AArch64CollectLOH.cpp
20.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
//===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that collect the Linker Optimization Hint (LOH).
// This pass should be run at the very end of the compilation flow, just before
// assembly printer.
// To be useful for the linker, the LOH must be printed into the assembly file.
//
// A LOH describes a sequence of instructions that may be optimized by the
// linker.
// This same sequence cannot be optimized by the compiler because some of
// the information will be known at link time.
// For instance, consider the following sequence:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// L3: ldr xC, [xB, #imm]
// This sequence can be turned into:
// A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
// L3: ldr xC, sym+#imm
// It may also be turned into either the following more efficient
// code sequences:
// - If sym@PAGEOFF + #imm fits the encoding space of L3.
// L1: adrp xA, sym@PAGE
// L3: ldr xC, [xB, sym@PAGEOFF + #imm]
// - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
// L1: adr xA, sym
// L3: ldr xC, [xB, #imm]
//
// To be valid a LOH must meet all the requirements needed by all the related
// possible linker transformations.
// For instance, using the running example, the constraints to emit
// ".loh AdrpAddLdr" are:
// - L1, L2, and L3 instructions are of the expected type, i.e.,
// respectively ADRP, ADD (immediate), and LD.
// - The result of L1 is used only by L2.
// - The register argument (xA) used in the ADD instruction is defined
// only by L1.
// - The result of L2 is used only by L3.
// - The base address (xB) in L3 is defined only L2.
// - The ADRP in L1 and the ADD in L2 must reference the same symbol using
// @PAGE/@PAGEOFF with no additional constants
//
// Currently supported LOHs are:
// * So called non-ADRP-related:
// - .loh AdrpAddLdr L1, L2, L3:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// L3: ldr xC, [xB, #imm]
// - .loh AdrpLdrGotLdr L1, L2, L3:
// L1: adrp xA, sym@GOTPAGE
// L2: ldr xB, [xA, sym@GOTPAGEOFF]
// L3: ldr xC, [xB, #imm]
// - .loh AdrpLdr L1, L3:
// L1: adrp xA, sym@PAGE
// L3: ldr xC, [xA, sym@PAGEOFF]
// - .loh AdrpAddStr L1, L2, L3:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// L3: str xC, [xB, #imm]
// - .loh AdrpLdrGotStr L1, L2, L3:
// L1: adrp xA, sym@GOTPAGE
// L2: ldr xB, [xA, sym@GOTPAGEOFF]
// L3: str xC, [xB, #imm]
// - .loh AdrpAdd L1, L2:
// L1: adrp xA, sym@PAGE
// L2: add xB, xA, sym@PAGEOFF
// For all these LOHs, L1, L2, L3 form a simple chain:
// L1 result is used only by L2 and L2 result by L3.
// L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
// by L1.
// All these LOHs aim at using more efficient load/store patterns by folding
// some instructions used to compute the address directly into the load/store.
//
// * So called ADRP-related:
// - .loh AdrpAdrp L2, L1:
// L2: ADRP xA, sym1@PAGE
// L1: ADRP xA, sym2@PAGE
// L2 dominates L1 and xA is not redifined between L2 and L1
// This LOH aims at getting rid of redundant ADRP instructions.
//
// The overall design for emitting the LOHs is:
// 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
// 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
// 1. Associates them a label.
// 2. Emits them in a MCStreamer (EmitLOHDirective).
// - The MCMachOStreamer records them into the MCAssembler.
// - The MCAsmStreamer prints them.
// - Other MCStreamers ignore them.
// 3. Closes the MCStreamer:
// - The MachObjectWriter gets them from the MCAssembler and writes
// them in the object file.
// - Other ObjectWriters ignore them.
//===----------------------------------------------------------------------===//
#include "AArch64.h"
#include "AArch64InstrInfo.h"
#include "AArch64MachineFunctionInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "aarch64-collect-loh"
STATISTIC(NumADRPSimpleCandidate,
"Number of simplifiable ADRP dominate by another");
STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
#define AARCH64_COLLECT_LOH_NAME "AArch64 Collect Linker Optimization Hint (LOH)"
namespace {
struct AArch64CollectLOH : public MachineFunctionPass {
static char ID;
AArch64CollectLOH() : MachineFunctionPass(ID) {}
bool runOnMachineFunction(MachineFunction &MF) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override { return AARCH64_COLLECT_LOH_NAME; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
MachineFunctionPass::getAnalysisUsage(AU);
AU.setPreservesAll();
}
};
char AArch64CollectLOH::ID = 0;
} // end anonymous namespace.
INITIALIZE_PASS(AArch64CollectLOH, "aarch64-collect-loh",
AARCH64_COLLECT_LOH_NAME, false, false)
static bool canAddBePartOfLOH(const MachineInstr &MI) {
// Check immediate to see if the immediate is an address.
switch (MI.getOperand(2).getType()) {
default:
return false;
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_BlockAddress:
return true;
}
}
/// Answer the following question: Can Def be one of the definition
/// involved in a part of a LOH?
static bool canDefBePartOfLOH(const MachineInstr &MI) {
// Accept ADRP, ADDLow and LOADGot.
switch (MI.getOpcode()) {
default:
return false;
case AArch64::ADRP:
return true;
case AArch64::ADDXri:
return canAddBePartOfLOH(MI);
case AArch64::LDRXui:
case AArch64::LDRWui:
// Check immediate to see if the immediate is an address.
switch (MI.getOperand(2).getType()) {
default:
return false;
case MachineOperand::MO_GlobalAddress:
return MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT;
}
}
}
/// Check whether the given instruction can the end of a LOH chain involving a
/// store.
static bool isCandidateStore(const MachineInstr &MI, const MachineOperand &MO) {
switch (MI.getOpcode()) {
default:
return false;
case AArch64::STRBBui:
case AArch64::STRHHui:
case AArch64::STRBui:
case AArch64::STRHui:
case AArch64::STRWui:
case AArch64::STRXui:
case AArch64::STRSui:
case AArch64::STRDui:
case AArch64::STRQui:
// We can only optimize the index operand.
// In case we have str xA, [xA, #imm], this is two different uses
// of xA and we cannot fold, otherwise the xA stored may be wrong,
// even if #imm == 0.
return MI.getOperandNo(&MO) == 1 &&
MI.getOperand(0).getReg() != MI.getOperand(1).getReg();
}
}
/// Check whether the given instruction can be the end of a LOH chain
/// involving a load.
static bool isCandidateLoad(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case AArch64::LDRSBWui:
case AArch64::LDRSBXui:
case AArch64::LDRSHWui:
case AArch64::LDRSHXui:
case AArch64::LDRSWui:
case AArch64::LDRBui:
case AArch64::LDRHui:
case AArch64::LDRWui:
case AArch64::LDRXui:
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
return !(MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT);
}
}
/// Check whether the given instruction can load a litteral.
static bool supportLoadFromLiteral(const MachineInstr &MI) {
switch (MI.getOpcode()) {
default:
return false;
case AArch64::LDRSWui:
case AArch64::LDRWui:
case AArch64::LDRXui:
case AArch64::LDRSui:
case AArch64::LDRDui:
case AArch64::LDRQui:
return true;
}
}
/// Number of GPR registers traked by mapRegToGPRIndex()
static const unsigned N_GPR_REGS = 31;
/// Map register number to index from 0-30.
static int mapRegToGPRIndex(MCPhysReg Reg) {
static_assert(AArch64::X28 - AArch64::X0 + 3 == N_GPR_REGS, "Number of GPRs");
static_assert(AArch64::W30 - AArch64::W0 + 1 == N_GPR_REGS, "Number of GPRs");
if (AArch64::X0 <= Reg && Reg <= AArch64::X28)
return Reg - AArch64::X0;
if (AArch64::W0 <= Reg && Reg <= AArch64::W30)
return Reg - AArch64::W0;
// TableGen gives "FP" and "LR" an index not adjacent to X28 so we have to
// handle them as special cases.
if (Reg == AArch64::FP)
return 29;
if (Reg == AArch64::LR)
return 30;
return -1;
}
/// State tracked per register.
/// The main algorithm walks backwards over a basic block maintaining this
/// datastructure for each tracked general purpose register.
struct LOHInfo {
MCLOHType Type : 8; ///< "Best" type of LOH possible.
bool IsCandidate : 1; ///< Possible LOH candidate.
bool OneUser : 1; ///< Found exactly one user (yet).
bool MultiUsers : 1; ///< Found multiple users.
const MachineInstr *MI0; ///< First instruction involved in the LOH.
const MachineInstr *MI1; ///< Second instruction involved in the LOH
/// (if any).
const MachineInstr *LastADRP; ///< Last ADRP in same register.
};
/// Update state \p Info given \p MI uses the tracked register.
static void handleUse(const MachineInstr &MI, const MachineOperand &MO,
LOHInfo &Info) {
// We have multiple uses if we already found one before.
if (Info.MultiUsers || Info.OneUser) {
Info.IsCandidate = false;
Info.MultiUsers = true;
return;
}
Info.OneUser = true;
// Start new LOHInfo if applicable.
if (isCandidateLoad(MI)) {
Info.Type = MCLOH_AdrpLdr;
Info.IsCandidate = true;
Info.MI0 = &MI;
// Note that even this is AdrpLdr now, we can switch to a Ldr variant
// later.
} else if (isCandidateStore(MI, MO)) {
Info.Type = MCLOH_AdrpAddStr;
Info.IsCandidate = true;
Info.MI0 = &MI;
Info.MI1 = nullptr;
} else if (MI.getOpcode() == AArch64::ADDXri) {
Info.Type = MCLOH_AdrpAdd;
Info.IsCandidate = true;
Info.MI0 = &MI;
} else if ((MI.getOpcode() == AArch64::LDRXui ||
MI.getOpcode() == AArch64::LDRWui) &&
MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) {
Info.Type = MCLOH_AdrpLdrGot;
Info.IsCandidate = true;
Info.MI0 = &MI;
}
}
/// Update state \p Info given the tracked register is clobbered.
static void handleClobber(LOHInfo &Info) {
Info.IsCandidate = false;
Info.OneUser = false;
Info.MultiUsers = false;
Info.LastADRP = nullptr;
}
/// Update state \p Info given that \p MI is possibly the middle instruction
/// of an LOH involving 3 instructions.
static bool handleMiddleInst(const MachineInstr &MI, LOHInfo &DefInfo,
LOHInfo &OpInfo) {
if (!DefInfo.IsCandidate || (&DefInfo != &OpInfo && OpInfo.OneUser))
return false;
// Copy LOHInfo for dest register to LOHInfo for source register.
if (&DefInfo != &OpInfo) {
OpInfo = DefInfo;
// Invalidate \p DefInfo because we track it in \p OpInfo now.
handleClobber(DefInfo);
} else
DefInfo.LastADRP = nullptr;
// Advance state machine.
assert(OpInfo.IsCandidate && "Expect valid state");
if (MI.getOpcode() == AArch64::ADDXri && canAddBePartOfLOH(MI)) {
if (OpInfo.Type == MCLOH_AdrpLdr) {
OpInfo.Type = MCLOH_AdrpAddLdr;
OpInfo.IsCandidate = true;
OpInfo.MI1 = &MI;
return true;
} else if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
OpInfo.Type = MCLOH_AdrpAddStr;
OpInfo.IsCandidate = true;
OpInfo.MI1 = &MI;
return true;
}
} else {
assert((MI.getOpcode() == AArch64::LDRXui ||
MI.getOpcode() == AArch64::LDRWui) &&
"Expect LDRXui or LDRWui");
assert((MI.getOperand(2).getTargetFlags() & AArch64II::MO_GOT) &&
"Expected GOT relocation");
if (OpInfo.Type == MCLOH_AdrpAddStr && OpInfo.MI1 == nullptr) {
OpInfo.Type = MCLOH_AdrpLdrGotStr;
OpInfo.IsCandidate = true;
OpInfo.MI1 = &MI;
return true;
} else if (OpInfo.Type == MCLOH_AdrpLdr) {
OpInfo.Type = MCLOH_AdrpLdrGotLdr;
OpInfo.IsCandidate = true;
OpInfo.MI1 = &MI;
return true;
}
}
return false;
}
/// Update state when seeing and ADRP instruction.
static void handleADRP(const MachineInstr &MI, AArch64FunctionInfo &AFI,
LOHInfo &Info, LOHInfo *LOHInfos) {
if (Info.LastADRP != nullptr) {
LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdrp:\n"
<< '\t' << MI << '\t' << *Info.LastADRP);
AFI.addLOHDirective(MCLOH_AdrpAdrp, {&MI, Info.LastADRP});
++NumADRPSimpleCandidate;
}
// Produce LOH directive if possible.
if (Info.IsCandidate) {
switch (Info.Type) {
case MCLOH_AdrpAdd: {
// ADRPs and ADDs for this candidate may be split apart if using
// GlobalISel instead of pseudo-expanded. If that happens, the
// def register of the ADD may have a use in between. Adding an LOH in
// this case can cause the linker to rewrite the ADRP to write to that
// register, clobbering the use.
const MachineInstr *AddMI = Info.MI0;
int DefIdx = mapRegToGPRIndex(MI.getOperand(0).getReg());
int OpIdx = mapRegToGPRIndex(AddMI->getOperand(0).getReg());
LOHInfo DefInfo = LOHInfos[OpIdx];
if (DefIdx != OpIdx && (DefInfo.OneUser || DefInfo.MultiUsers))
break;
LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAdd:\n"
<< '\t' << MI << '\t' << *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpAdd, {&MI, Info.MI0});
++NumADRSimpleCandidate;
break;
}
case MCLOH_AdrpLdr:
if (supportLoadFromLiteral(*Info.MI0)) {
LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdr:\n"
<< '\t' << MI << '\t' << *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpLdr, {&MI, Info.MI0});
++NumADRPToLDR;
}
break;
case MCLOH_AdrpAddLdr:
LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddLdr:\n"
<< '\t' << MI << '\t' << *Info.MI1 << '\t'
<< *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpAddLdr, {&MI, Info.MI1, Info.MI0});
++NumADDToLDR;
break;
case MCLOH_AdrpAddStr:
if (Info.MI1 != nullptr) {
LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpAddStr:\n"
<< '\t' << MI << '\t' << *Info.MI1 << '\t'
<< *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpAddStr, {&MI, Info.MI1, Info.MI0});
++NumADDToSTR;
}
break;
case MCLOH_AdrpLdrGotLdr:
LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotLdr:\n"
<< '\t' << MI << '\t' << *Info.MI1 << '\t'
<< *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpLdrGotLdr, {&MI, Info.MI1, Info.MI0});
++NumLDRToLDR;
break;
case MCLOH_AdrpLdrGotStr:
LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGotStr:\n"
<< '\t' << MI << '\t' << *Info.MI1 << '\t'
<< *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpLdrGotStr, {&MI, Info.MI1, Info.MI0});
++NumLDRToSTR;
break;
case MCLOH_AdrpLdrGot:
LLVM_DEBUG(dbgs() << "Adding MCLOH_AdrpLdrGot:\n"
<< '\t' << MI << '\t' << *Info.MI0);
AFI.addLOHDirective(MCLOH_AdrpLdrGot, {&MI, Info.MI0});
break;
case MCLOH_AdrpAdrp:
llvm_unreachable("MCLOH_AdrpAdrp not used in state machine");
}
}
handleClobber(Info);
Info.LastADRP = &MI;
}
static void handleRegMaskClobber(const uint32_t *RegMask, MCPhysReg Reg,
LOHInfo *LOHInfos) {
if (!MachineOperand::clobbersPhysReg(RegMask, Reg))
return;
int Idx = mapRegToGPRIndex(Reg);
if (Idx >= 0)
handleClobber(LOHInfos[Idx]);
}
static void handleNormalInst(const MachineInstr &MI, LOHInfo *LOHInfos) {
// Handle defs and regmasks.
for (const MachineOperand &MO : MI.operands()) {
if (MO.isRegMask()) {
const uint32_t *RegMask = MO.getRegMask();
for (MCPhysReg Reg : AArch64::GPR32RegClass)
handleRegMaskClobber(RegMask, Reg, LOHInfos);
for (MCPhysReg Reg : AArch64::GPR64RegClass)
handleRegMaskClobber(RegMask, Reg, LOHInfos);
continue;
}
if (!MO.isReg() || !MO.isDef())
continue;
int Idx = mapRegToGPRIndex(MO.getReg());
if (Idx < 0)
continue;
handleClobber(LOHInfos[Idx]);
}
// Handle uses.
SmallSet<int, 4> UsesSeen;
for (const MachineOperand &MO : MI.uses()) {
if (!MO.isReg() || !MO.readsReg())
continue;
int Idx = mapRegToGPRIndex(MO.getReg());
if (Idx < 0)
continue;
// Multiple uses of the same register within a single instruction don't
// count as MultiUser or block optimization. This is especially important on
// arm64_32, where any memory operation is likely to be an explicit use of
// xN and an implicit use of wN (the base address register).
if (!UsesSeen.count(Idx)) {
handleUse(MI, MO, LOHInfos[Idx]);
UsesSeen.insert(Idx);
}
}
}
bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
if (skipFunction(MF.getFunction()))
return false;
LLVM_DEBUG(dbgs() << "********** AArch64 Collect LOH **********\n"
<< "Looking in function " << MF.getName() << '\n');
LOHInfo LOHInfos[N_GPR_REGS];
AArch64FunctionInfo &AFI = *MF.getInfo<AArch64FunctionInfo>();
for (const MachineBasicBlock &MBB : MF) {
// Reset register tracking state.
memset(LOHInfos, 0, sizeof(LOHInfos));
// Live-out registers are used.
for (const MachineBasicBlock *Succ : MBB.successors()) {
for (const auto &LI : Succ->liveins()) {
int RegIdx = mapRegToGPRIndex(LI.PhysReg);
if (RegIdx >= 0)
LOHInfos[RegIdx].OneUser = true;
}
}
// Walk the basic block backwards and update the per register state machine
// in the process.
for (const MachineInstr &MI :
instructionsWithoutDebug(MBB.rbegin(), MBB.rend())) {
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
case AArch64::ADDXri:
case AArch64::LDRXui:
case AArch64::LDRWui:
if (canDefBePartOfLOH(MI)) {
const MachineOperand &Def = MI.getOperand(0);
const MachineOperand &Op = MI.getOperand(1);
assert(Def.isReg() && Def.isDef() && "Expected reg def");
assert(Op.isReg() && Op.isUse() && "Expected reg use");
int DefIdx = mapRegToGPRIndex(Def.getReg());
int OpIdx = mapRegToGPRIndex(Op.getReg());
if (DefIdx >= 0 && OpIdx >= 0 &&
handleMiddleInst(MI, LOHInfos[DefIdx], LOHInfos[OpIdx]))
continue;
}
break;
case AArch64::ADRP:
const MachineOperand &Op0 = MI.getOperand(0);
int Idx = mapRegToGPRIndex(Op0.getReg());
if (Idx >= 0) {
handleADRP(MI, AFI, LOHInfos[Idx], LOHInfos);
continue;
}
break;
}
handleNormalInst(MI, LOHInfos);
}
}
// Return "no change": The pass only collects information.
return false;
}
FunctionPass *llvm::createAArch64CollectLOHPass() {
return new AArch64CollectLOH();
}