AArch64ISelLowering.h 33.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
//==-- AArch64ISelLowering.h - AArch64 DAG Lowering Interface ----*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that AArch64 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H
#define LLVM_LIB_TARGET_AARCH64_AARCH64ISELLOWERING_H

#include "AArch64.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Instruction.h"

namespace llvm {

namespace AArch64ISD {

// For predicated nodes where the result is a vector, the operation is
// controlled by a governing predicate and the inactive lanes are explicitly
// defined with a value, please stick the following naming convention:
//
//    _MERGE_OP<n>        The result value is a vector with inactive lanes equal
//                        to source operand OP<n>.
//
//    _MERGE_ZERO         The result value is a vector with inactive lanes
//                        actively zeroed.
//
//    _MERGE_PASSTHRU     The result value is a vector with inactive lanes equal
//                        to the last source operand which only purpose is being
//                        a passthru value.
//
// For other cases where no explicit action is needed to set the inactive lanes,
// or when the result is not a vector and it is needed or helpful to
// distinguish a node from similar unpredicated nodes, use:
//
//    _PRED
//
enum NodeType : unsigned {
  FIRST_NUMBER = ISD::BUILTIN_OP_END,
  WrapperLarge, // 4-instruction MOVZ/MOVK sequence for 64-bit addresses.
  CALL,         // Function call.

  // Produces the full sequence of instructions for getting the thread pointer
  // offset of a variable into X0, using the TLSDesc model.
  TLSDESC_CALLSEQ,
  ADRP,     // Page address of a TargetGlobalAddress operand.
  ADR,      // ADR
  ADDlow,   // Add the low 12 bits of a TargetGlobalAddress operand.
  LOADgot,  // Load from automatically generated descriptor (e.g. Global
            // Offset Table, TLS record).
  RET_FLAG, // Return with a flag operand. Operand 0 is the chain operand.
  BRCOND,   // Conditional branch instruction; "b.cond".
  CSEL,
  FCSEL, // Conditional move instruction.
  CSINV, // Conditional select invert.
  CSNEG, // Conditional select negate.
  CSINC, // Conditional select increment.

  // Pointer to the thread's local storage area. Materialised from TPIDR_EL0 on
  // ELF.
  THREAD_POINTER,
  ADC,
  SBC, // adc, sbc instructions

  // Arithmetic instructions
  ADD_PRED,
  FADD_PRED,
  SDIV_PRED,
  UDIV_PRED,
  FMA_PRED,
  SMIN_MERGE_OP1,
  UMIN_MERGE_OP1,
  SMAX_MERGE_OP1,
  UMAX_MERGE_OP1,
  SHL_MERGE_OP1,
  SRL_MERGE_OP1,
  SRA_MERGE_OP1,

  SETCC_MERGE_ZERO,

  // Arithmetic instructions which write flags.
  ADDS,
  SUBS,
  ADCS,
  SBCS,
  ANDS,

  // Conditional compares. Operands: left,right,falsecc,cc,flags
  CCMP,
  CCMN,
  FCCMP,

  // Floating point comparison
  FCMP,

  // Scalar extract
  EXTR,

  // Scalar-to-vector duplication
  DUP,
  DUPLANE8,
  DUPLANE16,
  DUPLANE32,
  DUPLANE64,

  // Vector immedate moves
  MOVI,
  MOVIshift,
  MOVIedit,
  MOVImsl,
  FMOV,
  MVNIshift,
  MVNImsl,

  // Vector immediate ops
  BICi,
  ORRi,

  // Vector bitwise select: similar to ISD::VSELECT but not all bits within an
  // element must be identical.
  BSP,

  // Vector arithmetic negation
  NEG,

  // Vector shuffles
  ZIP1,
  ZIP2,
  UZP1,
  UZP2,
  TRN1,
  TRN2,
  REV16,
  REV32,
  REV64,
  EXT,

  // Vector shift by scalar
  VSHL,
  VLSHR,
  VASHR,

  // Vector shift by scalar (again)
  SQSHL_I,
  UQSHL_I,
  SQSHLU_I,
  SRSHR_I,
  URSHR_I,

  // Vector shift by constant and insert
  VSLI,
  VSRI,

  // Vector comparisons
  CMEQ,
  CMGE,
  CMGT,
  CMHI,
  CMHS,
  FCMEQ,
  FCMGE,
  FCMGT,

  // Vector zero comparisons
  CMEQz,
  CMGEz,
  CMGTz,
  CMLEz,
  CMLTz,
  FCMEQz,
  FCMGEz,
  FCMGTz,
  FCMLEz,
  FCMLTz,

  // Vector across-lanes addition
  // Only the lower result lane is defined.
  SADDV,
  UADDV,

  // Vector rounding halving addition
  SRHADD,
  URHADD,

  // Vector across-lanes min/max
  // Only the lower result lane is defined.
  SMINV,
  UMINV,
  SMAXV,
  UMAXV,

  SMAXV_PRED,
  UMAXV_PRED,
  SMINV_PRED,
  UMINV_PRED,
  ORV_PRED,
  EORV_PRED,
  ANDV_PRED,

  // Vector bitwise negation
  NOT,

  // Vector bitwise insertion
  BIT,

  // Compare-and-branch
  CBZ,
  CBNZ,
  TBZ,
  TBNZ,

  // Tail calls
  TC_RETURN,

  // Custom prefetch handling
  PREFETCH,

  // {s|u}int to FP within a FP register.
  SITOF,
  UITOF,

  /// Natural vector cast. ISD::BITCAST is not natural in the big-endian
  /// world w.r.t vectors; which causes additional REV instructions to be
  /// generated to compensate for the byte-swapping. But sometimes we do
  /// need to re-interpret the data in SIMD vector registers in big-endian
  /// mode without emitting such REV instructions.
  NVCAST,

  SMULL,
  UMULL,

  // Reciprocal estimates and steps.
  FRECPE,
  FRECPS,
  FRSQRTE,
  FRSQRTS,

  SUNPKHI,
  SUNPKLO,
  UUNPKHI,
  UUNPKLO,

  CLASTA_N,
  CLASTB_N,
  LASTA,
  LASTB,
  REV,
  TBL,

  // Floating-point reductions.
  FADDA_PRED,
  FADDV_PRED,
  FMAXV_PRED,
  FMAXNMV_PRED,
  FMINV_PRED,
  FMINNMV_PRED,

  INSR,
  PTEST,
  PTRUE,

  DUP_MERGE_PASSTHRU,
  INDEX_VECTOR,

  REINTERPRET_CAST,

  LD1_MERGE_ZERO,
  LD1S_MERGE_ZERO,
  LDNF1_MERGE_ZERO,
  LDNF1S_MERGE_ZERO,
  LDFF1_MERGE_ZERO,
  LDFF1S_MERGE_ZERO,
  LD1RQ_MERGE_ZERO,
  LD1RO_MERGE_ZERO,

  // Structured loads.
  SVE_LD2_MERGE_ZERO,
  SVE_LD3_MERGE_ZERO,
  SVE_LD4_MERGE_ZERO,

  // Unsigned gather loads.
  GLD1_MERGE_ZERO,
  GLD1_SCALED_MERGE_ZERO,
  GLD1_UXTW_MERGE_ZERO,
  GLD1_SXTW_MERGE_ZERO,
  GLD1_UXTW_SCALED_MERGE_ZERO,
  GLD1_SXTW_SCALED_MERGE_ZERO,
  GLD1_IMM_MERGE_ZERO,

  // Signed gather loads
  GLD1S_MERGE_ZERO,
  GLD1S_SCALED_MERGE_ZERO,
  GLD1S_UXTW_MERGE_ZERO,
  GLD1S_SXTW_MERGE_ZERO,
  GLD1S_UXTW_SCALED_MERGE_ZERO,
  GLD1S_SXTW_SCALED_MERGE_ZERO,
  GLD1S_IMM_MERGE_ZERO,

  // Unsigned gather loads.
  GLDFF1_MERGE_ZERO,
  GLDFF1_SCALED_MERGE_ZERO,
  GLDFF1_UXTW_MERGE_ZERO,
  GLDFF1_SXTW_MERGE_ZERO,
  GLDFF1_UXTW_SCALED_MERGE_ZERO,
  GLDFF1_SXTW_SCALED_MERGE_ZERO,
  GLDFF1_IMM_MERGE_ZERO,

  // Signed gather loads.
  GLDFF1S_MERGE_ZERO,
  GLDFF1S_SCALED_MERGE_ZERO,
  GLDFF1S_UXTW_MERGE_ZERO,
  GLDFF1S_SXTW_MERGE_ZERO,
  GLDFF1S_UXTW_SCALED_MERGE_ZERO,
  GLDFF1S_SXTW_SCALED_MERGE_ZERO,
  GLDFF1S_IMM_MERGE_ZERO,

  // Non-temporal gather loads
  GLDNT1_MERGE_ZERO,
  GLDNT1_INDEX_MERGE_ZERO,
  GLDNT1S_MERGE_ZERO,

  // Contiguous masked store.
  ST1_PRED,

  // Scatter store
  SST1_PRED,
  SST1_SCALED_PRED,
  SST1_UXTW_PRED,
  SST1_SXTW_PRED,
  SST1_UXTW_SCALED_PRED,
  SST1_SXTW_SCALED_PRED,
  SST1_IMM_PRED,

  // Non-temporal scatter store
  SSTNT1_PRED,
  SSTNT1_INDEX_PRED,

  // Strict (exception-raising) floating point comparison
  STRICT_FCMP = ISD::FIRST_TARGET_STRICTFP_OPCODE,
  STRICT_FCMPE,

  // NEON Load/Store with post-increment base updates
  LD2post = ISD::FIRST_TARGET_MEMORY_OPCODE,
  LD3post,
  LD4post,
  ST2post,
  ST3post,
  ST4post,
  LD1x2post,
  LD1x3post,
  LD1x4post,
  ST1x2post,
  ST1x3post,
  ST1x4post,
  LD1DUPpost,
  LD2DUPpost,
  LD3DUPpost,
  LD4DUPpost,
  LD1LANEpost,
  LD2LANEpost,
  LD3LANEpost,
  LD4LANEpost,
  ST2LANEpost,
  ST3LANEpost,
  ST4LANEpost,

  STG,
  STZG,
  ST2G,
  STZ2G,

  LDP,
  STP,
  STNP
};

} // end namespace AArch64ISD

namespace {

// Any instruction that defines a 32-bit result zeros out the high half of the
// register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
// be copying from a truncate. But any other 32-bit operation will zero-extend
// up to 64 bits.
// FIXME: X86 also checks for CMOV here. Do we need something similar?
static inline bool isDef32(const SDNode &N) {
  unsigned Opc = N.getOpcode();
  return Opc != ISD::TRUNCATE && Opc != TargetOpcode::EXTRACT_SUBREG &&
         Opc != ISD::CopyFromReg;
}

} // end anonymous namespace

class AArch64Subtarget;
class AArch64TargetMachine;

class AArch64TargetLowering : public TargetLowering {
public:
  explicit AArch64TargetLowering(const TargetMachine &TM,
                                 const AArch64Subtarget &STI);

  /// Selects the correct CCAssignFn for a given CallingConvention value.
  CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, bool IsVarArg) const;

  /// Selects the correct CCAssignFn for a given CallingConvention value.
  CCAssignFn *CCAssignFnForReturn(CallingConv::ID CC) const;

  /// Determine which of the bits specified in Mask are known to be either zero
  /// or one and return them in the KnownZero/KnownOne bitsets.
  void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known,
                                     const APInt &DemandedElts,
                                     const SelectionDAG &DAG,
                                     unsigned Depth = 0) const override;

  MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const override {
    // Returning i64 unconditionally here (i.e. even for ILP32) means that the
    // *DAG* representation of pointers will always be 64-bits. They will be
    // truncated and extended when transferred to memory, but the 64-bit DAG
    // allows us to use AArch64's addressing modes much more easily.
    return MVT::getIntegerVT(64);
  }

  bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits,
                                    const APInt &DemandedElts,
                                    TargetLoweringOpt &TLO) const override;

  MVT getScalarShiftAmountTy(const DataLayout &DL, EVT) const override;

  /// Returns true if the target allows unaligned memory accesses of the
  /// specified type.
  bool allowsMisalignedMemoryAccesses(
      EVT VT, unsigned AddrSpace = 0, unsigned Align = 1,
      MachineMemOperand::Flags Flags = MachineMemOperand::MONone,
      bool *Fast = nullptr) const override;
  /// LLT variant.
  bool allowsMisalignedMemoryAccesses(LLT Ty, unsigned AddrSpace,
                                      Align Alignment,
                                      MachineMemOperand::Flags Flags,
                                      bool *Fast = nullptr) const override;

  /// Provide custom lowering hooks for some operations.
  SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;

  const char *getTargetNodeName(unsigned Opcode) const override;

  SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;

  /// Returns true if a cast between SrcAS and DestAS is a noop.
  bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override {
    // Addrspacecasts are always noops.
    return true;
  }

  /// This method returns a target specific FastISel object, or null if the
  /// target does not support "fast" ISel.
  FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                           const TargetLibraryInfo *libInfo) const override;

  bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const override;

  bool isFPImmLegal(const APFloat &Imm, EVT VT,
                    bool ForCodeSize) const override;

  /// Return true if the given shuffle mask can be codegen'd directly, or if it
  /// should be stack expanded.
  bool isShuffleMaskLegal(ArrayRef<int> M, EVT VT) const override;

  /// Return the ISD::SETCC ValueType.
  EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
                         EVT VT) const override;

  SDValue ReconstructShuffle(SDValue Op, SelectionDAG &DAG) const;

  MachineBasicBlock *EmitF128CSEL(MachineInstr &MI,
                                  MachineBasicBlock *BB) const;

  MachineBasicBlock *EmitLoweredCatchRet(MachineInstr &MI,
                                           MachineBasicBlock *BB) const;

  MachineBasicBlock *
  EmitInstrWithCustomInserter(MachineInstr &MI,
                              MachineBasicBlock *MBB) const override;

  bool getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I,
                          MachineFunction &MF,
                          unsigned Intrinsic) const override;

  bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy,
                             EVT NewVT) const override;

  bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
  bool isTruncateFree(EVT VT1, EVT VT2) const override;

  bool isProfitableToHoist(Instruction *I) const override;

  bool isZExtFree(Type *Ty1, Type *Ty2) const override;
  bool isZExtFree(EVT VT1, EVT VT2) const override;
  bool isZExtFree(SDValue Val, EVT VT2) const override;

  bool shouldSinkOperands(Instruction *I,
                          SmallVectorImpl<Use *> &Ops) const override;

  bool hasPairedLoad(EVT LoadedType, Align &RequiredAligment) const override;

  unsigned getMaxSupportedInterleaveFactor() const override { return 4; }

  bool lowerInterleavedLoad(LoadInst *LI,
                            ArrayRef<ShuffleVectorInst *> Shuffles,
                            ArrayRef<unsigned> Indices,
                            unsigned Factor) const override;
  bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI,
                             unsigned Factor) const override;

  bool isLegalAddImmediate(int64_t) const override;
  bool isLegalICmpImmediate(int64_t) const override;

  bool shouldConsiderGEPOffsetSplit() const override;

  EVT getOptimalMemOpType(const MemOp &Op,
                          const AttributeList &FuncAttributes) const override;

  LLT getOptimalMemOpLLT(const MemOp &Op,
                         const AttributeList &FuncAttributes) const override;

  /// Return true if the addressing mode represented by AM is legal for this
  /// target, for a load/store of the specified type.
  bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty,
                             unsigned AS,
                             Instruction *I = nullptr) const override;

  /// Return the cost of the scaling factor used in the addressing
  /// mode represented by AM for this target, for a load/store
  /// of the specified type.
  /// If the AM is supported, the return value must be >= 0.
  /// If the AM is not supported, it returns a negative value.
  int getScalingFactorCost(const DataLayout &DL, const AddrMode &AM, Type *Ty,
                           unsigned AS) const override;

  /// Return true if an FMA operation is faster than a pair of fmul and fadd
  /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
  /// returns true, otherwise fmuladd is expanded to fmul + fadd.
  bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
                                  EVT VT) const override;
  bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const override;

  const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;

  /// Returns false if N is a bit extraction pattern of (X >> C) & Mask.
  bool isDesirableToCommuteWithShift(const SDNode *N,
                                     CombineLevel Level) const override;

  /// Returns true if it is beneficial to convert a load of a constant
  /// to just the constant itself.
  bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
                                         Type *Ty) const override;

  /// Return true if EXTRACT_SUBVECTOR is cheap for this result type
  /// with this index.
  bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
                               unsigned Index) const override;

  bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
                            bool MathUsed) const override {
    // Using overflow ops for overflow checks only should beneficial on
    // AArch64.
    return TargetLowering::shouldFormOverflowOp(Opcode, VT, true);
  }

  Value *emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
                        AtomicOrdering Ord) const override;
  Value *emitStoreConditional(IRBuilder<> &Builder, Value *Val,
                              Value *Addr, AtomicOrdering Ord) const override;

  void emitAtomicCmpXchgNoStoreLLBalance(IRBuilder<> &Builder) const override;

  TargetLoweringBase::AtomicExpansionKind
  shouldExpandAtomicLoadInIR(LoadInst *LI) const override;
  bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
  TargetLoweringBase::AtomicExpansionKind
  shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;

  TargetLoweringBase::AtomicExpansionKind
  shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const override;

  bool useLoadStackGuardNode() const override;
  TargetLoweringBase::LegalizeTypeAction
  getPreferredVectorAction(MVT VT) const override;

  /// If the target has a standard location for the stack protector cookie,
  /// returns the address of that location. Otherwise, returns nullptr.
  Value *getIRStackGuard(IRBuilder<> &IRB) const override;

  void insertSSPDeclarations(Module &M) const override;
  Value *getSDagStackGuard(const Module &M) const override;
  Function *getSSPStackGuardCheck(const Module &M) const override;

  /// If the target has a standard location for the unsafe stack pointer,
  /// returns the address of that location. Otherwise, returns nullptr.
  Value *getSafeStackPointerLocation(IRBuilder<> &IRB) const override;

  /// If a physical register, this returns the register that receives the
  /// exception address on entry to an EH pad.
  Register
  getExceptionPointerRegister(const Constant *PersonalityFn) const override {
    // FIXME: This is a guess. Has this been defined yet?
    return AArch64::X0;
  }

  /// If a physical register, this returns the register that receives the
  /// exception typeid on entry to a landing pad.
  Register
  getExceptionSelectorRegister(const Constant *PersonalityFn) const override {
    // FIXME: This is a guess. Has this been defined yet?
    return AArch64::X1;
  }

  bool isIntDivCheap(EVT VT, AttributeList Attr) const override;

  bool canMergeStoresTo(unsigned AddressSpace, EVT MemVT,
                        const SelectionDAG &DAG) const override {
    // Do not merge to float value size (128 bytes) if no implicit
    // float attribute is set.

    bool NoFloat = DAG.getMachineFunction().getFunction().hasFnAttribute(
        Attribute::NoImplicitFloat);

    if (NoFloat)
      return (MemVT.getSizeInBits() <= 64);
    return true;
  }

  bool isCheapToSpeculateCttz() const override {
    return true;
  }

  bool isCheapToSpeculateCtlz() const override {
    return true;
  }

  bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const override;

  bool hasAndNotCompare(SDValue V) const override {
    // We can use bics for any scalar.
    return V.getValueType().isScalarInteger();
  }

  bool hasAndNot(SDValue Y) const override {
    EVT VT = Y.getValueType();

    if (!VT.isVector())
      return hasAndNotCompare(Y);

    return VT.getSizeInBits() >= 64; // vector 'bic'
  }

  bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
      SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y,
      unsigned OldShiftOpcode, unsigned NewShiftOpcode,
      SelectionDAG &DAG) const override;

  bool shouldExpandShift(SelectionDAG &DAG, SDNode *N) const override;

  bool shouldTransformSignedTruncationCheck(EVT XVT,
                                            unsigned KeptBits) const override {
    // For vectors, we don't have a preference..
    if (XVT.isVector())
      return false;

    auto VTIsOk = [](EVT VT) -> bool {
      return VT == MVT::i8 || VT == MVT::i16 || VT == MVT::i32 ||
             VT == MVT::i64;
    };

    // We are ok with KeptBitsVT being byte/word/dword, what SXT supports.
    // XVT will be larger than KeptBitsVT.
    MVT KeptBitsVT = MVT::getIntegerVT(KeptBits);
    return VTIsOk(XVT) && VTIsOk(KeptBitsVT);
  }

  bool preferIncOfAddToSubOfNot(EVT VT) const override;

  bool hasBitPreservingFPLogic(EVT VT) const override {
    // FIXME: Is this always true? It should be true for vectors at least.
    return VT == MVT::f32 || VT == MVT::f64;
  }

  bool supportSplitCSR(MachineFunction *MF) const override {
    return MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
           MF->getFunction().hasFnAttribute(Attribute::NoUnwind);
  }
  void initializeSplitCSR(MachineBasicBlock *Entry) const override;
  void insertCopiesSplitCSR(
      MachineBasicBlock *Entry,
      const SmallVectorImpl<MachineBasicBlock *> &Exits) const override;

  bool supportSwiftError() const override {
    return true;
  }

  /// Enable aggressive FMA fusion on targets that want it.
  bool enableAggressiveFMAFusion(EVT VT) const override;

  /// Returns the size of the platform's va_list object.
  unsigned getVaListSizeInBits(const DataLayout &DL) const override;

  /// Returns true if \p VecTy is a legal interleaved access type. This
  /// function checks the vector element type and the overall width of the
  /// vector.
  bool isLegalInterleavedAccessType(VectorType *VecTy,
                                    const DataLayout &DL) const;

  /// Returns the number of interleaved accesses that will be generated when
  /// lowering accesses of the given type.
  unsigned getNumInterleavedAccesses(VectorType *VecTy,
                                     const DataLayout &DL) const;

  MachineMemOperand::Flags getTargetMMOFlags(
    const Instruction &I) const override;

  bool functionArgumentNeedsConsecutiveRegisters(Type *Ty,
                                                 CallingConv::ID CallConv,
                                                 bool isVarArg) const override;
  /// Used for exception handling on Win64.
  bool needsFixedCatchObjects() const override;

  bool fallBackToDAGISel(const Instruction &Inst) const override;

  /// SVE code generation for fixed length vectors does not custom lower
  /// BUILD_VECTOR. This makes BUILD_VECTOR legalisation a source of stores to
  /// merge. However, merging them creates a BUILD_VECTOR that is just as
  /// illegal as the original, thus leading to an infinite legalisation loop.
  /// NOTE: Once BUILD_VECTOR is legal or can be custom lowered for all legal
  /// vector types this override can be removed.
  bool mergeStoresAfterLegalization(EVT VT) const override {
    return !useSVEForFixedLengthVectors();
  }

private:
  /// Keep a pointer to the AArch64Subtarget around so that we can
  /// make the right decision when generating code for different targets.
  const AArch64Subtarget *Subtarget;

  bool isExtFreeImpl(const Instruction *Ext) const override;

  void addTypeForNEON(MVT VT, MVT PromotedBitwiseVT);
  void addTypeForFixedLengthSVE(MVT VT);
  void addDRTypeForNEON(MVT VT);
  void addQRTypeForNEON(MVT VT);

  SDValue LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv,
                               bool isVarArg,
                               const SmallVectorImpl<ISD::InputArg> &Ins,
                               const SDLoc &DL, SelectionDAG &DAG,
                               SmallVectorImpl<SDValue> &InVals) const override;

  SDValue LowerCall(CallLoweringInfo & /*CLI*/,
                    SmallVectorImpl<SDValue> &InVals) const override;

  SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
                          CallingConv::ID CallConv, bool isVarArg,
                          const SmallVectorImpl<ISD::InputArg> &Ins,
                          const SDLoc &DL, SelectionDAG &DAG,
                          SmallVectorImpl<SDValue> &InVals, bool isThisReturn,
                          SDValue ThisVal) const;

  SDValue LowerSTORE(SDValue Op, SelectionDAG &DAG) const;

  SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;

  bool isEligibleForTailCallOptimization(
      SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
      const SmallVectorImpl<ISD::OutputArg> &Outs,
      const SmallVectorImpl<SDValue> &OutVals,
      const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const;

  /// Finds the incoming stack arguments which overlap the given fixed stack
  /// object and incorporates their load into the current chain. This prevents
  /// an upcoming store from clobbering the stack argument before it's used.
  SDValue addTokenForArgument(SDValue Chain, SelectionDAG &DAG,
                              MachineFrameInfo &MFI, int ClobberedFI) const;

  bool DoesCalleeRestoreStack(CallingConv::ID CallCC, bool TailCallOpt) const;

  void saveVarArgRegisters(CCState &CCInfo, SelectionDAG &DAG, const SDLoc &DL,
                           SDValue &Chain) const;

  bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
                      bool isVarArg,
                      const SmallVectorImpl<ISD::OutputArg> &Outs,
                      LLVMContext &Context) const override;

  SDValue LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
                      const SmallVectorImpl<ISD::OutputArg> &Outs,
                      const SmallVectorImpl<SDValue> &OutVals, const SDLoc &DL,
                      SelectionDAG &DAG) const override;

  SDValue getTargetNode(GlobalAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
                        unsigned Flag) const;
  SDValue getTargetNode(JumpTableSDNode *N, EVT Ty, SelectionDAG &DAG,
                        unsigned Flag) const;
  SDValue getTargetNode(ConstantPoolSDNode *N, EVT Ty, SelectionDAG &DAG,
                        unsigned Flag) const;
  SDValue getTargetNode(BlockAddressSDNode *N, EVT Ty, SelectionDAG &DAG,
                        unsigned Flag) const;
  template <class NodeTy>
  SDValue getGOT(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
  template <class NodeTy>
  SDValue getAddrLarge(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
  template <class NodeTy>
  SDValue getAddr(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
  template <class NodeTy>
  SDValue getAddrTiny(NodeTy *N, SelectionDAG &DAG, unsigned Flags = 0) const;
  SDValue LowerADDROFRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerDarwinGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerELFGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerELFTLSLocalExec(const GlobalValue *GV, SDValue ThreadBase,
                               const SDLoc &DL, SelectionDAG &DAG) const;
  SDValue LowerELFTLSDescCallSeq(SDValue SymAddr, const SDLoc &DL,
                                 SelectionDAG &DAG) const;
  SDValue LowerWindowsGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSELECT_CC(ISD::CondCode CC, SDValue LHS, SDValue RHS,
                         SDValue TVal, SDValue FVal, const SDLoc &dl,
                         SelectionDAG &DAG) const;
  SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBR_JT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerAAPCS_VASTART(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerDarwin_VASTART(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerWin64_VASTART(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSPONENTRY(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerSPLAT_VECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerDUPQLane(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerToPredicatedOp(SDValue Op, SelectionDAG &DAG,
                              unsigned NewOp) const;
  SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVectorSRA_SRL_SHL(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerShiftLeftParts(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerShiftRightParts(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerCTPOP(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerF128Call(SDValue Op, SelectionDAG &DAG,
                        RTLIB::Libcall Call) const;
  SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVectorOR(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVSCALE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerVECREDUCE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerATOMIC_LOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerATOMIC_LOAD_AND(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerWindowsDYNAMIC_STACKALLOC(SDValue Op, SDValue Chain,
                                         SDValue &Size,
                                         SelectionDAG &DAG) const;
  SDValue LowerSVEStructLoad(unsigned Intrinsic, ArrayRef<SDValue> LoadOps,
                             EVT VT, SelectionDAG &DAG, const SDLoc &DL) const;

  SDValue LowerFixedLengthVectorLoadToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorStoreToSVE(SDValue Op, SelectionDAG &DAG) const;
  SDValue LowerFixedLengthVectorTruncateToSVE(SDValue Op,
                                              SelectionDAG &DAG) const;

  SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG,
                        SmallVectorImpl<SDNode *> &Created) const override;
  SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                          int &ExtraSteps, bool &UseOneConst,
                          bool Reciprocal) const override;
  SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled,
                           int &ExtraSteps) const override;
  unsigned combineRepeatedFPDivisors() const override;

  ConstraintType getConstraintType(StringRef Constraint) const override;
  Register getRegisterByName(const char* RegName, LLT VT,
                             const MachineFunction &MF) const override;

  /// Examine constraint string and operand type and determine a weight value.
  /// The operand object must already have been set up with the operand type.
  ConstraintWeight
  getSingleConstraintMatchWeight(AsmOperandInfo &info,
                                 const char *constraint) const override;

  std::pair<unsigned, const TargetRegisterClass *>
  getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
                               StringRef Constraint, MVT VT) const override;

  const char *LowerXConstraint(EVT ConstraintVT) const override;

  void LowerAsmOperandForConstraint(SDValue Op, std::string &Constraint,
                                    std::vector<SDValue> &Ops,
                                    SelectionDAG &DAG) const override;

  unsigned getInlineAsmMemConstraint(StringRef ConstraintCode) const override {
    if (ConstraintCode == "Q")
      return InlineAsm::Constraint_Q;
    // FIXME: clang has code for 'Ump', 'Utf', 'Usa', and 'Ush' but these are
    //        followed by llvm_unreachable so we'll leave them unimplemented in
    //        the backend for now.
    return TargetLowering::getInlineAsmMemConstraint(ConstraintCode);
  }

  bool isVectorLoadExtDesirable(SDValue ExtVal) const override;
  bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
  bool mayBeEmittedAsTailCall(const CallInst *CI) const override;
  bool getIndexedAddressParts(SDNode *Op, SDValue &Base, SDValue &Offset,
                              ISD::MemIndexedMode &AM, bool &IsInc,
                              SelectionDAG &DAG) const;
  bool getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset,
                                 ISD::MemIndexedMode &AM,
                                 SelectionDAG &DAG) const override;
  bool getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base,
                                  SDValue &Offset, ISD::MemIndexedMode &AM,
                                  SelectionDAG &DAG) const override;

  void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue> &Results,
                          SelectionDAG &DAG) const override;
  void ReplaceExtractSubVectorResults(SDNode *N,
                                      SmallVectorImpl<SDValue> &Results,
                                      SelectionDAG &DAG) const;

  bool shouldNormalizeToSelectSequence(LLVMContext &, EVT) const override;

  void finalizeLowering(MachineFunction &MF) const override;

  bool shouldLocalize(const MachineInstr &MI,
                      const TargetTransformInfo *TTI) const override;

  bool useSVEForFixedLengthVectors() const;
  bool useSVEForFixedLengthVectorVT(EVT VT) const;
};

namespace AArch64 {
FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
                         const TargetLibraryInfo *libInfo);
} // end namespace AArch64

} // end namespace llvm

#endif