AArch64ExpandImm.cpp 14.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
//===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AArch64ExpandImm stuff.
//
//===----------------------------------------------------------------------===//

#include "AArch64.h"
#include "AArch64ExpandImm.h"
#include "MCTargetDesc/AArch64AddressingModes.h"

namespace llvm {

namespace AArch64_IMM {

/// Helper function which extracts the specified 16-bit chunk from a
/// 64-bit value.
static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
  assert(ChunkIdx < 4 && "Out of range chunk index specified!");

  return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
}

/// Check whether the given 16-bit chunk replicated to full 64-bit width
/// can be materialized with an ORR instruction.
static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
  Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;

  return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
}

/// Check for identical 16-bit chunks within the constant and if so
/// materialize them with a single ORR instruction. The remaining one or two
/// 16-bit chunks will be materialized with MOVK instructions.
///
/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
/// an ORR instruction.
static bool tryToreplicateChunks(uint64_t UImm,
				 SmallVectorImpl<ImmInsnModel> &Insn) {
  using CountMap = DenseMap<uint64_t, unsigned>;

  CountMap Counts;

  // Scan the constant and count how often every chunk occurs.
  for (unsigned Idx = 0; Idx < 4; ++Idx)
    ++Counts[getChunk(UImm, Idx)];

  // Traverse the chunks to find one which occurs more than once.
  for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
       Chunk != End; ++Chunk) {
    const uint64_t ChunkVal = Chunk->first;
    const unsigned Count = Chunk->second;

    uint64_t Encoding = 0;

    // We are looking for chunks which have two or three instances and can be
    // materialized with an ORR instruction.
    if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
      continue;

    const bool CountThree = Count == 3;

    Insn.push_back({ AArch64::ORRXri, 0, Encoding });

    unsigned ShiftAmt = 0;
    uint64_t Imm16 = 0;
    // Find the first chunk not materialized with the ORR instruction.
    for (; ShiftAmt < 64; ShiftAmt += 16) {
      Imm16 = (UImm >> ShiftAmt) & 0xFFFF;

      if (Imm16 != ChunkVal)
        break;
    }

    // Create the first MOVK instruction.
    Insn.push_back({ AArch64::MOVKXi, Imm16,
		     AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });

    // In case we have three instances the whole constant is now materialized
    // and we can exit.
    if (CountThree)
      return true;

    // Find the remaining chunk which needs to be materialized.
    for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
      Imm16 = (UImm >> ShiftAmt) & 0xFFFF;

      if (Imm16 != ChunkVal)
        break;
    }
    Insn.push_back({ AArch64::MOVKXi, Imm16,
                     AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
    return true;
  }

  return false;
}

/// Check whether this chunk matches the pattern '1...0...'. This pattern
/// starts a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isStartChunk(uint64_t Chunk) {
  if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
    return false;

  return isMask_64(~Chunk);
}

/// Check whether this chunk matches the pattern '0...1...' This pattern
/// ends a contiguous sequence of ones if we look at the bits from the LSB
/// towards the MSB.
static bool isEndChunk(uint64_t Chunk) {
  if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
    return false;

  return isMask_64(Chunk);
}

/// Clear or set all bits in the chunk at the given index.
static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
  const uint64_t Mask = 0xFFFF;

  if (Clear)
    // Clear chunk in the immediate.
    Imm &= ~(Mask << (Idx * 16));
  else
    // Set all bits in the immediate for the particular chunk.
    Imm |= Mask << (Idx * 16);

  return Imm;
}

/// Check whether the constant contains a sequence of contiguous ones,
/// which might be interrupted by one or two chunks. If so, materialize the
/// sequence of contiguous ones with an ORR instruction.
/// Materialize the chunks which are either interrupting the sequence or outside
/// of the sequence with a MOVK instruction.
///
/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
/// which ends the sequence (0...1...). Then we are looking for constants which
/// contain at least one S and E chunk.
/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
///
/// We are also looking for constants like |S|A|B|E| where the contiguous
/// sequence of ones wraps around the MSB into the LSB.
static bool trySequenceOfOnes(uint64_t UImm,
                              SmallVectorImpl<ImmInsnModel> &Insn) {
  const int NotSet = -1;
  const uint64_t Mask = 0xFFFF;

  int StartIdx = NotSet;
  int EndIdx = NotSet;
  // Try to find the chunks which start/end a contiguous sequence of ones.
  for (int Idx = 0; Idx < 4; ++Idx) {
    int64_t Chunk = getChunk(UImm, Idx);
    // Sign extend the 16-bit chunk to 64-bit.
    Chunk = (Chunk << 48) >> 48;

    if (isStartChunk(Chunk))
      StartIdx = Idx;
    else if (isEndChunk(Chunk))
      EndIdx = Idx;
  }

  // Early exit in case we can't find a start/end chunk.
  if (StartIdx == NotSet || EndIdx == NotSet)
    return false;

  // Outside of the contiguous sequence of ones everything needs to be zero.
  uint64_t Outside = 0;
  // Chunks between the start and end chunk need to have all their bits set.
  uint64_t Inside = Mask;

  // If our contiguous sequence of ones wraps around from the MSB into the LSB,
  // just swap indices and pretend we are materializing a contiguous sequence
  // of zeros surrounded by a contiguous sequence of ones.
  if (StartIdx > EndIdx) {
    std::swap(StartIdx, EndIdx);
    std::swap(Outside, Inside);
  }

  uint64_t OrrImm = UImm;
  int FirstMovkIdx = NotSet;
  int SecondMovkIdx = NotSet;

  // Find out which chunks we need to patch up to obtain a contiguous sequence
  // of ones.
  for (int Idx = 0; Idx < 4; ++Idx) {
    const uint64_t Chunk = getChunk(UImm, Idx);

    // Check whether we are looking at a chunk which is not part of the
    // contiguous sequence of ones.
    if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
      OrrImm = updateImm(OrrImm, Idx, Outside == 0);

      // Remember the index we need to patch.
      if (FirstMovkIdx == NotSet)
        FirstMovkIdx = Idx;
      else
        SecondMovkIdx = Idx;

      // Check whether we are looking a chunk which is part of the contiguous
      // sequence of ones.
    } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
      OrrImm = updateImm(OrrImm, Idx, Inside != Mask);

      // Remember the index we need to patch.
      if (FirstMovkIdx == NotSet)
        FirstMovkIdx = Idx;
      else
        SecondMovkIdx = Idx;
    }
  }
  assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");

  // Create the ORR-immediate instruction.
  uint64_t Encoding = 0;
  AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
  Insn.push_back({ AArch64::ORRXri, 0, Encoding });

  const bool SingleMovk = SecondMovkIdx == NotSet;
  Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
                   AArch64_AM::getShifterImm(AArch64_AM::LSL,
                                             FirstMovkIdx * 16) });

  // Early exit in case we only need to emit a single MOVK instruction.
  if (SingleMovk)
    return true;

  // Create the second MOVK instruction.
  Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
	           AArch64_AM::getShifterImm(AArch64_AM::LSL,
                                             SecondMovkIdx * 16) });

  return true;
}

/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
/// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
				      unsigned OneChunks, unsigned ZeroChunks,
				      SmallVectorImpl<ImmInsnModel> &Insn) {
  const unsigned Mask = 0xFFFF;

  // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
  // more MOVK instructions to insert additional 16-bit portions into the
  // lower bits.
  bool isNeg = false;

  // Use MOVN to materialize the high bits if we have more all one chunks
  // than all zero chunks.
  if (OneChunks > ZeroChunks) {
    isNeg = true;
    Imm = ~Imm;
  }

  unsigned FirstOpc;
  if (BitSize == 32) {
    Imm &= (1LL << 32) - 1;
    FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
  } else {
    FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
  }
  unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
  unsigned LastShift = 0; // LSL amount for last MOVK
  if (Imm != 0) {
    unsigned LZ = countLeadingZeros(Imm);
    unsigned TZ = countTrailingZeros(Imm);
    Shift = (TZ / 16) * 16;
    LastShift = ((63 - LZ) / 16) * 16;
  }
  unsigned Imm16 = (Imm >> Shift) & Mask;

  Insn.push_back({ FirstOpc, Imm16,
                   AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });

  if (Shift == LastShift)
    return;

  // If a MOVN was used for the high bits of a negative value, flip the rest
  // of the bits back for use with MOVK.
  if (isNeg)
    Imm = ~Imm;

  unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
  while (Shift < LastShift) {
    Shift += 16;
    Imm16 = (Imm >> Shift) & Mask;
    if (Imm16 == (isNeg ? Mask : 0))
      continue; // This 16-bit portion is already set correctly.

    Insn.push_back({ Opc, Imm16,
                     AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
  }
}

/// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
/// real move-immediate instructions to synthesize the immediate.
void expandMOVImm(uint64_t Imm, unsigned BitSize,
		  SmallVectorImpl<ImmInsnModel> &Insn) {
  const unsigned Mask = 0xFFFF;

  // Scan the immediate and count the number of 16-bit chunks which are either
  // all ones or all zeros.
  unsigned OneChunks = 0;
  unsigned ZeroChunks = 0;
  for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
    const unsigned Chunk = (Imm >> Shift) & Mask;
    if (Chunk == Mask)
      OneChunks++;
    else if (Chunk == 0)
      ZeroChunks++;
  }

  // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
  if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) {
    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
    return;
  }

  // Try a single ORR.
  uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
  uint64_t Encoding;
  if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
    unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
    Insn.push_back({ Opc, 0, Encoding });
    return;
  }

  // One to up three instruction sequences.
  //
  // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
  // fastest sequence with fast literal generation.
  if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
    return;
  }

  assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
                          "MOVZ/MOVK pair");

  // Try other two-instruction sequences.

  // 64-bit ORR followed by MOVK.
  // We try to construct the ORR immediate in three different ways: either we
  // zero out the chunk which will be replaced, we fill the chunk which will
  // be replaced with ones, or we take the bit pattern from the other half of
  // the 64-bit immediate. This is comprehensive because of the way ORR
  // immediates are constructed.
  for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
    uint64_t ShiftedMask = (0xFFFFULL << Shift);
    uint64_t ZeroChunk = UImm & ~ShiftedMask;
    uint64_t OneChunk = UImm | ShiftedMask;
    uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
    uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
    if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
        AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
        AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
                                            Encoding)) {
      // Create the ORR-immediate instruction.
      Insn.push_back({ AArch64::ORRXri, 0, Encoding });

      // Create the MOVK instruction.
      const unsigned Imm16 = getChunk(UImm, Shift / 16);
      Insn.push_back({ AArch64::MOVKXi, Imm16,
		       AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
      return;
    }
  }

  // FIXME: Add more two-instruction sequences.

  // Three instruction sequences.
  //
  // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
  // the fastest sequence with fast literal generation. (If neither MOVK is
  // part of a fast literal generation pair, it could be slower than the
  // four-instruction sequence, but we won't worry about that for now.)
  if (OneChunks || ZeroChunks) {
    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
    return;
  }

  // Check for identical 16-bit chunks within the constant and if so materialize
  // them with a single ORR instruction. The remaining one or two 16-bit chunks
  // will be materialized with MOVK instructions.
  if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
    return;

  // Check whether the constant contains a sequence of contiguous ones, which
  // might be interrupted by one or two chunks. If so, materialize the sequence
  // of contiguous ones with an ORR instruction. Materialize the chunks which
  // are either interrupting the sequence or outside of the sequence with a
  // MOVK instruction.
  if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
    return;

  // We found no possible two or three instruction sequence; use the general
  // four-instruction sequence.
  expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
}

} // end namespace AArch64_AM

} // end namespace llvm