Signals.inc 21.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
//===- Signals.cpp - Generic Unix Signals Implementation -----*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines some helpful functions for dealing with the possibility of
// Unix signals occurring while your program is running.
//
//===----------------------------------------------------------------------===//
//
// This file is extremely careful to only do signal-safe things while in a
// signal handler. In particular, memory allocation and acquiring a mutex
// while in a signal handler should never occur. ManagedStatic isn't usable from
// a signal handler for 2 reasons:
//
//  1. Creating a new one allocates.
//  2. The signal handler could fire while llvm_shutdown is being processed, in
//     which case the ManagedStatic is in an unknown state because it could
//     already have been destroyed, or be in the process of being destroyed.
//
// Modifying the behavior of the signal handlers (such as registering new ones)
// can acquire a mutex, but all this guarantees is that the signal handler
// behavior is only modified by one thread at a time. A signal handler can still
// fire while this occurs!
//
// Adding work to a signal handler requires lock-freedom (and assume atomics are
// always lock-free) because the signal handler could fire while new work is
// being added.
//
//===----------------------------------------------------------------------===//

#include "Unix.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Config/config.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <string>
#include <sysexits.h>
#ifdef HAVE_BACKTRACE
# include BACKTRACE_HEADER         // For backtrace().
#endif
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
#if HAVE_SYS_STAT_H
#include <sys/stat.h>
#endif
#if HAVE_DLFCN_H
#include <dlfcn.h>
#endif
#if HAVE_MACH_MACH_H
#include <mach/mach.h>
#endif
#if HAVE_LINK_H
#include <link.h>
#endif
#ifdef HAVE__UNWIND_BACKTRACE
// FIXME: We should be able to use <unwind.h> for any target that has an
// _Unwind_Backtrace function, but on FreeBSD the configure test passes
// despite the function not existing, and on Android, <unwind.h> conflicts
// with <link.h>.
#ifdef __GLIBC__
#include <unwind.h>
#else
#undef HAVE__UNWIND_BACKTRACE
#endif
#endif

using namespace llvm;

static RETSIGTYPE SignalHandler(int Sig);  // defined below.
static RETSIGTYPE InfoSignalHandler(int Sig);  // defined below.

using SignalHandlerFunctionType = void (*)();
/// The function to call if ctrl-c is pressed.
static std::atomic<SignalHandlerFunctionType> InterruptFunction =
    ATOMIC_VAR_INIT(nullptr);
static std::atomic<SignalHandlerFunctionType> InfoSignalFunction =
    ATOMIC_VAR_INIT(nullptr);
/// The function to call on SIGPIPE (one-time use only).
static std::atomic<SignalHandlerFunctionType> OneShotPipeSignalFunction =
    ATOMIC_VAR_INIT(nullptr);

namespace {
/// Signal-safe removal of files.
/// Inserting and erasing from the list isn't signal-safe, but removal of files
/// themselves is signal-safe. Memory is freed when the head is freed, deletion
/// is therefore not signal-safe either.
class FileToRemoveList {
  std::atomic<char *> Filename = ATOMIC_VAR_INIT(nullptr);
  std::atomic<FileToRemoveList *> Next = ATOMIC_VAR_INIT(nullptr);

  FileToRemoveList() = default;
  // Not signal-safe.
  FileToRemoveList(const std::string &str) : Filename(strdup(str.c_str())) {}

public:
  // Not signal-safe.
  ~FileToRemoveList() {
    if (FileToRemoveList *N = Next.exchange(nullptr))
      delete N;
    if (char *F = Filename.exchange(nullptr))
      free(F);
  }

  // Not signal-safe.
  static void insert(std::atomic<FileToRemoveList *> &Head,
                     const std::string &Filename) {
    // Insert the new file at the end of the list.
    FileToRemoveList *NewHead = new FileToRemoveList(Filename);
    std::atomic<FileToRemoveList *> *InsertionPoint = &Head;
    FileToRemoveList *OldHead = nullptr;
    while (!InsertionPoint->compare_exchange_strong(OldHead, NewHead)) {
      InsertionPoint = &OldHead->Next;
      OldHead = nullptr;
    }
  }

  // Not signal-safe.
  static void erase(std::atomic<FileToRemoveList *> &Head,
                    const std::string &Filename) {
    // Use a lock to avoid concurrent erase: the comparison would access
    // free'd memory.
    static ManagedStatic<sys::SmartMutex<true>> Lock;
    sys::SmartScopedLock<true> Writer(*Lock);

    for (FileToRemoveList *Current = Head.load(); Current;
         Current = Current->Next.load()) {
      if (char *OldFilename = Current->Filename.load()) {
        if (OldFilename != Filename)
          continue;
        // Leave an empty filename.
        OldFilename = Current->Filename.exchange(nullptr);
        // The filename might have become null between the time we
        // compared it and we exchanged it.
        if (OldFilename)
          free(OldFilename);
      }
    }
  }

  // Signal-safe.
  static void removeAllFiles(std::atomic<FileToRemoveList *> &Head) {
    // If cleanup were to occur while we're removing files we'd have a bad time.
    // Make sure we're OK by preventing cleanup from doing anything while we're
    // removing files. If cleanup races with us and we win we'll have a leak,
    // but we won't crash.
    FileToRemoveList *OldHead = Head.exchange(nullptr);

    for (FileToRemoveList *currentFile = OldHead; currentFile;
         currentFile = currentFile->Next.load()) {
      // If erasing was occuring while we're trying to remove files we'd look
      // at free'd data. Take away the path and put it back when done.
      if (char *path = currentFile->Filename.exchange(nullptr)) {
        // Get the status so we can determine if it's a file or directory. If we
        // can't stat the file, ignore it.
        struct stat buf;
        if (stat(path, &buf) != 0)
          continue;

        // If this is not a regular file, ignore it. We want to prevent removal
        // of special files like /dev/null, even if the compiler is being run
        // with the super-user permissions.
        if (!S_ISREG(buf.st_mode))
          continue;

        // Otherwise, remove the file. We ignore any errors here as there is
        // nothing else we can do.
        unlink(path);

        // We're done removing the file, erasing can safely proceed.
        currentFile->Filename.exchange(path);
      }
    }

    // We're done removing files, cleanup can safely proceed.
    Head.exchange(OldHead);
  }
};
static std::atomic<FileToRemoveList *> FilesToRemove = ATOMIC_VAR_INIT(nullptr);

/// Clean up the list in a signal-friendly manner.
/// Recall that signals can fire during llvm_shutdown. If this occurs we should
/// either clean something up or nothing at all, but we shouldn't crash!
struct FilesToRemoveCleanup {
  // Not signal-safe.
  ~FilesToRemoveCleanup() {
    FileToRemoveList *Head = FilesToRemove.exchange(nullptr);
    if (Head)
      delete Head;
  }
};
} // namespace

static StringRef Argv0;

/// Signals that represent requested termination. There's no bug or failure, or
/// if there is, it's not our direct responsibility. For whatever reason, our
/// continued execution is no longer desirable.
static const int IntSigs[] = {
  SIGHUP, SIGINT, SIGTERM, SIGUSR2
};

/// Signals that represent that we have a bug, and our prompt termination has
/// been ordered.
static const int KillSigs[] = {
  SIGILL, SIGTRAP, SIGABRT, SIGFPE, SIGBUS, SIGSEGV, SIGQUIT
#ifdef SIGSYS
  , SIGSYS
#endif
#ifdef SIGXCPU
  , SIGXCPU
#endif
#ifdef SIGXFSZ
  , SIGXFSZ
#endif
#ifdef SIGEMT
  , SIGEMT
#endif
};

/// Signals that represent requests for status.
static const int InfoSigs[] = {
  SIGUSR1
#ifdef SIGINFO
  , SIGINFO
#endif
};

static const size_t NumSigs =
    array_lengthof(IntSigs) + array_lengthof(KillSigs) +
    array_lengthof(InfoSigs) + 1 /* SIGPIPE */;


static std::atomic<unsigned> NumRegisteredSignals = ATOMIC_VAR_INIT(0);
static struct {
  struct sigaction SA;
  int SigNo;
} RegisteredSignalInfo[NumSigs];

#if defined(HAVE_SIGALTSTACK)
// Hold onto both the old and new alternate signal stack so that it's not
// reported as a leak. We don't make any attempt to remove our alt signal
// stack if we remove our signal handlers; that can't be done reliably if
// someone else is also trying to do the same thing.
static stack_t OldAltStack;
static void* NewAltStackPointer;

static void CreateSigAltStack() {
  const size_t AltStackSize = MINSIGSTKSZ + 64 * 1024;

  // If we're executing on the alternate stack, or we already have an alternate
  // signal stack that we're happy with, there's nothing for us to do. Don't
  // reduce the size, some other part of the process might need a larger stack
  // than we do.
  if (sigaltstack(nullptr, &OldAltStack) != 0 ||
      OldAltStack.ss_flags & SS_ONSTACK ||
      (OldAltStack.ss_sp && OldAltStack.ss_size >= AltStackSize))
    return;

  stack_t AltStack = {};
  AltStack.ss_sp = static_cast<char *>(safe_malloc(AltStackSize));
  NewAltStackPointer = AltStack.ss_sp; // Save to avoid reporting a leak.
  AltStack.ss_size = AltStackSize;
  if (sigaltstack(&AltStack, &OldAltStack) != 0)
    free(AltStack.ss_sp);
}
#else
static void CreateSigAltStack() {}
#endif

static void RegisterHandlers() { // Not signal-safe.
  // The mutex prevents other threads from registering handlers while we're
  // doing it. We also have to protect the handlers and their count because
  // a signal handler could fire while we're registeting handlers.
  static ManagedStatic<sys::SmartMutex<true>> SignalHandlerRegistrationMutex;
  sys::SmartScopedLock<true> Guard(*SignalHandlerRegistrationMutex);

  // If the handlers are already registered, we're done.
  if (NumRegisteredSignals.load() != 0)
    return;

  // Create an alternate stack for signal handling. This is necessary for us to
  // be able to reliably handle signals due to stack overflow.
  CreateSigAltStack();

  enum class SignalKind { IsKill, IsInfo };
  auto registerHandler = [&](int Signal, SignalKind Kind) {
    unsigned Index = NumRegisteredSignals.load();
    assert(Index < array_lengthof(RegisteredSignalInfo) &&
           "Out of space for signal handlers!");

    struct sigaction NewHandler;

    switch (Kind) {
    case SignalKind::IsKill:
      NewHandler.sa_handler = SignalHandler;
      NewHandler.sa_flags = SA_NODEFER | SA_RESETHAND | SA_ONSTACK;
      break;
    case SignalKind::IsInfo:
      NewHandler.sa_handler = InfoSignalHandler;
      NewHandler.sa_flags = SA_ONSTACK;
      break;
    }
    sigemptyset(&NewHandler.sa_mask);

    // Install the new handler, save the old one in RegisteredSignalInfo.
    sigaction(Signal, &NewHandler, &RegisteredSignalInfo[Index].SA);
    RegisteredSignalInfo[Index].SigNo = Signal;
    ++NumRegisteredSignals;
  };

  for (auto S : IntSigs)
    registerHandler(S, SignalKind::IsKill);
  for (auto S : KillSigs)
    registerHandler(S, SignalKind::IsKill);
  if (OneShotPipeSignalFunction)
    registerHandler(SIGPIPE, SignalKind::IsKill);
  for (auto S : InfoSigs)
    registerHandler(S, SignalKind::IsInfo);
}

static void UnregisterHandlers() {
  // Restore all of the signal handlers to how they were before we showed up.
  for (unsigned i = 0, e = NumRegisteredSignals.load(); i != e; ++i) {
    sigaction(RegisteredSignalInfo[i].SigNo,
              &RegisteredSignalInfo[i].SA, nullptr);
    --NumRegisteredSignals;
  }
}

/// Process the FilesToRemove list.
static void RemoveFilesToRemove() {
  FileToRemoveList::removeAllFiles(FilesToRemove);
}

void sys::CleanupOnSignal(uintptr_t Context) {
  int Sig = (int)Context;

  if (llvm::is_contained(InfoSigs, Sig)) {
    InfoSignalHandler(Sig);
    return;
  }

  RemoveFilesToRemove();

  if (llvm::is_contained(IntSigs, Sig) || Sig == SIGPIPE)
    return;

  llvm::sys::RunSignalHandlers();
}

// The signal handler that runs.
static RETSIGTYPE SignalHandler(int Sig) {
  // Restore the signal behavior to default, so that the program actually
  // crashes when we return and the signal reissues.  This also ensures that if
  // we crash in our signal handler that the program will terminate immediately
  // instead of recursing in the signal handler.
  UnregisterHandlers();

  // Unmask all potentially blocked kill signals.
  sigset_t SigMask;
  sigfillset(&SigMask);
  sigprocmask(SIG_UNBLOCK, &SigMask, nullptr);

  {
    RemoveFilesToRemove();

    if (Sig == SIGPIPE)
      if (auto OldOneShotPipeFunction =
              OneShotPipeSignalFunction.exchange(nullptr))
        return OldOneShotPipeFunction();

    if (std::find(std::begin(IntSigs), std::end(IntSigs), Sig)
        != std::end(IntSigs)) {
      if (auto OldInterruptFunction = InterruptFunction.exchange(nullptr))
        return OldInterruptFunction();

      raise(Sig);   // Execute the default handler.
      return;
   }
  }

  // Otherwise if it is a fault (like SEGV) run any handler.
  llvm::sys::RunSignalHandlers();

#ifdef __s390__
  // On S/390, certain signals are delivered with PSW Address pointing to
  // *after* the faulting instruction.  Simply returning from the signal
  // handler would continue execution after that point, instead of
  // re-raising the signal.  Raise the signal manually in those cases.
  if (Sig == SIGILL || Sig == SIGFPE || Sig == SIGTRAP)
    raise(Sig);
#endif
}

static RETSIGTYPE InfoSignalHandler(int Sig) {
  SaveAndRestore<int> SaveErrnoDuringASignalHandler(errno);
  if (SignalHandlerFunctionType CurrentInfoFunction = InfoSignalFunction)
    CurrentInfoFunction();
}

void llvm::sys::RunInterruptHandlers() {
  RemoveFilesToRemove();
}

void llvm::sys::SetInterruptFunction(void (*IF)()) {
  InterruptFunction.exchange(IF);
  RegisterHandlers();
}

void llvm::sys::SetInfoSignalFunction(void (*Handler)()) {
  InfoSignalFunction.exchange(Handler);
  RegisterHandlers();
}

void llvm::sys::SetOneShotPipeSignalFunction(void (*Handler)()) {
  OneShotPipeSignalFunction.exchange(Handler);
  RegisterHandlers();
}

void llvm::sys::DefaultOneShotPipeSignalHandler() {
  // Send a special return code that drivers can check for, from sysexits.h.
  exit(EX_IOERR);
}

// The public API
bool llvm::sys::RemoveFileOnSignal(StringRef Filename,
                                   std::string* ErrMsg) {
  // Ensure that cleanup will occur as soon as one file is added.
  static ManagedStatic<FilesToRemoveCleanup> FilesToRemoveCleanup;
  *FilesToRemoveCleanup;
  FileToRemoveList::insert(FilesToRemove, Filename.str());
  RegisterHandlers();
  return false;
}

// The public API
void llvm::sys::DontRemoveFileOnSignal(StringRef Filename) {
  FileToRemoveList::erase(FilesToRemove, Filename.str());
}

/// Add a function to be called when a signal is delivered to the process. The
/// handler can have a cookie passed to it to identify what instance of the
/// handler it is.
void llvm::sys::AddSignalHandler(sys::SignalHandlerCallback FnPtr,
                                 void *Cookie) { // Signal-safe.
  insertSignalHandler(FnPtr, Cookie);
  RegisterHandlers();
}

#if defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && HAVE_LINK_H &&    \
    (defined(__linux__) || defined(__FreeBSD__) ||                             \
     defined(__FreeBSD_kernel__) || defined(__NetBSD__))
struct DlIteratePhdrData {
  void **StackTrace;
  int depth;
  bool first;
  const char **modules;
  intptr_t *offsets;
  const char *main_exec_name;
};

static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) {
  DlIteratePhdrData *data = (DlIteratePhdrData*)arg;
  const char *name = data->first ? data->main_exec_name : info->dlpi_name;
  data->first = false;
  for (int i = 0; i < info->dlpi_phnum; i++) {
    const auto *phdr = &info->dlpi_phdr[i];
    if (phdr->p_type != PT_LOAD)
      continue;
    intptr_t beg = info->dlpi_addr + phdr->p_vaddr;
    intptr_t end = beg + phdr->p_memsz;
    for (int j = 0; j < data->depth; j++) {
      if (data->modules[j])
        continue;
      intptr_t addr = (intptr_t)data->StackTrace[j];
      if (beg <= addr && addr < end) {
        data->modules[j] = name;
        data->offsets[j] = addr - info->dlpi_addr;
      }
    }
  }
  return 0;
}

/// If this is an ELF platform, we can find all loaded modules and their virtual
/// addresses with dl_iterate_phdr.
static bool findModulesAndOffsets(void **StackTrace, int Depth,
                                  const char **Modules, intptr_t *Offsets,
                                  const char *MainExecutableName,
                                  StringSaver &StrPool) {
  DlIteratePhdrData data = {StackTrace, Depth,   true,
                            Modules,    Offsets, MainExecutableName};
  dl_iterate_phdr(dl_iterate_phdr_cb, &data);
  return true;
}
#else
/// This platform does not have dl_iterate_phdr, so we do not yet know how to
/// find all loaded DSOs.
static bool findModulesAndOffsets(void **StackTrace, int Depth,
                                  const char **Modules, intptr_t *Offsets,
                                  const char *MainExecutableName,
                                  StringSaver &StrPool) {
  return false;
}
#endif // defined(HAVE_BACKTRACE) && ENABLE_BACKTRACES && ...

#if ENABLE_BACKTRACES && defined(HAVE__UNWIND_BACKTRACE)
static int unwindBacktrace(void **StackTrace, int MaxEntries) {
  if (MaxEntries < 0)
    return 0;

  // Skip the first frame ('unwindBacktrace' itself).
  int Entries = -1;

  auto HandleFrame = [&](_Unwind_Context *Context) -> _Unwind_Reason_Code {
    // Apparently we need to detect reaching the end of the stack ourselves.
    void *IP = (void *)_Unwind_GetIP(Context);
    if (!IP)
      return _URC_END_OF_STACK;

    assert(Entries < MaxEntries && "recursively called after END_OF_STACK?");
    if (Entries >= 0)
      StackTrace[Entries] = IP;

    if (++Entries == MaxEntries)
      return _URC_END_OF_STACK;
    return _URC_NO_REASON;
  };

  _Unwind_Backtrace(
      [](_Unwind_Context *Context, void *Handler) {
        return (*static_cast<decltype(HandleFrame) *>(Handler))(Context);
      },
      static_cast<void *>(&HandleFrame));
  return std::max(Entries, 0);
}
#endif

// In the case of a program crash or fault, print out a stack trace so that the
// user has an indication of why and where we died.
//
// On glibc systems we have the 'backtrace' function, which works nicely, but
// doesn't demangle symbols.
void llvm::sys::PrintStackTrace(raw_ostream &OS) {
#if ENABLE_BACKTRACES
  static void *StackTrace[256];
  int depth = 0;
#if defined(HAVE_BACKTRACE)
  // Use backtrace() to output a backtrace on Linux systems with glibc.
  if (!depth)
    depth = backtrace(StackTrace, static_cast<int>(array_lengthof(StackTrace)));
#endif
#if defined(HAVE__UNWIND_BACKTRACE)
  // Try _Unwind_Backtrace() if backtrace() failed.
  if (!depth)
    depth = unwindBacktrace(StackTrace,
                        static_cast<int>(array_lengthof(StackTrace)));
#endif
  if (!depth)
    return;

  if (printSymbolizedStackTrace(Argv0, StackTrace, depth, OS))
    return;
#if HAVE_DLFCN_H && HAVE_DLADDR
  int width = 0;
  for (int i = 0; i < depth; ++i) {
    Dl_info dlinfo;
    dladdr(StackTrace[i], &dlinfo);
    const char* name = strrchr(dlinfo.dli_fname, '/');

    int nwidth;
    if (!name) nwidth = strlen(dlinfo.dli_fname);
    else       nwidth = strlen(name) - 1;

    if (nwidth > width) width = nwidth;
  }

  for (int i = 0; i < depth; ++i) {
    Dl_info dlinfo;
    dladdr(StackTrace[i], &dlinfo);

    OS << format("%-2d", i);

    const char* name = strrchr(dlinfo.dli_fname, '/');
    if (!name) OS << format(" %-*s", width, dlinfo.dli_fname);
    else       OS << format(" %-*s", width, name+1);

    OS << format(" %#0*lx", (int)(sizeof(void*) * 2) + 2,
                 (unsigned long)StackTrace[i]);

    if (dlinfo.dli_sname != nullptr) {
      OS << ' ';
      int res;
      char* d = itaniumDemangle(dlinfo.dli_sname, nullptr, nullptr, &res);
      if (!d) OS << dlinfo.dli_sname;
      else    OS << d;
      free(d);

      OS << format(" + %tu", (static_cast<const char*>(StackTrace[i])-
                              static_cast<const char*>(dlinfo.dli_saddr)));
    }
    OS << '\n';
  }
#elif defined(HAVE_BACKTRACE)
  backtrace_symbols_fd(StackTrace, depth, STDERR_FILENO);
#endif
#endif
}

static void PrintStackTraceSignalHandler(void *) {
  sys::PrintStackTrace(llvm::errs());
}

void llvm::sys::DisableSystemDialogsOnCrash() {}

/// When an error signal (such as SIGABRT or SIGSEGV) is delivered to the
/// process, print a stack trace and then exit.
void llvm::sys::PrintStackTraceOnErrorSignal(StringRef Argv0,
                                             bool DisableCrashReporting) {
  ::Argv0 = Argv0;

  AddSignalHandler(PrintStackTraceSignalHandler, nullptr);

#if defined(__APPLE__) && ENABLE_CRASH_OVERRIDES
  // Environment variable to disable any kind of crash dialog.
  if (DisableCrashReporting || getenv("LLVM_DISABLE_CRASH_REPORT")) {
    mach_port_t self = mach_task_self();

    exception_mask_t mask = EXC_MASK_CRASH;

    kern_return_t ret = task_set_exception_ports(self,
                             mask,
                             MACH_PORT_NULL,
                             EXCEPTION_STATE_IDENTITY | MACH_EXCEPTION_CODES,
                             THREAD_STATE_NONE);
    (void)ret;
  }
#endif
}