def LDRQl : LoadLiteral<0b10, 1, FPR128Op, "ldr",
  [(set (f128 FPR128Op:$Rt), (load (AArch64adr alignedglobal:$label)))]>;

// load sign-extended word
def LDRSWl : LoadLiteral<0b10, 0, GPR64z, "ldrsw",
  [(set GPR64z:$Rt, (sextloadi32 (AArch64adr alignedglobal:$label)))]>;

let AddedComplexity = 20 in {
def : Pat<(i64 (zextloadi32 (AArch64adr alignedglobal:$label))),
        (SUBREG_TO_REG (i64 0), (LDRWl $label), sub_32)>;
}

// prefetch
def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
//                   [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;

//---
// (unscaled immediate)
defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64z, "ldur",
                    [(set GPR64z:$Rt,
                          (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32z, "ldur",
                    [(set GPR32z:$Rt,
                          (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8Op, "ldur",
                    [(set FPR8Op:$Rt,
                          (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16Op, "ldur",
                    [(set (f16 FPR16Op:$Rt),
                          (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32Op, "ldur",
                    [(set (f32 FPR32Op:$Rt),
                          (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64Op, "ldur",
                    [(set (f64 FPR64Op:$Rt),
                          (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128Op, "ldur",
                    [(set (f128 FPR128Op:$Rt),
                          (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;

defm LDURHH
    : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
             [(set GPR32:$Rt,
                    (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURBB
    : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
             [(set GPR32:$Rt,
                    (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;

// Match all load 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
  def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
            (LDURDi GPR64sp:$Rn, simm9:$offset)>;
}
def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
          (LDURDi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
          (LDURDi GPR64sp:$Rn, simm9:$offset)>;

// Match all load 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE] in {
  def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
            (LDURQi GPR64sp:$Rn, simm9:$offset)>;
}

//  anyext -> zext
def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
    (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
    (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
// unscaled zext
def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
    (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
    (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
    (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;


//---
// LDR mnemonics fall back to LDUR for negative or unaligned offsets.

// Define new assembler match classes as we want to only match these when
// the don't otherwise match the scaled addressing mode for LDR/STR. Don't
// associate a DiagnosticType either, as we want the diagnostic for the
// canonical form (the scaled operand) to take precedence.
class SImm9OffsetOperand<int Width> : AsmOperandClass {
  let Name = "SImm9OffsetFB" # Width;
  let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
  let RenderMethod = "addImmOperands";
}

def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;

def simm9_offset_fb8 : Operand<i64> {
  let ParserMatchClass = SImm9OffsetFB8Operand;
}
def simm9_offset_fb16 : Operand<i64> {
  let ParserMatchClass = SImm9OffsetFB16Operand;
}
def simm9_offset_fb32 : Operand<i64> {
  let ParserMatchClass = SImm9OffsetFB32Operand;
}
def simm9_offset_fb64 : Operand<i64> {
  let ParserMatchClass = SImm9OffsetFB64Operand;
}
def simm9_offset_fb128 : Operand<i64> {
  let ParserMatchClass = SImm9OffsetFB128Operand;
}

def : InstAlias<"ldr $Rt, [$Rn, $offset]",
                (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
                (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
                (LDURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
                (LDURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
                (LDURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
                (LDURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
def : InstAlias<"ldr $Rt, [$Rn, $offset]",
               (LDURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;

// zextload -> i64
def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
  (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
  (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;

// load sign-extended half-word
defm LDURSHW
    : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
               [(set GPR32:$Rt,
                    (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURSHX
    : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
              [(set GPR64:$Rt,
                    (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;

// load sign-extended byte
defm LDURSBW
    : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
                [(set GPR32:$Rt,
                      (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
defm LDURSBX
    : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
                [(set GPR64:$Rt,
                      (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;

// load sign-extended word
defm LDURSW
    : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
              [(set GPR64:$Rt,
                    (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;

// zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
                (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
                (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
                (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
                (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
                (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
                (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
                (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;

// Pre-fetch.
defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
                  [(AArch64Prefetch imm:$Rt,
                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;

//---
// (unscaled immediate, unprivileged)
defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;

defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;

// load sign-extended half-word
defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;

// load sign-extended byte
defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;

// load sign-extended word
defm LDTRSW  : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;

//---
// (immediate pre-indexed)
def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32z, "ldr">;
def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64z, "ldr">;
def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128Op, "ldr">;

// load sign-extended half-word
def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;

// load sign-extended byte
def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;

// load zero-extended byte
def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32z, "ldrh">;

// load sign-extended word
def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;

//---
// (immediate post-indexed)
def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32z, "ldr">;
def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64z, "ldr">;
def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8Op,  "ldr">;
def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16Op, "ldr">;
def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32Op, "ldr">;
def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64Op, "ldr">;
def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128Op, "ldr">;

// load sign-extended half-word
def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32z, "ldrsh">;
def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64z, "ldrsh">;

// load sign-extended byte
def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32z, "ldrsb">;
def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64z, "ldrsb">;

// load zero-extended byte
def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32z, "ldrb">;
def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32z, "ldrh">;

// load sign-extended word
def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64z, "ldrsw">;

//===----------------------------------------------------------------------===//
// Store instructions.
//===----------------------------------------------------------------------===//

// Pair (indexed, offset)
// FIXME: Use dedicated range-checked addressing mode operand here.
defm STPW : StorePairOffset<0b00, 0, GPR32z, simm7s4, "stp">;
defm STPX : StorePairOffset<0b10, 0, GPR64z, simm7s8, "stp">;
defm STPS : StorePairOffset<0b00, 1, FPR32Op, simm7s4, "stp">;
defm STPD : StorePairOffset<0b01, 1, FPR64Op, simm7s8, "stp">;
defm STPQ : StorePairOffset<0b10, 1, FPR128Op, simm7s16, "stp">;

// Pair (pre-indexed)
def STPWpre : StorePairPreIdx<0b00, 0, GPR32z, simm7s4, "stp">;
def STPXpre : StorePairPreIdx<0b10, 0, GPR64z, simm7s8, "stp">;
def STPSpre : StorePairPreIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
def STPDpre : StorePairPreIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
def STPQpre : StorePairPreIdx<0b10, 1, FPR128Op, simm7s16, "stp">;

// Pair (pre-indexed)
def STPWpost : StorePairPostIdx<0b00, 0, GPR32z, simm7s4, "stp">;
def STPXpost : StorePairPostIdx<0b10, 0, GPR64z, simm7s8, "stp">;
def STPSpost : StorePairPostIdx<0b00, 1, FPR32Op, simm7s4, "stp">;
def STPDpost : StorePairPostIdx<0b01, 1, FPR64Op, simm7s8, "stp">;
def STPQpost : StorePairPostIdx<0b10, 1, FPR128Op, simm7s16, "stp">;

// Pair (no allocate)
defm STNPW : StorePairNoAlloc<0b00, 0, GPR32z, simm7s4, "stnp">;
defm STNPX : StorePairNoAlloc<0b10, 0, GPR64z, simm7s8, "stnp">;
defm STNPS : StorePairNoAlloc<0b00, 1, FPR32Op, simm7s4, "stnp">;
defm STNPD : StorePairNoAlloc<0b01, 1, FPR64Op, simm7s8, "stnp">;
defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128Op, simm7s16, "stnp">;

def : Pat<(AArch64stp GPR64z:$Rt, GPR64z:$Rt2, (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
          (STPXi GPR64z:$Rt, GPR64z:$Rt2, GPR64sp:$Rn, simm7s8:$offset)>;

def : Pat<(AArch64stnp FPR128:$Rt, FPR128:$Rt2, (am_indexed7s128 GPR64sp:$Rn, simm7s16:$offset)),
          (STNPQi FPR128:$Rt, FPR128:$Rt2, GPR64sp:$Rn, simm7s16:$offset)>;


//---
// (Register offset)

// Integer
defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
defm STRW  : Store32RO<0b10, 0, 0b00, GPR32, "str",  i32, store>;
defm STRX  : Store64RO<0b11, 0, 0b00, GPR64, "str",  i64, store>;


// Floating-point
defm STRB : Store8RO< 0b00,  1, 0b00, FPR8Op,   "str", untyped, store>;
defm STRH : Store16RO<0b01,  1, 0b00, FPR16Op,  "str", f16,     store>;
defm STRS : Store32RO<0b10,  1, 0b00, FPR32Op,  "str", f32,     store>;
defm STRD : Store64RO<0b11,  1, 0b00, FPR64Op,  "str", f64,     store>;
defm STRQ : Store128RO<0b00, 1, 0b10, FPR128Op, "str", f128,    store>;

let Predicates = [UseSTRQro], AddedComplexity = 10 in {
  def : Pat<(store (f128 FPR128:$Rt),
                        (ro_Windexed128 GPR64sp:$Rn, GPR32:$Rm,
                                        ro_Wextend128:$extend)),
            (STRQroW FPR128:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend128:$extend)>;
  def : Pat<(store (f128 FPR128:$Rt),
                        (ro_Xindexed128 GPR64sp:$Rn, GPR64:$Rm,
                                        ro_Xextend128:$extend)),
            (STRQroX FPR128:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro_Wextend128:$extend)>;
}

multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
                                 Instruction STRW, Instruction STRX> {

  def : Pat<(storeop GPR64:$Rt,
                     (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
            (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
                  GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;

  def : Pat<(storeop GPR64:$Rt,
                     (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
            (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
                  GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
}

let AddedComplexity = 10 in {
  // truncstore i64
  defm : TruncStoreFrom64ROPat<ro8,  truncstorei8,  STRBBroW, STRBBroX>;
  defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
  defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW,  STRWroX>;
}

multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
                         Instruction STRW, Instruction STRX> {
  def : Pat<(store (VecTy FPR:$Rt),
                   (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
            (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;

  def : Pat<(store (VecTy FPR:$Rt),
                   (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
            (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
}

let AddedComplexity = 10 in {
// Match all store 64 bits width whose type is compatible with FPR64
let Predicates = [IsLE] in {
  // We must use ST1 to store vectors in big-endian.
  defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
  defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
  defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
  defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
  defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
  defm : VecROStorePat<ro64, v4bf16, FPR64, STRDroW, STRDroX>;
}

defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;

// Match all store 128 bits width whose type is compatible with FPR128
let Predicates = [IsLE, UseSTRQro] in {
  // We must use ST1 to store vectors in big-endian.
  defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
  defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
  defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
  defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
  defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
  defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
  defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
  defm : VecROStorePat<ro128, v8bf16, FPR128, STRQroW, STRQroX>;
}
} // AddedComplexity = 10

// Match stores from lane 0 to the appropriate subreg's store.
multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
                              ValueType VecTy, ValueType STy,
                              SubRegIndex SubRegIdx,
                              Instruction STRW, Instruction STRX> {

  def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
                     (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
            (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
                  GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;

  def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
                     (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
            (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
                  GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
}

let AddedComplexity = 19 in {
  defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
  defm : VecROStoreLane0Pat<ro16,         store, v8f16, f16, hsub, STRHroW, STRHroX>;
  defm : VecROStoreLane0Pat<ro32,         store, v4i32, i32, ssub, STRSroW, STRSroX>;
  defm : VecROStoreLane0Pat<ro32,         store, v4f32, f32, ssub, STRSroW, STRSroX>;
  defm : VecROStoreLane0Pat<ro64,         store, v2i64, i64, dsub, STRDroW, STRDroX>;
  defm : VecROStoreLane0Pat<ro64,         store, v2f64, f64, dsub, STRDroW, STRDroX>;
}

//---
// (unsigned immediate)
defm STRX : StoreUIz<0b11, 0, 0b00, GPR64z, uimm12s8, "str",
                   [(store GPR64z:$Rt,
                            (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
defm STRW : StoreUIz<0b10, 0, 0b00, GPR32z, uimm12s4, "str",
                    [(store GPR32z:$Rt,
                            (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
defm STRB : StoreUI<0b00, 1, 0b00, FPR8Op, uimm12s1, "str",
                    [(store FPR8Op:$Rt,
                            (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
defm STRH : StoreUI<0b01, 1, 0b00, FPR16Op, uimm12s2, "str",
                    [(store (f16 FPR16Op:$Rt),
                            (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
defm STRS : StoreUI<0b10, 1, 0b00, FPR32Op, uimm12s4, "str",
                    [(store (f32 FPR32Op:$Rt),
                            (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
defm STRD : StoreUI<0b11, 1, 0b00, FPR64Op, uimm12s8, "str",
                    [(store (f64 FPR64Op:$Rt),
                            (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
defm STRQ : StoreUI<0b00, 1, 0b10, FPR128Op, uimm12s16, "str", []>;

defm STRHH : StoreUIz<0b01, 0, 0b00, GPR32z, uimm12s2, "strh",
                     [(truncstorei16 GPR32z:$Rt,
                                     (am_indexed16 GPR64sp:$Rn,
                                                   uimm12s2:$offset))]>;
defm STRBB : StoreUIz<0b00, 0, 0b00, GPR32z, uimm12s1,  "strb",
                     [(truncstorei8 GPR32z:$Rt,
                                    (am_indexed8 GPR64sp:$Rn,
                                                 uimm12s1:$offset))]>;

// bf16 store pattern
def : Pat<(store (bf16 FPR16Op:$Rt),
                 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
          (STRHui FPR16:$Rt, GPR64sp:$Rn, uimm12s2:$offset)>;

let AddedComplexity = 10 in {

// Match all store 64 bits width whose type is compatible with FPR64
def : Pat<(store (v1i64 FPR64:$Rt),
                 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
          (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(store (v1f64 FPR64:$Rt),
                 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
          (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;

let Predicates = [IsLE] in {
  // We must use ST1 to store vectors in big-endian.
  def : Pat<(store (v2f32 FPR64:$Rt),
                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(store (v8i8 FPR64:$Rt),
                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(store (v4i16 FPR64:$Rt),
                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(store (v2i32 FPR64:$Rt),
                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(store (v4f16 FPR64:$Rt),
                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
  def : Pat<(store (v4bf16 FPR64:$Rt),
                   (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
            (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
}

// Match all store 128 bits width whose type is compatible with FPR128
def : Pat<(store (f128  FPR128:$Rt),
                 (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
          (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;

let Predicates = [IsLE] in {
  // We must use ST1 to store vectors in big-endian.
  def : Pat<(store (v4f32 FPR128:$Rt),
                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(store (v2f64 FPR128:$Rt),
                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(store (v16i8 FPR128:$Rt),
                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(store (v8i16 FPR128:$Rt),
                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(store (v4i32 FPR128:$Rt),
                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(store (v2i64 FPR128:$Rt),
                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(store (v8f16 FPR128:$Rt),
                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
  def : Pat<(store (v8bf16 FPR128:$Rt),
                   (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
            (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
}

// truncstore i64
def : Pat<(truncstorei32 GPR64:$Rt,
                         (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
  (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
def : Pat<(truncstorei16 GPR64:$Rt,
                         (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
  (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
  (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;

} // AddedComplexity = 10

// Match stores from lane 0 to the appropriate subreg's store.
multiclass VecStoreLane0Pat<Operand UIAddrMode, SDPatternOperator storeop,
                            ValueType VTy, ValueType STy,
                            SubRegIndex SubRegIdx, Operand IndexType,
                            Instruction STR> {
  def : Pat<(storeop (STy (vector_extract (VTy VecListOne128:$Vt), 0)),
                     (UIAddrMode GPR64sp:$Rn, IndexType:$offset)),
            (STR (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
                 GPR64sp:$Rn, IndexType:$offset)>;
}

let AddedComplexity = 19 in {
  defm : VecStoreLane0Pat<am_indexed16, truncstorei16, v8i16, i32, hsub, uimm12s2, STRHui>;
  defm : VecStoreLane0Pat<am_indexed16,         store, v8f16, f16, hsub, uimm12s2, STRHui>;
  defm : VecStoreLane0Pat<am_indexed32,         store, v4i32, i32, ssub, uimm12s4, STRSui>;
  defm : VecStoreLane0Pat<am_indexed32,         store, v4f32, f32, ssub, uimm12s4, STRSui>;
  defm : VecStoreLane0Pat<am_indexed64,         store, v2i64, i64, dsub, uimm12s8, STRDui>;
  defm : VecStoreLane0Pat<am_indexed64,         store, v2f64, f64, dsub, uimm12s8, STRDui>;
}

//---
// (unscaled immediate)
defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64z, "stur",
                         [(store GPR64z:$Rt,
                                 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32z, "stur",
                         [(store GPR32z:$Rt,
                                 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8Op, "stur",
                         [(store FPR8Op:$Rt,
                                 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16Op, "stur",
                         [(store (f16 FPR16Op:$Rt),
                                 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32Op, "stur",
                         [(store (f32 FPR32Op:$Rt),
                                 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64Op, "stur",
                         [(store (f64 FPR64Op:$Rt),
                                 (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128Op, "stur",
                         [(store (f128 FPR128Op:$Rt),
                                 (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32z, "sturh",
                         [(truncstorei16 GPR32z:$Rt,
                                 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32z, "sturb",
                         [(truncstorei8 GPR32z:$Rt,
                                  (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;

// Armv8.4 Weaker Release Consistency enhancements
//         LDAPR & STLR with Immediate Offset instructions
let Predicates = [HasRCPC_IMMO] in {
defm STLURB     : BaseStoreUnscaleV84<"stlurb",  0b00, 0b00, GPR32>;
defm STLURH     : BaseStoreUnscaleV84<"stlurh",  0b01, 0b00, GPR32>;
defm STLURW     : BaseStoreUnscaleV84<"stlur",   0b10, 0b00, GPR32>;
defm STLURX     : BaseStoreUnscaleV84<"stlur",   0b11, 0b00, GPR64>;
defm LDAPURB    : BaseLoadUnscaleV84<"ldapurb",  0b00, 0b01, GPR32>;
defm LDAPURSBW  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b11, GPR32>;
defm LDAPURSBX  : BaseLoadUnscaleV84<"ldapursb", 0b00, 0b10, GPR64>;
defm LDAPURH    : BaseLoadUnscaleV84<"ldapurh",  0b01, 0b01, GPR32>;
defm LDAPURSHW  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b11, GPR32>;
defm LDAPURSHX  : BaseLoadUnscaleV84<"ldapursh", 0b01, 0b10, GPR64>;
defm LDAPUR     : BaseLoadUnscaleV84<"ldapur",   0b10, 0b01, GPR32>;
defm LDAPURSW   : BaseLoadUnscaleV84<"ldapursw", 0b10, 0b10, GPR64>;
defm LDAPURX    : BaseLoadUnscaleV84<"ldapur",   0b11, 0b01, GPR64>;
}

// Match all store 64 bits width whose type is compatible with FPR64
def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
          (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
          (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;

let AddedComplexity = 10 in {

let Predicates = [IsLE] in {
  // We must use ST1 to store vectors in big-endian.
  def : Pat<(store (v2f32 FPR64:$Rt),
                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v8i8 FPR64:$Rt),
                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v4i16 FPR64:$Rt),
                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v2i32 FPR64:$Rt),
                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v4f16 FPR64:$Rt),
                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v4bf16 FPR64:$Rt),
                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
            (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
}

// Match all store 128 bits width whose type is compatible with FPR128
def : Pat<(store (f128 FPR128:$Rt), (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
          (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;

let Predicates = [IsLE] in {
  // We must use ST1 to store vectors in big-endian.
  def : Pat<(store (v4f32 FPR128:$Rt),
                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v2f64 FPR128:$Rt),
                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v16i8 FPR128:$Rt),
                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v8i16 FPR128:$Rt),
                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v4i32 FPR128:$Rt),
                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v2i64 FPR128:$Rt),
                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v2f64 FPR128:$Rt),
                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v8f16 FPR128:$Rt),
                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
  def : Pat<(store (v8bf16 FPR128:$Rt),
                   (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
            (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
}

} // AddedComplexity = 10

// unscaled i64 truncating stores
def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
  (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
  (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
  (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;

// Match stores from lane 0 to the appropriate subreg's store.
multiclass VecStoreULane0Pat<SDPatternOperator StoreOp,
                             ValueType VTy, ValueType STy,
                             SubRegIndex SubRegIdx, Instruction STR> {
  defm : VecStoreLane0Pat<am_unscaled128, StoreOp, VTy, STy, SubRegIdx, simm9, STR>;
}

let AddedComplexity = 19 in {
  defm : VecStoreULane0Pat<truncstorei16, v8i16, i32, hsub, STURHi>;
  defm : VecStoreULane0Pat<store,         v8f16, f16, hsub, STURHi>;
  defm : VecStoreULane0Pat<store,         v4i32, i32, ssub, STURSi>;
  defm : VecStoreULane0Pat<store,         v4f32, f32, ssub, STURSi>;
  defm : VecStoreULane0Pat<store,         v2i64, i64, dsub, STURDi>;
  defm : VecStoreULane0Pat<store,         v2f64, f64, dsub, STURDi>;
}

//---
// STR mnemonics fall back to STUR for negative or unaligned offsets.
def : InstAlias<"str $Rt, [$Rn, $offset]",
                (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
                (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
                (STURBi FPR8Op:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
                (STURHi FPR16Op:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
                (STURSi FPR32Op:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
                (STURDi FPR64Op:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
def : InstAlias<"str $Rt, [$Rn, $offset]",
                (STURQi FPR128Op:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;

def : InstAlias<"strb $Rt, [$Rn, $offset]",
                (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
def : InstAlias<"strh $Rt, [$Rn, $offset]",
                (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;

//---
// (unscaled immediate, unprivileged)
defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;

defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;

//---
// (immediate pre-indexed)
def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32z, "str",  pre_store, i32>;
def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64z, "str",  pre_store, i64>;
def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8Op,  "str",  pre_store, untyped>;
def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16Op, "str",  pre_store, f16>;
def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32Op, "str",  pre_store, f32>;
def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64Op, "str",  pre_store, f64>;
def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128Op, "str", pre_store, f128>;

def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32z, "strb", pre_truncsti8,  i32>;
def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32z, "strh", pre_truncsti16, i32>;

// truncstore i64
def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
  (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
           simm9:$off)>;
def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
  (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
            simm9:$off)>;
def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
  (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
            simm9:$off)>;

def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;

def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;

//---
// (immediate post-indexed)
def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32z,  "str", post_store, i32>;
def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64z,  "str", post_store, i64>;
def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8Op,   "str", post_store, untyped>;
def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16Op,  "str", post_store, f16>;
def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32Op,  "str", post_store, f32>;
def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64Op,  "str", post_store, f64>;
def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128Op, "str", post_store, f128>;

def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32z, "strb", post_truncsti8, i32>;
def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32z, "strh", post_truncsti16, i32>;

// truncstore i64
def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
  (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
            simm9:$off)>;
def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
  (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
             simm9:$off)>;
def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
  (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
             simm9:$off)>;

def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
          (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;

def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
          (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;

//===----------------------------------------------------------------------===//
// Load/store exclusive instructions.
//===----------------------------------------------------------------------===//

def LDARW  : LoadAcquire   <0b10, 1, 1, 0, 1, GPR32, "ldar">;
def LDARX  : LoadAcquire   <0b11, 1, 1, 0, 1, GPR64, "ldar">;
def LDARB  : LoadAcquire   <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
def LDARH  : LoadAcquire   <0b01, 1, 1, 0, 1, GPR32, "ldarh">;

def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;

def LDXRW  : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
def LDXRX  : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
def LDXRB  : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
def LDXRH  : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;

def STLRW  : StoreRelease  <0b10, 1, 0, 0, 1, GPR32, "stlr">;
def STLRX  : StoreRelease  <0b11, 1, 0, 0, 1, GPR64, "stlr">;
def STLRB  : StoreRelease  <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
def STLRH  : StoreRelease  <0b01, 1, 0, 0, 1, GPR32, "stlrh">;

def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;

def STXRW  : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
def STXRX  : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
def STXRB  : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
def STXRH  : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;

def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;

def LDXPW  : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
def LDXPX  : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;

def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;

def STXPW  : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
def STXPX  : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;

let Predicates = [HasLOR] in {
  // v8.1a "Limited Order Region" extension load-acquire instructions
  def LDLARW  : LoadAcquire   <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
  def LDLARX  : LoadAcquire   <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
  def LDLARB  : LoadAcquire   <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
  def LDLARH  : LoadAcquire   <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;

  // v8.1a "Limited Order Region" extension store-release instructions
  def STLLRW  : StoreRelease   <0b10, 1, 0, 0, 0, GPR32, "stllr">;
  def STLLRX  : StoreRelease   <0b11, 1, 0, 0, 0, GPR64, "stllr">;
  def STLLRB  : StoreRelease   <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
  def STLLRH  : StoreRelease   <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
}

//===----------------------------------------------------------------------===//
// Scaled floating point to integer conversion instructions.
//===----------------------------------------------------------------------===//

defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>;
defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>;
defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", any_fp_to_sint>;
defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", any_fp_to_uint>;

multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
  def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
  def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
  def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
  def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
  def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
  def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;

  def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
            (!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
  def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
            (!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
  def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
            (!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
  def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
            (!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
  def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
            (!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
  def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
            (!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
}

defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;

multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
  def : Pat<(i32 (to_int (round f32:$Rn))),
            (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
  def : Pat<(i64 (to_int (round f32:$Rn))),
            (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
  def : Pat<(i32 (to_int (round f64:$Rn))),
            (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
  def : Pat<(i64 (to_int (round f64:$Rn))),
            (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
}

defm : FPToIntegerPats<fp_to_sint, fceil,  "FCVTPS">;
defm : FPToIntegerPats<fp_to_uint, fceil,  "FCVTPU">;
defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
defm : FPToIntegerPats<fp_to_sint, fround, "FCVTAS">;
defm : FPToIntegerPats<fp_to_uint, fround, "FCVTAU">;

let Predicates = [HasFullFP16] in {
  def : Pat<(i32 (lround f16:$Rn)),
            (!cast<Instruction>(FCVTASUWHr) f16:$Rn)>;
  def : Pat<(i64 (lround f16:$Rn)),
            (!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
  def : Pat<(i64 (llround f16:$Rn)),
            (!cast<Instruction>(FCVTASUXHr) f16:$Rn)>;
}
def : Pat<(i32 (lround f32:$Rn)),
          (!cast<Instruction>(FCVTASUWSr) f32:$Rn)>;
def : Pat<(i32 (lround f64:$Rn)),
          (!cast<Instruction>(FCVTASUWDr) f64:$Rn)>;
def : Pat<(i64 (lround f32:$Rn)),
          (!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
def : Pat<(i64 (lround f64:$Rn)),
          (!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;
def : Pat<(i64 (llround f32:$Rn)),
          (!cast<Instruction>(FCVTASUXSr) f32:$Rn)>;
def : Pat<(i64 (llround f64:$Rn)),
          (!cast<Instruction>(FCVTASUXDr) f64:$Rn)>;

//===----------------------------------------------------------------------===//
// Scaled integer to floating point conversion instructions.
//===----------------------------------------------------------------------===//

defm SCVTF : IntegerToFP<0, "scvtf", any_sint_to_fp>;
defm UCVTF : IntegerToFP<1, "ucvtf", any_uint_to_fp>;

//===----------------------------------------------------------------------===//
// Unscaled integer to floating point conversion instruction.
//===----------------------------------------------------------------------===//

defm FMOV : UnscaledConversion<"fmov">;

// Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
def FMOVH0 : Pseudo<(outs FPR16:$Rd), (ins), [(set f16:$Rd, (fpimm0))]>,
    Sched<[WriteF]>, Requires<[HasFullFP16]>;
def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
    Sched<[WriteF]>;
def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
    Sched<[WriteF]>;
}
// Similarly add aliases
def : InstAlias<"fmov $Rd, #0.0", (FMOVWHr FPR16:$Rd, WZR), 0>,
    Requires<[HasFullFP16]>;
def : InstAlias<"fmov $Rd, #0.0", (FMOVWSr FPR32:$Rd, WZR), 0>;
def : InstAlias<"fmov $Rd, #0.0", (FMOVXDr FPR64:$Rd, XZR), 0>;

//===----------------------------------------------------------------------===//
// Floating point conversion instruction.
//===----------------------------------------------------------------------===//

defm FCVT : FPConversion<"fcvt">;

//===----------------------------------------------------------------------===//
// Floating point single operand instructions.
//===----------------------------------------------------------------------===//

defm FABS   : SingleOperandFPData<0b0001, "fabs", fabs>;
defm FMOV   : SingleOperandFPData<0b0000, "fmov">;
defm FNEG   : SingleOperandFPData<0b0010, "fneg", fneg>;
defm FRINTA : SingleOperandFPData<0b1100, "frinta", fround>;
defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;

def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
          (FRINTNDr FPR64:$Rn)>;

defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;

let SchedRW = [WriteFDiv] in {
defm FSQRT  : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
}

let Predicates = [HasFRInt3264] in {
  defm FRINT32Z : FRIntNNT<0b00, "frint32z">;
  defm FRINT64Z : FRIntNNT<0b10, "frint64z">;
  defm FRINT32X : FRIntNNT<0b01, "frint32x">;
  defm FRINT64X : FRIntNNT<0b11, "frint64x">;
} // HasFRInt3264

let Predicates = [HasFullFP16] in {
  def : Pat<(i32 (lrint f16:$Rn)),
            (FCVTZSUWHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
  def : Pat<(i64 (lrint f16:$Rn)),
            (FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
  def : Pat<(i64 (llrint f16:$Rn)),
            (FCVTZSUXHr (!cast<Instruction>(FRINTXHr) f16:$Rn))>;
}
def : Pat<(i32 (lrint f32:$Rn)),
          (FCVTZSUWSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
def : Pat<(i32 (lrint f64:$Rn)),
          (FCVTZSUWDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
def : Pat<(i64 (lrint f32:$Rn)),
          (FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
def : Pat<(i64 (lrint f64:$Rn)),
          (FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;
def : Pat<(i64 (llrint f32:$Rn)),
          (FCVTZSUXSr (!cast<Instruction>(FRINTXSr) f32:$Rn))>;
def : Pat<(i64 (llrint f64:$Rn)),
          (FCVTZSUXDr (!cast<Instruction>(FRINTXDr) f64:$Rn))>;

//===----------------------------------------------------------------------===//
// Floating point two operand instructions.
//===----------------------------------------------------------------------===//

defm FADD   : TwoOperandFPData<0b0010, "fadd", fadd>;
let SchedRW = [WriteFDiv] in {
defm FDIV   : TwoOperandFPData<0b0001, "fdiv", fdiv>;
}
defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
defm FMAX   : TwoOperandFPData<0b0100, "fmax", fmaximum>;
defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
defm FMIN   : TwoOperandFPData<0b0101, "fmin", fminimum>;
let SchedRW = [WriteFMul] in {
defm FMUL   : TwoOperandFPData<0b0000, "fmul", fmul>;
defm FNMUL  : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
}
defm FSUB   : TwoOperandFPData<0b0011, "fsub", fsub>;

def : Pat<(v1f64 (fmaximum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
          (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (fminimum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
          (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
          (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
          (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;

//===----------------------------------------------------------------------===//
// Floating point three operand instructions.
//===----------------------------------------------------------------------===//

defm FMADD  : ThreeOperandFPData<0, 0, "fmadd", fma>;
defm FMSUB  : ThreeOperandFPData<0, 1, "fmsub",
     TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
     TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
     TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;

// The following def pats catch the case where the LHS of an FMA is negated.
// The TriOpFrag above catches the case where the middle operand is negated.

// N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
// the NEON variant.

// Here we handle first -(a + b*c) for FNMADD:

let Predicates = [HasNEON, HasFullFP16] in
def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, FPR16:$Ra)),
          (FMSUBHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;

def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
          (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;

def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
          (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;

// Now it's time for "(-a) + (-b)*c"

let Predicates = [HasNEON, HasFullFP16] in
def : Pat<(f16 (fma (fneg FPR16:$Rn), FPR16:$Rm, (fneg FPR16:$Ra))),
          (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;

def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
          (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;

def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
          (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;

// And here "(-a) + b*(-c)"

let Predicates = [HasNEON, HasFullFP16] in
def : Pat<(f16 (fma FPR16:$Rn, (fneg FPR16:$Rm), (fneg FPR16:$Ra))),
          (FNMADDHrrr FPR16:$Rn, FPR16:$Rm, FPR16:$Ra)>;

def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
          (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;

def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
          (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;

//===----------------------------------------------------------------------===//
// Floating point comparison instructions.
//===----------------------------------------------------------------------===//

defm FCMPE : FPComparison<1, "fcmpe", AArch64strict_fcmpe>;
defm FCMP  : FPComparison<0, "fcmp", AArch64any_fcmp>;

//===----------------------------------------------------------------------===//
// Floating point conditional comparison instructions.
//===----------------------------------------------------------------------===//

defm FCCMPE : FPCondComparison<1, "fccmpe">;
defm FCCMP  : FPCondComparison<0, "fccmp", AArch64fccmp>;

//===----------------------------------------------------------------------===//
// Floating point conditional select instruction.
//===----------------------------------------------------------------------===//

defm FCSEL : FPCondSelect<"fcsel">;

// CSEL instructions providing f128 types need to be handled by a
// pseudo-instruction since the eventual code will need to introduce basic
// blocks and control flow.
def F128CSEL : Pseudo<(outs FPR128:$Rd),
                      (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
                      [(set (f128 FPR128:$Rd),
                            (AArch64csel FPR128:$Rn, FPR128:$Rm,
                                       (i32 imm:$cond), NZCV))]> {
  let Uses = [NZCV];
  let usesCustomInserter = 1;
  let hasNoSchedulingInfo = 1;
}

//===----------------------------------------------------------------------===//
// Instructions used for emitting unwind opcodes on ARM64 Windows.
//===----------------------------------------------------------------------===//
let isPseudo = 1 in {
  def SEH_StackAlloc : Pseudo<(outs), (ins i32imm:$size), []>, Sched<[]>;
  def SEH_SaveFPLR : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
  def SEH_SaveFPLR_X : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
  def SEH_SaveReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
  def SEH_SaveReg_X : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
  def SEH_SaveRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
  def SEH_SaveRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
  def SEH_SaveFReg : Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
  def SEH_SaveFReg_X :  Pseudo<(outs), (ins i32imm:$reg, i32imm:$offs), []>, Sched<[]>;
  def SEH_SaveFRegP : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
  def SEH_SaveFRegP_X : Pseudo<(outs), (ins i32imm:$reg0, i32imm:$reg1, i32imm:$offs), []>, Sched<[]>;
  def SEH_SetFP : Pseudo<(outs), (ins), []>, Sched<[]>;
  def SEH_AddFP : Pseudo<(outs), (ins i32imm:$offs), []>, Sched<[]>;
  def SEH_Nop : Pseudo<(outs), (ins), []>, Sched<[]>;
  def SEH_PrologEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
  def SEH_EpilogStart : Pseudo<(outs), (ins), []>, Sched<[]>;
  def SEH_EpilogEnd : Pseudo<(outs), (ins), []>, Sched<[]>;
}

// Pseudo instructions for Windows EH
//===----------------------------------------------------------------------===//
let isTerminator = 1, hasSideEffects = 1, isBarrier = 1, hasCtrlDep = 1,
    isCodeGenOnly = 1, isReturn = 1, isEHScopeReturn = 1, isPseudo = 1 in {
   def CLEANUPRET : Pseudo<(outs), (ins), [(cleanupret)]>, Sched<[]>;
   let usesCustomInserter = 1 in
     def CATCHRET : Pseudo<(outs), (ins am_brcond:$dst, am_brcond:$src), [(catchret bb:$dst, bb:$src)]>,
                    Sched<[]>;
}

//===----------------------------------------------------------------------===//
// Floating point immediate move.
//===----------------------------------------------------------------------===//

let isReMaterializable = 1 in {
defm FMOV : FPMoveImmediate<"fmov">;
}

//===----------------------------------------------------------------------===//
// Advanced SIMD two vector instructions.
//===----------------------------------------------------------------------===//

defm UABDL   : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
                                          int_aarch64_neon_uabd>;
// Match UABDL in log2-shuffle patterns.
def : Pat<(abs (v8i16 (sub (zext (v8i8 V64:$opA)),
                           (zext (v8i8 V64:$opB))))),
          (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
               (v8i16 (add (sub (zext (v8i8 V64:$opA)),
                                (zext (v8i8 V64:$opB))),
                           (AArch64vashr v8i16:$src, (i32 15))))),
          (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
def : Pat<(abs (v8i16 (sub (zext (extract_high_v16i8 V128:$opA)),
                           (zext (extract_high_v16i8 V128:$opB))))),
          (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
               (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
                                (zext (extract_high_v16i8 V128:$opB))),
                           (AArch64vashr v8i16:$src, (i32 15))))),
          (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
def : Pat<(abs (v4i32 (sub (zext (v4i16 V64:$opA)),
                           (zext (v4i16 V64:$opB))))),
          (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
def : Pat<(abs (v4i32 (sub (zext (extract_high_v8i16 V128:$opA)),
                           (zext (extract_high_v8i16 V128:$opB))))),
          (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
def : Pat<(abs (v2i64 (sub (zext (v2i32 V64:$opA)),
                           (zext (v2i32 V64:$opB))))),
          (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
def : Pat<(abs (v2i64 (sub (zext (extract_high_v4i32 V128:$opA)),
                           (zext (extract_high_v4i32 V128:$opB))))),
          (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;

defm ABS    : SIMDTwoVectorBHSD<0, 0b01011, "abs", abs>;
defm CLS    : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
defm CLZ    : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
defm CMEQ   : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
defm CMGE   : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
defm CMGT   : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
defm CMLE   : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
defm CMLT   : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
defm CNT    : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
defm FABS   : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;

defm FCMEQ  : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
defm FCMGE  : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
defm FCMGT  : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
defm FCMLE  : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
defm FCMLT  : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
defm FCVTL  : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
          (FCVTLv4i16 V64:$Rn)>;
def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
                                                              (i64 4)))),
          (FCVTLv8i16 V128:$Rn)>;
def : Pat<(v2f64 (fpextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;

def : Pat<(v4f32 (fpextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;

defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
defm FCVTN  : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
          (FCVTNv4i16 V128:$Rn)>;
def : Pat<(concat_vectors V64:$Rd,
                          (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
          (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
def : Pat<(v2f32 (fpround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
def : Pat<(v4f16 (fpround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
def : Pat<(concat_vectors V64:$Rd, (v2f32 (fpround (v2f64 V128:$Rn)))),
          (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
                                        int_aarch64_neon_fcvtxn>;
defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;

def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;

def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;

defm FNEG   : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", fround>;
defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;

let Predicates = [HasFRInt3264] in {
  defm FRINT32Z : FRIntNNTVector<0, 0, "frint32z">;
  defm FRINT64Z : FRIntNNTVector<0, 1, "frint64z">;
  defm FRINT32X : FRIntNNTVector<1, 0, "frint32x">;
  defm FRINT64X : FRIntNNTVector<1, 1, "frint64x">;
} // HasFRInt3264

defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
defm FSQRT  : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
defm NEG    : SIMDTwoVectorBHSD<1, 0b01011, "neg",
                               UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
defm NOT    : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
// Aliases for MVN -> NOT.
def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
                (NOTv8i8 V64:$Vd, V64:$Vn)>;
def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
                (NOTv16i8 V128:$Vd, V128:$Vn)>;

def : Pat<(AArch64neg (v8i8  V64:$Rn)),  (NEGv8i8  V64:$Rn)>;
def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
def : Pat<(AArch64neg (v4i16 V64:$Rn)),  (NEGv4i16 V64:$Rn)>;
def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
def : Pat<(AArch64neg (v2i32 V64:$Rn)),  (NEGv2i32 V64:$Rn)>;
def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;

def : Pat<(AArch64not (v8i8 V64:$Rn)),   (NOTv8i8  V64:$Rn)>;
def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(AArch64not (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(AArch64not (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
def : Pat<(AArch64not (v1i64 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;

def : Pat<(vnot (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(vnot (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;

defm RBIT   : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
defm REV16  : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
defm REV32  : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
defm REV64  : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
       BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
defm SCVTF  : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
defm SHLL   : SIMDVectorLShiftLongBySizeBHS;
defm SQABS  : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
defm SQNEG  : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
defm SQXTN  : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
       BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
                    int_aarch64_neon_uaddlp>;
defm UCVTF  : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
defm UQXTN  : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
defm XTN    : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;

def : Pat<(v4f16  (AArch64rev32 V64:$Rn)),  (REV32v4i16 V64:$Rn)>;
def : Pat<(v4f16  (AArch64rev64 V64:$Rn)),  (REV64v4i16 V64:$Rn)>;
def : Pat<(v4bf16 (AArch64rev32 V64:$Rn)),  (REV32v4i16 V64:$Rn)>;
def : Pat<(v4bf16 (AArch64rev64 V64:$Rn)),  (REV64v4i16 V64:$Rn)>;
def : Pat<(v8f16  (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
def : Pat<(v8f16  (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
def : Pat<(v8bf16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
def : Pat<(v8bf16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
def : Pat<(v2f32  (AArch64rev64 V64:$Rn)),  (REV64v2i32 V64:$Rn)>;
def : Pat<(v4f32  (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;

// Patterns for vector long shift (by element width). These need to match all
// three of zext, sext and anyext so it's easier to pull the patterns out of the
// definition.
multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
  def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
            (SHLLv8i8 V64:$Rn)>;
  def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
            (SHLLv16i8 V128:$Rn)>;
  def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
            (SHLLv4i16 V64:$Rn)>;
  def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
            (SHLLv8i16 V128:$Rn)>;
  def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
            (SHLLv2i32 V64:$Rn)>;
  def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
            (SHLLv4i32 V128:$Rn)>;
}

defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;

//===----------------------------------------------------------------------===//
// Advanced SIMD three vector instructions.
//===----------------------------------------------------------------------===//

defm ADD     : SIMDThreeSameVector<0, 0b10000, "add", add>;
defm ADDP    : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
defm CMEQ    : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
defm CMGE    : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
defm CMGT    : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
defm CMHI    : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
defm CMHS    : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
defm CMTST   : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
defm FABD    : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
let Predicates = [HasNEON] in {
foreach VT = [ v2f32, v4f32, v2f64 ] in
def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
}
let Predicates = [HasNEON, HasFullFP16] in {
foreach VT = [ v4f16, v8f16 ] in
def : Pat<(fabs (fsub VT:$Rn, VT:$Rm)), (!cast<Instruction>("FABD"#VT) VT:$Rn, VT:$Rm)>;
}
defm FACGE   : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
defm FACGT   : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
defm FADDP   : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_faddp>;
defm FADD    : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
defm FCMEQ   : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
defm FCMGE   : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
defm FCMGT   : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
defm FDIV    : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
defm FMAXNM  : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
defm FMAXP   : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
defm FMAX    : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaximum>;
defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
defm FMINNM  : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
defm FMINP   : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
defm FMIN    : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminimum>;

// NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
// instruction expects the addend first, while the fma intrinsic puts it last.
defm FMLA     : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
defm FMLS     : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
            TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;

// The following def pats catch the case where the LHS of an FMA is negated.
// The TriOpFrag above catches the case where the middle operand is negated.
def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
          (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;

def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
          (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;

def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
          (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;

defm FMULX    : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
defm FMUL     : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
defm FRECPS   : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
defm FRSQRTS  : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
defm FSUB     : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;

// MLA and MLS are generated in MachineCombine
defm MLA      : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla", null_frag>;
defm MLS      : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls", null_frag>;

defm MUL      : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
defm PMUL     : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
defm SABA     : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
      TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
defm SABD     : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
defm SHADD    : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
defm SHSUB    : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
defm SMAXP    : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
defm SMAX     : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
defm SMINP    : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
defm SMIN     : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
defm SQADD    : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
defm SQDMULH  : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
defm SQRSHL   : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
defm SQSHL    : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
defm SQSUB    : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
defm SRHADD   : SIMDThreeSameVectorBHS<0,0b00010,"srhadd", AArch64srhadd>;
defm SRSHL    : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
defm SSHL     : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
defm SUB      : SIMDThreeSameVector<1,0b10000,"sub", sub>;
defm UABA     : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
      TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
defm UABD     : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
defm UHADD    : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
defm UHSUB    : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
defm UMAXP    : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
defm UMAX     : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
defm UMINP    : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
defm UMIN     : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
defm UQADD    : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
defm UQRSHL   : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
defm UQSHL    : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
defm UQSUB    : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
defm URHADD   : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", AArch64urhadd>;
defm URSHL    : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
defm USHL     : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
                                                  int_aarch64_neon_sqadd>;
defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
                                                    int_aarch64_neon_sqsub>;

// Extra saturate patterns, other than the intrinsics matches above
defm : SIMDThreeSameVectorExtraPatterns<"SQADD", saddsat>;
defm : SIMDThreeSameVectorExtraPatterns<"UQADD", uaddsat>;
defm : SIMDThreeSameVectorExtraPatterns<"SQSUB", ssubsat>;
defm : SIMDThreeSameVectorExtraPatterns<"UQSUB", usubsat>;

defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
                                  BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
                                  BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;

// Pseudo bitwise select pattern BSP.
// It is expanded into BSL/BIT/BIF after register allocation.
defm BSP : SIMDLogicalThreeVectorPseudo<TriOpFrag<(or (and node:$LHS, node:$MHS),
                                                      (and (vnot node:$LHS), node:$RHS))>>;
defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl">;
defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
defm BIF : SIMDLogicalThreeVectorTied<1, 0b11, "bif">;

def : Pat<(AArch64bsp (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
          (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(AArch64bsp (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
          (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(AArch64bsp (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
          (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
def : Pat<(AArch64bsp (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
          (BSPv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;

def : Pat<(AArch64bsp (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
          (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(AArch64bsp (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
          (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(AArch64bsp (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
          (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
def : Pat<(AArch64bsp (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
          (BSPv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;

def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
                (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;

def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
                (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;

def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
                "|cmls.8b\t$dst, $src1, $src2}",
                (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
                "|cmls.16b\t$dst, $src1, $src2}",
                (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
                "|cmls.4h\t$dst, $src1, $src2}",
                (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
                "|cmls.8h\t$dst, $src1, $src2}",
                (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
                "|cmls.2s\t$dst, $src1, $src2}",
                (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
                "|cmls.4s\t$dst, $src1, $src2}",
                (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
                "|cmls.2d\t$dst, $src1, $src2}",
                (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;

def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
                "|cmlo.8b\t$dst, $src1, $src2}",
                (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
                "|cmlo.16b\t$dst, $src1, $src2}",
                (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
                "|cmlo.4h\t$dst, $src1, $src2}",
                (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
                "|cmlo.8h\t$dst, $src1, $src2}",
                (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
                "|cmlo.2s\t$dst, $src1, $src2}",
                (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
                "|cmlo.4s\t$dst, $src1, $src2}",
                (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
                "|cmlo.2d\t$dst, $src1, $src2}",
                (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;

def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
                "|cmle.8b\t$dst, $src1, $src2}",
                (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
                "|cmle.16b\t$dst, $src1, $src2}",
                (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
                "|cmle.4h\t$dst, $src1, $src2}",
                (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
                "|cmle.8h\t$dst, $src1, $src2}",
                (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
                "|cmle.2s\t$dst, $src1, $src2}",
                (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
                "|cmle.4s\t$dst, $src1, $src2}",
                (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
                "|cmle.2d\t$dst, $src1, $src2}",
                (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;

def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
                "|cmlt.8b\t$dst, $src1, $src2}",
                (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
                "|cmlt.16b\t$dst, $src1, $src2}",
                (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
                "|cmlt.4h\t$dst, $src1, $src2}",
                (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
                "|cmlt.8h\t$dst, $src1, $src2}",
                (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
                "|cmlt.2s\t$dst, $src1, $src2}",
                (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
                "|cmlt.4s\t$dst, $src1, $src2}",
                (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
                "|cmlt.2d\t$dst, $src1, $src2}",
                (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;

let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
                "|fcmle.4h\t$dst, $src1, $src2}",
                (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
                "|fcmle.8h\t$dst, $src1, $src2}",
                (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
}
def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
                "|fcmle.2s\t$dst, $src1, $src2}",
                (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
                "|fcmle.4s\t$dst, $src1, $src2}",
                (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
                "|fcmle.2d\t$dst, $src1, $src2}",
                (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;

let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
                "|fcmlt.4h\t$dst, $src1, $src2}",
                (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
                "|fcmlt.8h\t$dst, $src1, $src2}",
                (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
}
def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
                "|fcmlt.2s\t$dst, $src1, $src2}",
                (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
                "|fcmlt.4s\t$dst, $src1, $src2}",
                (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
                "|fcmlt.2d\t$dst, $src1, $src2}",
                (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;

let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
                "|facle.4h\t$dst, $src1, $src2}",
                (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
                "|facle.8h\t$dst, $src1, $src2}",
                (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
}
def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
                "|facle.2s\t$dst, $src1, $src2}",
                (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
                "|facle.4s\t$dst, $src1, $src2}",
                (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
                "|facle.2d\t$dst, $src1, $src2}",
                (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;

let Predicates = [HasNEON, HasFullFP16] in {
def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
                "|faclt.4h\t$dst, $src1, $src2}",
                (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
                "|faclt.8h\t$dst, $src1, $src2}",
                (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
}
def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
                "|faclt.2s\t$dst, $src1, $src2}",
                (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
                "|faclt.4s\t$dst, $src1, $src2}",
                (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
                "|faclt.2d\t$dst, $src1, $src2}",
                (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;

//===----------------------------------------------------------------------===//
// Advanced SIMD three scalar instructions.
//===----------------------------------------------------------------------===//

defm ADD      : SIMDThreeScalarD<0, 0b10000, "add", add>;
defm CMEQ     : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
defm CMGE     : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
defm CMGT     : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
defm CMHI     : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
defm CMHS     : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
defm CMTST    : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
defm FABD     : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
          (FABD64 FPR64:$Rn, FPR64:$Rm)>;
let Predicates = [HasFullFP16] in {
def : Pat<(fabs (fsub f16:$Rn, f16:$Rm)), (FABD16 f16:$Rn, f16:$Rm)>;
}
def : Pat<(fabs (fsub f32:$Rn, f32:$Rm)), (FABD32 f32:$Rn, f32:$Rm)>;
def : Pat<(fabs (fsub f64:$Rn, f64:$Rm)), (FABD64 f64:$Rn, f64:$Rm)>;
defm FACGE    : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
                                     int_aarch64_neon_facge>;
defm FACGT    : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
                                     int_aarch64_neon_facgt>;
defm FCMEQ    : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
defm FCMGE    : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
defm FCMGT    : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
defm FMULX    : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
defm FRECPS   : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
defm FRSQRTS  : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
defm SQADD    : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
defm SQDMULH  : SIMDThreeScalarHS<  0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
defm SQRDMULH : SIMDThreeScalarHS<  1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
defm SQRSHL   : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
defm SQSHL    : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
defm SQSUB    : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
defm SRSHL    : SIMDThreeScalarD<   0, 0b01010, "srshl", int_aarch64_neon_srshl>;
defm SSHL     : SIMDThreeScalarD<   0, 0b01000, "sshl", int_aarch64_neon_sshl>;
defm SUB      : SIMDThreeScalarD<   1, 0b10000, "sub", sub>;
defm UQADD    : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
defm UQRSHL   : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
defm UQSHL    : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
defm UQSUB    : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
defm URSHL    : SIMDThreeScalarD<   1, 0b01010, "urshl", int_aarch64_neon_urshl>;
defm USHL     : SIMDThreeScalarD<   1, 0b01000, "ushl", int_aarch64_neon_ushl>;
let Predicates = [HasRDM] in {
  defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
  defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
  def : Pat<(i32 (int_aarch64_neon_sqadd
                   (i32 FPR32:$Rd),
                   (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
                                                   (i32 FPR32:$Rm))))),
            (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
  def : Pat<(i32 (int_aarch64_neon_sqsub
                   (i32 FPR32:$Rd),
                   (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
                                                   (i32 FPR32:$Rm))))),
            (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
}

def : InstAlias<"cmls $dst, $src1, $src2",
                (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"cmle $dst, $src1, $src2",
                (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"cmlo $dst, $src1, $src2",
                (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"cmlt $dst, $src1, $src2",
                (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"fcmle $dst, $src1, $src2",
                (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
def : InstAlias<"fcmle $dst, $src1, $src2",
                (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"fcmlt $dst, $src1, $src2",
                (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
def : InstAlias<"fcmlt $dst, $src1, $src2",
                (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"facle $dst, $src1, $src2",
                (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
def : InstAlias<"facle $dst, $src1, $src2",
                (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
def : InstAlias<"faclt $dst, $src1, $src2",
                (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
def : InstAlias<"faclt $dst, $src1, $src2",
                (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;

//===----------------------------------------------------------------------===//
// Advanced SIMD three scalar instructions (mixed operands).
//===----------------------------------------------------------------------===//
defm SQDMULL  : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
                                       int_aarch64_neon_sqdmulls_scalar>;
defm SQDMLAL  : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
defm SQDMLSL  : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;

def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
                   (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
                                                        (i32 FPR32:$Rm))))),
          (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
                   (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
                                                        (i32 FPR32:$Rm))))),
          (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;

//===----------------------------------------------------------------------===//
// Advanced SIMD two scalar instructions.
//===----------------------------------------------------------------------===//

defm ABS    : SIMDTwoScalarD<    0, 0b01011, "abs", abs>;
defm CMEQ   : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
defm CMGE   : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
defm CMGT   : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
defm CMLE   : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
defm CMLT   : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
defm FCMEQ  : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
defm FCMGE  : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
defm FCMGT  : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
defm FCMLE  : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
defm FCMLT  : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
defm FCVTAS : SIMDFPTwoScalar<   0, 0, 0b11100, "fcvtas">;
defm FCVTAU : SIMDFPTwoScalar<   1, 0, 0b11100, "fcvtau">;
defm FCVTMS : SIMDFPTwoScalar<   0, 0, 0b11011, "fcvtms">;
defm FCVTMU : SIMDFPTwoScalar<   1, 0, 0b11011, "fcvtmu">;
defm FCVTNS : SIMDFPTwoScalar<   0, 0, 0b11010, "fcvtns">;
defm FCVTNU : SIMDFPTwoScalar<   1, 0, 0b11010, "fcvtnu">;
defm FCVTPS : SIMDFPTwoScalar<   0, 1, 0b11010, "fcvtps">;
defm FCVTPU : SIMDFPTwoScalar<   1, 1, 0b11010, "fcvtpu">;
def  FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
defm FCVTZS : SIMDFPTwoScalar<   0, 1, 0b11011, "fcvtzs">;
defm FCVTZU : SIMDFPTwoScalar<   1, 1, 0b11011, "fcvtzu">;
defm FRECPE : SIMDFPTwoScalar<   0, 1, 0b11101, "frecpe">;
defm FRECPX : SIMDFPTwoScalar<   0, 1, 0b11111, "frecpx">;
defm FRSQRTE : SIMDFPTwoScalar<  1, 1, 0b11101, "frsqrte">;
defm NEG    : SIMDTwoScalarD<    1, 0b01011, "neg",
                                 UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
defm SCVTF  : SIMDFPTwoScalarCVT<   0, 0, 0b11101, "scvtf", AArch64sitof>;
defm SQABS  : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
defm SQNEG  : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
defm SQXTN  : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
                                     int_aarch64_neon_suqadd>;
defm UCVTF  : SIMDFPTwoScalarCVT<   1, 0, 0b11101, "ucvtf", AArch64uitof>;
defm UQXTN  : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
                                    int_aarch64_neon_usqadd>;

def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;

def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
          (FCVTASv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
          (FCVTAUv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
          (FCVTMSv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
          (FCVTMUv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
          (FCVTNSv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
          (FCVTNUv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
          (FCVTPSv1i64 FPR64:$Rn)>;
def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
          (FCVTPUv1i64 FPR64:$Rn)>;

def : Pat<(f16 (int_aarch64_neon_frecpe (f16 FPR16:$Rn))),
          (FRECPEv1f16 FPR16:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
          (FRECPEv1i32 FPR32:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
          (FRECPEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
          (FRECPEv1i64 FPR64:$Rn)>;

def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
          (FRECPEv1i32 FPR32:$Rn)>;
def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
          (FRECPEv2f32 V64:$Rn)>;
def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
          (FRECPEv4f32 FPR128:$Rn)>;
def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
          (FRECPEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
          (FRECPEv1i64 FPR64:$Rn)>;
def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
          (FRECPEv2f64 FPR128:$Rn)>;

def : Pat<(f32 (AArch64frecps (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
          (FRECPS32 FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(v2f32 (AArch64frecps (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
          (FRECPSv2f32 V64:$Rn, V64:$Rm)>;
def : Pat<(v4f32 (AArch64frecps (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
          (FRECPSv4f32 FPR128:$Rn, FPR128:$Rm)>;
def : Pat<(f64 (AArch64frecps (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
          (FRECPS64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v2f64 (AArch64frecps (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
          (FRECPSv2f64 FPR128:$Rn, FPR128:$Rm)>;

def : Pat<(f16 (int_aarch64_neon_frecpx (f16 FPR16:$Rn))),
          (FRECPXv1f16 FPR16:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
          (FRECPXv1i32 FPR32:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
          (FRECPXv1i64 FPR64:$Rn)>;

def : Pat<(f16 (int_aarch64_neon_frsqrte (f16 FPR16:$Rn))),
          (FRSQRTEv1f16 FPR16:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
          (FRSQRTEv1i32 FPR32:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
          (FRSQRTEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
          (FRSQRTEv1i64 FPR64:$Rn)>;

def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
          (FRSQRTEv1i32 FPR32:$Rn)>;
def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
          (FRSQRTEv2f32 V64:$Rn)>;
def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
          (FRSQRTEv4f32 FPR128:$Rn)>;
def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
          (FRSQRTEv1i64 FPR64:$Rn)>;
def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
          (FRSQRTEv1i64 FPR64:$Rn)>;
def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
          (FRSQRTEv2f64 FPR128:$Rn)>;

def : Pat<(f32 (AArch64frsqrts (f32 FPR32:$Rn), (f32 FPR32:$Rm))),
          (FRSQRTS32 FPR32:$Rn, FPR32:$Rm)>;
def : Pat<(v2f32 (AArch64frsqrts (v2f32 V64:$Rn), (v2f32 V64:$Rm))),
          (FRSQRTSv2f32 V64:$Rn, V64:$Rm)>;
def : Pat<(v4f32 (AArch64frsqrts (v4f32 FPR128:$Rn), (v4f32 FPR128:$Rm))),
          (FRSQRTSv4f32 FPR128:$Rn, FPR128:$Rm)>;
def : Pat<(f64 (AArch64frsqrts (f64 FPR64:$Rn), (f64 FPR64:$Rm))),
          (FRSQRTS64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(v2f64 (AArch64frsqrts (v2f64 FPR128:$Rn), (v2f64 FPR128:$Rm))),
          (FRSQRTSv2f64 FPR128:$Rn, FPR128:$Rm)>;

// If an integer is about to be converted to a floating point value,
// just load it on the floating point unit.
// Here are the patterns for 8 and 16-bits to float.
// 8-bits -> float.
multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
                             SDPatternOperator loadop, Instruction UCVTF,
                             ROAddrMode ro, Instruction LDRW, Instruction LDRX,
                             SubRegIndex sub> {
  def : Pat<(DstTy (uint_to_fp (SrcTy
                     (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
                                      ro.Wext:$extend))))),
           (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
                                 (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
                                 sub))>;

  def : Pat<(DstTy (uint_to_fp (SrcTy
                     (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
                                      ro.Wext:$extend))))),
           (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
                                 (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
                                 sub))>;
}

defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
                         UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
def : Pat <(f32 (uint_to_fp (i32
               (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
def : Pat <(f32 (uint_to_fp (i32
                     (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
                          (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
// 16-bits -> float.
defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
                         UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
def : Pat <(f32 (uint_to_fp (i32
                  (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
def : Pat <(f32 (uint_to_fp (i32
                  (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
           (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
                          (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
// 32-bits are handled in target specific dag combine:
// performIntToFpCombine.
// 64-bits integer to 32-bits floating point, not possible with
// UCVTF on floating point registers (both source and destination
// must have the same size).

// Here are the patterns for 8, 16, 32, and 64-bits to double.
// 8-bits -> double.
defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
                         UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
def : Pat <(f64 (uint_to_fp (i32
                    (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
def : Pat <(f64 (uint_to_fp (i32
                  (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                          (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
// 16-bits -> double.
defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
                         UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
def : Pat <(f64 (uint_to_fp (i32
                  (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                          (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
def : Pat <(f64 (uint_to_fp (i32
                  (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                          (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
// 32-bits -> double.
defm : UIntToFPROLoadPat<f64, i32, load,
                         UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
def : Pat <(f64 (uint_to_fp (i32
                  (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                          (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
def : Pat <(f64 (uint_to_fp (i32
                  (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
           (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                          (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
// 64-bits -> double are handled in target specific dag combine:
// performIntToFpCombine.

//===----------------------------------------------------------------------===//
// Advanced SIMD three different-sized vector instructions.
//===----------------------------------------------------------------------===//

defm ADDHN  : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
defm SUBHN  : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
defm PMULL  : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
defm SABAL  : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
                                             int_aarch64_neon_sabd>;
defm SABDL   : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
                                          int_aarch64_neon_sabd>;
defm SADDL   : SIMDLongThreeVectorBHS<   0, 0b0000, "saddl",
            BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
defm SADDW   : SIMDWideThreeVectorBHS<   0, 0b0001, "saddw",
                 BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
defm SMLAL   : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
    TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
defm SMLSL   : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
defm SMULL   : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
                                               int_aarch64_neon_sqadd>;
defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
                                               int_aarch64_neon_sqsub>;
defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
                                     int_aarch64_neon_sqdmull>;
defm SSUBL   : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
                 BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
defm SSUBW   : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
                 BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
defm UABAL   : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
                                              int_aarch64_neon_uabd>;
defm UADDL   : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
                 BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
defm UADDW   : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
                 BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
defm UMLAL   : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
    TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
defm UMLSL   : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
defm UMULL   : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
defm USUBL   : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
                 BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
defm USUBW   : SIMDWideThreeVectorBHS<   1, 0b0011, "usubw",
                 BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;

// Additional patterns for SMULL and UMULL
multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
  def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
            (INST8B V64:$Rn, V64:$Rm)>;
  def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
            (INST4H V64:$Rn, V64:$Rm)>;
  def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
            (INST2S V64:$Rn, V64:$Rm)>;
}

defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
  SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
  UMULLv4i16_v4i32, UMULLv2i32_v2i64>;

// Patterns for smull2/umull2.
multiclass Neon_mul_high_patterns<SDPatternOperator opnode,
  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
  def : Pat<(v8i16 (opnode (extract_high_v16i8 V128:$Rn),
                           (extract_high_v16i8 V128:$Rm))),
             (INST8B V128:$Rn, V128:$Rm)>;
  def : Pat<(v4i32 (opnode (extract_high_v8i16 V128:$Rn),
                           (extract_high_v8i16 V128:$Rm))),
             (INST4H V128:$Rn, V128:$Rm)>;
  def : Pat<(v2i64 (opnode (extract_high_v4i32 V128:$Rn),
                           (extract_high_v4i32 V128:$Rm))),
             (INST2S V128:$Rn, V128:$Rm)>;
}

defm : Neon_mul_high_patterns<AArch64smull, SMULLv16i8_v8i16,
  SMULLv8i16_v4i32, SMULLv4i32_v2i64>;
defm : Neon_mul_high_patterns<AArch64umull, UMULLv16i8_v8i16,
  UMULLv8i16_v4i32, UMULLv4i32_v2i64>;

// Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
  Instruction INST8B, Instruction INST4H, Instruction INST2S> {
  def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
            (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
  def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
            (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
  def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
            (INST2S  V128:$Rd, V64:$Rn, V64:$Rm)>;
}

defm : Neon_mulacc_widen_patterns<
  TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
  SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
defm : Neon_mulacc_widen_patterns<
  TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
  UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
defm : Neon_mulacc_widen_patterns<
  TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
  SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
defm : Neon_mulacc_widen_patterns<
  TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
  UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;

// Patterns for 64-bit pmull
def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
          (PMULLv1i64 V64:$Rn, V64:$Rm)>;
def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
                                    (extractelt (v2i64 V128:$Rm), (i64 1))),
          (PMULLv2i64 V128:$Rn, V128:$Rm)>;

// CodeGen patterns for addhn and subhn instructions, which can actually be
// written in LLVM IR without too much difficulty.

// ADDHN
def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
          (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
                                           (i32 16))))),
          (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
                                           (i32 32))))),
          (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v8i8 V64:$Rd),
                          (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
                                                    (i32 8))))),
          (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
                            V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v4i16 V64:$Rd),
                          (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
                                                    (i32 16))))),
          (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
                            V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v2i32 V64:$Rd),
                          (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
                                                    (i32 32))))),
          (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
                            V128:$Rn, V128:$Rm)>;

// SUBHN
def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
          (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
                                           (i32 16))))),
          (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
                                           (i32 32))))),
          (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v8i8 V64:$Rd),
                          (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
                                                    (i32 8))))),
          (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
                            V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v4i16 V64:$Rd),
                          (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
                                                    (i32 16))))),
          (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
                            V128:$Rn, V128:$Rm)>;
def : Pat<(concat_vectors (v2i32 V64:$Rd),
                          (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
                                                    (i32 32))))),
          (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
                            V128:$Rn, V128:$Rm)>;

//----------------------------------------------------------------------------
// AdvSIMD bitwise extract from vector instruction.
//----------------------------------------------------------------------------

defm EXT : SIMDBitwiseExtract<"ext">;

def AdjustExtImm : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(8 + N->getZExtValue(), SDLoc(N), MVT::i32);
}]>;
multiclass ExtPat<ValueType VT64, ValueType VT128, int N> {
  def : Pat<(VT64 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
            (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
  def : Pat<(VT128 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
            (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
  // We use EXT to handle extract_subvector to copy the upper 64-bits of a
  // 128-bit vector.
  def : Pat<(VT64 (extract_subvector V128:$Rn, (i64 N))),
            (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
  // A 64-bit EXT of two halves of the same 128-bit register can be done as a
  // single 128-bit EXT.
  def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 0)),
                              (extract_subvector V128:$Rn, (i64 N)),
                              (i32 imm:$imm))),
            (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, imm:$imm), dsub)>;
  // A 64-bit EXT of the high half of a 128-bit register can be done using a
  // 128-bit EXT of the whole register with an adjustment to the immediate. The
  // top half of the other operand will be unset, but that doesn't matter as it
  // will not be used.
  def : Pat<(VT64 (AArch64ext (extract_subvector V128:$Rn, (i64 N)),
                              V64:$Rm,
                              (i32 imm:$imm))),
            (EXTRACT_SUBREG (EXTv16i8 V128:$Rn,
                                      (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
                                      (AdjustExtImm imm:$imm)), dsub)>;
}

defm : ExtPat<v8i8, v16i8, 8>;
defm : ExtPat<v4i16, v8i16, 4>;
defm : ExtPat<v4f16, v8f16, 4>;
defm : ExtPat<v4bf16, v8bf16, 4>;
defm : ExtPat<v2i32, v4i32, 2>;
defm : ExtPat<v2f32, v4f32, 2>;
defm : ExtPat<v1i64, v2i64, 1>;
defm : ExtPat<v1f64, v2f64, 1>;

//----------------------------------------------------------------------------
// AdvSIMD zip vector
//----------------------------------------------------------------------------

defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;

//----------------------------------------------------------------------------
// AdvSIMD TBL/TBX instructions
//----------------------------------------------------------------------------

defm TBL : SIMDTableLookup<    0, "tbl">;
defm TBX : SIMDTableLookupTied<1, "tbx">;

def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
          (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
          (TBLv16i8One V128:$Ri, V128:$Rn)>;

def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
                  (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
          (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
                   (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
          (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;


//----------------------------------------------------------------------------
// AdvSIMD scalar CPY instruction
//----------------------------------------------------------------------------

defm CPY : SIMDScalarCPY<"cpy">;

//----------------------------------------------------------------------------
// AdvSIMD scalar pairwise instructions
//----------------------------------------------------------------------------

defm ADDP    : SIMDPairwiseScalarD<0, 0b11011, "addp">;
defm FADDP   : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
defm FMAXP   : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
defm FMINP   : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
          (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
          (FADDPv2i32p V64:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
          (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
          (FADDPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
          (FMAXNMPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
          (FMAXNMPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
          (FMAXPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
          (FMAXPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
          (FMINNMPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
          (FMINNMPv2i64p V128:$Rn)>;
def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
          (FMINPv2i32p V64:$Rn)>;
def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
          (FMINPv2i64p V128:$Rn)>;

//----------------------------------------------------------------------------
// AdvSIMD INS/DUP instructions
//----------------------------------------------------------------------------

def DUPv8i8gpr  : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;

def DUPv2i64lane : SIMDDup64FromElement;
def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
def DUPv8i8lane  : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;

// DUP from a 64-bit register to a 64-bit register is just a copy
def : Pat<(v1i64 (AArch64dup (i64 GPR64:$Rn))),
          (COPY_TO_REGCLASS GPR64:$Rn, FPR64)>;
def : Pat<(v1f64 (AArch64dup (f64 FPR64:$Rn))),
          (COPY_TO_REGCLASS FPR64:$Rn, FPR64)>;

def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
          (v2f32 (DUPv2i32lane
            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
            (i64 0)))>;
def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
          (v4f32 (DUPv4i32lane
            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
            (i64 0)))>;
def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
          (v2f64 (DUPv2i64lane
            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
            (i64 0)))>;
def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
          (v4f16 (DUPv4i16lane
            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
            (i64 0)))>;
def : Pat<(v4bf16 (AArch64dup (bf16 FPR16:$Rn))),
          (v4bf16 (DUPv4i16lane
            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
            (i64 0)))>;
def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
          (v8f16 (DUPv8i16lane
            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
            (i64 0)))>;
def : Pat<(v8bf16 (AArch64dup (bf16 FPR16:$Rn))),
          (v8bf16 (DUPv8i16lane
            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
            (i64 0)))>;

def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
          (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
          (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;

def : Pat<(v4bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)),
          (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
def : Pat<(v8bf16 (AArch64duplane16 (v8bf16 V128:$Rn), VectorIndexH:$imm)),
          (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;

def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
          (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
         (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
          (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;

// If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
// instruction even if the types don't match: we just have to remap the lane
// carefully. N.b. this trick only applies to truncations.
def VecIndex_x2 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
}]>;
def VecIndex_x4 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
}]>;
def VecIndex_x8 : SDNodeXForm<imm, [{
  return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
}]>;

multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
                            ValueType Src128VT, ValueType ScalVT,
                            Instruction DUP, SDNodeXForm IdxXFORM> {
  def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
                                                     imm:$idx)))),
            (DUP V128:$Rn, (IdxXFORM imm:$idx))>;

  def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
                                                     imm:$idx)))),
            (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
}

defm : DUPWithTruncPats<v8i8,   v4i16, v8i16, i32, DUPv8i8lane,  VecIndex_x2>;
defm : DUPWithTruncPats<v8i8,   v2i32, v4i32, i32, DUPv8i8lane,  VecIndex_x4>;
defm : DUPWithTruncPats<v4i16,  v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;

defm : DUPWithTruncPats<v16i8,  v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
defm : DUPWithTruncPats<v16i8,  v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
defm : DUPWithTruncPats<v8i16,  v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;

multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
                               SDNodeXForm IdxXFORM> {
  def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
                                                         imm:$idx))))),
            (DUP V128:$Rn, (IdxXFORM imm:$idx))>;

  def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
                                                       imm:$idx))))),
            (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
}

defm : DUPWithTrunci64Pats<v8i8,  DUPv8i8lane,   VecIndex_x8>;
defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane,  VecIndex_x4>;
defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane,  VecIndex_x2>;

defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;

// SMOV and UMOV definitions, with some extra patterns for convenience
defm SMOV : SMov;
defm UMOV : UMov;

def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
          (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
          (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
          (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
          (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
          (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
          (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;

def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
            VectorIndexB:$idx)))), i8),
          (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
            VectorIndexH:$idx)))), i16),
          (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;

// Extracting i8 or i16 elements will have the zero-extend transformed to
// an 'and' mask by type legalization since neither i8 nor i16 are legal types
// for AArch64. Match these patterns here since UMOV already zeroes out the high
// bits of the destination register.
def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
               (i32 0xff)),
          (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
               (i32 0xffff)),
          (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;

defm INS : SIMDIns;

def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
          (SUBREG_TO_REG (i32 0),
                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
          (SUBREG_TO_REG (i32 0),
                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;

def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
          (SUBREG_TO_REG (i32 0),
                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
          (SUBREG_TO_REG (i32 0),
                         (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;

def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
          (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
          (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;

def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
          (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
          (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;

def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
            (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
                                  (i32 FPR32:$Rn), ssub))>;
def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
            (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
                                  (i32 FPR32:$Rn), ssub))>;

def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
            (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
                                  (i64 FPR64:$Rn), dsub))>;

def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
          (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
          (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;

def : Pat<(v4bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
          (INSERT_SUBREG (v4bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
def : Pat<(v8bf16 (scalar_to_vector (bf16 FPR16:$Rn))),
          (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;

def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
          (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
          (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;

def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
          (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;

def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
            (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
          (EXTRACT_SUBREG
            (INSvi16lane
              (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
              VectorIndexS:$imm,
              (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
              (i64 0)),
            dsub)>;

def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
            (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
          (INSvi16lane
            V128:$Rn, VectorIndexH:$imm,
            (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
            (i64 0))>;

def : Pat<(v4bf16 (vector_insert (v4bf16 V64:$Rn),
            (bf16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
          (EXTRACT_SUBREG
            (INSvi16lane
              (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
              VectorIndexS:$imm,
              (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
              (i64 0)),
            dsub)>;

def : Pat<(v8bf16 (vector_insert (v8bf16 V128:$Rn),
            (bf16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
          (INSvi16lane
            V128:$Rn, VectorIndexH:$imm,
            (v8bf16 (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
            (i64 0))>;

def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
            (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
          (EXTRACT_SUBREG
            (INSvi32lane
              (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
              VectorIndexS:$imm,
              (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
              (i64 0)),
            dsub)>;
def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
            (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
          (INSvi32lane
            V128:$Rn, VectorIndexS:$imm,
            (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
            (i64 0))>;
def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
            (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
          (INSvi64lane
            V128:$Rn, VectorIndexD:$imm,
            (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
            (i64 0))>;

// Copy an element at a constant index in one vector into a constant indexed
// element of another.
// FIXME refactor to a shared class/dev parameterized on vector type, vector
// index type and INS extension
def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
                   (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
                   VectorIndexB:$idx2)),
          (v16i8 (INSvi8lane
                   V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
          )>;
def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
                   (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
                   VectorIndexH:$idx2)),
          (v8i16 (INSvi16lane
                   V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
          )>;
def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
                   (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
                   VectorIndexS:$idx2)),
          (v4i32 (INSvi32lane
                   V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
          )>;
def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
                   (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
                   VectorIndexD:$idx2)),
          (v2i64 (INSvi64lane
                   V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
          )>;

multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
                                ValueType VTScal, Instruction INS> {
  def : Pat<(VT128 (vector_insert V128:$src,
                        (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
                        imm:$Immd)),
            (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;

  def : Pat<(VT128 (vector_insert V128:$src,
                        (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
                        imm:$Immd)),
            (INS V128:$src, imm:$Immd,
                 (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;

  def : Pat<(VT64 (vector_insert V64:$src,
                        (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
                        imm:$Immd)),
            (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
                                 imm:$Immd, V128:$Rn, imm:$Immn),
                            dsub)>;

  def : Pat<(VT64 (vector_insert V64:$src,
                        (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
                        imm:$Immd)),
            (EXTRACT_SUBREG
                (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
                     (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
                dsub)>;
}

defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
defm : Neon_INS_elt_pattern<v8bf16, v4bf16, bf16, INSvi16lane>;
defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;


// Floating point vector extractions are codegen'd as either a sequence of
// subregister extractions, or a MOV (aka CPY here, alias for DUP) if
// the lane number is anything other than zero.
def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
          (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
          (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
          (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
def : Pat<(vector_extract (v8bf16 V128:$Rn), 0),
          (bf16 (EXTRACT_SUBREG V128:$Rn, hsub))>;


def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
          (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
          (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
          (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
def : Pat<(vector_extract (v8bf16 V128:$Rn), VectorIndexH:$idx),
          (bf16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;

// All concat_vectors operations are canonicalised to act on i64 vectors for
// AArch64. In the general case we need an instruction, which had just as well be
// INS.
class ConcatPat<ValueType DstTy, ValueType SrcTy>
  : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
        (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
                     (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;

def : ConcatPat<v2i64, v1i64>;
def : ConcatPat<v2f64, v1f64>;
def : ConcatPat<v4i32, v2i32>;
def : ConcatPat<v4f32, v2f32>;
def : ConcatPat<v8i16, v4i16>;
def : ConcatPat<v8f16, v4f16>;
def : ConcatPat<v8bf16, v4bf16>;
def : ConcatPat<v16i8, v8i8>;

// If the high lanes are undef, though, we can just ignore them:
class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
  : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
        (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;

def : ConcatUndefPat<v2i64, v1i64>;
def : ConcatUndefPat<v2f64, v1f64>;
def : ConcatUndefPat<v4i32, v2i32>;
def : ConcatUndefPat<v4f32, v2f32>;
def : ConcatUndefPat<v8i16, v4i16>;
def : ConcatUndefPat<v16i8, v8i8>;

//----------------------------------------------------------------------------
// AdvSIMD across lanes instructions
//----------------------------------------------------------------------------

defm ADDV    : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
defm SMAXV   : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
defm SMINV   : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
defm UMAXV   : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
defm UMINV   : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
defm SADDLV  : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
defm UADDLV  : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
defm FMAXV   : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
defm FMINV   : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;

// Patterns for across-vector intrinsics, that have a node equivalent, that
// returns a vector (with only the low lane defined) instead of a scalar.
// In effect, opNode is the same as (scalar_to_vector (IntNode)).
multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
                                    SDPatternOperator opNode> {
// If a lane instruction caught the vector_extract around opNode, we can
// directly match the latter to the instruction.
def : Pat<(v8i8 (opNode V64:$Rn)),
          (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
           (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
def : Pat<(v16i8 (opNode V128:$Rn)),
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
           (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
def : Pat<(v4i16 (opNode V64:$Rn)),
          (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
           (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
def : Pat<(v8i16 (opNode V128:$Rn)),
          (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
           (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
def : Pat<(v4i32 (opNode V128:$Rn)),
          (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
           (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;


// If none did, fallback to the explicit patterns, consuming the vector_extract.
def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
            (i32 0)), (i64 0))),
          (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
            bsub), ssub)>;
def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
          (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
            bsub), ssub)>;
def : Pat<(i32 (vector_extract (insert_subvector undef,
            (v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
          (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
            hsub), ssub)>;
def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
          (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
            hsub), ssub)>;
def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
          (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
            ssub), ssub)>;

}

multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
                                          SDPatternOperator opNode>
    : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
// If there is a sign extension after this intrinsic, consume it as smov already
// performed it
def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
            (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
          (i32 (SMOVvi8to32
            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
              (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
            (i64 0)))>;
def : Pat<(i32 (sext_inreg (i32 (vector_extract
            (opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
          (i32 (SMOVvi8to32
            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
            (i64 0)))>;
def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
            (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
          (i32 (SMOVvi16to32
           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
           (i64 0)))>;
def : Pat<(i32 (sext_inreg (i32 (vector_extract
            (opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
          (i32 (SMOVvi16to32
            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
            (i64 0)))>;
}

multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
                                            SDPatternOperator opNode>
    : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
// If there is a masking operation keeping only what has been actually
// generated, consume it.
def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
            (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
      (i32 (EXTRACT_SUBREG
        (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
          (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
        ssub))>;
def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
            maski8_or_more)),
        (i32 (EXTRACT_SUBREG
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
          ssub))>;
def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
            (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
          (i32 (EXTRACT_SUBREG
            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
              (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
            ssub))>;
def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
            maski16_or_more)),
        (i32 (EXTRACT_SUBREG
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
          ssub))>;
}

defm : SIMDAcrossLanesSignedIntrinsic<"ADDV",  AArch64saddv>;
// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
          (ADDPv2i32 V64:$Rn, V64:$Rn)>;

defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
          (ADDPv2i32 V64:$Rn, V64:$Rn)>;

defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
          (SMAXPv2i32 V64:$Rn, V64:$Rn)>;

defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
          (SMINPv2i32 V64:$Rn, V64:$Rn)>;

defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
          (UMAXPv2i32 V64:$Rn, V64:$Rn)>;

defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
          (UMINPv2i32 V64:$Rn, V64:$Rn)>;

multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
  def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
        (i32 (SMOVvi16to32
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
          (i64 0)))>;
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
        (i32 (SMOVvi16to32
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
           (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
          (i64 0)))>;

def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
          (i32 (EXTRACT_SUBREG
           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
           ssub))>;
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
        (i32 (EXTRACT_SUBREG
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
           (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
          ssub))>;

def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
        (i64 (EXTRACT_SUBREG
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
           (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
          dsub))>;
}

multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
                                                Intrinsic intOp> {
  def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
        (i32 (EXTRACT_SUBREG
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
          ssub))>;
def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
        (i32 (EXTRACT_SUBREG
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
          ssub))>;

def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
          (i32 (EXTRACT_SUBREG
            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
              (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
            ssub))>;
def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
        (i32 (EXTRACT_SUBREG
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
          ssub))>;

def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
        (i64 (EXTRACT_SUBREG
          (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
          dsub))>;
}

defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;

// The vaddlv_s32 intrinsic gets mapped to SADDLP.
def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
          (i64 (EXTRACT_SUBREG
            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
              (SADDLPv2i32_v1i64 V64:$Rn), dsub),
            dsub))>;
// The vaddlv_u32 intrinsic gets mapped to UADDLP.
def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
          (i64 (EXTRACT_SUBREG
            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
              (UADDLPv2i32_v1i64 V64:$Rn), dsub),
            dsub))>;

//------------------------------------------------------------------------------
// AdvSIMD modified immediate instructions
//------------------------------------------------------------------------------

// AdvSIMD BIC
defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
// AdvSIMD ORR
defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;

def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;

def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;

def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;

def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;

// AdvSIMD FMOV
def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
                                              "fmov", ".2d",
                       [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64,  fpimm8,
                                              "fmov", ".2s",
                       [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
                                              "fmov", ".4s",
                       [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
let Predicates = [HasNEON, HasFullFP16] in {
def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64,  fpimm8,
                                              "fmov", ".4h",
                       [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
                                              "fmov", ".8h",
                       [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
} // Predicates = [HasNEON, HasFullFP16]

// AdvSIMD MOVI

// EDIT byte mask: scalar
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOVID      : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
                    [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
// The movi_edit node has the immediate value already encoded, so we use
// a plain imm0_255 here.
def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
          (MOVID imm0_255:$shift)>;

// EDIT byte mask: 2d

// The movi_edit node has the immediate value already encoded, so we use
// a plain imm0_255 in the pattern
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
def MOVIv2d_ns   : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
                                                simdimmtype10,
                                                "movi", ".2d",
                   [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;

def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;

def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;

// Set 64-bit vectors to all 0/1 by extracting from a 128-bit register as the
// extract is free and this gives better MachineCSE results.
def : Pat<(v1i64 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
def : Pat<(v2i32 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
def : Pat<(v4i16 immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;
def : Pat<(v8i8  immAllZerosV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 0)), dsub)>;

def : Pat<(v1i64 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
def : Pat<(v2i32 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
def : Pat<(v4i16 immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;
def : Pat<(v8i8  immAllOnesV), (EXTRACT_SUBREG (MOVIv2d_ns (i32 255)), dsub)>;

// EDIT per word & halfword: 2s, 4h, 4s, & 8h
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm MOVI      : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;

def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;

def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;

def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
          (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
          (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
          (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
          (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;

let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
// EDIT per word: 2s & 4s with MSL shifter
def MOVIv2s_msl  : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
                      [(set (v2i32 V64:$Rd),
                            (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
def MOVIv4s_msl  : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
                      [(set (v4i32 V128:$Rd),
                            (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;

// Per byte: 8b & 16b
def MOVIv8b_ns   : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64,  imm0_255,
                                                 "movi", ".8b",
                       [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;

def MOVIv16b_ns  : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
                                                 "movi", ".16b",
                       [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
}

// AdvSIMD MVNI

// EDIT per word & halfword: 2s, 4h, 4s, & 8h
let isReMaterializable = 1, isAsCheapAsAMove = 1 in
defm MVNI      : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;

def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;

def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;

def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
          (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
          (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
          (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
          (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;

// EDIT per word: 2s & 4s with MSL shifter
let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
def MVNIv2s_msl   : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
                      [(set (v2i32 V64:$Rd),
                            (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
def MVNIv4s_msl   : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
                      [(set (v4i32 V128:$Rd),
                            (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
}

//----------------------------------------------------------------------------
// AdvSIMD indexed element
//----------------------------------------------------------------------------

let hasSideEffects = 0 in {
  defm FMLA  : SIMDFPIndexedTied<0, 0b0001, "fmla">;
  defm FMLS  : SIMDFPIndexedTied<0, 0b0101, "fmls">;
}

// NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
// instruction expects the addend first, while the intrinsic expects it last.

// On the other hand, there are quite a few valid combinatorial options due to
// the commutativity of multiplication and the fact that (-x) * y = x * (-y).
defm : SIMDFPIndexedTiedPatterns<"FMLA",
           TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
defm : SIMDFPIndexedTiedPatterns<"FMLA",
           TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;

defm : SIMDFPIndexedTiedPatterns<"FMLS",
           TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
defm : SIMDFPIndexedTiedPatterns<"FMLS",
           TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
defm : SIMDFPIndexedTiedPatterns<"FMLS",
           TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
defm : SIMDFPIndexedTiedPatterns<"FMLS",
           TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;

multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
  // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
  // and DUP scalar.
  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
                           (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
                                           VectorIndexS:$idx))),
            (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
                           (v2f32 (AArch64duplane32
                                      (v4f32 (insert_subvector undef,
                                                 (v2f32 (fneg V64:$Rm)),
                                                 (i32 0))),
                                      VectorIndexS:$idx)))),
            (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
                               (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
                               VectorIndexS:$idx)>;
  def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
                           (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
            (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
                (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;

  // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
  // and DUP scalar.
  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
                           (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
                                           VectorIndexS:$idx))),
            (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
                               VectorIndexS:$idx)>;
  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
                           (v4f32 (AArch64duplane32
                                      (v4f32 (insert_subvector undef,
                                                 (v2f32 (fneg V64:$Rm)),
                                                 (i32 0))),
                                      VectorIndexS:$idx)))),
            (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
                               (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
                               VectorIndexS:$idx)>;
  def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
                           (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
            (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
                (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;

  // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
  // (DUPLANE from 64-bit would be trivial).
  def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
                           (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
                                           VectorIndexD:$idx))),
            (FMLSv2i64_indexed
                V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
  def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
                           (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
            (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
                (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;

  // 2 variants for 32-bit scalar version: extract from .2s or from .4s
  def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
                         (vector_extract (v4f32 (fneg V128:$Rm)),
                                         VectorIndexS:$idx))),
            (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
                V128:$Rm, VectorIndexS:$idx)>;
  def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
                         (vector_extract (v4f32 (insert_subvector undef,
                                                    (v2f32 (fneg V64:$Rm)),
                                                    (i32 0))),
                                         VectorIndexS:$idx))),
            (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;

  // 1 variant for 64-bit scalar version: extract from .1d or from .2d
  def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
                         (vector_extract (v2f64 (fneg V128:$Rm)),
                                         VectorIndexS:$idx))),
            (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
                V128:$Rm, VectorIndexS:$idx)>;
}

defm : FMLSIndexedAfterNegPatterns<
           TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
defm : FMLSIndexedAfterNegPatterns<
           TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;

defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
defm FMUL  : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;

def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
          (FMULv2i32_indexed V64:$Rn,
            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
            (i64 0))>;
def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
          (FMULv4i32_indexed V128:$Rn,
            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
            (i64 0))>;
def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
          (FMULv2i64_indexed V128:$Rn,
            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
            (i64 0))>;

defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;

defm SQDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqdmulh_lane,
                                     int_aarch64_neon_sqdmulh_laneq>;
defm SQRDMULH : SIMDIndexedHSPatterns<int_aarch64_neon_sqrdmulh_lane,
                                      int_aarch64_neon_sqrdmulh_laneq>;

// Generated by MachineCombine
defm MLA   : SIMDVectorIndexedHSTied<1, 0b0000, "mla", null_frag>;
defm MLS   : SIMDVectorIndexedHSTied<1, 0b0100, "mls", null_frag>;

defm MUL   : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
    TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
                int_aarch64_neon_smull>;
defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
                                           int_aarch64_neon_sqadd>;
defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
                                           int_aarch64_neon_sqsub>;
defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
                                          int_aarch64_neon_sqadd>;
defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
                                          int_aarch64_neon_sqsub>;
defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
defm UMLAL   : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
    TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
defm UMLSL   : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
    TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
defm UMULL   : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
                int_aarch64_neon_umull>;

// A scalar sqdmull with the second operand being a vector lane can be
// handled directly with the indexed instruction encoding.
def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
                                          (vector_extract (v4i32 V128:$Vm),
                                                           VectorIndexS:$idx)),
          (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;

//----------------------------------------------------------------------------
// AdvSIMD scalar shift instructions
//----------------------------------------------------------------------------
defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
defm SCVTF  : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
defm UCVTF  : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
// Codegen patterns for the above. We don't put these directly on the
// instructions because TableGen's type inference can't handle the truth.
// Having the same base pattern for fp <--> int totally freaks it out.
def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
          (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
          (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
          (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
          (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
                                            vecshiftR64:$imm)),
          (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
                                            vecshiftR64:$imm)),
          (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
          (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
          (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
                                            vecshiftR64:$imm)),
          (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
          (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
                                            vecshiftR64:$imm)),
          (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
          (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;

// Patterns for FP16 Instrinsics - requires reg copy to/from as i16s not supported.

def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 (sext_inreg FPR32:$Rn, i16)), vecshiftR16:$imm)),
          (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i32 FPR32:$Rn), vecshiftR16:$imm)),
          (SCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(f16 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
          (SCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp
            (and FPR32:$Rn, (i32 65535)),
            vecshiftR16:$imm)),
          (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR16:$imm)),
          (UCVTFh (EXTRACT_SUBREG FPR32:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(f16 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR16:$imm)),
          (UCVTFh (EXTRACT_SUBREG FPR64:$Rn, hsub), vecshiftR16:$imm)>;
def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR32:$imm)),
          (i32 (INSERT_SUBREG
            (i32 (IMPLICIT_DEF)),
            (FCVTZSh FPR16:$Rn, vecshiftR32:$imm),
            hsub))>;
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f16 FPR16:$Rn), vecshiftR64:$imm)),
          (i64 (INSERT_SUBREG
            (i64 (IMPLICIT_DEF)),
            (FCVTZSh FPR16:$Rn, vecshiftR64:$imm),
            hsub))>;
def : Pat<(i32 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR32:$imm)),
          (i32 (INSERT_SUBREG
            (i32 (IMPLICIT_DEF)),
            (FCVTZUh FPR16:$Rn, vecshiftR32:$imm),
            hsub))>;
def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f16 FPR16:$Rn), vecshiftR64:$imm)),
          (i64 (INSERT_SUBREG
            (i64 (IMPLICIT_DEF)),
            (FCVTZUh FPR16:$Rn, vecshiftR64:$imm),
            hsub))>;
def : Pat<(i32 (int_aarch64_neon_facge (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
          (i32 (INSERT_SUBREG
            (i32 (IMPLICIT_DEF)),
            (FACGE16 FPR16:$Rn, FPR16:$Rm),
            hsub))>;
def : Pat<(i32 (int_aarch64_neon_facgt (f16 FPR16:$Rn), (f16 FPR16:$Rm))),
          (i32 (INSERT_SUBREG
            (i32 (IMPLICIT_DEF)),
            (FACGT16 FPR16:$Rn, FPR16:$Rm),
            hsub))>;

defm SHL      : SIMDScalarLShiftD<   0, 0b01010, "shl", AArch64vshl>;
defm SLI      : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
defm SQRSHRN  : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
                                     int_aarch64_neon_sqrshrn>;
defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
                                     int_aarch64_neon_sqrshrun>;
defm SQSHLU   : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
defm SQSHL    : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
defm SQSHRN   : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
                                     int_aarch64_neon_sqshrn>;
defm SQSHRUN  : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
                                     int_aarch64_neon_sqshrun>;
defm SRI      : SIMDScalarRShiftDTied<   1, 0b01000, "sri">;
defm SRSHR    : SIMDScalarRShiftD<   0, 0b00100, "srshr", AArch64srshri>;
defm SRSRA    : SIMDScalarRShiftDTied<   0, 0b00110, "srsra",
    TriOpFrag<(add node:$LHS,
                   (AArch64srshri node:$MHS, node:$RHS))>>;
defm SSHR     : SIMDScalarRShiftD<   0, 0b00000, "sshr", AArch64vashr>;
defm SSRA     : SIMDScalarRShiftDTied<   0, 0b00010, "ssra",
    TriOpFrag<(add node:$LHS,
                   (AArch64vashr node:$MHS, node:$RHS))>>;
defm UQRSHRN  : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
                                     int_aarch64_neon_uqrshrn>;
defm UQSHL    : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
defm UQSHRN   : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
                                     int_aarch64_neon_uqshrn>;
defm URSHR    : SIMDScalarRShiftD<   1, 0b00100, "urshr", AArch64urshri>;
defm URSRA    : SIMDScalarRShiftDTied<   1, 0b00110, "ursra",
    TriOpFrag<(add node:$LHS,
                   (AArch64urshri node:$MHS, node:$RHS))>>;
defm USHR     : SIMDScalarRShiftD<   1, 0b00000, "ushr", AArch64vlshr>;
defm USRA     : SIMDScalarRShiftDTied<   1, 0b00010, "usra",
    TriOpFrag<(add node:$LHS,
                   (AArch64vlshr node:$MHS, node:$RHS))>>;

//----------------------------------------------------------------------------
// AdvSIMD vector shift instructions
//----------------------------------------------------------------------------
defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
                                   int_aarch64_neon_vcvtfxs2fp>;
defm RSHRN   : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
                                         int_aarch64_neon_rshrn>;
defm SHL     : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
defm SHRN    : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
                          BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
defm SLI     : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", AArch64vsli>;
def : Pat<(v1i64 (AArch64vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
                                      (i32 vecshiftL64:$imm))),
          (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
                                         int_aarch64_neon_sqrshrn>;
defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
                                         int_aarch64_neon_sqrshrun>;
defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
defm SQSHL  : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
defm SQSHRN  : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
                                         int_aarch64_neon_sqshrn>;
defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
                                         int_aarch64_neon_sqshrun>;
defm SRI     : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", AArch64vsri>;
def : Pat<(v1i64 (AArch64vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
                                      (i32 vecshiftR64:$imm))),
          (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
defm SRSHR   : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
defm SRSRA   : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
                 TriOpFrag<(add node:$LHS,
                                (AArch64srshri node:$MHS, node:$RHS))> >;
defm SSHLL   : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
                BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;

defm SSHR    : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
defm SSRA    : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
                TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
defm UCVTF   : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
                        int_aarch64_neon_vcvtfxu2fp>;
defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
                                         int_aarch64_neon_uqrshrn>;
defm UQSHL   : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
defm UQSHRN  : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
                                         int_aarch64_neon_uqshrn>;
defm URSHR   : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
defm URSRA   : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
                TriOpFrag<(add node:$LHS,
                               (AArch64urshri node:$MHS, node:$RHS))> >;
defm USHLL   : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
                BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
defm USHR    : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
defm USRA    : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
                TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;

// SHRN patterns for when a logical right shift was used instead of arithmetic
// (the immediate guarantees no sign bits actually end up in the result so it
// doesn't matter).
def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
          (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
          (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
          (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;

def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
                                 (trunc (AArch64vlshr (v8i16 V128:$Rn),
                                                    vecshiftR16Narrow:$imm)))),
          (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
                           V128:$Rn, vecshiftR16Narrow:$imm)>;
def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
                                 (trunc (AArch64vlshr (v4i32 V128:$Rn),
                                                    vecshiftR32Narrow:$imm)))),
          (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
                           V128:$Rn, vecshiftR32Narrow:$imm)>;
def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
                                 (trunc (AArch64vlshr (v2i64 V128:$Rn),
                                                    vecshiftR64Narrow:$imm)))),
          (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
                           V128:$Rn, vecshiftR32Narrow:$imm)>;

// Vector sign and zero extensions are implemented with SSHLL and USSHLL.
// Anyexts are implemented as zexts.
def : Pat<(v8i16 (sext   (v8i8 V64:$Rn))),  (SSHLLv8i8_shift  V64:$Rn, (i32 0))>;
def : Pat<(v8i16 (zext   (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
def : Pat<(v4i32 (sext   (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
def : Pat<(v4i32 (zext   (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
def : Pat<(v2i64 (sext   (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
def : Pat<(v2i64 (zext   (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
// Also match an extend from the upper half of a 128 bit source register.
def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
          (USHLLv16i8_shift V128:$Rn, (i32 0))>;
def : Pat<(v8i16 (zext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
          (USHLLv16i8_shift V128:$Rn, (i32 0))>;
def : Pat<(v8i16 (sext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
          (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
          (USHLLv8i16_shift V128:$Rn, (i32 0))>;
def : Pat<(v4i32 (zext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
          (USHLLv8i16_shift V128:$Rn, (i32 0))>;
def : Pat<(v4i32 (sext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
          (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
          (USHLLv4i32_shift V128:$Rn, (i32 0))>;
def : Pat<(v2i64 (zext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
          (USHLLv4i32_shift V128:$Rn, (i32 0))>;
def : Pat<(v2i64 (sext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
          (SSHLLv4i32_shift V128:$Rn, (i32 0))>;

// Vector shift sxtl aliases
def : InstAlias<"sxtl.8h $dst, $src1",
                (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl $dst.8h, $src1.8b",
                (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl.4s $dst, $src1",
                (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl $dst.4s, $src1.4h",
                (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl.2d $dst, $src1",
                (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"sxtl $dst.2d, $src1.2s",
                (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;

// Vector shift sxtl2 aliases
def : InstAlias<"sxtl2.8h $dst, $src1",
                (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
                (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2.4s $dst, $src1",
                (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
                (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2.2d $dst, $src1",
                (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
                (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;

// Vector shift uxtl aliases
def : InstAlias<"uxtl.8h $dst, $src1",
                (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl $dst.8h, $src1.8b",
                (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl.4s $dst, $src1",
                (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl $dst.4s, $src1.4h",
                (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl.2d $dst, $src1",
                (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
def : InstAlias<"uxtl $dst.2d, $src1.2s",
                (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;

// Vector shift uxtl2 aliases
def : InstAlias<"uxtl2.8h $dst, $src1",
                (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
                (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2.4s $dst, $src1",
                (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
                (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2.2d $dst, $src1",
                (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
                (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;

// If an integer is about to be converted to a floating point value,
// just load it on the floating point unit.
// These patterns are more complex because floating point loads do not
// support sign extension.
// The sign extension has to be explicitly added and is only supported for
// one step: byte-to-half, half-to-word, word-to-doubleword.
// SCVTF GPR -> FPR is 9 cycles.
// SCVTF FPR -> FPR is 4 cyclces.
// (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
// Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
// and still being faster.
// However, this is not good for code size.
// 8-bits -> float. 2 sizes step-up.
class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
  : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
        (SCVTFv1i32 (f32 (EXTRACT_SUBREG
                            (SSHLLv4i16_shift
                              (f64
                                (EXTRACT_SUBREG
                                  (SSHLLv8i8_shift
                                    (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                                        INST,
                                        bsub),
                                    0),
                                  dsub)),
                               0),
                             ssub)))>,
    Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;

def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
                          (LDRBroW  GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
                          (LDRBroX  GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
                          (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
                          (LDURBi GPR64sp:$Rn, simm9:$offset)>;

// 16-bits -> float. 1 size step-up.
class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
  : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
        (SCVTFv1i32 (f32 (EXTRACT_SUBREG
                            (SSHLLv4i16_shift
                                (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                                  INST,
                                  hsub),
                                0),
                            ssub)))>, Requires<[NotForCodeSize]>;

def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
                           (LDRHroW   GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
                           (LDRHroX   GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
                           (LDURHi GPR64sp:$Rn, simm9:$offset)>;

// 32-bits to 32-bits are handled in target specific dag combine:
// performIntToFpCombine.
// 64-bits integer to 32-bits floating point, not possible with
// SCVTF on floating point registers (both source and destination
// must have the same size).

// Here are the patterns for 8, 16, 32, and 64-bits to double.
// 8-bits -> double. 3 size step-up: give up.
// 16-bits -> double. 2 size step.
class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
  : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
           (SCVTFv1i64 (f64 (EXTRACT_SUBREG
                              (SSHLLv2i32_shift
                                 (f64
                                  (EXTRACT_SUBREG
                                    (SSHLLv4i16_shift
                                      (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                                        INST,
                                        hsub),
                                     0),
                                   dsub)),
                               0),
                             dsub)))>,
    Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;

def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
                           (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
                           (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
                           (LDURHi GPR64sp:$Rn, simm9:$offset)>;
// 32-bits -> double. 1 size step-up.
class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
  : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
           (SCVTFv1i64 (f64 (EXTRACT_SUBREG
                              (SSHLLv2i32_shift
                                (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
                                  INST,
                                  ssub),
                               0),
                             dsub)))>, Requires<[NotForCodeSize]>;

def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
                           (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
                           (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
                           (LDURSi GPR64sp:$Rn, simm9:$offset)>;

// 64-bits -> double are handled in target specific dag combine:
// performIntToFpCombine.


//----------------------------------------------------------------------------
// AdvSIMD Load-Store Structure
//----------------------------------------------------------------------------
defm LD1 : SIMDLd1Multiple<"ld1">;
defm LD2 : SIMDLd2Multiple<"ld2">;
defm LD3 : SIMDLd3Multiple<"ld3">;
defm LD4 : SIMDLd4Multiple<"ld4">;

defm ST1 : SIMDSt1Multiple<"st1">;
defm ST2 : SIMDSt2Multiple<"st2">;
defm ST3 : SIMDSt3Multiple<"st3">;
defm ST4 : SIMDSt4Multiple<"st4">;

class Ld1Pat<ValueType ty, Instruction INST>
  : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;

def : Ld1Pat<v16i8, LD1Onev16b>;
def : Ld1Pat<v8i16, LD1Onev8h>;
def : Ld1Pat<v4i32, LD1Onev4s>;
def : Ld1Pat<v2i64, LD1Onev2d>;
def : Ld1Pat<v8i8,  LD1Onev8b>;
def : Ld1Pat<v4i16, LD1Onev4h>;
def : Ld1Pat<v2i32, LD1Onev2s>;
def : Ld1Pat<v1i64, LD1Onev1d>;

class St1Pat<ValueType ty, Instruction INST>
  : Pat<(store ty:$Vt, GPR64sp:$Rn),
        (INST ty:$Vt, GPR64sp:$Rn)>;

def : St1Pat<v16i8, ST1Onev16b>;
def : St1Pat<v8i16, ST1Onev8h>;
def : St1Pat<v4i32, ST1Onev4s>;
def : St1Pat<v2i64, ST1Onev2d>;
def : St1Pat<v8i8,  ST1Onev8b>;
def : St1Pat<v4i16, ST1Onev4h>;
def : St1Pat<v2i32, ST1Onev2s>;
def : St1Pat<v1i64, ST1Onev1d>;

//---
// Single-element
//---

defm LD1R          : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
defm LD2R          : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
defm LD3R          : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
defm LD4R          : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
let mayLoad = 1, hasSideEffects = 0 in {
defm LD1 : SIMDLdSingleBTied<0, 0b000,       "ld1", VecListOneb,   GPR64pi1>;
defm LD1 : SIMDLdSingleHTied<0, 0b010, 0,    "ld1", VecListOneh,   GPR64pi2>;
defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes,   GPR64pi4>;
defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned,   GPR64pi8>;
defm LD2 : SIMDLdSingleBTied<1, 0b000,       "ld2", VecListTwob,   GPR64pi2>;
defm LD2 : SIMDLdSingleHTied<1, 0b010, 0,    "ld2", VecListTwoh,   GPR64pi4>;
defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos,   GPR64pi8>;
defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod,   GPR64pi16>;
defm LD3 : SIMDLdSingleBTied<0, 0b001,       "ld3", VecListThreeb, GPR64pi3>;
defm LD3 : SIMDLdSingleHTied<0, 0b011, 0,    "ld3", VecListThreeh, GPR64pi6>;
defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
defm LD4 : SIMDLdSingleBTied<1, 0b001,       "ld4", VecListFourb,  GPR64pi4>;
defm LD4 : SIMDLdSingleHTied<1, 0b011, 0,    "ld4", VecListFourh,  GPR64pi8>;
defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours,  GPR64pi16>;
defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd,  GPR64pi32>;
}

def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
          (LD1Rv8b GPR64sp:$Rn)>;
def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
          (LD1Rv16b GPR64sp:$Rn)>;
def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
          (LD1Rv4h GPR64sp:$Rn)>;
def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
          (LD1Rv8h GPR64sp:$Rn)>;
def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
          (LD1Rv2s GPR64sp:$Rn)>;
def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
          (LD1Rv4s GPR64sp:$Rn)>;
def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
          (LD1Rv2d GPR64sp:$Rn)>;
def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
          (LD1Rv1d GPR64sp:$Rn)>;
// Grab the floating point version too
def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
          (LD1Rv2s GPR64sp:$Rn)>;
def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
          (LD1Rv4s GPR64sp:$Rn)>;
def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
          (LD1Rv2d GPR64sp:$Rn)>;
def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
          (LD1Rv1d GPR64sp:$Rn)>;
def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
          (LD1Rv4h GPR64sp:$Rn)>;
def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
          (LD1Rv8h GPR64sp:$Rn)>;
def : Pat<(v4bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))),
          (LD1Rv4h GPR64sp:$Rn)>;
def : Pat<(v8bf16 (AArch64dup (bf16 (load GPR64sp:$Rn)))),
          (LD1Rv8h GPR64sp:$Rn)>;

class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
                    ValueType VTy, ValueType STy, Instruction LD1>
  : Pat<(vector_insert (VTy VecListOne128:$Rd),
           (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
        (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;

def : Ld1Lane128Pat<extloadi8,  VectorIndexB, v16i8, i32, LD1i8>;
def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
def : Ld1Lane128Pat<load,       VectorIndexS, v4i32, i32, LD1i32>;
def : Ld1Lane128Pat<load,       VectorIndexS, v4f32, f32, LD1i32>;
def : Ld1Lane128Pat<load,       VectorIndexD, v2i64, i64, LD1i64>;
def : Ld1Lane128Pat<load,       VectorIndexD, v2f64, f64, LD1i64>;
def : Ld1Lane128Pat<load,       VectorIndexH, v8f16, f16, LD1i16>;
def : Ld1Lane128Pat<load,       VectorIndexH, v8bf16, bf16, LD1i16>;

class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
                   ValueType VTy, ValueType STy, Instruction LD1>
  : Pat<(vector_insert (VTy VecListOne64:$Rd),
           (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
        (EXTRACT_SUBREG
            (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
                          VecIndex:$idx, GPR64sp:$Rn),
            dsub)>;

def : Ld1Lane64Pat<extloadi8,  VectorIndexB, v8i8,  i32, LD1i8>;
def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
def : Ld1Lane64Pat<load,       VectorIndexS, v2i32, i32, LD1i32>;
def : Ld1Lane64Pat<load,       VectorIndexS, v2f32, f32, LD1i32>;
def : Ld1Lane64Pat<load,       VectorIndexH, v4f16, f16, LD1i16>;
def : Ld1Lane64Pat<load,       VectorIndexH, v4bf16, bf16, LD1i16>;


defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
defm LD4 : SIMDLdSt4SingleAliases<"ld4">;

// Stores
defm ST1 : SIMDStSingleB<0, 0b000,       "st1", VecListOneb, GPR64pi1>;
defm ST1 : SIMDStSingleH<0, 0b010, 0,    "st1", VecListOneh, GPR64pi2>;
defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;

let AddedComplexity = 19 in
class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
                    ValueType VTy, ValueType STy, Instruction ST1>
  : Pat<(scalar_store
             (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
             GPR64sp:$Rn),
        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;

def : St1Lane128Pat<truncstorei8,  VectorIndexB, v16i8, i32, ST1i8>;
def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
def : St1Lane128Pat<store,         VectorIndexS, v4i32, i32, ST1i32>;
def : St1Lane128Pat<store,         VectorIndexS, v4f32, f32, ST1i32>;
def : St1Lane128Pat<store,         VectorIndexD, v2i64, i64, ST1i64>;
def : St1Lane128Pat<store,         VectorIndexD, v2f64, f64, ST1i64>;
def : St1Lane128Pat<store,         VectorIndexH, v8f16, f16, ST1i16>;
def : St1Lane128Pat<store,         VectorIndexH, v8bf16, bf16, ST1i16>;

let AddedComplexity = 19 in
class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
                   ValueType VTy, ValueType STy, Instruction ST1>
  : Pat<(scalar_store
             (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
             GPR64sp:$Rn),
        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
             VecIndex:$idx, GPR64sp:$Rn)>;

def : St1Lane64Pat<truncstorei8,  VectorIndexB, v8i8, i32, ST1i8>;
def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
def : St1Lane64Pat<store,         VectorIndexS, v2i32, i32, ST1i32>;
def : St1Lane64Pat<store,         VectorIndexS, v2f32, f32, ST1i32>;
def : St1Lane64Pat<store,         VectorIndexH, v4f16, f16, ST1i16>;
def : St1Lane64Pat<store,         VectorIndexH, v4bf16, bf16, ST1i16>;

multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
                             ValueType VTy, ValueType STy, Instruction ST1,
                             int offset> {
  def : Pat<(scalar_store
              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
              GPR64sp:$Rn, offset),
        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
             VecIndex:$idx, GPR64sp:$Rn, XZR)>;

  def : Pat<(scalar_store
              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
              GPR64sp:$Rn, GPR64:$Rm),
        (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
             VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
}

defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
                        2>;
defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
defm : St1LanePost64Pat<post_store, VectorIndexH, v4bf16, bf16, ST1i16_POST, 2>;

multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
                             ValueType VTy, ValueType STy, Instruction ST1,
                             int offset> {
  def : Pat<(scalar_store
              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
              GPR64sp:$Rn, offset),
        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;

  def : Pat<(scalar_store
              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
              GPR64sp:$Rn, GPR64:$Rm),
        (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
}

defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
                         1>;
defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
                         2>;
defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
defm : St1LanePost128Pat<post_store, VectorIndexH, v8bf16, bf16, ST1i16_POST, 2>;

let mayStore = 1, hasSideEffects = 0 in {
defm ST2 : SIMDStSingleB<1, 0b000,       "st2", VecListTwob,   GPR64pi2>;
defm ST2 : SIMDStSingleH<1, 0b010, 0,    "st2", VecListTwoh,   GPR64pi4>;
defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos,   GPR64pi8>;
defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod,   GPR64pi16>;
defm ST3 : SIMDStSingleB<0, 0b001,       "st3", VecListThreeb, GPR64pi3>;
defm ST3 : SIMDStSingleH<0, 0b011, 0,    "st3", VecListThreeh, GPR64pi6>;
defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
defm ST4 : SIMDStSingleB<1, 0b001,       "st4", VecListFourb,  GPR64pi4>;
defm ST4 : SIMDStSingleH<1, 0b011, 0,    "st4", VecListFourh,  GPR64pi8>;
defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours,  GPR64pi16>;
defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd,  GPR64pi32>;
}

defm ST1 : SIMDLdSt1SingleAliases<"st1">;
defm ST2 : SIMDLdSt2SingleAliases<"st2">;
defm ST3 : SIMDLdSt3SingleAliases<"st3">;
defm ST4 : SIMDLdSt4SingleAliases<"st4">;

//----------------------------------------------------------------------------
// Crypto extensions
//----------------------------------------------------------------------------

let Predicates = [HasAES] in {
def AESErr   : AESTiedInst<0b0100, "aese",   int_aarch64_crypto_aese>;
def AESDrr   : AESTiedInst<0b0101, "aesd",   int_aarch64_crypto_aesd>;
def AESMCrr  : AESInst<    0b0110, "aesmc",  int_aarch64_crypto_aesmc>;
def AESIMCrr : AESInst<    0b0111, "aesimc", int_aarch64_crypto_aesimc>;
}

// Pseudo instructions for AESMCrr/AESIMCrr with a register constraint required
// for AES fusion on some CPUs.
let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
def AESMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
                        Sched<[WriteV]>;
def AESIMCrrTied: Pseudo<(outs V128:$Rd), (ins V128:$Rn), [], "$Rn = $Rd">,
                         Sched<[WriteV]>;
}

// Only use constrained versions of AES(I)MC instructions if they are paired with
// AESE/AESD.
def : Pat<(v16i8 (int_aarch64_crypto_aesmc
            (v16i8 (int_aarch64_crypto_aese (v16i8 V128:$src1),
                                            (v16i8 V128:$src2))))),
          (v16i8 (AESMCrrTied (v16i8 (AESErr (v16i8 V128:$src1),
                                             (v16i8 V128:$src2)))))>,
          Requires<[HasFuseAES]>;

def : Pat<(v16i8 (int_aarch64_crypto_aesimc
            (v16i8 (int_aarch64_crypto_aesd (v16i8 V128:$src1),
                                            (v16i8 V128:$src2))))),
          (v16i8 (AESIMCrrTied (v16i8 (AESDrr (v16i8 V128:$src1),
                                              (v16i8 V128:$src2)))))>,
          Requires<[HasFuseAES]>;

let Predicates = [HasSHA2] in {
def SHA1Crrr     : SHATiedInstQSV<0b000, "sha1c",   int_aarch64_crypto_sha1c>;
def SHA1Prrr     : SHATiedInstQSV<0b001, "sha1p",   int_aarch64_crypto_sha1p>;
def SHA1Mrrr     : SHATiedInstQSV<0b010, "sha1m",   int_aarch64_crypto_sha1m>;
def SHA1SU0rrr   : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
def SHA256Hrrr   : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
def SHA256H2rrr  : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;

def SHA1Hrr     : SHAInstSS<    0b0000, "sha1h",    int_aarch64_crypto_sha1h>;
def SHA1SU1rr   : SHATiedInstVV<0b0001, "sha1su1",  int_aarch64_crypto_sha1su1>;
def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
}

//----------------------------------------------------------------------------
// Compiler-pseudos
//----------------------------------------------------------------------------
// FIXME: Like for X86, these should go in their own separate .td file.

def def32 : PatLeaf<(i32 GPR32:$src), [{
  return isDef32(*N);
}]>;

// In the case of a 32-bit def that is known to implicitly zero-extend,
// we can use a SUBREG_TO_REG.
def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;

// For an anyext, we don't care what the high bits are, so we can perform an
// INSERT_SUBREF into an IMPLICIT_DEF.
def : Pat<(i64 (anyext GPR32:$src)),
          (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;

// When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
// then assert the extension has happened.
def : Pat<(i64 (zext GPR32:$src)),
          (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;

// To sign extend, we use a signed bitfield move instruction (SBFM) on the
// containing super-reg.
def : Pat<(i64 (sext GPR32:$src)),
   (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i8)),  (SBFMXri GPR64:$src, 0, 7)>;
def : Pat<(i64 (sext_inreg GPR64:$src, i1)),  (SBFMXri GPR64:$src, 0, 0)>;
def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
def : Pat<(i32 (sext_inreg GPR32:$src, i8)),  (SBFMWri GPR32:$src, 0, 7)>;
def : Pat<(i32 (sext_inreg GPR32:$src, i1)),  (SBFMWri GPR32:$src, 0, 0)>;

def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
          (SBFMWri GPR32:$Rn, (i64 (i32shift_a       imm0_31:$imm)),
                              (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
          (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
                              (i64 (i64shift_sext_i8 imm0_63:$imm)))>;

def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
          (SBFMWri GPR32:$Rn, (i64 (i32shift_a        imm0_31:$imm)),
                              (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
          (SBFMXri GPR64:$Rn, (i64 (i64shift_a        imm0_63:$imm)),
                              (i64 (i64shift_sext_i16 imm0_63:$imm)))>;

def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
          (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
                   (i64 (i64shift_a        imm0_63:$imm)),
                   (i64 (i64shift_sext_i32 imm0_63:$imm)))>;

// sra patterns have an AddedComplexity of 10, so make sure we have a higher
// AddedComplexity for the following patterns since we want to match sext + sra
// patterns before we attempt to match a single sra node.
let AddedComplexity = 20 in {
// We support all sext + sra combinations which preserve at least one bit of the
// original value which is to be sign extended. E.g. we support shifts up to
// bitwidth-1 bits.
def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
          (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
          (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;

def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
          (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
          (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;

def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
          (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
                   (i64 imm0_31:$imm), 31)>;
} // AddedComplexity = 20

// To truncate, we can simply extract from a subregister.
def : Pat<(i32 (trunc GPR64sp:$src)),
          (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;

// __builtin_trap() uses the BRK instruction on AArch64.
def : Pat<(trap), (BRK 1)>;
def : Pat<(debugtrap), (BRK 0xF000)>, Requires<[IsWindows]>;

// Multiply high patterns which multiply the lower subvector using smull/umull
// and the upper subvector with smull2/umull2. Then shuffle the high the high
// part of both results together.
def : Pat<(v16i8 (mulhs V128:$Rn, V128:$Rm)),
          (UZP2v16i8
           (SMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
                            (EXTRACT_SUBREG V128:$Rm, dsub)),
           (SMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
def : Pat<(v8i16 (mulhs V128:$Rn, V128:$Rm)),
          (UZP2v8i16
           (SMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
                             (EXTRACT_SUBREG V128:$Rm, dsub)),
           (SMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
def : Pat<(v4i32 (mulhs V128:$Rn, V128:$Rm)),
          (UZP2v4i32
           (SMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
                             (EXTRACT_SUBREG V128:$Rm, dsub)),
           (SMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;

def : Pat<(v16i8 (mulhu V128:$Rn, V128:$Rm)),
          (UZP2v16i8
           (UMULLv8i8_v8i16 (EXTRACT_SUBREG V128:$Rn, dsub),
                            (EXTRACT_SUBREG V128:$Rm, dsub)),
           (UMULLv16i8_v8i16 V128:$Rn, V128:$Rm))>;
def : Pat<(v8i16 (mulhu V128:$Rn, V128:$Rm)),
          (UZP2v8i16
           (UMULLv4i16_v4i32 (EXTRACT_SUBREG V128:$Rn, dsub),
                             (EXTRACT_SUBREG V128:$Rm, dsub)),
           (UMULLv8i16_v4i32 V128:$Rn, V128:$Rm))>;
def : Pat<(v4i32 (mulhu V128:$Rn, V128:$Rm)),
          (UZP2v4i32
           (UMULLv2i32_v2i64 (EXTRACT_SUBREG V128:$Rn, dsub),
                             (EXTRACT_SUBREG V128:$Rm, dsub)),
           (UMULLv4i32_v2i64 V128:$Rn, V128:$Rm))>;

// Conversions within AdvSIMD types in the same register size are free.
// But because we need a consistent lane ordering, in big endian many
// conversions require one or more REV instructions.
//
// Consider a simple memory load followed by a bitconvert then a store.
//   v0 = load v2i32
//   v1 = BITCAST v2i32 v0 to v4i16
//        store v4i16 v2
//
// In big endian mode every memory access has an implicit byte swap. LDR and
// STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
// is, they treat the vector as a sequence of elements to be byte-swapped.
// The two pairs of instructions are fundamentally incompatible. We've decided
// to use LD1/ST1 only to simplify compiler implementation.
//
// LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
// the original code sequence:
//   v0 = load v2i32
//   v1 = REV v2i32                  (implicit)
//   v2 = BITCAST v2i32 v1 to v4i16
//   v3 = REV v4i16 v2               (implicit)
//        store v4i16 v3
//
// But this is now broken - the value stored is different to the value loaded
// due to lane reordering. To fix this, on every BITCAST we must perform two
// other REVs:
//   v0 = load v2i32
//   v1 = REV v2i32                  (implicit)
//   v2 = REV v2i32
//   v3 = BITCAST v2i32 v2 to v4i16
//   v4 = REV v4i16
//   v5 = REV v4i16 v4               (implicit)
//        store v4i16 v5
//
// This means an extra two instructions, but actually in most cases the two REV
// instructions can be combined into one. For example:
//   (REV64_2s (REV64_4h X)) === (REV32_4h X)
//
// There is also no 128-bit REV instruction. This must be synthesized with an
// EXT instruction.
//
// Most bitconverts require some sort of conversion. The only exceptions are:
//   a) Identity conversions -  vNfX <-> vNiX
//   b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
//

// Natural vector casts (64 bit)
def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4bf16 (AArch64NvCast (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;

def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4bf16 (AArch64NvCast (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;

def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4bf16 (AArch64NvCast (v8i8 FPR64:$src))), (v4bf16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2f32 (AArch64NvCast (v8i8 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;

def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4bf16 (AArch64NvCast (f64 FPR64:$src))), (v4bf16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;

def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1f64 (AArch64NvCast (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;

// Natural vector casts (128 bit)
def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8bf16 (AArch64NvCast (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;

def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8bf16 (AArch64NvCast (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;

def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8bf16 (AArch64NvCast (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;

def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8bf16 (AArch64NvCast (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;

def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8bf16 (AArch64NvCast (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;

def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8bf16 (AArch64NvCast (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v8i8  (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v4bf16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;

def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))),
          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8i8  (bitconvert GPR64:$Xn)),
                 (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
                 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
                 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
                 (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v4bf16 (bitconvert GPR64:$Xn)),
                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
                 (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;

def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
          (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
          (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v4bf16 V64:$Vn))),
          (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
          (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
}
def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;

def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
          (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
          (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
          (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
          (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
          (COPY_TO_REGCLASS V64:$Vn, GPR64)>;

let Predicates = [IsLE] in {
def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
                             (v1i64 (REV64v2i32 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
                             (v1i64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))),
                             (v1i64 (REV64v8i8 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
                             (v1i64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v4bf16 FPR64:$src))),
                             (v1i64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
                             (v1i64 (REV64v2i32 FPR64:$src))>;
}
def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
def : Pat<(v1i64 (bitconvert (f64   FPR64:$src))), (v1i64 FPR64:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))), (v2i32 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
                             (v2i32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
                             (v2i32 (REV32v4i16 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))),
                             (v2i32 (REV32v8i8 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))),
                             (v2i32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
                             (v2i32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
                             (v2i32 (REV32v4i16 FPR64:$src))>;
def : Pat<(v2i32 (bitconvert (v4bf16 FPR64:$src))),
                             (v2i32 (REV32v4i16 FPR64:$src))>;
}
def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
                             (v4i16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
                             (v4i16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))),
                             (v4i16 (REV16v8i8 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))),
                             (v4i16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
                             (v4i16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
                             (v4i16 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
def : Pat<(v4i16 (bitconvert (v4bf16 FPR64:$src))), (v4i16 FPR64:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;

def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))), (v4bf16 FPR64:$src)>;
def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))), (v4bf16 FPR64:$src)>;
def : Pat<(v4bf16 (bitconvert (v8i8  FPR64:$src))), (v4bf16 FPR64:$src)>;
def : Pat<(v4bf16 (bitconvert (f64   FPR64:$src))), (v4bf16 FPR64:$src)>;
def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))), (v4bf16 FPR64:$src)>;
def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))), (v4bf16 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
                             (v4f16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
                             (v4f16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))),
                             (v4f16 (REV16v8i8 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))),
                             (v4f16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
                             (v4f16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
                             (v4f16 (REV64v4i16 FPR64:$src))>;

def : Pat<(v4bf16 (bitconvert (v1i64 FPR64:$src))),
                             (v4bf16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4bf16 (bitconvert (v2i32 FPR64:$src))),
                             (v4bf16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4bf16 (bitconvert (v8i8  FPR64:$src))),
                             (v4bf16 (REV16v8i8 FPR64:$src))>;
def : Pat<(v4bf16 (bitconvert (f64   FPR64:$src))),
                             (v4bf16 (REV64v4i16 FPR64:$src))>;
def : Pat<(v4bf16 (bitconvert (v2f32 FPR64:$src))),
                             (v4bf16 (REV32v4i16 FPR64:$src))>;
def : Pat<(v4bf16 (bitconvert (v1f64 FPR64:$src))),
                             (v4bf16 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
def : Pat<(v4bf16 (bitconvert (v4i16 FPR64:$src))), (v4bf16 FPR64:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))), (v8i8  FPR64:$src)>;
def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))), (v8i8  FPR64:$src)>;
def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))), (v8i8  FPR64:$src)>;
def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))), (v8i8  FPR64:$src)>;
def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))), (v8i8  FPR64:$src)>;
def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))), (v8i8  FPR64:$src)>;
def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))), (v8i8  FPR64:$src)>;
def : Pat<(v8i8  (bitconvert (v4bf16 FPR64:$src))), (v8i8  FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))),
                             (v8i8 (REV64v8i8 FPR64:$src))>;
def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))),
                             (v8i8 (REV32v8i8 FPR64:$src))>;
def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))),
                             (v8i8 (REV16v8i8 FPR64:$src))>;
def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))),
                             (v8i8 (REV64v8i8 FPR64:$src))>;
def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))),
                             (v8i8 (REV32v8i8 FPR64:$src))>;
def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))),
                             (v8i8 (REV64v8i8 FPR64:$src))>;
def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))),
                             (v8i8 (REV16v8i8 FPR64:$src))>;
def : Pat<(v8i8  (bitconvert (v4bf16 FPR64:$src))),
                             (v8i8 (REV16v8i8 FPR64:$src))>;
}

let Predicates = [IsLE] in {
def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))), (f64   FPR64:$src)>;
def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))), (f64   FPR64:$src)>;
def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))), (f64   FPR64:$src)>;
def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))), (f64   FPR64:$src)>;
def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))), (f64   FPR64:$src)>;
def : Pat<(f64   (bitconvert (v4bf16 FPR64:$src))), (f64   FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))),
                             (f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))),
                             (f64 (REV64v4i16 FPR64:$src))>;
def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))),
                             (f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))),
                             (f64 (REV64v8i8 FPR64:$src))>;
def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))),
                             (f64 (REV64v4i16 FPR64:$src))>;
def : Pat<(f64   (bitconvert (v4bf16 FPR64:$src))),
                             (f64 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(f64   (bitconvert (v1i64 FPR64:$src))), (f64   FPR64:$src)>;
def : Pat<(f64   (bitconvert (v1f64 FPR64:$src))), (f64   FPR64:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))), (v1f64 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
                             (v1f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
                             (v1f64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))),
                             (v1f64 (REV64v8i8 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
                             (v1f64 (REV64v2i32 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
                             (v1f64 (REV64v4i16 FPR64:$src))>;
def : Pat<(v1f64 (bitconvert (v4bf16 FPR64:$src))),
                             (v1f64 (REV64v4i16 FPR64:$src))>;
}
def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
def : Pat<(v1f64 (bitconvert (f64   FPR64:$src))), (v1f64 FPR64:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))), (v2f32 FPR64:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
                             (v2f32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
                             (v2f32 (REV32v4i16 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))),
                             (v2f32 (REV32v8i8 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
                             (v2f32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))),
                             (v2f32 (REV64v2i32 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
                             (v2f32 (REV32v4i16 FPR64:$src))>;
def : Pat<(v2f32 (bitconvert (v4bf16 FPR64:$src))),
                             (v2f32 (REV32v4i16 FPR64:$src))>;
}
def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;

let Predicates = [IsLE] in {
def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))), (f128 FPR128:$src)>;
def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
                            (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
                            (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
                                            (REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v8bf16 FPR128:$src))),
                            (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
                                            (REV64v8i16 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
                            (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
                            (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
                                            (REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
                            (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
                                            (REV64v16i8 FPR128:$src), (i32 8)))>;
}

let Predicates = [IsLE] in {
def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))),
                             (v2f64 (EXTv16i8 FPR128:$src,
                                              FPR128:$src, (i32 8)))>;
def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
                             (v2f64 (REV64v4i32 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
                             (v2f64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
                             (v2f64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v8bf16 FPR128:$src))),
                             (v2f64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
                             (v2f64 (REV64v16i8 FPR128:$src))>;
def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
                             (v2f64 (REV64v4i32 FPR128:$src))>;
}
def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))),
                             (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
                                    (REV64v4i32 FPR128:$src), (i32 8)))>;
def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
                             (v4f32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
                             (v4f32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v8bf16 FPR128:$src))),
                             (v4f32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
                             (v4f32 (REV32v16i8 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
                             (v4f32 (REV64v4i32 FPR128:$src))>;
def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
                             (v4f32 (REV64v4i32 FPR128:$src))>;
}
def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))), (v2i64 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))),
                             (v2i64 (EXTv16i8 FPR128:$src,
                                              FPR128:$src, (i32 8)))>;
def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
                             (v2i64 (REV64v4i32 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
                             (v2i64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
                             (v2i64 (REV64v16i8 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
                             (v2i64 (REV64v4i32 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
                             (v2i64 (REV64v8i16 FPR128:$src))>;
def : Pat<(v2i64 (bitconvert (v8bf16 FPR128:$src))),
                             (v2i64 (REV64v8i16 FPR128:$src))>;
}
def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))), (v4i32 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))),
                             (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
                                              (REV64v4i32 FPR128:$src),
                                              (i32 8)))>;
def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
                             (v4i32 (REV64v4i32 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
                             (v4i32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
                             (v4i32 (REV32v16i8 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
                             (v4i32 (REV64v4i32 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
                             (v4i32 (REV32v8i16 FPR128:$src))>;
def : Pat<(v4i32 (bitconvert (v8bf16 FPR128:$src))),
                             (v4i32 (REV32v8i16 FPR128:$src))>;
}
def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))),
                             (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
                                              (REV64v8i16 FPR128:$src),
                                              (i32 8)))>;
def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
                             (v8i16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
                             (v8i16 (REV32v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
                             (v8i16 (REV16v16i8 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
                             (v8i16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
                             (v8i16 (REV32v8i16 FPR128:$src))>;
}
def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
def : Pat<(v8i16 (bitconvert (v8bf16 FPR128:$src))), (v8i16 FPR128:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;

def : Pat<(v8bf16 (bitconvert (f128  FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))), (v8bf16 FPR128:$src)>;
def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))), (v8bf16 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))),
                             (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
                                              (REV64v8i16 FPR128:$src),
                                              (i32 8)))>;
def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
                             (v8f16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
                             (v8f16 (REV32v8i16 FPR128:$src))>;
def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
                             (v8f16 (REV16v16i8 FPR128:$src))>;
def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
                             (v8f16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
                             (v8f16 (REV32v8i16 FPR128:$src))>;

def : Pat<(v8bf16 (bitconvert (f128  FPR128:$src))),
                             (v8bf16 (EXTv16i8 (REV64v8i16 FPR128:$src),
                                              (REV64v8i16 FPR128:$src),
                                              (i32 8)))>;
def : Pat<(v8bf16 (bitconvert (v2i64 FPR128:$src))),
                             (v8bf16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8bf16 (bitconvert (v4i32 FPR128:$src))),
                             (v8bf16 (REV32v8i16 FPR128:$src))>;
def : Pat<(v8bf16 (bitconvert (v16i8 FPR128:$src))),
                             (v8bf16 (REV16v16i8 FPR128:$src))>;
def : Pat<(v8bf16 (bitconvert (v2f64 FPR128:$src))),
                             (v8bf16 (REV64v8i16 FPR128:$src))>;
def : Pat<(v8bf16 (bitconvert (v4f32 FPR128:$src))),
                             (v8bf16 (REV32v8i16 FPR128:$src))>;
}
def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
def : Pat<(v8bf16 (bitconvert (v8i16 FPR128:$src))), (v8bf16 FPR128:$src)>;

let Predicates = [IsLE] in {
def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))), (v16i8 FPR128:$src)>;
}
let Predicates = [IsBE] in {
def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))),
                             (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
                                              (REV64v16i8 FPR128:$src),
                                              (i32 8)))>;
def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
                             (v16i8 (REV64v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
                             (v16i8 (REV32v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
                             (v16i8 (REV16v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
                             (v16i8 (REV64v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
                             (v16i8 (REV32v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
                             (v16i8 (REV16v16i8 FPR128:$src))>;
def : Pat<(v16i8 (bitconvert (v8bf16 FPR128:$src))),
                             (v16i8 (REV16v16i8 FPR128:$src))>;
}

def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
           (EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
           (EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
           (EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
           (EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v4bf16 (extract_subvector V128:$Rn, (i64 0))),
           (EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
           (EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
           (EXTRACT_SUBREG V128:$Rn, dsub)>;
def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
           (EXTRACT_SUBREG V128:$Rn, dsub)>;

def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
          (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;

// A 64-bit subvector insert to the first 128-bit vector position
// is a subregister copy that needs no instruction.
multiclass InsertSubvectorUndef<ValueType Ty> {
  def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (Ty 0)),
            (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
  def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (Ty 0)),
            (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
  def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (Ty 0)),
            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
  def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (Ty 0)),
            (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
  def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (Ty 0)),
            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
  def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (Ty 0)),
            (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
  def : Pat<(insert_subvector undef, (v4bf16 FPR64:$src), (Ty 0)),
            (INSERT_SUBREG (v8bf16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
  def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (Ty 0)),
            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
}

defm : InsertSubvectorUndef<i32>;
defm : InsertSubvectorUndef<i64>;

// Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
// or v2f32.
def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
                    (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
           (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
                     (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
           (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
    // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
    // so we match on v4f32 here, not v2f32. This will also catch adding
    // the low two lanes of a true v4f32 vector.
def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
                (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
          (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;

// Scalar 64-bit shifts in FPR64 registers.
def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
          (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
          (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
          (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
          (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;

// Patterns for nontemporal/no-allocate stores.
// We have to resort to tricks to turn a single-input store into a store pair,
// because there is no single-input nontemporal store, only STNP.
let Predicates = [IsLE] in {
let AddedComplexity = 15 in {
class NTStore128Pat<ValueType VT> :
  Pat<(nontemporalstore (VT FPR128:$Rt),
        (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
      (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
              (CPYi64 FPR128:$Rt, (i64 1)),
              GPR64sp:$Rn, simm7s8:$offset)>;

def : NTStore128Pat<v2i64>;
def : NTStore128Pat<v4i32>;
def : NTStore128Pat<v8i16>;
def : NTStore128Pat<v16i8>;

class NTStore64Pat<ValueType VT> :
  Pat<(nontemporalstore (VT FPR64:$Rt),
        (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
      (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
              (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
              GPR64sp:$Rn, simm7s4:$offset)>;

// FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
def : NTStore64Pat<v1f64>;
def : NTStore64Pat<v1i64>;
def : NTStore64Pat<v2i32>;
def : NTStore64Pat<v4i16>;
def : NTStore64Pat<v8i8>;

def : Pat<(nontemporalstore GPR64:$Rt,
            (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
          (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
                  (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
                  GPR64sp:$Rn, simm7s4:$offset)>;
} // AddedComplexity=10
} // Predicates = [IsLE]

// Tail call return handling. These are all compiler pseudo-instructions,
// so no encoding information or anything like that.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
  def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
                   Sched<[WriteBrReg]>;
  def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
                   Sched<[WriteBrReg]>;
  // Indirect tail-call with any register allowed, used by MachineOutliner when
  // this is proven safe.
  // FIXME: If we have to add any more hacks like this, we should instead relax
  // some verifier checks for outlined functions.
  def TCRETURNriALL : Pseudo<(outs), (ins GPR64:$dst, i32imm:$FPDiff), []>,
                      Sched<[WriteBrReg]>;
  // Indirect tail-call limited to only use registers (x16 and x17) which are
  // allowed to tail-call a "BTI c" instruction.
  def TCRETURNriBTI : Pseudo<(outs), (ins rtcGPR64:$dst, i32imm:$FPDiff), []>,
                      Sched<[WriteBrReg]>;
}

def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
          (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>,
      Requires<[NotUseBTI]>;
def : Pat<(AArch64tcret rtcGPR64:$dst, (i32 timm:$FPDiff)),
          (TCRETURNriBTI rtcGPR64:$dst, imm:$FPDiff)>,
      Requires<[UseBTI]>;
def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
          (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
          (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;

def MOVMCSym : Pseudo<(outs GPR64:$dst), (ins i64imm:$sym), []>, Sched<[]>;
def : Pat<(i64 (AArch64LocalRecover mcsym:$sym)), (MOVMCSym mcsym:$sym)>;

// Extracting lane zero is a special case where we can just use a plain
// EXTRACT_SUBREG instruction, which will become FMOV. This is easier for the
// rest of the compiler, especially the register allocator and copy propagation,
// to reason about, so is preferred when it's possible to use it.
let AddedComplexity = 10 in {
  def : Pat<(i64 (extractelt (v2i64 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, dsub)>;
  def : Pat<(i32 (extractelt (v4i32 V128:$V), (i64 0))), (EXTRACT_SUBREG V128:$V, ssub)>;
  def : Pat<(i32 (extractelt (v2i32 V64:$V), (i64 0))), (EXTRACT_SUBREG V64:$V, ssub)>;
}

// dot_v4i8
class mul_v4i8<SDPatternOperator ldop> :
  PatFrag<(ops node:$Rn, node:$Rm, node:$offset),
          (mul (ldop (add node:$Rn, node:$offset)),
               (ldop (add node:$Rm, node:$offset)))>;
class mulz_v4i8<SDPatternOperator ldop> :
  PatFrag<(ops node:$Rn, node:$Rm),
          (mul (ldop node:$Rn), (ldop node:$Rm))>;

def load_v4i8 :
  OutPatFrag<(ops node:$R),
             (INSERT_SUBREG
              (v2i32 (IMPLICIT_DEF)),
               (i32 (COPY_TO_REGCLASS (LDRWui node:$R, (i64 0)), FPR32)),
              ssub)>;

class dot_v4i8<Instruction DOT, SDPatternOperator ldop> :
  Pat<(i32 (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 3)),
           (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 2)),
           (add (mul_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm, (i64 1)),
                (mulz_v4i8<ldop> GPR64sp:$Rn, GPR64sp:$Rm))))),
      (EXTRACT_SUBREG (i64 (DOT (DUPv2i32gpr WZR),
                                (load_v4i8 GPR64sp:$Rn),
                                (load_v4i8 GPR64sp:$Rm))),
                      sub_32)>, Requires<[HasDotProd]>;

// dot_v8i8
class ee_v8i8<SDPatternOperator extend> :
  PatFrag<(ops node:$V, node:$K),
          (v4i16 (extract_subvector (v8i16 (extend node:$V)), node:$K))>;

class mul_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
  PatFrag<(ops node:$M, node:$N, node:$K),
          (mulop (v4i16 (ee_v8i8<extend> node:$M, node:$K)),
                 (v4i16 (ee_v8i8<extend> node:$N, node:$K)))>;

class idot_v8i8<SDPatternOperator mulop, SDPatternOperator extend> :
  PatFrag<(ops node:$M, node:$N),
          (i32 (extractelt
           (v4i32 (AArch64uaddv
            (add (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 0)),
                 (mul_v8i8<mulop, extend> node:$M, node:$N, (i64 4))))),
           (i64 0)))>;

// vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
def VADDV_32 : OutPatFrag<(ops node:$R), (ADDPv2i32 node:$R, node:$R)>;

class odot_v8i8<Instruction DOT> :
  OutPatFrag<(ops node:$Vm, node:$Vn),
             (EXTRACT_SUBREG
              (VADDV_32
               (i64 (DOT (DUPv2i32gpr WZR),
                         (v8i8 node:$Vm),
                         (v8i8 node:$Vn)))),
              sub_32)>;

class dot_v8i8<Instruction DOT, SDPatternOperator mulop,
                    SDPatternOperator extend> :
  Pat<(idot_v8i8<mulop, extend> V64:$Vm, V64:$Vn),
      (odot_v8i8<DOT> V64:$Vm, V64:$Vn)>,
  Requires<[HasDotProd]>;

// dot_v16i8
class ee_v16i8<SDPatternOperator extend> :
  PatFrag<(ops node:$V, node:$K1, node:$K2),
          (v4i16 (extract_subvector
           (v8i16 (extend
            (v8i8 (extract_subvector node:$V, node:$K1)))), node:$K2))>;

class mul_v16i8<SDPatternOperator mulop, SDPatternOperator extend> :
  PatFrag<(ops node:$M, node:$N, node:$K1, node:$K2),
          (v4i32
           (mulop (v4i16 (ee_v16i8<extend> node:$M, node:$K1, node:$K2)),
                  (v4i16 (ee_v16i8<extend> node:$N, node:$K1, node:$K2))))>;

class idot_v16i8<SDPatternOperator m, SDPatternOperator x> :
  PatFrag<(ops node:$M, node:$N),
          (i32 (extractelt
           (v4i32 (AArch64uaddv
            (add
             (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 0)),
                  (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 0))),
             (add (mul_v16i8<m, x> node:$M, node:$N, (i64 0), (i64 4)),
                  (mul_v16i8<m, x> node:$M, node:$N, (i64 8), (i64 4)))))),
           (i64 0)))>;

class odot_v16i8<Instruction DOT> :
  OutPatFrag<(ops node:$Vm, node:$Vn),
             (i32 (ADDVv4i32v
              (DOT (DUPv4i32gpr WZR), node:$Vm, node:$Vn)))>;

class dot_v16i8<Instruction DOT, SDPatternOperator mulop,
                SDPatternOperator extend> :
  Pat<(idot_v16i8<mulop, extend> V128:$Vm, V128:$Vn),
      (odot_v16i8<DOT> V128:$Vm, V128:$Vn)>,
  Requires<[HasDotProd]>;

let AddedComplexity = 10 in {
  def : dot_v4i8<SDOTv8i8, sextloadi8>;
  def : dot_v4i8<UDOTv8i8, zextloadi8>;
  def : dot_v8i8<SDOTv8i8, AArch64smull, sext>;
  def : dot_v8i8<UDOTv8i8, AArch64umull, zext>;
  def : dot_v16i8<SDOTv16i8, AArch64smull, sext>;
  def : dot_v16i8<UDOTv16i8, AArch64umull, zext>;

  // FIXME: add patterns to generate vector by element dot product.
  // FIXME: add SVE dot-product patterns.
}

include "AArch64InstrAtomics.td"
include "AArch64SVEInstrInfo.td"

include "AArch64InstrGISel.td"