AArch64InstrAtomics.td 20.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
//=- AArch64InstrAtomics.td - AArch64 Atomic codegen support -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// AArch64 Atomic operand code-gen constructs.
//
//===----------------------------------------------------------------------===//

//===----------------------------------
// Atomic fences
//===----------------------------------
let AddedComplexity = 15, Size = 0 in
def CompilerBarrier : Pseudo<(outs), (ins i32imm:$ordering),
                             [(atomic_fence timm:$ordering, 0)]>, Sched<[]>;
def : Pat<(atomic_fence (i64 4), (timm)), (DMB (i32 0x9))>;
def : Pat<(atomic_fence (timm), (timm)), (DMB (i32 0xb))>;

//===----------------------------------
// Atomic loads
//===----------------------------------

// When they're actually atomic, only one addressing mode (GPR64sp) is
// supported, but when they're relaxed and anything can be used, all the
// standard modes would be valid and may give efficiency gains.

// A atomic load operation that actually needs acquire semantics.
class acquiring_load<PatFrag base>
  : PatFrag<(ops node:$ptr), (base node:$ptr)> {
  let IsAtomic = 1;
  let IsAtomicOrderingAcquireOrStronger = 1;
}

// An atomic load operation that does not need either acquire or release
// semantics.
class relaxed_load<PatFrag base>
  : PatFrag<(ops node:$ptr), (base node:$ptr)> {
  let IsAtomic = 1;
  let IsAtomicOrderingAcquireOrStronger = 0;
}

// 8-bit loads
def : Pat<(acquiring_load<atomic_load_8>  GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_8> (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
                                                     ro_Wextend8:$offset)),
          (LDRBBroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)>;
def : Pat<(relaxed_load<atomic_load_8> (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
                                                     ro_Xextend8:$offset)),
          (LDRBBroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)>;
def : Pat<(relaxed_load<atomic_load_8> (am_indexed8 GPR64sp:$Rn,
                                                    uimm12s1:$offset)),
          (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(relaxed_load<atomic_load_8>
               (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
          (LDURBBi GPR64sp:$Rn, simm9:$offset)>;

// 16-bit loads
def : Pat<(acquiring_load<atomic_load_16> GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
                                                       ro_Wextend16:$extend)),
          (LDRHHroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
def : Pat<(relaxed_load<atomic_load_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
                                                       ro_Xextend16:$extend)),
          (LDRHHroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
def : Pat<(relaxed_load<atomic_load_16> (am_indexed16 GPR64sp:$Rn,
                                                      uimm12s2:$offset)),
          (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(relaxed_load<atomic_load_16>
               (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
          (LDURHHi GPR64sp:$Rn, simm9:$offset)>;

// 32-bit loads
def : Pat<(acquiring_load<atomic_load_32> GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
                                                       ro_Wextend32:$extend)),
          (LDRWroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
def : Pat<(relaxed_load<atomic_load_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
                                                       ro_Xextend32:$extend)),
          (LDRWroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
def : Pat<(relaxed_load<atomic_load_32> (am_indexed32 GPR64sp:$Rn,
                                                      uimm12s4:$offset)),
          (LDRWui GPR64sp:$Rn, uimm12s4:$offset)>;
def : Pat<(relaxed_load<atomic_load_32>
               (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
          (LDURWi GPR64sp:$Rn, simm9:$offset)>;

// 64-bit loads
def : Pat<(acquiring_load<atomic_load_64> GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>;
def : Pat<(relaxed_load<atomic_load_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
                                                       ro_Wextend64:$extend)),
          (LDRXroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
def : Pat<(relaxed_load<atomic_load_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
                                                       ro_Xextend64:$extend)),
          (LDRXroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
def : Pat<(relaxed_load<atomic_load_64> (am_indexed64 GPR64sp:$Rn,
                                                      uimm12s8:$offset)),
          (LDRXui GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(relaxed_load<atomic_load_64>
               (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
          (LDURXi GPR64sp:$Rn, simm9:$offset)>;

//===----------------------------------
// Atomic stores
//===----------------------------------

// When they're actually atomic, only one addressing mode (GPR64sp) is
// supported, but when they're relaxed and anything can be used, all the
// standard modes would be valid and may give efficiency gains.

// A store operation that actually needs release semantics.
class releasing_store<PatFrag base>
  : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
  let IsAtomic = 1;
  let IsAtomicOrderingReleaseOrStronger = 1;
}

// An atomic store operation that doesn't actually need to be atomic on AArch64.
class relaxed_store<PatFrag base>
  : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
  let IsAtomic = 1;
  let IsAtomicOrderingReleaseOrStronger = 0;
}

// 8-bit stores
def : Pat<(releasing_store<atomic_store_8> GPR64sp:$ptr, GPR32:$val),
          (STLRB GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_8>
               (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
               GPR32:$val),
          (STRBBroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)>;
def : Pat<(relaxed_store<atomic_store_8>
               (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
               GPR32:$val),
          (STRBBroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)>;
def : Pat<(relaxed_store<atomic_store_8>
               (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), GPR32:$val),
          (STRBBui GPR32:$val, GPR64sp:$Rn, uimm12s1:$offset)>;
def : Pat<(relaxed_store<atomic_store_8>
               (am_unscaled8 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
          (STURBBi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;

// 16-bit stores
def : Pat<(releasing_store<atomic_store_16> GPR64sp:$ptr, GPR32:$val),
          (STLRH GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
                                                         ro_Wextend16:$extend),
                                          GPR32:$val),
          (STRHHroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
def : Pat<(relaxed_store<atomic_store_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
                                                         ro_Xextend16:$extend),
                                          GPR32:$val),
          (STRHHroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
def : Pat<(relaxed_store<atomic_store_16>
              (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), GPR32:$val),
          (STRHHui GPR32:$val, GPR64sp:$Rn, uimm12s2:$offset)>;
def : Pat<(relaxed_store<atomic_store_16>
               (am_unscaled16 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
          (STURHHi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;

// 32-bit stores
def : Pat<(releasing_store<atomic_store_32> GPR64sp:$ptr, GPR32:$val),
          (STLRW GPR32:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
                                                         ro_Wextend32:$extend),
                                          GPR32:$val),
          (STRWroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
def : Pat<(relaxed_store<atomic_store_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
                                                         ro_Xextend32:$extend),
                                          GPR32:$val),
          (STRWroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
def : Pat<(relaxed_store<atomic_store_32>
              (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), GPR32:$val),
          (STRWui GPR32:$val, GPR64sp:$Rn, uimm12s4:$offset)>;
def : Pat<(relaxed_store<atomic_store_32>
               (am_unscaled32 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
          (STURWi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;

// 64-bit stores
def : Pat<(releasing_store<atomic_store_64> GPR64sp:$ptr, GPR64:$val),
          (STLRX GPR64:$val, GPR64sp:$ptr)>;
def : Pat<(relaxed_store<atomic_store_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
                                                         ro_Wextend16:$extend),
                                          GPR64:$val),
          (STRXroW GPR64:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
def : Pat<(relaxed_store<atomic_store_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
                                                         ro_Xextend16:$extend),
                                          GPR64:$val),
          (STRXroX GPR64:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
def : Pat<(relaxed_store<atomic_store_64>
              (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset), GPR64:$val),
          (STRXui GPR64:$val, GPR64sp:$Rn, uimm12s8:$offset)>;
def : Pat<(relaxed_store<atomic_store_64>
               (am_unscaled64 GPR64sp:$Rn, simm9:$offset), GPR64:$val),
          (STURXi GPR64:$val, GPR64sp:$Rn, simm9:$offset)>;

//===----------------------------------
// Low-level exclusive operations
//===----------------------------------

// Load-exclusives.

def ldxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
}

def ldxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
}

def ldxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
}

def ldxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
}

def : Pat<(ldxr_1 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
def : Pat<(ldxr_2 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
def : Pat<(ldxr_4 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
def : Pat<(ldxr_8 GPR64sp:$addr), (LDXRX GPR64sp:$addr)>;

def : Pat<(and (ldxr_1 GPR64sp:$addr), 0xff),
          (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldxr_2 GPR64sp:$addr), 0xffff),
          (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldxr_4 GPR64sp:$addr), 0xffffffff),
          (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;

// Load-exclusives.

def ldaxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
}

def ldaxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
}

def ldaxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
}

def ldaxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
}

def : Pat<(ldaxr_1 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
def : Pat<(ldaxr_2 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
def : Pat<(ldaxr_4 GPR64sp:$addr),
          (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
def : Pat<(ldaxr_8 GPR64sp:$addr), (LDAXRX GPR64sp:$addr)>;

def : Pat<(and (ldaxr_1 GPR64sp:$addr), 0xff),
          (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldaxr_2 GPR64sp:$addr), 0xffff),
          (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
def : Pat<(and (ldaxr_4 GPR64sp:$addr), 0xffffffff),
          (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;

// Store-exclusives.

def stxr_1 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
}

def stxr_2 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
}

def stxr_4 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
}

def stxr_8 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
}


def : Pat<(stxr_1 GPR64:$val, GPR64sp:$addr),
          (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_2 GPR64:$val, GPR64sp:$addr),
          (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_4 GPR64:$val, GPR64sp:$addr),
          (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_8 GPR64:$val, GPR64sp:$addr),
          (STXRX GPR64:$val, GPR64sp:$addr)>;

def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
          (STXRB GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
          (STXRH GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stxr_4 (zext GPR32:$val), GPR64sp:$addr),
          (STXRW GPR32:$val, GPR64sp:$addr)>;

def : Pat<(stxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
          (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
          (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
          (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;

// Store-release-exclusives.

def stlxr_1 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stlxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
}

def stlxr_2 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stlxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
}

def stlxr_4 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stlxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
}

def stlxr_8 : PatFrag<(ops node:$val, node:$ptr),
                     (int_aarch64_stlxr node:$val, node:$ptr), [{
  return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
}]> {
  let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
}


def : Pat<(stlxr_1 GPR64:$val, GPR64sp:$addr),
          (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_2 GPR64:$val, GPR64sp:$addr),
          (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_4 GPR64:$val, GPR64sp:$addr),
          (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_8 GPR64:$val, GPR64sp:$addr),
          (STLXRX GPR64:$val, GPR64sp:$addr)>;

def : Pat<(stlxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
          (STLXRB GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
          (STLXRH GPR32:$val, GPR64sp:$addr)>;
def : Pat<(stlxr_4 (zext GPR32:$val), GPR64sp:$addr),
          (STLXRW GPR32:$val, GPR64sp:$addr)>;

def : Pat<(stlxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
          (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
          (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
def : Pat<(stlxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
          (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;


// And clear exclusive.

def : Pat<(int_aarch64_clrex), (CLREX 0xf)>;

//===----------------------------------
// Atomic cmpxchg for -O0
//===----------------------------------

// The fast register allocator used during -O0 inserts spills to cover any VRegs
// live across basic block boundaries. When this happens between an LDXR and an
// STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
// fail.

// Unfortunately, this means we have to have an alternative (expanded
// post-regalloc) path for -O0 compilations. Fortunately this path can be
// significantly more naive than the standard expansion: we conservatively
// assume seq_cst, strong cmpxchg and omit clrex on failure.

let Constraints = "@earlyclobber $Rd,@earlyclobber $scratch",
    mayLoad = 1, mayStore = 1 in {
def CMP_SWAP_8 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
                        (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
                 Sched<[WriteAtomic]>;

def CMP_SWAP_16 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
                         (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
                  Sched<[WriteAtomic]>;

def CMP_SWAP_32 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
                         (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
                  Sched<[WriteAtomic]>;

def CMP_SWAP_64 : Pseudo<(outs GPR64:$Rd, GPR32:$scratch),
                         (ins GPR64:$addr, GPR64:$desired, GPR64:$new), []>,
                  Sched<[WriteAtomic]>;
}

let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi,@earlyclobber $scratch",
    mayLoad = 1, mayStore = 1 in
def CMP_SWAP_128 : Pseudo<(outs GPR64:$RdLo, GPR64:$RdHi, GPR32:$scratch),
                          (ins GPR64:$addr, GPR64:$desiredLo, GPR64:$desiredHi,
                               GPR64:$newLo, GPR64:$newHi), []>,
                   Sched<[WriteAtomic]>;

// v8.1 Atomic instructions:
let Predicates = [HasLSE] in {
  defm : LDOPregister_patterns<"LDADD", "atomic_load_add">;
  defm : LDOPregister_patterns<"LDSET", "atomic_load_or">;
  defm : LDOPregister_patterns<"LDEOR", "atomic_load_xor">;
  defm : LDOPregister_patterns<"LDCLR", "atomic_load_clr">;
  defm : LDOPregister_patterns<"LDSMAX", "atomic_load_max">;
  defm : LDOPregister_patterns<"LDSMIN", "atomic_load_min">;
  defm : LDOPregister_patterns<"LDUMAX", "atomic_load_umax">;
  defm : LDOPregister_patterns<"LDUMIN", "atomic_load_umin">;
  defm : LDOPregister_patterns<"SWP", "atomic_swap">;
  defm : CASregister_patterns<"CAS", "atomic_cmp_swap">;

  // These two patterns are only needed for global isel, selection dag isel
  // converts atomic load-sub into a sub and atomic load-add, and likewise for
  // and -> clr.
  defm : LDOPregister_patterns_mod<"LDADD", "atomic_load_sub", "SUB">;
  defm : LDOPregister_patterns_mod<"LDCLR", "atomic_load_and", "ORN">;
}