APFloat.cpp 155 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889
//===-- APFloat.cpp - Implement APFloat class -----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a class to represent arbitrary precision floating
// point values and provide a variety of arithmetic operations on them.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cstring>
#include <limits.h>

#define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL)                             \
  do {                                                                         \
    if (usesLayout<IEEEFloat>(getSemantics()))                                 \
      return U.IEEE.METHOD_CALL;                                               \
    if (usesLayout<DoubleAPFloat>(getSemantics()))                             \
      return U.Double.METHOD_CALL;                                             \
    llvm_unreachable("Unexpected semantics");                                  \
  } while (false)

using namespace llvm;

/// A macro used to combine two fcCategory enums into one key which can be used
/// in a switch statement to classify how the interaction of two APFloat's
/// categories affects an operation.
///
/// TODO: If clang source code is ever allowed to use constexpr in its own
/// codebase, change this into a static inline function.
#define PackCategoriesIntoKey(_lhs, _rhs) ((_lhs) * 4 + (_rhs))

/* Assumed in hexadecimal significand parsing, and conversion to
   hexadecimal strings.  */
static_assert(APFloatBase::integerPartWidth % 4 == 0, "Part width must be divisible by 4!");

namespace llvm {
  /* Represents floating point arithmetic semantics.  */
  struct fltSemantics {
    /* The largest E such that 2^E is representable; this matches the
       definition of IEEE 754.  */
    APFloatBase::ExponentType maxExponent;

    /* The smallest E such that 2^E is a normalized number; this
       matches the definition of IEEE 754.  */
    APFloatBase::ExponentType minExponent;

    /* Number of bits in the significand.  This includes the integer
       bit.  */
    unsigned int precision;

    /* Number of bits actually used in the semantics. */
    unsigned int sizeInBits;
  };

  static const fltSemantics semIEEEhalf = {15, -14, 11, 16};
  static const fltSemantics semBFloat = {127, -126, 8, 16};
  static const fltSemantics semIEEEsingle = {127, -126, 24, 32};
  static const fltSemantics semIEEEdouble = {1023, -1022, 53, 64};
  static const fltSemantics semIEEEquad = {16383, -16382, 113, 128};
  static const fltSemantics semX87DoubleExtended = {16383, -16382, 64, 80};
  static const fltSemantics semBogus = {0, 0, 0, 0};

  /* The IBM double-double semantics. Such a number consists of a pair of IEEE
     64-bit doubles (Hi, Lo), where |Hi| > |Lo|, and if normal,
     (double)(Hi + Lo) == Hi. The numeric value it's modeling is Hi + Lo.
     Therefore it has two 53-bit mantissa parts that aren't necessarily adjacent
     to each other, and two 11-bit exponents.

     Note: we need to make the value different from semBogus as otherwise
     an unsafe optimization may collapse both values to a single address,
     and we heavily rely on them having distinct addresses.             */
  static const fltSemantics semPPCDoubleDouble = {-1, 0, 0, 0};

  /* These are legacy semantics for the fallback, inaccrurate implementation of
     IBM double-double, if the accurate semPPCDoubleDouble doesn't handle the
     operation. It's equivalent to having an IEEE number with consecutive 106
     bits of mantissa and 11 bits of exponent.

     It's not equivalent to IBM double-double. For example, a legit IBM
     double-double, 1 + epsilon:

       1 + epsilon = 1 + (1 >> 1076)

     is not representable by a consecutive 106 bits of mantissa.

     Currently, these semantics are used in the following way:

       semPPCDoubleDouble -> (IEEEdouble, IEEEdouble) ->
       (64-bit APInt, 64-bit APInt) -> (128-bit APInt) ->
       semPPCDoubleDoubleLegacy -> IEEE operations

     We use bitcastToAPInt() to get the bit representation (in APInt) of the
     underlying IEEEdouble, then use the APInt constructor to construct the
     legacy IEEE float.

     TODO: Implement all operations in semPPCDoubleDouble, and delete these
     semantics.  */
  static const fltSemantics semPPCDoubleDoubleLegacy = {1023, -1022 + 53,
                                                        53 + 53, 128};

  const llvm::fltSemantics &APFloatBase::EnumToSemantics(Semantics S) {
    switch (S) {
    case S_IEEEhalf:
      return IEEEhalf();
    case S_BFloat:
      return BFloat();
    case S_IEEEsingle:
      return IEEEsingle();
    case S_IEEEdouble:
      return IEEEdouble();
    case S_x87DoubleExtended:
      return x87DoubleExtended();
    case S_IEEEquad:
      return IEEEquad();
    case S_PPCDoubleDouble:
      return PPCDoubleDouble();
    }
    llvm_unreachable("Unrecognised floating semantics");
  }

  APFloatBase::Semantics
  APFloatBase::SemanticsToEnum(const llvm::fltSemantics &Sem) {
    if (&Sem == &llvm::APFloat::IEEEhalf())
      return S_IEEEhalf;
    else if (&Sem == &llvm::APFloat::BFloat())
      return S_BFloat;
    else if (&Sem == &llvm::APFloat::IEEEsingle())
      return S_IEEEsingle;
    else if (&Sem == &llvm::APFloat::IEEEdouble())
      return S_IEEEdouble;
    else if (&Sem == &llvm::APFloat::x87DoubleExtended())
      return S_x87DoubleExtended;
    else if (&Sem == &llvm::APFloat::IEEEquad())
      return S_IEEEquad;
    else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
      return S_PPCDoubleDouble;
    else
      llvm_unreachable("Unknown floating semantics");
  }

  const fltSemantics &APFloatBase::IEEEhalf() {
    return semIEEEhalf;
  }
  const fltSemantics &APFloatBase::BFloat() {
    return semBFloat;
  }
  const fltSemantics &APFloatBase::IEEEsingle() {
    return semIEEEsingle;
  }
  const fltSemantics &APFloatBase::IEEEdouble() {
    return semIEEEdouble;
  }
  const fltSemantics &APFloatBase::IEEEquad() {
    return semIEEEquad;
  }
  const fltSemantics &APFloatBase::x87DoubleExtended() {
    return semX87DoubleExtended;
  }
  const fltSemantics &APFloatBase::Bogus() {
    return semBogus;
  }
  const fltSemantics &APFloatBase::PPCDoubleDouble() {
    return semPPCDoubleDouble;
  }

  constexpr RoundingMode APFloatBase::rmNearestTiesToEven;
  constexpr RoundingMode APFloatBase::rmTowardPositive;
  constexpr RoundingMode APFloatBase::rmTowardNegative;
  constexpr RoundingMode APFloatBase::rmTowardZero;
  constexpr RoundingMode APFloatBase::rmNearestTiesToAway;

  /* A tight upper bound on number of parts required to hold the value
     pow(5, power) is

       power * 815 / (351 * integerPartWidth) + 1

     However, whilst the result may require only this many parts,
     because we are multiplying two values to get it, the
     multiplication may require an extra part with the excess part
     being zero (consider the trivial case of 1 * 1, tcFullMultiply
     requires two parts to hold the single-part result).  So we add an
     extra one to guarantee enough space whilst multiplying.  */
  const unsigned int maxExponent = 16383;
  const unsigned int maxPrecision = 113;
  const unsigned int maxPowerOfFiveExponent = maxExponent + maxPrecision - 1;
  const unsigned int maxPowerOfFiveParts = 2 + ((maxPowerOfFiveExponent * 815) / (351 * APFloatBase::integerPartWidth));

  unsigned int APFloatBase::semanticsPrecision(const fltSemantics &semantics) {
    return semantics.precision;
  }
  APFloatBase::ExponentType
  APFloatBase::semanticsMaxExponent(const fltSemantics &semantics) {
    return semantics.maxExponent;
  }
  APFloatBase::ExponentType
  APFloatBase::semanticsMinExponent(const fltSemantics &semantics) {
    return semantics.minExponent;
  }
  unsigned int APFloatBase::semanticsSizeInBits(const fltSemantics &semantics) {
    return semantics.sizeInBits;
  }

  unsigned APFloatBase::getSizeInBits(const fltSemantics &Sem) {
    return Sem.sizeInBits;
}

/* A bunch of private, handy routines.  */

static inline Error createError(const Twine &Err) {
  return make_error<StringError>(Err, inconvertibleErrorCode());
}

static inline unsigned int
partCountForBits(unsigned int bits)
{
  return ((bits) + APFloatBase::integerPartWidth - 1) / APFloatBase::integerPartWidth;
}

/* Returns 0U-9U.  Return values >= 10U are not digits.  */
static inline unsigned int
decDigitValue(unsigned int c)
{
  return c - '0';
}

/* Return the value of a decimal exponent of the form
   [+-]ddddddd.

   If the exponent overflows, returns a large exponent with the
   appropriate sign.  */
static Expected<int> readExponent(StringRef::iterator begin,
                                  StringRef::iterator end) {
  bool isNegative;
  unsigned int absExponent;
  const unsigned int overlargeExponent = 24000;  /* FIXME.  */
  StringRef::iterator p = begin;

  // Treat no exponent as 0 to match binutils
  if (p == end || ((*p == '-' || *p == '+') && (p + 1) == end)) {
    return 0;
  }

  isNegative = (*p == '-');
  if (*p == '-' || *p == '+') {
    p++;
    if (p == end)
      return createError("Exponent has no digits");
  }

  absExponent = decDigitValue(*p++);
  if (absExponent >= 10U)
    return createError("Invalid character in exponent");

  for (; p != end; ++p) {
    unsigned int value;

    value = decDigitValue(*p);
    if (value >= 10U)
      return createError("Invalid character in exponent");

    absExponent = absExponent * 10U + value;
    if (absExponent >= overlargeExponent) {
      absExponent = overlargeExponent;
      break;
    }
  }

  if (isNegative)
    return -(int) absExponent;
  else
    return (int) absExponent;
}

/* This is ugly and needs cleaning up, but I don't immediately see
   how whilst remaining safe.  */
static Expected<int> totalExponent(StringRef::iterator p,
                                   StringRef::iterator end,
                                   int exponentAdjustment) {
  int unsignedExponent;
  bool negative, overflow;
  int exponent = 0;

  if (p == end)
    return createError("Exponent has no digits");

  negative = *p == '-';
  if (*p == '-' || *p == '+') {
    p++;
    if (p == end)
      return createError("Exponent has no digits");
  }

  unsignedExponent = 0;
  overflow = false;
  for (; p != end; ++p) {
    unsigned int value;

    value = decDigitValue(*p);
    if (value >= 10U)
      return createError("Invalid character in exponent");

    unsignedExponent = unsignedExponent * 10 + value;
    if (unsignedExponent > 32767) {
      overflow = true;
      break;
    }
  }

  if (exponentAdjustment > 32767 || exponentAdjustment < -32768)
    overflow = true;

  if (!overflow) {
    exponent = unsignedExponent;
    if (negative)
      exponent = -exponent;
    exponent += exponentAdjustment;
    if (exponent > 32767 || exponent < -32768)
      overflow = true;
  }

  if (overflow)
    exponent = negative ? -32768: 32767;

  return exponent;
}

static Expected<StringRef::iterator>
skipLeadingZeroesAndAnyDot(StringRef::iterator begin, StringRef::iterator end,
                           StringRef::iterator *dot) {
  StringRef::iterator p = begin;
  *dot = end;
  while (p != end && *p == '0')
    p++;

  if (p != end && *p == '.') {
    *dot = p++;

    if (end - begin == 1)
      return createError("Significand has no digits");

    while (p != end && *p == '0')
      p++;
  }

  return p;
}

/* Given a normal decimal floating point number of the form

     dddd.dddd[eE][+-]ddd

   where the decimal point and exponent are optional, fill out the
   structure D.  Exponent is appropriate if the significand is
   treated as an integer, and normalizedExponent if the significand
   is taken to have the decimal point after a single leading
   non-zero digit.

   If the value is zero, V->firstSigDigit points to a non-digit, and
   the return exponent is zero.
*/
struct decimalInfo {
  const char *firstSigDigit;
  const char *lastSigDigit;
  int exponent;
  int normalizedExponent;
};

static Error interpretDecimal(StringRef::iterator begin,
                              StringRef::iterator end, decimalInfo *D) {
  StringRef::iterator dot = end;

  auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot);
  if (!PtrOrErr)
    return PtrOrErr.takeError();
  StringRef::iterator p = *PtrOrErr;

  D->firstSigDigit = p;
  D->exponent = 0;
  D->normalizedExponent = 0;

  for (; p != end; ++p) {
    if (*p == '.') {
      if (dot != end)
        return createError("String contains multiple dots");
      dot = p++;
      if (p == end)
        break;
    }
    if (decDigitValue(*p) >= 10U)
      break;
  }

  if (p != end) {
    if (*p != 'e' && *p != 'E')
      return createError("Invalid character in significand");
    if (p == begin)
      return createError("Significand has no digits");
    if (dot != end && p - begin == 1)
      return createError("Significand has no digits");

    /* p points to the first non-digit in the string */
    auto ExpOrErr = readExponent(p + 1, end);
    if (!ExpOrErr)
      return ExpOrErr.takeError();
    D->exponent = *ExpOrErr;

    /* Implied decimal point?  */
    if (dot == end)
      dot = p;
  }

  /* If number is all zeroes accept any exponent.  */
  if (p != D->firstSigDigit) {
    /* Drop insignificant trailing zeroes.  */
    if (p != begin) {
      do
        do
          p--;
        while (p != begin && *p == '0');
      while (p != begin && *p == '.');
    }

    /* Adjust the exponents for any decimal point.  */
    D->exponent += static_cast<APFloat::ExponentType>((dot - p) - (dot > p));
    D->normalizedExponent = (D->exponent +
              static_cast<APFloat::ExponentType>((p - D->firstSigDigit)
                                      - (dot > D->firstSigDigit && dot < p)));
  }

  D->lastSigDigit = p;
  return Error::success();
}

/* Return the trailing fraction of a hexadecimal number.
   DIGITVALUE is the first hex digit of the fraction, P points to
   the next digit.  */
static Expected<lostFraction>
trailingHexadecimalFraction(StringRef::iterator p, StringRef::iterator end,
                            unsigned int digitValue) {
  unsigned int hexDigit;

  /* If the first trailing digit isn't 0 or 8 we can work out the
     fraction immediately.  */
  if (digitValue > 8)
    return lfMoreThanHalf;
  else if (digitValue < 8 && digitValue > 0)
    return lfLessThanHalf;

  // Otherwise we need to find the first non-zero digit.
  while (p != end && (*p == '0' || *p == '.'))
    p++;

  if (p == end)
    return createError("Invalid trailing hexadecimal fraction!");

  hexDigit = hexDigitValue(*p);

  /* If we ran off the end it is exactly zero or one-half, otherwise
     a little more.  */
  if (hexDigit == -1U)
    return digitValue == 0 ? lfExactlyZero: lfExactlyHalf;
  else
    return digitValue == 0 ? lfLessThanHalf: lfMoreThanHalf;
}

/* Return the fraction lost were a bignum truncated losing the least
   significant BITS bits.  */
static lostFraction
lostFractionThroughTruncation(const APFloatBase::integerPart *parts,
                              unsigned int partCount,
                              unsigned int bits)
{
  unsigned int lsb;

  lsb = APInt::tcLSB(parts, partCount);

  /* Note this is guaranteed true if bits == 0, or LSB == -1U.  */
  if (bits <= lsb)
    return lfExactlyZero;
  if (bits == lsb + 1)
    return lfExactlyHalf;
  if (bits <= partCount * APFloatBase::integerPartWidth &&
      APInt::tcExtractBit(parts, bits - 1))
    return lfMoreThanHalf;

  return lfLessThanHalf;
}

/* Shift DST right BITS bits noting lost fraction.  */
static lostFraction
shiftRight(APFloatBase::integerPart *dst, unsigned int parts, unsigned int bits)
{
  lostFraction lost_fraction;

  lost_fraction = lostFractionThroughTruncation(dst, parts, bits);

  APInt::tcShiftRight(dst, parts, bits);

  return lost_fraction;
}

/* Combine the effect of two lost fractions.  */
static lostFraction
combineLostFractions(lostFraction moreSignificant,
                     lostFraction lessSignificant)
{
  if (lessSignificant != lfExactlyZero) {
    if (moreSignificant == lfExactlyZero)
      moreSignificant = lfLessThanHalf;
    else if (moreSignificant == lfExactlyHalf)
      moreSignificant = lfMoreThanHalf;
  }

  return moreSignificant;
}

/* The error from the true value, in half-ulps, on multiplying two
   floating point numbers, which differ from the value they
   approximate by at most HUE1 and HUE2 half-ulps, is strictly less
   than the returned value.

   See "How to Read Floating Point Numbers Accurately" by William D
   Clinger.  */
static unsigned int
HUerrBound(bool inexactMultiply, unsigned int HUerr1, unsigned int HUerr2)
{
  assert(HUerr1 < 2 || HUerr2 < 2 || (HUerr1 + HUerr2 < 8));

  if (HUerr1 + HUerr2 == 0)
    return inexactMultiply * 2;  /* <= inexactMultiply half-ulps.  */
  else
    return inexactMultiply + 2 * (HUerr1 + HUerr2);
}

/* The number of ulps from the boundary (zero, or half if ISNEAREST)
   when the least significant BITS are truncated.  BITS cannot be
   zero.  */
static APFloatBase::integerPart
ulpsFromBoundary(const APFloatBase::integerPart *parts, unsigned int bits,
                 bool isNearest) {
  unsigned int count, partBits;
  APFloatBase::integerPart part, boundary;

  assert(bits != 0);

  bits--;
  count = bits / APFloatBase::integerPartWidth;
  partBits = bits % APFloatBase::integerPartWidth + 1;

  part = parts[count] & (~(APFloatBase::integerPart) 0 >> (APFloatBase::integerPartWidth - partBits));

  if (isNearest)
    boundary = (APFloatBase::integerPart) 1 << (partBits - 1);
  else
    boundary = 0;

  if (count == 0) {
    if (part - boundary <= boundary - part)
      return part - boundary;
    else
      return boundary - part;
  }

  if (part == boundary) {
    while (--count)
      if (parts[count])
        return ~(APFloatBase::integerPart) 0; /* A lot.  */

    return parts[0];
  } else if (part == boundary - 1) {
    while (--count)
      if (~parts[count])
        return ~(APFloatBase::integerPart) 0; /* A lot.  */

    return -parts[0];
  }

  return ~(APFloatBase::integerPart) 0; /* A lot.  */
}

/* Place pow(5, power) in DST, and return the number of parts used.
   DST must be at least one part larger than size of the answer.  */
static unsigned int
powerOf5(APFloatBase::integerPart *dst, unsigned int power) {
  static const APFloatBase::integerPart firstEightPowers[] = { 1, 5, 25, 125, 625, 3125, 15625, 78125 };
  APFloatBase::integerPart pow5s[maxPowerOfFiveParts * 2 + 5];
  pow5s[0] = 78125 * 5;

  unsigned int partsCount[16] = { 1 };
  APFloatBase::integerPart scratch[maxPowerOfFiveParts], *p1, *p2, *pow5;
  unsigned int result;
  assert(power <= maxExponent);

  p1 = dst;
  p2 = scratch;

  *p1 = firstEightPowers[power & 7];
  power >>= 3;

  result = 1;
  pow5 = pow5s;

  for (unsigned int n = 0; power; power >>= 1, n++) {
    unsigned int pc;

    pc = partsCount[n];

    /* Calculate pow(5,pow(2,n+3)) if we haven't yet.  */
    if (pc == 0) {
      pc = partsCount[n - 1];
      APInt::tcFullMultiply(pow5, pow5 - pc, pow5 - pc, pc, pc);
      pc *= 2;
      if (pow5[pc - 1] == 0)
        pc--;
      partsCount[n] = pc;
    }

    if (power & 1) {
      APFloatBase::integerPart *tmp;

      APInt::tcFullMultiply(p2, p1, pow5, result, pc);
      result += pc;
      if (p2[result - 1] == 0)
        result--;

      /* Now result is in p1 with partsCount parts and p2 is scratch
         space.  */
      tmp = p1;
      p1 = p2;
      p2 = tmp;
    }

    pow5 += pc;
  }

  if (p1 != dst)
    APInt::tcAssign(dst, p1, result);

  return result;
}

/* Zero at the end to avoid modular arithmetic when adding one; used
   when rounding up during hexadecimal output.  */
static const char hexDigitsLower[] = "0123456789abcdef0";
static const char hexDigitsUpper[] = "0123456789ABCDEF0";
static const char infinityL[] = "infinity";
static const char infinityU[] = "INFINITY";
static const char NaNL[] = "nan";
static const char NaNU[] = "NAN";

/* Write out an integerPart in hexadecimal, starting with the most
   significant nibble.  Write out exactly COUNT hexdigits, return
   COUNT.  */
static unsigned int
partAsHex (char *dst, APFloatBase::integerPart part, unsigned int count,
           const char *hexDigitChars)
{
  unsigned int result = count;

  assert(count != 0 && count <= APFloatBase::integerPartWidth / 4);

  part >>= (APFloatBase::integerPartWidth - 4 * count);
  while (count--) {
    dst[count] = hexDigitChars[part & 0xf];
    part >>= 4;
  }

  return result;
}

/* Write out an unsigned decimal integer.  */
static char *
writeUnsignedDecimal (char *dst, unsigned int n)
{
  char buff[40], *p;

  p = buff;
  do
    *p++ = '0' + n % 10;
  while (n /= 10);

  do
    *dst++ = *--p;
  while (p != buff);

  return dst;
}

/* Write out a signed decimal integer.  */
static char *
writeSignedDecimal (char *dst, int value)
{
  if (value < 0) {
    *dst++ = '-';
    dst = writeUnsignedDecimal(dst, -(unsigned) value);
  } else
    dst = writeUnsignedDecimal(dst, value);

  return dst;
}

namespace detail {
/* Constructors.  */
void IEEEFloat::initialize(const fltSemantics *ourSemantics) {
  unsigned int count;

  semantics = ourSemantics;
  count = partCount();
  if (count > 1)
    significand.parts = new integerPart[count];
}

void IEEEFloat::freeSignificand() {
  if (needsCleanup())
    delete [] significand.parts;
}

void IEEEFloat::assign(const IEEEFloat &rhs) {
  assert(semantics == rhs.semantics);

  sign = rhs.sign;
  category = rhs.category;
  exponent = rhs.exponent;
  if (isFiniteNonZero() || category == fcNaN)
    copySignificand(rhs);
}

void IEEEFloat::copySignificand(const IEEEFloat &rhs) {
  assert(isFiniteNonZero() || category == fcNaN);
  assert(rhs.partCount() >= partCount());

  APInt::tcAssign(significandParts(), rhs.significandParts(),
                  partCount());
}

/* Make this number a NaN, with an arbitrary but deterministic value
   for the significand.  If double or longer, this is a signalling NaN,
   which may not be ideal.  If float, this is QNaN(0).  */
void IEEEFloat::makeNaN(bool SNaN, bool Negative, const APInt *fill) {
  category = fcNaN;
  sign = Negative;

  integerPart *significand = significandParts();
  unsigned numParts = partCount();

  // Set the significand bits to the fill.
  if (!fill || fill->getNumWords() < numParts)
    APInt::tcSet(significand, 0, numParts);
  if (fill) {
    APInt::tcAssign(significand, fill->getRawData(),
                    std::min(fill->getNumWords(), numParts));

    // Zero out the excess bits of the significand.
    unsigned bitsToPreserve = semantics->precision - 1;
    unsigned part = bitsToPreserve / 64;
    bitsToPreserve %= 64;
    significand[part] &= ((1ULL << bitsToPreserve) - 1);
    for (part++; part != numParts; ++part)
      significand[part] = 0;
  }

  unsigned QNaNBit = semantics->precision - 2;

  if (SNaN) {
    // We always have to clear the QNaN bit to make it an SNaN.
    APInt::tcClearBit(significand, QNaNBit);

    // If there are no bits set in the payload, we have to set
    // *something* to make it a NaN instead of an infinity;
    // conventionally, this is the next bit down from the QNaN bit.
    if (APInt::tcIsZero(significand, numParts))
      APInt::tcSetBit(significand, QNaNBit - 1);
  } else {
    // We always have to set the QNaN bit to make it a QNaN.
    APInt::tcSetBit(significand, QNaNBit);
  }

  // For x87 extended precision, we want to make a NaN, not a
  // pseudo-NaN.  Maybe we should expose the ability to make
  // pseudo-NaNs?
  if (semantics == &semX87DoubleExtended)
    APInt::tcSetBit(significand, QNaNBit + 1);
}

IEEEFloat &IEEEFloat::operator=(const IEEEFloat &rhs) {
  if (this != &rhs) {
    if (semantics != rhs.semantics) {
      freeSignificand();
      initialize(rhs.semantics);
    }
    assign(rhs);
  }

  return *this;
}

IEEEFloat &IEEEFloat::operator=(IEEEFloat &&rhs) {
  freeSignificand();

  semantics = rhs.semantics;
  significand = rhs.significand;
  exponent = rhs.exponent;
  category = rhs.category;
  sign = rhs.sign;

  rhs.semantics = &semBogus;
  return *this;
}

bool IEEEFloat::isDenormal() const {
  return isFiniteNonZero() && (exponent == semantics->minExponent) &&
         (APInt::tcExtractBit(significandParts(),
                              semantics->precision - 1) == 0);
}

bool IEEEFloat::isSmallest() const {
  // The smallest number by magnitude in our format will be the smallest
  // denormal, i.e. the floating point number with exponent being minimum
  // exponent and significand bitwise equal to 1 (i.e. with MSB equal to 0).
  return isFiniteNonZero() && exponent == semantics->minExponent &&
    significandMSB() == 0;
}

bool IEEEFloat::isSignificandAllOnes() const {
  // Test if the significand excluding the integral bit is all ones. This allows
  // us to test for binade boundaries.
  const integerPart *Parts = significandParts();
  const unsigned PartCount = partCount();
  for (unsigned i = 0; i < PartCount - 1; i++)
    if (~Parts[i])
      return false;

  // Set the unused high bits to all ones when we compare.
  const unsigned NumHighBits =
    PartCount*integerPartWidth - semantics->precision + 1;
  assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
         "fill than integerPartWidth");
  const integerPart HighBitFill =
    ~integerPart(0) << (integerPartWidth - NumHighBits);
  if (~(Parts[PartCount - 1] | HighBitFill))
    return false;

  return true;
}

bool IEEEFloat::isSignificandAllZeros() const {
  // Test if the significand excluding the integral bit is all zeros. This
  // allows us to test for binade boundaries.
  const integerPart *Parts = significandParts();
  const unsigned PartCount = partCount();

  for (unsigned i = 0; i < PartCount - 1; i++)
    if (Parts[i])
      return false;

  const unsigned NumHighBits =
    PartCount*integerPartWidth - semantics->precision + 1;
  assert(NumHighBits <= integerPartWidth && "Can not have more high bits to "
         "clear than integerPartWidth");
  const integerPart HighBitMask = ~integerPart(0) >> NumHighBits;

  if (Parts[PartCount - 1] & HighBitMask)
    return false;

  return true;
}

bool IEEEFloat::isLargest() const {
  // The largest number by magnitude in our format will be the floating point
  // number with maximum exponent and with significand that is all ones.
  return isFiniteNonZero() && exponent == semantics->maxExponent
    && isSignificandAllOnes();
}

bool IEEEFloat::isInteger() const {
  // This could be made more efficient; I'm going for obviously correct.
  if (!isFinite()) return false;
  IEEEFloat truncated = *this;
  truncated.roundToIntegral(rmTowardZero);
  return compare(truncated) == cmpEqual;
}

bool IEEEFloat::bitwiseIsEqual(const IEEEFloat &rhs) const {
  if (this == &rhs)
    return true;
  if (semantics != rhs.semantics ||
      category != rhs.category ||
      sign != rhs.sign)
    return false;
  if (category==fcZero || category==fcInfinity)
    return true;

  if (isFiniteNonZero() && exponent != rhs.exponent)
    return false;

  return std::equal(significandParts(), significandParts() + partCount(),
                    rhs.significandParts());
}

IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, integerPart value) {
  initialize(&ourSemantics);
  sign = 0;
  category = fcNormal;
  zeroSignificand();
  exponent = ourSemantics.precision - 1;
  significandParts()[0] = value;
  normalize(rmNearestTiesToEven, lfExactlyZero);
}

IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics) {
  initialize(&ourSemantics);
  category = fcZero;
  sign = false;
}

// Delegate to the previous constructor, because later copy constructor may
// actually inspects category, which can't be garbage.
IEEEFloat::IEEEFloat(const fltSemantics &ourSemantics, uninitializedTag tag)
    : IEEEFloat(ourSemantics) {}

IEEEFloat::IEEEFloat(const IEEEFloat &rhs) {
  initialize(rhs.semantics);
  assign(rhs);
}

IEEEFloat::IEEEFloat(IEEEFloat &&rhs) : semantics(&semBogus) {
  *this = std::move(rhs);
}

IEEEFloat::~IEEEFloat() { freeSignificand(); }

unsigned int IEEEFloat::partCount() const {
  return partCountForBits(semantics->precision + 1);
}

const IEEEFloat::integerPart *IEEEFloat::significandParts() const {
  return const_cast<IEEEFloat *>(this)->significandParts();
}

IEEEFloat::integerPart *IEEEFloat::significandParts() {
  if (partCount() > 1)
    return significand.parts;
  else
    return &significand.part;
}

void IEEEFloat::zeroSignificand() {
  APInt::tcSet(significandParts(), 0, partCount());
}

/* Increment an fcNormal floating point number's significand.  */
void IEEEFloat::incrementSignificand() {
  integerPart carry;

  carry = APInt::tcIncrement(significandParts(), partCount());

  /* Our callers should never cause us to overflow.  */
  assert(carry == 0);
  (void)carry;
}

/* Add the significand of the RHS.  Returns the carry flag.  */
IEEEFloat::integerPart IEEEFloat::addSignificand(const IEEEFloat &rhs) {
  integerPart *parts;

  parts = significandParts();

  assert(semantics == rhs.semantics);
  assert(exponent == rhs.exponent);

  return APInt::tcAdd(parts, rhs.significandParts(), 0, partCount());
}

/* Subtract the significand of the RHS with a borrow flag.  Returns
   the borrow flag.  */
IEEEFloat::integerPart IEEEFloat::subtractSignificand(const IEEEFloat &rhs,
                                                      integerPart borrow) {
  integerPart *parts;

  parts = significandParts();

  assert(semantics == rhs.semantics);
  assert(exponent == rhs.exponent);

  return APInt::tcSubtract(parts, rhs.significandParts(), borrow,
                           partCount());
}

/* Multiply the significand of the RHS.  If ADDEND is non-NULL, add it
   on to the full-precision result of the multiplication.  Returns the
   lost fraction.  */
lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs,
                                            IEEEFloat addend) {
  unsigned int omsb;        // One, not zero, based MSB.
  unsigned int partsCount, newPartsCount, precision;
  integerPart *lhsSignificand;
  integerPart scratch[4];
  integerPart *fullSignificand;
  lostFraction lost_fraction;
  bool ignored;

  assert(semantics == rhs.semantics);

  precision = semantics->precision;

  // Allocate space for twice as many bits as the original significand, plus one
  // extra bit for the addition to overflow into.
  newPartsCount = partCountForBits(precision * 2 + 1);

  if (newPartsCount > 4)
    fullSignificand = new integerPart[newPartsCount];
  else
    fullSignificand = scratch;

  lhsSignificand = significandParts();
  partsCount = partCount();

  APInt::tcFullMultiply(fullSignificand, lhsSignificand,
                        rhs.significandParts(), partsCount, partsCount);

  lost_fraction = lfExactlyZero;
  omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
  exponent += rhs.exponent;

  // Assume the operands involved in the multiplication are single-precision
  // FP, and the two multiplicants are:
  //   *this = a23 . a22 ... a0 * 2^e1
  //     rhs = b23 . b22 ... b0 * 2^e2
  // the result of multiplication is:
  //   *this = c48 c47 c46 . c45 ... c0 * 2^(e1+e2)
  // Note that there are three significant bits at the left-hand side of the
  // radix point: two for the multiplication, and an overflow bit for the
  // addition (that will always be zero at this point). Move the radix point
  // toward left by two bits, and adjust exponent accordingly.
  exponent += 2;

  if (addend.isNonZero()) {
    // The intermediate result of the multiplication has "2 * precision"
    // signicant bit; adjust the addend to be consistent with mul result.
    //
    Significand savedSignificand = significand;
    const fltSemantics *savedSemantics = semantics;
    fltSemantics extendedSemantics;
    opStatus status;
    unsigned int extendedPrecision;

    // Normalize our MSB to one below the top bit to allow for overflow.
    extendedPrecision = 2 * precision + 1;
    if (omsb != extendedPrecision - 1) {
      assert(extendedPrecision > omsb);
      APInt::tcShiftLeft(fullSignificand, newPartsCount,
                         (extendedPrecision - 1) - omsb);
      exponent -= (extendedPrecision - 1) - omsb;
    }

    /* Create new semantics.  */
    extendedSemantics = *semantics;
    extendedSemantics.precision = extendedPrecision;

    if (newPartsCount == 1)
      significand.part = fullSignificand[0];
    else
      significand.parts = fullSignificand;
    semantics = &extendedSemantics;

    // Make a copy so we can convert it to the extended semantics.
    // Note that we cannot convert the addend directly, as the extendedSemantics
    // is a local variable (which we take a reference to).
    IEEEFloat extendedAddend(addend);
    status = extendedAddend.convert(extendedSemantics, rmTowardZero, &ignored);
    assert(status == opOK);
    (void)status;

    // Shift the significand of the addend right by one bit. This guarantees
    // that the high bit of the significand is zero (same as fullSignificand),
    // so the addition will overflow (if it does overflow at all) into the top bit.
    lost_fraction = extendedAddend.shiftSignificandRight(1);
    assert(lost_fraction == lfExactlyZero &&
           "Lost precision while shifting addend for fused-multiply-add.");

    lost_fraction = addOrSubtractSignificand(extendedAddend, false);

    /* Restore our state.  */
    if (newPartsCount == 1)
      fullSignificand[0] = significand.part;
    significand = savedSignificand;
    semantics = savedSemantics;

    omsb = APInt::tcMSB(fullSignificand, newPartsCount) + 1;
  }

  // Convert the result having "2 * precision" significant-bits back to the one
  // having "precision" significant-bits. First, move the radix point from
  // poision "2*precision - 1" to "precision - 1". The exponent need to be
  // adjusted by "2*precision - 1" - "precision - 1" = "precision".
  exponent -= precision + 1;

  // In case MSB resides at the left-hand side of radix point, shift the
  // mantissa right by some amount to make sure the MSB reside right before
  // the radix point (i.e. "MSB . rest-significant-bits").
  //
  // Note that the result is not normalized when "omsb < precision". So, the
  // caller needs to call IEEEFloat::normalize() if normalized value is
  // expected.
  if (omsb > precision) {
    unsigned int bits, significantParts;
    lostFraction lf;

    bits = omsb - precision;
    significantParts = partCountForBits(omsb);
    lf = shiftRight(fullSignificand, significantParts, bits);
    lost_fraction = combineLostFractions(lf, lost_fraction);
    exponent += bits;
  }

  APInt::tcAssign(lhsSignificand, fullSignificand, partsCount);

  if (newPartsCount > 4)
    delete [] fullSignificand;

  return lost_fraction;
}

lostFraction IEEEFloat::multiplySignificand(const IEEEFloat &rhs) {
  return multiplySignificand(rhs, IEEEFloat(*semantics));
}

/* Multiply the significands of LHS and RHS to DST.  */
lostFraction IEEEFloat::divideSignificand(const IEEEFloat &rhs) {
  unsigned int bit, i, partsCount;
  const integerPart *rhsSignificand;
  integerPart *lhsSignificand, *dividend, *divisor;
  integerPart scratch[4];
  lostFraction lost_fraction;

  assert(semantics == rhs.semantics);

  lhsSignificand = significandParts();
  rhsSignificand = rhs.significandParts();
  partsCount = partCount();

  if (partsCount > 2)
    dividend = new integerPart[partsCount * 2];
  else
    dividend = scratch;

  divisor = dividend + partsCount;

  /* Copy the dividend and divisor as they will be modified in-place.  */
  for (i = 0; i < partsCount; i++) {
    dividend[i] = lhsSignificand[i];
    divisor[i] = rhsSignificand[i];
    lhsSignificand[i] = 0;
  }

  exponent -= rhs.exponent;

  unsigned int precision = semantics->precision;

  /* Normalize the divisor.  */
  bit = precision - APInt::tcMSB(divisor, partsCount) - 1;
  if (bit) {
    exponent += bit;
    APInt::tcShiftLeft(divisor, partsCount, bit);
  }

  /* Normalize the dividend.  */
  bit = precision - APInt::tcMSB(dividend, partsCount) - 1;
  if (bit) {
    exponent -= bit;
    APInt::tcShiftLeft(dividend, partsCount, bit);
  }

  /* Ensure the dividend >= divisor initially for the loop below.
     Incidentally, this means that the division loop below is
     guaranteed to set the integer bit to one.  */
  if (APInt::tcCompare(dividend, divisor, partsCount) < 0) {
    exponent--;
    APInt::tcShiftLeft(dividend, partsCount, 1);
    assert(APInt::tcCompare(dividend, divisor, partsCount) >= 0);
  }

  /* Long division.  */
  for (bit = precision; bit; bit -= 1) {
    if (APInt::tcCompare(dividend, divisor, partsCount) >= 0) {
      APInt::tcSubtract(dividend, divisor, 0, partsCount);
      APInt::tcSetBit(lhsSignificand, bit - 1);
    }

    APInt::tcShiftLeft(dividend, partsCount, 1);
  }

  /* Figure out the lost fraction.  */
  int cmp = APInt::tcCompare(dividend, divisor, partsCount);

  if (cmp > 0)
    lost_fraction = lfMoreThanHalf;
  else if (cmp == 0)
    lost_fraction = lfExactlyHalf;
  else if (APInt::tcIsZero(dividend, partsCount))
    lost_fraction = lfExactlyZero;
  else
    lost_fraction = lfLessThanHalf;

  if (partsCount > 2)
    delete [] dividend;

  return lost_fraction;
}

unsigned int IEEEFloat::significandMSB() const {
  return APInt::tcMSB(significandParts(), partCount());
}

unsigned int IEEEFloat::significandLSB() const {
  return APInt::tcLSB(significandParts(), partCount());
}

/* Note that a zero result is NOT normalized to fcZero.  */
lostFraction IEEEFloat::shiftSignificandRight(unsigned int bits) {
  /* Our exponent should not overflow.  */
  assert((ExponentType) (exponent + bits) >= exponent);

  exponent += bits;

  return shiftRight(significandParts(), partCount(), bits);
}

/* Shift the significand left BITS bits, subtract BITS from its exponent.  */
void IEEEFloat::shiftSignificandLeft(unsigned int bits) {
  assert(bits < semantics->precision);

  if (bits) {
    unsigned int partsCount = partCount();

    APInt::tcShiftLeft(significandParts(), partsCount, bits);
    exponent -= bits;

    assert(!APInt::tcIsZero(significandParts(), partsCount));
  }
}

IEEEFloat::cmpResult
IEEEFloat::compareAbsoluteValue(const IEEEFloat &rhs) const {
  int compare;

  assert(semantics == rhs.semantics);
  assert(isFiniteNonZero());
  assert(rhs.isFiniteNonZero());

  compare = exponent - rhs.exponent;

  /* If exponents are equal, do an unsigned bignum comparison of the
     significands.  */
  if (compare == 0)
    compare = APInt::tcCompare(significandParts(), rhs.significandParts(),
                               partCount());

  if (compare > 0)
    return cmpGreaterThan;
  else if (compare < 0)
    return cmpLessThan;
  else
    return cmpEqual;
}

/* Handle overflow.  Sign is preserved.  We either become infinity or
   the largest finite number.  */
IEEEFloat::opStatus IEEEFloat::handleOverflow(roundingMode rounding_mode) {
  /* Infinity?  */
  if (rounding_mode == rmNearestTiesToEven ||
      rounding_mode == rmNearestTiesToAway ||
      (rounding_mode == rmTowardPositive && !sign) ||
      (rounding_mode == rmTowardNegative && sign)) {
    category = fcInfinity;
    return (opStatus) (opOverflow | opInexact);
  }

  /* Otherwise we become the largest finite number.  */
  category = fcNormal;
  exponent = semantics->maxExponent;
  APInt::tcSetLeastSignificantBits(significandParts(), partCount(),
                                   semantics->precision);

  return opInexact;
}

/* Returns TRUE if, when truncating the current number, with BIT the
   new LSB, with the given lost fraction and rounding mode, the result
   would need to be rounded away from zero (i.e., by increasing the
   signficand).  This routine must work for fcZero of both signs, and
   fcNormal numbers.  */
bool IEEEFloat::roundAwayFromZero(roundingMode rounding_mode,
                                  lostFraction lost_fraction,
                                  unsigned int bit) const {
  /* NaNs and infinities should not have lost fractions.  */
  assert(isFiniteNonZero() || category == fcZero);

  /* Current callers never pass this so we don't handle it.  */
  assert(lost_fraction != lfExactlyZero);

  switch (rounding_mode) {
  case rmNearestTiesToAway:
    return lost_fraction == lfExactlyHalf || lost_fraction == lfMoreThanHalf;

  case rmNearestTiesToEven:
    if (lost_fraction == lfMoreThanHalf)
      return true;

    /* Our zeroes don't have a significand to test.  */
    if (lost_fraction == lfExactlyHalf && category != fcZero)
      return APInt::tcExtractBit(significandParts(), bit);

    return false;

  case rmTowardZero:
    return false;

  case rmTowardPositive:
    return !sign;

  case rmTowardNegative:
    return sign;

  default:
    break;
  }
  llvm_unreachable("Invalid rounding mode found");
}

IEEEFloat::opStatus IEEEFloat::normalize(roundingMode rounding_mode,
                                         lostFraction lost_fraction) {
  unsigned int omsb;                /* One, not zero, based MSB.  */
  int exponentChange;

  if (!isFiniteNonZero())
    return opOK;

  /* Before rounding normalize the exponent of fcNormal numbers.  */
  omsb = significandMSB() + 1;

  if (omsb) {
    /* OMSB is numbered from 1.  We want to place it in the integer
       bit numbered PRECISION if possible, with a compensating change in
       the exponent.  */
    exponentChange = omsb - semantics->precision;

    /* If the resulting exponent is too high, overflow according to
       the rounding mode.  */
    if (exponent + exponentChange > semantics->maxExponent)
      return handleOverflow(rounding_mode);

    /* Subnormal numbers have exponent minExponent, and their MSB
       is forced based on that.  */
    if (exponent + exponentChange < semantics->minExponent)
      exponentChange = semantics->minExponent - exponent;

    /* Shifting left is easy as we don't lose precision.  */
    if (exponentChange < 0) {
      assert(lost_fraction == lfExactlyZero);

      shiftSignificandLeft(-exponentChange);

      return opOK;
    }

    if (exponentChange > 0) {
      lostFraction lf;

      /* Shift right and capture any new lost fraction.  */
      lf = shiftSignificandRight(exponentChange);

      lost_fraction = combineLostFractions(lf, lost_fraction);

      /* Keep OMSB up-to-date.  */
      if (omsb > (unsigned) exponentChange)
        omsb -= exponentChange;
      else
        omsb = 0;
    }
  }

  /* Now round the number according to rounding_mode given the lost
     fraction.  */

  /* As specified in IEEE 754, since we do not trap we do not report
     underflow for exact results.  */
  if (lost_fraction == lfExactlyZero) {
    /* Canonicalize zeroes.  */
    if (omsb == 0)
      category = fcZero;

    return opOK;
  }

  /* Increment the significand if we're rounding away from zero.  */
  if (roundAwayFromZero(rounding_mode, lost_fraction, 0)) {
    if (omsb == 0)
      exponent = semantics->minExponent;

    incrementSignificand();
    omsb = significandMSB() + 1;

    /* Did the significand increment overflow?  */
    if (omsb == (unsigned) semantics->precision + 1) {
      /* Renormalize by incrementing the exponent and shifting our
         significand right one.  However if we already have the
         maximum exponent we overflow to infinity.  */
      if (exponent == semantics->maxExponent) {
        category = fcInfinity;

        return (opStatus) (opOverflow | opInexact);
      }

      shiftSignificandRight(1);

      return opInexact;
    }
  }

  /* The normal case - we were and are not denormal, and any
     significand increment above didn't overflow.  */
  if (omsb == semantics->precision)
    return opInexact;

  /* We have a non-zero denormal.  */
  assert(omsb < semantics->precision);

  /* Canonicalize zeroes.  */
  if (omsb == 0)
    category = fcZero;

  /* The fcZero case is a denormal that underflowed to zero.  */
  return (opStatus) (opUnderflow | opInexact);
}

IEEEFloat::opStatus IEEEFloat::addOrSubtractSpecials(const IEEEFloat &rhs,
                                                     bool subtract) {
  switch (PackCategoriesIntoKey(category, rhs.category)) {
  default:
    llvm_unreachable(nullptr);

  case PackCategoriesIntoKey(fcZero, fcNaN):
  case PackCategoriesIntoKey(fcNormal, fcNaN):
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
    assign(rhs);
    LLVM_FALLTHROUGH;
  case PackCategoriesIntoKey(fcNaN, fcZero):
  case PackCategoriesIntoKey(fcNaN, fcNormal):
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
  case PackCategoriesIntoKey(fcNaN, fcNaN):
    if (isSignaling()) {
      makeQuiet();
      return opInvalidOp;
    }
    return rhs.isSignaling() ? opInvalidOp : opOK;

  case PackCategoriesIntoKey(fcNormal, fcZero):
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
  case PackCategoriesIntoKey(fcInfinity, fcZero):
    return opOK;

  case PackCategoriesIntoKey(fcNormal, fcInfinity):
  case PackCategoriesIntoKey(fcZero, fcInfinity):
    category = fcInfinity;
    sign = rhs.sign ^ subtract;
    return opOK;

  case PackCategoriesIntoKey(fcZero, fcNormal):
    assign(rhs);
    sign = rhs.sign ^ subtract;
    return opOK;

  case PackCategoriesIntoKey(fcZero, fcZero):
    /* Sign depends on rounding mode; handled by caller.  */
    return opOK;

  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
    /* Differently signed infinities can only be validly
       subtracted.  */
    if (((sign ^ rhs.sign)!=0) != subtract) {
      makeNaN();
      return opInvalidOp;
    }

    return opOK;

  case PackCategoriesIntoKey(fcNormal, fcNormal):
    return opDivByZero;
  }
}

/* Add or subtract two normal numbers.  */
lostFraction IEEEFloat::addOrSubtractSignificand(const IEEEFloat &rhs,
                                                 bool subtract) {
  integerPart carry;
  lostFraction lost_fraction;
  int bits;

  /* Determine if the operation on the absolute values is effectively
     an addition or subtraction.  */
  subtract ^= static_cast<bool>(sign ^ rhs.sign);

  /* Are we bigger exponent-wise than the RHS?  */
  bits = exponent - rhs.exponent;

  /* Subtraction is more subtle than one might naively expect.  */
  if (subtract) {
    IEEEFloat temp_rhs(rhs);

    if (bits == 0)
      lost_fraction = lfExactlyZero;
    else if (bits > 0) {
      lost_fraction = temp_rhs.shiftSignificandRight(bits - 1);
      shiftSignificandLeft(1);
    } else {
      lost_fraction = shiftSignificandRight(-bits - 1);
      temp_rhs.shiftSignificandLeft(1);
    }

    // Should we reverse the subtraction.
    if (compareAbsoluteValue(temp_rhs) == cmpLessThan) {
      carry = temp_rhs.subtractSignificand
        (*this, lost_fraction != lfExactlyZero);
      copySignificand(temp_rhs);
      sign = !sign;
    } else {
      carry = subtractSignificand
        (temp_rhs, lost_fraction != lfExactlyZero);
    }

    /* Invert the lost fraction - it was on the RHS and
       subtracted.  */
    if (lost_fraction == lfLessThanHalf)
      lost_fraction = lfMoreThanHalf;
    else if (lost_fraction == lfMoreThanHalf)
      lost_fraction = lfLessThanHalf;

    /* The code above is intended to ensure that no borrow is
       necessary.  */
    assert(!carry);
    (void)carry;
  } else {
    if (bits > 0) {
      IEEEFloat temp_rhs(rhs);

      lost_fraction = temp_rhs.shiftSignificandRight(bits);
      carry = addSignificand(temp_rhs);
    } else {
      lost_fraction = shiftSignificandRight(-bits);
      carry = addSignificand(rhs);
    }

    /* We have a guard bit; generating a carry cannot happen.  */
    assert(!carry);
    (void)carry;
  }

  return lost_fraction;
}

IEEEFloat::opStatus IEEEFloat::multiplySpecials(const IEEEFloat &rhs) {
  switch (PackCategoriesIntoKey(category, rhs.category)) {
  default:
    llvm_unreachable(nullptr);

  case PackCategoriesIntoKey(fcZero, fcNaN):
  case PackCategoriesIntoKey(fcNormal, fcNaN):
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
    assign(rhs);
    sign = false;
    LLVM_FALLTHROUGH;
  case PackCategoriesIntoKey(fcNaN, fcZero):
  case PackCategoriesIntoKey(fcNaN, fcNormal):
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
  case PackCategoriesIntoKey(fcNaN, fcNaN):
    sign ^= rhs.sign; // restore the original sign
    if (isSignaling()) {
      makeQuiet();
      return opInvalidOp;
    }
    return rhs.isSignaling() ? opInvalidOp : opOK;

  case PackCategoriesIntoKey(fcNormal, fcInfinity):
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
    category = fcInfinity;
    return opOK;

  case PackCategoriesIntoKey(fcZero, fcNormal):
  case PackCategoriesIntoKey(fcNormal, fcZero):
  case PackCategoriesIntoKey(fcZero, fcZero):
    category = fcZero;
    return opOK;

  case PackCategoriesIntoKey(fcZero, fcInfinity):
  case PackCategoriesIntoKey(fcInfinity, fcZero):
    makeNaN();
    return opInvalidOp;

  case PackCategoriesIntoKey(fcNormal, fcNormal):
    return opOK;
  }
}

IEEEFloat::opStatus IEEEFloat::divideSpecials(const IEEEFloat &rhs) {
  switch (PackCategoriesIntoKey(category, rhs.category)) {
  default:
    llvm_unreachable(nullptr);

  case PackCategoriesIntoKey(fcZero, fcNaN):
  case PackCategoriesIntoKey(fcNormal, fcNaN):
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
    assign(rhs);
    sign = false;
    LLVM_FALLTHROUGH;
  case PackCategoriesIntoKey(fcNaN, fcZero):
  case PackCategoriesIntoKey(fcNaN, fcNormal):
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
  case PackCategoriesIntoKey(fcNaN, fcNaN):
    sign ^= rhs.sign; // restore the original sign
    if (isSignaling()) {
      makeQuiet();
      return opInvalidOp;
    }
    return rhs.isSignaling() ? opInvalidOp : opOK;

  case PackCategoriesIntoKey(fcInfinity, fcZero):
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
  case PackCategoriesIntoKey(fcZero, fcInfinity):
  case PackCategoriesIntoKey(fcZero, fcNormal):
    return opOK;

  case PackCategoriesIntoKey(fcNormal, fcInfinity):
    category = fcZero;
    return opOK;

  case PackCategoriesIntoKey(fcNormal, fcZero):
    category = fcInfinity;
    return opDivByZero;

  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
  case PackCategoriesIntoKey(fcZero, fcZero):
    makeNaN();
    return opInvalidOp;

  case PackCategoriesIntoKey(fcNormal, fcNormal):
    return opOK;
  }
}

IEEEFloat::opStatus IEEEFloat::modSpecials(const IEEEFloat &rhs) {
  switch (PackCategoriesIntoKey(category, rhs.category)) {
  default:
    llvm_unreachable(nullptr);

  case PackCategoriesIntoKey(fcZero, fcNaN):
  case PackCategoriesIntoKey(fcNormal, fcNaN):
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
    assign(rhs);
    LLVM_FALLTHROUGH;
  case PackCategoriesIntoKey(fcNaN, fcZero):
  case PackCategoriesIntoKey(fcNaN, fcNormal):
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
  case PackCategoriesIntoKey(fcNaN, fcNaN):
    if (isSignaling()) {
      makeQuiet();
      return opInvalidOp;
    }
    return rhs.isSignaling() ? opInvalidOp : opOK;

  case PackCategoriesIntoKey(fcZero, fcInfinity):
  case PackCategoriesIntoKey(fcZero, fcNormal):
  case PackCategoriesIntoKey(fcNormal, fcInfinity):
    return opOK;

  case PackCategoriesIntoKey(fcNormal, fcZero):
  case PackCategoriesIntoKey(fcInfinity, fcZero):
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
  case PackCategoriesIntoKey(fcZero, fcZero):
    makeNaN();
    return opInvalidOp;

  case PackCategoriesIntoKey(fcNormal, fcNormal):
    return opOK;
  }
}

IEEEFloat::opStatus IEEEFloat::remainderSpecials(const IEEEFloat &rhs) {
  switch (PackCategoriesIntoKey(category, rhs.category)) {
  default:
    llvm_unreachable(nullptr);

  case PackCategoriesIntoKey(fcZero, fcNaN):
  case PackCategoriesIntoKey(fcNormal, fcNaN):
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
    assign(rhs);
    LLVM_FALLTHROUGH;
  case PackCategoriesIntoKey(fcNaN, fcZero):
  case PackCategoriesIntoKey(fcNaN, fcNormal):
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
  case PackCategoriesIntoKey(fcNaN, fcNaN):
    if (isSignaling()) {
      makeQuiet();
      return opInvalidOp;
    }
    return rhs.isSignaling() ? opInvalidOp : opOK;

  case PackCategoriesIntoKey(fcZero, fcInfinity):
  case PackCategoriesIntoKey(fcZero, fcNormal):
  case PackCategoriesIntoKey(fcNormal, fcInfinity):
    return opOK;

  case PackCategoriesIntoKey(fcNormal, fcZero):
  case PackCategoriesIntoKey(fcInfinity, fcZero):
  case PackCategoriesIntoKey(fcInfinity, fcNormal):
  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
  case PackCategoriesIntoKey(fcZero, fcZero):
    makeNaN();
    return opInvalidOp;

  case PackCategoriesIntoKey(fcNormal, fcNormal):
    return opDivByZero; // fake status, indicating this is not a special case
  }
}

/* Change sign.  */
void IEEEFloat::changeSign() {
  /* Look mummy, this one's easy.  */
  sign = !sign;
}

/* Normalized addition or subtraction.  */
IEEEFloat::opStatus IEEEFloat::addOrSubtract(const IEEEFloat &rhs,
                                             roundingMode rounding_mode,
                                             bool subtract) {
  opStatus fs;

  fs = addOrSubtractSpecials(rhs, subtract);

  /* This return code means it was not a simple case.  */
  if (fs == opDivByZero) {
    lostFraction lost_fraction;

    lost_fraction = addOrSubtractSignificand(rhs, subtract);
    fs = normalize(rounding_mode, lost_fraction);

    /* Can only be zero if we lost no fraction.  */
    assert(category != fcZero || lost_fraction == lfExactlyZero);
  }

  /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
     positive zero unless rounding to minus infinity, except that
     adding two like-signed zeroes gives that zero.  */
  if (category == fcZero) {
    if (rhs.category != fcZero || (sign == rhs.sign) == subtract)
      sign = (rounding_mode == rmTowardNegative);
  }

  return fs;
}

/* Normalized addition.  */
IEEEFloat::opStatus IEEEFloat::add(const IEEEFloat &rhs,
                                   roundingMode rounding_mode) {
  return addOrSubtract(rhs, rounding_mode, false);
}

/* Normalized subtraction.  */
IEEEFloat::opStatus IEEEFloat::subtract(const IEEEFloat &rhs,
                                        roundingMode rounding_mode) {
  return addOrSubtract(rhs, rounding_mode, true);
}

/* Normalized multiply.  */
IEEEFloat::opStatus IEEEFloat::multiply(const IEEEFloat &rhs,
                                        roundingMode rounding_mode) {
  opStatus fs;

  sign ^= rhs.sign;
  fs = multiplySpecials(rhs);

  if (isFiniteNonZero()) {
    lostFraction lost_fraction = multiplySignificand(rhs);
    fs = normalize(rounding_mode, lost_fraction);
    if (lost_fraction != lfExactlyZero)
      fs = (opStatus) (fs | opInexact);
  }

  return fs;
}

/* Normalized divide.  */
IEEEFloat::opStatus IEEEFloat::divide(const IEEEFloat &rhs,
                                      roundingMode rounding_mode) {
  opStatus fs;

  sign ^= rhs.sign;
  fs = divideSpecials(rhs);

  if (isFiniteNonZero()) {
    lostFraction lost_fraction = divideSignificand(rhs);
    fs = normalize(rounding_mode, lost_fraction);
    if (lost_fraction != lfExactlyZero)
      fs = (opStatus) (fs | opInexact);
  }

  return fs;
}

/* Normalized remainder.  */
IEEEFloat::opStatus IEEEFloat::remainder(const IEEEFloat &rhs) {
  opStatus fs;
  unsigned int origSign = sign;

  // First handle the special cases.
  fs = remainderSpecials(rhs);
  if (fs != opDivByZero)
    return fs;

  fs = opOK;

  // Make sure the current value is less than twice the denom. If the addition
  // did not succeed (an overflow has happened), which means that the finite
  // value we currently posses must be less than twice the denom (as we are
  // using the same semantics).
  IEEEFloat P2 = rhs;
  if (P2.add(rhs, rmNearestTiesToEven) == opOK) {
    fs = mod(P2);
    assert(fs == opOK);
  }

  // Lets work with absolute numbers.
  IEEEFloat P = rhs;
  P.sign = false;
  sign = false;

  //
  // To calculate the remainder we use the following scheme.
  //
  // The remainder is defained as follows:
  //
  // remainder = numer - rquot * denom = x - r * p
  //
  // Where r is the result of: x/p, rounded toward the nearest integral value
  // (with halfway cases rounded toward the even number).
  //
  // Currently, (after x mod 2p):
  // r is the number of 2p's present inside x, which is inherently, an even
  // number of p's.
  //
  // We may split the remaining calculation into 4 options:
  // - if x < 0.5p then we round to the nearest number with is 0, and are done.
  // - if x == 0.5p then we round to the nearest even number which is 0, and we
  //   are done as well.
  // - if 0.5p < x < p then we round to nearest number which is 1, and we have
  //   to subtract 1p at least once.
  // - if x >= p then we must subtract p at least once, as x must be a
  //   remainder.
  //
  // By now, we were done, or we added 1 to r, which in turn, now an odd number.
  //
  // We can now split the remaining calculation to the following 3 options:
  // - if x < 0.5p then we round to the nearest number with is 0, and are done.
  // - if x == 0.5p then we round to the nearest even number. As r is odd, we
  //   must round up to the next even number. so we must subtract p once more.
  // - if x > 0.5p (and inherently x < p) then we must round r up to the next
  //   integral, and subtract p once more.
  //

  // Extend the semantics to prevent an overflow/underflow or inexact result.
  bool losesInfo;
  fltSemantics extendedSemantics = *semantics;
  extendedSemantics.maxExponent++;
  extendedSemantics.minExponent--;
  extendedSemantics.precision += 2;

  IEEEFloat VEx = *this;
  fs = VEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
  assert(fs == opOK && !losesInfo);
  IEEEFloat PEx = P;
  fs = PEx.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
  assert(fs == opOK && !losesInfo);

  // It is simpler to work with 2x instead of 0.5p, and we do not need to lose
  // any fraction.
  fs = VEx.add(VEx, rmNearestTiesToEven);
  assert(fs == opOK);

  if (VEx.compare(PEx) == cmpGreaterThan) {
    fs = subtract(P, rmNearestTiesToEven);
    assert(fs == opOK);

    // Make VEx = this.add(this), but because we have different semantics, we do
    // not want to `convert` again, so we just subtract PEx twice (which equals
    // to the desired value).
    fs = VEx.subtract(PEx, rmNearestTiesToEven);
    assert(fs == opOK);
    fs = VEx.subtract(PEx, rmNearestTiesToEven);
    assert(fs == opOK);

    cmpResult result = VEx.compare(PEx);
    if (result == cmpGreaterThan || result == cmpEqual) {
      fs = subtract(P, rmNearestTiesToEven);
      assert(fs == opOK);
    }
  }

  if (isZero())
    sign = origSign;    // IEEE754 requires this
  else
    sign ^= origSign;
  return fs;
}

/* Normalized llvm frem (C fmod). */
IEEEFloat::opStatus IEEEFloat::mod(const IEEEFloat &rhs) {
  opStatus fs;
  fs = modSpecials(rhs);
  unsigned int origSign = sign;

  while (isFiniteNonZero() && rhs.isFiniteNonZero() &&
         compareAbsoluteValue(rhs) != cmpLessThan) {
    IEEEFloat V = scalbn(rhs, ilogb(*this) - ilogb(rhs), rmNearestTiesToEven);
    if (compareAbsoluteValue(V) == cmpLessThan)
      V = scalbn(V, -1, rmNearestTiesToEven);
    V.sign = sign;

    fs = subtract(V, rmNearestTiesToEven);
    assert(fs==opOK);
  }
  if (isZero())
    sign = origSign; // fmod requires this
  return fs;
}

/* Normalized fused-multiply-add.  */
IEEEFloat::opStatus IEEEFloat::fusedMultiplyAdd(const IEEEFloat &multiplicand,
                                                const IEEEFloat &addend,
                                                roundingMode rounding_mode) {
  opStatus fs;

  /* Post-multiplication sign, before addition.  */
  sign ^= multiplicand.sign;

  /* If and only if all arguments are normal do we need to do an
     extended-precision calculation.  */
  if (isFiniteNonZero() &&
      multiplicand.isFiniteNonZero() &&
      addend.isFinite()) {
    lostFraction lost_fraction;

    lost_fraction = multiplySignificand(multiplicand, addend);
    fs = normalize(rounding_mode, lost_fraction);
    if (lost_fraction != lfExactlyZero)
      fs = (opStatus) (fs | opInexact);

    /* If two numbers add (exactly) to zero, IEEE 754 decrees it is a
       positive zero unless rounding to minus infinity, except that
       adding two like-signed zeroes gives that zero.  */
    if (category == fcZero && !(fs & opUnderflow) && sign != addend.sign)
      sign = (rounding_mode == rmTowardNegative);
  } else {
    fs = multiplySpecials(multiplicand);

    /* FS can only be opOK or opInvalidOp.  There is no more work
       to do in the latter case.  The IEEE-754R standard says it is
       implementation-defined in this case whether, if ADDEND is a
       quiet NaN, we raise invalid op; this implementation does so.

       If we need to do the addition we can do so with normal
       precision.  */
    if (fs == opOK)
      fs = addOrSubtract(addend, rounding_mode, false);
  }

  return fs;
}

/* Rounding-mode correct round to integral value.  */
IEEEFloat::opStatus IEEEFloat::roundToIntegral(roundingMode rounding_mode) {
  opStatus fs;

  if (isInfinity())
    // [IEEE Std 754-2008 6.1]:
    // The behavior of infinity in floating-point arithmetic is derived from the
    // limiting cases of real arithmetic with operands of arbitrarily
    // large magnitude, when such a limit exists.
    // ...
    // Operations on infinite operands are usually exact and therefore signal no
    // exceptions ...
    return opOK;

  if (isNaN()) {
    if (isSignaling()) {
      // [IEEE Std 754-2008 6.2]:
      // Under default exception handling, any operation signaling an invalid
      // operation exception and for which a floating-point result is to be
      // delivered shall deliver a quiet NaN.
      makeQuiet();
      // [IEEE Std 754-2008 6.2]:
      // Signaling NaNs shall be reserved operands that, under default exception
      // handling, signal the invalid operation exception(see 7.2) for every
      // general-computational and signaling-computational operation except for
      // the conversions described in 5.12.
      return opInvalidOp;
    } else {
      // [IEEE Std 754-2008 6.2]:
      // For an operation with quiet NaN inputs, other than maximum and minimum
      // operations, if a floating-point result is to be delivered the result
      // shall be a quiet NaN which should be one of the input NaNs.
      // ...
      // Every general-computational and quiet-computational operation involving
      // one or more input NaNs, none of them signaling, shall signal no
      // exception, except fusedMultiplyAdd might signal the invalid operation
      // exception(see 7.2).
      return opOK;
    }
  }

  if (isZero()) {
    // [IEEE Std 754-2008 6.3]:
    // ... the sign of the result of conversions, the quantize operation, the
    // roundToIntegral operations, and the roundToIntegralExact(see 5.3.1) is
    // the sign of the first or only operand.
    return opOK;
  }

  // If the exponent is large enough, we know that this value is already
  // integral, and the arithmetic below would potentially cause it to saturate
  // to +/-Inf.  Bail out early instead.
  if (exponent+1 >= (int)semanticsPrecision(*semantics))
    return opOK;

  // The algorithm here is quite simple: we add 2^(p-1), where p is the
  // precision of our format, and then subtract it back off again.  The choice
  // of rounding modes for the addition/subtraction determines the rounding mode
  // for our integral rounding as well.
  // NOTE: When the input value is negative, we do subtraction followed by
  // addition instead.
  APInt IntegerConstant(NextPowerOf2(semanticsPrecision(*semantics)), 1);
  IntegerConstant <<= semanticsPrecision(*semantics)-1;
  IEEEFloat MagicConstant(*semantics);
  fs = MagicConstant.convertFromAPInt(IntegerConstant, false,
                                      rmNearestTiesToEven);
  assert(fs == opOK);
  MagicConstant.sign = sign;

  // Preserve the input sign so that we can handle the case of zero result
  // correctly.
  bool inputSign = isNegative();

  fs = add(MagicConstant, rounding_mode);

  // Current value and 'MagicConstant' are both integers, so the result of the
  // subtraction is always exact according to Sterbenz' lemma.
  subtract(MagicConstant, rounding_mode);

  // Restore the input sign.
  if (inputSign != isNegative())
    changeSign();

  return fs;
}


/* Comparison requires normalized numbers.  */
IEEEFloat::cmpResult IEEEFloat::compare(const IEEEFloat &rhs) const {
  cmpResult result;

  assert(semantics == rhs.semantics);

  switch (PackCategoriesIntoKey(category, rhs.category)) {
  default:
    llvm_unreachable(nullptr);

  case PackCategoriesIntoKey(fcNaN, fcZero):
  case PackCategoriesIntoKey(fcNaN, fcNormal):
  case PackCategoriesIntoKey(fcNaN, fcInfinity):
  case PackCategoriesIntoKey(fcNaN, fcNaN):
  case PackCategoriesIntoKey(fcZero, fcNaN):
  case PackCategoriesIntoKey(fcNormal, fcNaN):
  case PackCategoriesIntoKey(fcInfinity, fcNaN):
    return cmpUnordered;

  case PackCategoriesIntoKey(fcInfinity, fcNormal):
  case PackCategoriesIntoKey(fcInfinity, fcZero):
  case PackCategoriesIntoKey(fcNormal, fcZero):
    if (sign)
      return cmpLessThan;
    else
      return cmpGreaterThan;

  case PackCategoriesIntoKey(fcNormal, fcInfinity):
  case PackCategoriesIntoKey(fcZero, fcInfinity):
  case PackCategoriesIntoKey(fcZero, fcNormal):
    if (rhs.sign)
      return cmpGreaterThan;
    else
      return cmpLessThan;

  case PackCategoriesIntoKey(fcInfinity, fcInfinity):
    if (sign == rhs.sign)
      return cmpEqual;
    else if (sign)
      return cmpLessThan;
    else
      return cmpGreaterThan;

  case PackCategoriesIntoKey(fcZero, fcZero):
    return cmpEqual;

  case PackCategoriesIntoKey(fcNormal, fcNormal):
    break;
  }

  /* Two normal numbers.  Do they have the same sign?  */
  if (sign != rhs.sign) {
    if (sign)
      result = cmpLessThan;
    else
      result = cmpGreaterThan;
  } else {
    /* Compare absolute values; invert result if negative.  */
    result = compareAbsoluteValue(rhs);

    if (sign) {
      if (result == cmpLessThan)
        result = cmpGreaterThan;
      else if (result == cmpGreaterThan)
        result = cmpLessThan;
    }
  }

  return result;
}

/// IEEEFloat::convert - convert a value of one floating point type to another.
/// The return value corresponds to the IEEE754 exceptions.  *losesInfo
/// records whether the transformation lost information, i.e. whether
/// converting the result back to the original type will produce the
/// original value (this is almost the same as return value==fsOK, but there
/// are edge cases where this is not so).

IEEEFloat::opStatus IEEEFloat::convert(const fltSemantics &toSemantics,
                                       roundingMode rounding_mode,
                                       bool *losesInfo) {
  lostFraction lostFraction;
  unsigned int newPartCount, oldPartCount;
  opStatus fs;
  int shift;
  const fltSemantics &fromSemantics = *semantics;

  lostFraction = lfExactlyZero;
  newPartCount = partCountForBits(toSemantics.precision + 1);
  oldPartCount = partCount();
  shift = toSemantics.precision - fromSemantics.precision;

  bool X86SpecialNan = false;
  if (&fromSemantics == &semX87DoubleExtended &&
      &toSemantics != &semX87DoubleExtended && category == fcNaN &&
      (!(*significandParts() & 0x8000000000000000ULL) ||
       !(*significandParts() & 0x4000000000000000ULL))) {
    // x86 has some unusual NaNs which cannot be represented in any other
    // format; note them here.
    X86SpecialNan = true;
  }

  // If this is a truncation of a denormal number, and the target semantics
  // has larger exponent range than the source semantics (this can happen
  // when truncating from PowerPC double-double to double format), the
  // right shift could lose result mantissa bits.  Adjust exponent instead
  // of performing excessive shift.
  if (shift < 0 && isFiniteNonZero()) {
    int exponentChange = significandMSB() + 1 - fromSemantics.precision;
    if (exponent + exponentChange < toSemantics.minExponent)
      exponentChange = toSemantics.minExponent - exponent;
    if (exponentChange < shift)
      exponentChange = shift;
    if (exponentChange < 0) {
      shift -= exponentChange;
      exponent += exponentChange;
    }
  }

  // If this is a truncation, perform the shift before we narrow the storage.
  if (shift < 0 && (isFiniteNonZero() || category==fcNaN))
    lostFraction = shiftRight(significandParts(), oldPartCount, -shift);

  // Fix the storage so it can hold to new value.
  if (newPartCount > oldPartCount) {
    // The new type requires more storage; make it available.
    integerPart *newParts;
    newParts = new integerPart[newPartCount];
    APInt::tcSet(newParts, 0, newPartCount);
    if (isFiniteNonZero() || category==fcNaN)
      APInt::tcAssign(newParts, significandParts(), oldPartCount);
    freeSignificand();
    significand.parts = newParts;
  } else if (newPartCount == 1 && oldPartCount != 1) {
    // Switch to built-in storage for a single part.
    integerPart newPart = 0;
    if (isFiniteNonZero() || category==fcNaN)
      newPart = significandParts()[0];
    freeSignificand();
    significand.part = newPart;
  }

  // Now that we have the right storage, switch the semantics.
  semantics = &toSemantics;

  // If this is an extension, perform the shift now that the storage is
  // available.
  if (shift > 0 && (isFiniteNonZero() || category==fcNaN))
    APInt::tcShiftLeft(significandParts(), newPartCount, shift);

  if (isFiniteNonZero()) {
    fs = normalize(rounding_mode, lostFraction);
    *losesInfo = (fs != opOK);
  } else if (category == fcNaN) {
    *losesInfo = lostFraction != lfExactlyZero || X86SpecialNan;

    // For x87 extended precision, we want to make a NaN, not a special NaN if
    // the input wasn't special either.
    if (!X86SpecialNan && semantics == &semX87DoubleExtended)
      APInt::tcSetBit(significandParts(), semantics->precision - 1);

    // If we are truncating NaN, it is possible that we shifted out all of the
    // set bits in a signalling NaN payload. But NaN must remain NaN, so some
    // bit in the significand must be set (otherwise it is Inf).
    // This can only happen with sNaN. Set the 1st bit after the quiet bit,
    // so that we still have an sNaN.
    // FIXME: Set quiet and return opInvalidOp (on convert of any sNaN).
    //        But this requires fixing LLVM to parse 32-bit hex FP or ignoring
    //        conversions while parsing IR.
    if (APInt::tcIsZero(significandParts(), newPartCount)) {
      assert(shift < 0 && "Should not lose NaN payload on extend");
      assert(semantics->precision >= 3 && "Unexpectedly narrow significand");
      assert(*losesInfo && "Missing payload should have set lost info");
      APInt::tcSetBit(significandParts(), semantics->precision - 3);
    }

    // gcc forces the Quiet bit on, which means (float)(double)(float_sNan)
    // does not give you back the same bits.  This is dubious, and we
    // don't currently do it.  You're really supposed to get
    // an invalid operation signal at runtime, but nobody does that.
    fs = opOK;
  } else {
    *losesInfo = false;
    fs = opOK;
  }

  return fs;
}

/* Convert a floating point number to an integer according to the
   rounding mode.  If the rounded integer value is out of range this
   returns an invalid operation exception and the contents of the
   destination parts are unspecified.  If the rounded value is in
   range but the floating point number is not the exact integer, the C
   standard doesn't require an inexact exception to be raised.  IEEE
   854 does require it so we do that.

   Note that for conversions to integer type the C standard requires
   round-to-zero to always be used.  */
IEEEFloat::opStatus IEEEFloat::convertToSignExtendedInteger(
    MutableArrayRef<integerPart> parts, unsigned int width, bool isSigned,
    roundingMode rounding_mode, bool *isExact) const {
  lostFraction lost_fraction;
  const integerPart *src;
  unsigned int dstPartsCount, truncatedBits;

  *isExact = false;

  /* Handle the three special cases first.  */
  if (category == fcInfinity || category == fcNaN)
    return opInvalidOp;

  dstPartsCount = partCountForBits(width);
  assert(dstPartsCount <= parts.size() && "Integer too big");

  if (category == fcZero) {
    APInt::tcSet(parts.data(), 0, dstPartsCount);
    // Negative zero can't be represented as an int.
    *isExact = !sign;
    return opOK;
  }

  src = significandParts();

  /* Step 1: place our absolute value, with any fraction truncated, in
     the destination.  */
  if (exponent < 0) {
    /* Our absolute value is less than one; truncate everything.  */
    APInt::tcSet(parts.data(), 0, dstPartsCount);
    /* For exponent -1 the integer bit represents .5, look at that.
       For smaller exponents leftmost truncated bit is 0. */
    truncatedBits = semantics->precision -1U - exponent;
  } else {
    /* We want the most significant (exponent + 1) bits; the rest are
       truncated.  */
    unsigned int bits = exponent + 1U;

    /* Hopelessly large in magnitude?  */
    if (bits > width)
      return opInvalidOp;

    if (bits < semantics->precision) {
      /* We truncate (semantics->precision - bits) bits.  */
      truncatedBits = semantics->precision - bits;
      APInt::tcExtract(parts.data(), dstPartsCount, src, bits, truncatedBits);
    } else {
      /* We want at least as many bits as are available.  */
      APInt::tcExtract(parts.data(), dstPartsCount, src, semantics->precision,
                       0);
      APInt::tcShiftLeft(parts.data(), dstPartsCount,
                         bits - semantics->precision);
      truncatedBits = 0;
    }
  }

  /* Step 2: work out any lost fraction, and increment the absolute
     value if we would round away from zero.  */
  if (truncatedBits) {
    lost_fraction = lostFractionThroughTruncation(src, partCount(),
                                                  truncatedBits);
    if (lost_fraction != lfExactlyZero &&
        roundAwayFromZero(rounding_mode, lost_fraction, truncatedBits)) {
      if (APInt::tcIncrement(parts.data(), dstPartsCount))
        return opInvalidOp;     /* Overflow.  */
    }
  } else {
    lost_fraction = lfExactlyZero;
  }

  /* Step 3: check if we fit in the destination.  */
  unsigned int omsb = APInt::tcMSB(parts.data(), dstPartsCount) + 1;

  if (sign) {
    if (!isSigned) {
      /* Negative numbers cannot be represented as unsigned.  */
      if (omsb != 0)
        return opInvalidOp;
    } else {
      /* It takes omsb bits to represent the unsigned integer value.
         We lose a bit for the sign, but care is needed as the
         maximally negative integer is a special case.  */
      if (omsb == width &&
          APInt::tcLSB(parts.data(), dstPartsCount) + 1 != omsb)
        return opInvalidOp;

      /* This case can happen because of rounding.  */
      if (omsb > width)
        return opInvalidOp;
    }

    APInt::tcNegate (parts.data(), dstPartsCount);
  } else {
    if (omsb >= width + !isSigned)
      return opInvalidOp;
  }

  if (lost_fraction == lfExactlyZero) {
    *isExact = true;
    return opOK;
  } else
    return opInexact;
}

/* Same as convertToSignExtendedInteger, except we provide
   deterministic values in case of an invalid operation exception,
   namely zero for NaNs and the minimal or maximal value respectively
   for underflow or overflow.
   The *isExact output tells whether the result is exact, in the sense
   that converting it back to the original floating point type produces
   the original value.  This is almost equivalent to result==opOK,
   except for negative zeroes.
*/
IEEEFloat::opStatus
IEEEFloat::convertToInteger(MutableArrayRef<integerPart> parts,
                            unsigned int width, bool isSigned,
                            roundingMode rounding_mode, bool *isExact) const {
  opStatus fs;

  fs = convertToSignExtendedInteger(parts, width, isSigned, rounding_mode,
                                    isExact);

  if (fs == opInvalidOp) {
    unsigned int bits, dstPartsCount;

    dstPartsCount = partCountForBits(width);
    assert(dstPartsCount <= parts.size() && "Integer too big");

    if (category == fcNaN)
      bits = 0;
    else if (sign)
      bits = isSigned;
    else
      bits = width - isSigned;

    APInt::tcSetLeastSignificantBits(parts.data(), dstPartsCount, bits);
    if (sign && isSigned)
      APInt::tcShiftLeft(parts.data(), dstPartsCount, width - 1);
  }

  return fs;
}

/* Convert an unsigned integer SRC to a floating point number,
   rounding according to ROUNDING_MODE.  The sign of the floating
   point number is not modified.  */
IEEEFloat::opStatus IEEEFloat::convertFromUnsignedParts(
    const integerPart *src, unsigned int srcCount, roundingMode rounding_mode) {
  unsigned int omsb, precision, dstCount;
  integerPart *dst;
  lostFraction lost_fraction;

  category = fcNormal;
  omsb = APInt::tcMSB(src, srcCount) + 1;
  dst = significandParts();
  dstCount = partCount();
  precision = semantics->precision;

  /* We want the most significant PRECISION bits of SRC.  There may not
     be that many; extract what we can.  */
  if (precision <= omsb) {
    exponent = omsb - 1;
    lost_fraction = lostFractionThroughTruncation(src, srcCount,
                                                  omsb - precision);
    APInt::tcExtract(dst, dstCount, src, precision, omsb - precision);
  } else {
    exponent = precision - 1;
    lost_fraction = lfExactlyZero;
    APInt::tcExtract(dst, dstCount, src, omsb, 0);
  }

  return normalize(rounding_mode, lost_fraction);
}

IEEEFloat::opStatus IEEEFloat::convertFromAPInt(const APInt &Val, bool isSigned,
                                                roundingMode rounding_mode) {
  unsigned int partCount = Val.getNumWords();
  APInt api = Val;

  sign = false;
  if (isSigned && api.isNegative()) {
    sign = true;
    api = -api;
  }

  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
}

/* Convert a two's complement integer SRC to a floating point number,
   rounding according to ROUNDING_MODE.  ISSIGNED is true if the
   integer is signed, in which case it must be sign-extended.  */
IEEEFloat::opStatus
IEEEFloat::convertFromSignExtendedInteger(const integerPart *src,
                                          unsigned int srcCount, bool isSigned,
                                          roundingMode rounding_mode) {
  opStatus status;

  if (isSigned &&
      APInt::tcExtractBit(src, srcCount * integerPartWidth - 1)) {
    integerPart *copy;

    /* If we're signed and negative negate a copy.  */
    sign = true;
    copy = new integerPart[srcCount];
    APInt::tcAssign(copy, src, srcCount);
    APInt::tcNegate(copy, srcCount);
    status = convertFromUnsignedParts(copy, srcCount, rounding_mode);
    delete [] copy;
  } else {
    sign = false;
    status = convertFromUnsignedParts(src, srcCount, rounding_mode);
  }

  return status;
}

/* FIXME: should this just take a const APInt reference?  */
IEEEFloat::opStatus
IEEEFloat::convertFromZeroExtendedInteger(const integerPart *parts,
                                          unsigned int width, bool isSigned,
                                          roundingMode rounding_mode) {
  unsigned int partCount = partCountForBits(width);
  APInt api = APInt(width, makeArrayRef(parts, partCount));

  sign = false;
  if (isSigned && APInt::tcExtractBit(parts, width - 1)) {
    sign = true;
    api = -api;
  }

  return convertFromUnsignedParts(api.getRawData(), partCount, rounding_mode);
}

Expected<IEEEFloat::opStatus>
IEEEFloat::convertFromHexadecimalString(StringRef s,
                                        roundingMode rounding_mode) {
  lostFraction lost_fraction = lfExactlyZero;

  category = fcNormal;
  zeroSignificand();
  exponent = 0;

  integerPart *significand = significandParts();
  unsigned partsCount = partCount();
  unsigned bitPos = partsCount * integerPartWidth;
  bool computedTrailingFraction = false;

  // Skip leading zeroes and any (hexa)decimal point.
  StringRef::iterator begin = s.begin();
  StringRef::iterator end = s.end();
  StringRef::iterator dot;
  auto PtrOrErr = skipLeadingZeroesAndAnyDot(begin, end, &dot);
  if (!PtrOrErr)
    return PtrOrErr.takeError();
  StringRef::iterator p = *PtrOrErr;
  StringRef::iterator firstSignificantDigit = p;

  while (p != end) {
    integerPart hex_value;

    if (*p == '.') {
      if (dot != end)
        return createError("String contains multiple dots");
      dot = p++;
      continue;
    }

    hex_value = hexDigitValue(*p);
    if (hex_value == -1U)
      break;

    p++;

    // Store the number while we have space.
    if (bitPos) {
      bitPos -= 4;
      hex_value <<= bitPos % integerPartWidth;
      significand[bitPos / integerPartWidth] |= hex_value;
    } else if (!computedTrailingFraction) {
      auto FractOrErr = trailingHexadecimalFraction(p, end, hex_value);
      if (!FractOrErr)
        return FractOrErr.takeError();
      lost_fraction = *FractOrErr;
      computedTrailingFraction = true;
    }
  }

  /* Hex floats require an exponent but not a hexadecimal point.  */
  if (p == end)
    return createError("Hex strings require an exponent");
  if (*p != 'p' && *p != 'P')
    return createError("Invalid character in significand");
  if (p == begin)
    return createError("Significand has no digits");
  if (dot != end && p - begin == 1)
    return createError("Significand has no digits");

  /* Ignore the exponent if we are zero.  */
  if (p != firstSignificantDigit) {
    int expAdjustment;

    /* Implicit hexadecimal point?  */
    if (dot == end)
      dot = p;

    /* Calculate the exponent adjustment implicit in the number of
       significant digits.  */
    expAdjustment = static_cast<int>(dot - firstSignificantDigit);
    if (expAdjustment < 0)
      expAdjustment++;
    expAdjustment = expAdjustment * 4 - 1;

    /* Adjust for writing the significand starting at the most
       significant nibble.  */
    expAdjustment += semantics->precision;
    expAdjustment -= partsCount * integerPartWidth;

    /* Adjust for the given exponent.  */
    auto ExpOrErr = totalExponent(p + 1, end, expAdjustment);
    if (!ExpOrErr)
      return ExpOrErr.takeError();
    exponent = *ExpOrErr;
  }

  return normalize(rounding_mode, lost_fraction);
}

IEEEFloat::opStatus
IEEEFloat::roundSignificandWithExponent(const integerPart *decSigParts,
                                        unsigned sigPartCount, int exp,
                                        roundingMode rounding_mode) {
  unsigned int parts, pow5PartCount;
  fltSemantics calcSemantics = { 32767, -32767, 0, 0 };
  integerPart pow5Parts[maxPowerOfFiveParts];
  bool isNearest;

  isNearest = (rounding_mode == rmNearestTiesToEven ||
               rounding_mode == rmNearestTiesToAway);

  parts = partCountForBits(semantics->precision + 11);

  /* Calculate pow(5, abs(exp)).  */
  pow5PartCount = powerOf5(pow5Parts, exp >= 0 ? exp: -exp);

  for (;; parts *= 2) {
    opStatus sigStatus, powStatus;
    unsigned int excessPrecision, truncatedBits;

    calcSemantics.precision = parts * integerPartWidth - 1;
    excessPrecision = calcSemantics.precision - semantics->precision;
    truncatedBits = excessPrecision;

    IEEEFloat decSig(calcSemantics, uninitialized);
    decSig.makeZero(sign);
    IEEEFloat pow5(calcSemantics);

    sigStatus = decSig.convertFromUnsignedParts(decSigParts, sigPartCount,
                                                rmNearestTiesToEven);
    powStatus = pow5.convertFromUnsignedParts(pow5Parts, pow5PartCount,
                                              rmNearestTiesToEven);
    /* Add exp, as 10^n = 5^n * 2^n.  */
    decSig.exponent += exp;

    lostFraction calcLostFraction;
    integerPart HUerr, HUdistance;
    unsigned int powHUerr;

    if (exp >= 0) {
      /* multiplySignificand leaves the precision-th bit set to 1.  */
      calcLostFraction = decSig.multiplySignificand(pow5);
      powHUerr = powStatus != opOK;
    } else {
      calcLostFraction = decSig.divideSignificand(pow5);
      /* Denormal numbers have less precision.  */
      if (decSig.exponent < semantics->minExponent) {
        excessPrecision += (semantics->minExponent - decSig.exponent);
        truncatedBits = excessPrecision;
        if (excessPrecision > calcSemantics.precision)
          excessPrecision = calcSemantics.precision;
      }
      /* Extra half-ulp lost in reciprocal of exponent.  */
      powHUerr = (powStatus == opOK && calcLostFraction == lfExactlyZero) ? 0:2;
    }

    /* Both multiplySignificand and divideSignificand return the
       result with the integer bit set.  */
    assert(APInt::tcExtractBit
           (decSig.significandParts(), calcSemantics.precision - 1) == 1);

    HUerr = HUerrBound(calcLostFraction != lfExactlyZero, sigStatus != opOK,
                       powHUerr);
    HUdistance = 2 * ulpsFromBoundary(decSig.significandParts(),
                                      excessPrecision, isNearest);

    /* Are we guaranteed to round correctly if we truncate?  */
    if (HUdistance >= HUerr) {
      APInt::tcExtract(significandParts(), partCount(), decSig.significandParts(),
                       calcSemantics.precision - excessPrecision,
                       excessPrecision);
      /* Take the exponent of decSig.  If we tcExtract-ed less bits
         above we must adjust our exponent to compensate for the
         implicit right shift.  */
      exponent = (decSig.exponent + semantics->precision
                  - (calcSemantics.precision - excessPrecision));
      calcLostFraction = lostFractionThroughTruncation(decSig.significandParts(),
                                                       decSig.partCount(),
                                                       truncatedBits);
      return normalize(rounding_mode, calcLostFraction);
    }
  }
}

Expected<IEEEFloat::opStatus>
IEEEFloat::convertFromDecimalString(StringRef str, roundingMode rounding_mode) {
  decimalInfo D;
  opStatus fs;

  /* Scan the text.  */
  StringRef::iterator p = str.begin();
  if (Error Err = interpretDecimal(p, str.end(), &D))
    return std::move(Err);

  /* Handle the quick cases.  First the case of no significant digits,
     i.e. zero, and then exponents that are obviously too large or too
     small.  Writing L for log 10 / log 2, a number d.ddddd*10^exp
     definitely overflows if

           (exp - 1) * L >= maxExponent

     and definitely underflows to zero where

           (exp + 1) * L <= minExponent - precision

     With integer arithmetic the tightest bounds for L are

           93/28 < L < 196/59            [ numerator <= 256 ]
           42039/12655 < L < 28738/8651  [ numerator <= 65536 ]
  */

  // Test if we have a zero number allowing for strings with no null terminators
  // and zero decimals with non-zero exponents.
  //
  // We computed firstSigDigit by ignoring all zeros and dots. Thus if
  // D->firstSigDigit equals str.end(), every digit must be a zero and there can
  // be at most one dot. On the other hand, if we have a zero with a non-zero
  // exponent, then we know that D.firstSigDigit will be non-numeric.
  if (D.firstSigDigit == str.end() || decDigitValue(*D.firstSigDigit) >= 10U) {
    category = fcZero;
    fs = opOK;

  /* Check whether the normalized exponent is high enough to overflow
     max during the log-rebasing in the max-exponent check below. */
  } else if (D.normalizedExponent - 1 > INT_MAX / 42039) {
    fs = handleOverflow(rounding_mode);

  /* If it wasn't, then it also wasn't high enough to overflow max
     during the log-rebasing in the min-exponent check.  Check that it
     won't overflow min in either check, then perform the min-exponent
     check. */
  } else if (D.normalizedExponent - 1 < INT_MIN / 42039 ||
             (D.normalizedExponent + 1) * 28738 <=
               8651 * (semantics->minExponent - (int) semantics->precision)) {
    /* Underflow to zero and round.  */
    category = fcNormal;
    zeroSignificand();
    fs = normalize(rounding_mode, lfLessThanHalf);

  /* We can finally safely perform the max-exponent check. */
  } else if ((D.normalizedExponent - 1) * 42039
             >= 12655 * semantics->maxExponent) {
    /* Overflow and round.  */
    fs = handleOverflow(rounding_mode);
  } else {
    integerPart *decSignificand;
    unsigned int partCount;

    /* A tight upper bound on number of bits required to hold an
       N-digit decimal integer is N * 196 / 59.  Allocate enough space
       to hold the full significand, and an extra part required by
       tcMultiplyPart.  */
    partCount = static_cast<unsigned int>(D.lastSigDigit - D.firstSigDigit) + 1;
    partCount = partCountForBits(1 + 196 * partCount / 59);
    decSignificand = new integerPart[partCount + 1];
    partCount = 0;

    /* Convert to binary efficiently - we do almost all multiplication
       in an integerPart.  When this would overflow do we do a single
       bignum multiplication, and then revert again to multiplication
       in an integerPart.  */
    do {
      integerPart decValue, val, multiplier;

      val = 0;
      multiplier = 1;

      do {
        if (*p == '.') {
          p++;
          if (p == str.end()) {
            break;
          }
        }
        decValue = decDigitValue(*p++);
        if (decValue >= 10U) {
          delete[] decSignificand;
          return createError("Invalid character in significand");
        }
        multiplier *= 10;
        val = val * 10 + decValue;
        /* The maximum number that can be multiplied by ten with any
           digit added without overflowing an integerPart.  */
      } while (p <= D.lastSigDigit && multiplier <= (~ (integerPart) 0 - 9) / 10);

      /* Multiply out the current part.  */
      APInt::tcMultiplyPart(decSignificand, decSignificand, multiplier, val,
                            partCount, partCount + 1, false);

      /* If we used another part (likely but not guaranteed), increase
         the count.  */
      if (decSignificand[partCount])
        partCount++;
    } while (p <= D.lastSigDigit);

    category = fcNormal;
    fs = roundSignificandWithExponent(decSignificand, partCount,
                                      D.exponent, rounding_mode);

    delete [] decSignificand;
  }

  return fs;
}

bool IEEEFloat::convertFromStringSpecials(StringRef str) {
  const size_t MIN_NAME_SIZE = 3;

  if (str.size() < MIN_NAME_SIZE)
    return false;

  if (str.equals("inf") || str.equals("INFINITY") || str.equals("+Inf")) {
    makeInf(false);
    return true;
  }

  bool IsNegative = str.front() == '-';
  if (IsNegative) {
    str = str.drop_front();
    if (str.size() < MIN_NAME_SIZE)
      return false;

    if (str.equals("inf") || str.equals("INFINITY") || str.equals("Inf")) {
      makeInf(true);
      return true;
    }
  }

  // If we have a 's' (or 'S') prefix, then this is a Signaling NaN.
  bool IsSignaling = str.front() == 's' || str.front() == 'S';
  if (IsSignaling) {
    str = str.drop_front();
    if (str.size() < MIN_NAME_SIZE)
      return false;
  }

  if (str.startswith("nan") || str.startswith("NaN")) {
    str = str.drop_front(3);

    // A NaN without payload.
    if (str.empty()) {
      makeNaN(IsSignaling, IsNegative);
      return true;
    }

    // Allow the payload to be inside parentheses.
    if (str.front() == '(') {
      // Parentheses should be balanced (and not empty).
      if (str.size() <= 2 || str.back() != ')')
        return false;

      str = str.slice(1, str.size() - 1);
    }

    // Determine the payload number's radix.
    unsigned Radix = 10;
    if (str[0] == '0') {
      if (str.size() > 1 && tolower(str[1]) == 'x') {
        str = str.drop_front(2);
        Radix = 16;
      } else
        Radix = 8;
    }

    // Parse the payload and make the NaN.
    APInt Payload;
    if (!str.getAsInteger(Radix, Payload)) {
      makeNaN(IsSignaling, IsNegative, &Payload);
      return true;
    }
  }

  return false;
}

Expected<IEEEFloat::opStatus>
IEEEFloat::convertFromString(StringRef str, roundingMode rounding_mode) {
  if (str.empty())
    return createError("Invalid string length");

  // Handle special cases.
  if (convertFromStringSpecials(str))
    return opOK;

  /* Handle a leading minus sign.  */
  StringRef::iterator p = str.begin();
  size_t slen = str.size();
  sign = *p == '-' ? 1 : 0;
  if (*p == '-' || *p == '+') {
    p++;
    slen--;
    if (!slen)
      return createError("String has no digits");
  }

  if (slen >= 2 && p[0] == '0' && (p[1] == 'x' || p[1] == 'X')) {
    if (slen == 2)
      return createError("Invalid string");
    return convertFromHexadecimalString(StringRef(p + 2, slen - 2),
                                        rounding_mode);
  }

  return convertFromDecimalString(StringRef(p, slen), rounding_mode);
}

/* Write out a hexadecimal representation of the floating point value
   to DST, which must be of sufficient size, in the C99 form
   [-]0xh.hhhhp[+-]d.  Return the number of characters written,
   excluding the terminating NUL.

   If UPPERCASE, the output is in upper case, otherwise in lower case.

   HEXDIGITS digits appear altogether, rounding the value if
   necessary.  If HEXDIGITS is 0, the minimal precision to display the
   number precisely is used instead.  If nothing would appear after
   the decimal point it is suppressed.

   The decimal exponent is always printed and has at least one digit.
   Zero values display an exponent of zero.  Infinities and NaNs
   appear as "infinity" or "nan" respectively.

   The above rules are as specified by C99.  There is ambiguity about
   what the leading hexadecimal digit should be.  This implementation
   uses whatever is necessary so that the exponent is displayed as
   stored.  This implies the exponent will fall within the IEEE format
   range, and the leading hexadecimal digit will be 0 (for denormals),
   1 (normal numbers) or 2 (normal numbers rounded-away-from-zero with
   any other digits zero).
*/
unsigned int IEEEFloat::convertToHexString(char *dst, unsigned int hexDigits,
                                           bool upperCase,
                                           roundingMode rounding_mode) const {
  char *p;

  p = dst;
  if (sign)
    *dst++ = '-';

  switch (category) {
  case fcInfinity:
    memcpy (dst, upperCase ? infinityU: infinityL, sizeof infinityU - 1);
    dst += sizeof infinityL - 1;
    break;

  case fcNaN:
    memcpy (dst, upperCase ? NaNU: NaNL, sizeof NaNU - 1);
    dst += sizeof NaNU - 1;
    break;

  case fcZero:
    *dst++ = '0';
    *dst++ = upperCase ? 'X': 'x';
    *dst++ = '0';
    if (hexDigits > 1) {
      *dst++ = '.';
      memset (dst, '0', hexDigits - 1);
      dst += hexDigits - 1;
    }
    *dst++ = upperCase ? 'P': 'p';
    *dst++ = '0';
    break;

  case fcNormal:
    dst = convertNormalToHexString (dst, hexDigits, upperCase, rounding_mode);
    break;
  }

  *dst = 0;

  return static_cast<unsigned int>(dst - p);
}

/* Does the hard work of outputting the correctly rounded hexadecimal
   form of a normal floating point number with the specified number of
   hexadecimal digits.  If HEXDIGITS is zero the minimum number of
   digits necessary to print the value precisely is output.  */
char *IEEEFloat::convertNormalToHexString(char *dst, unsigned int hexDigits,
                                          bool upperCase,
                                          roundingMode rounding_mode) const {
  unsigned int count, valueBits, shift, partsCount, outputDigits;
  const char *hexDigitChars;
  const integerPart *significand;
  char *p;
  bool roundUp;

  *dst++ = '0';
  *dst++ = upperCase ? 'X': 'x';

  roundUp = false;
  hexDigitChars = upperCase ? hexDigitsUpper: hexDigitsLower;

  significand = significandParts();
  partsCount = partCount();

  /* +3 because the first digit only uses the single integer bit, so
     we have 3 virtual zero most-significant-bits.  */
  valueBits = semantics->precision + 3;
  shift = integerPartWidth - valueBits % integerPartWidth;

  /* The natural number of digits required ignoring trailing
     insignificant zeroes.  */
  outputDigits = (valueBits - significandLSB () + 3) / 4;

  /* hexDigits of zero means use the required number for the
     precision.  Otherwise, see if we are truncating.  If we are,
     find out if we need to round away from zero.  */
  if (hexDigits) {
    if (hexDigits < outputDigits) {
      /* We are dropping non-zero bits, so need to check how to round.
         "bits" is the number of dropped bits.  */
      unsigned int bits;
      lostFraction fraction;

      bits = valueBits - hexDigits * 4;
      fraction = lostFractionThroughTruncation (significand, partsCount, bits);
      roundUp = roundAwayFromZero(rounding_mode, fraction, bits);
    }
    outputDigits = hexDigits;
  }

  /* Write the digits consecutively, and start writing in the location
     of the hexadecimal point.  We move the most significant digit
     left and add the hexadecimal point later.  */
  p = ++dst;

  count = (valueBits + integerPartWidth - 1) / integerPartWidth;

  while (outputDigits && count) {
    integerPart part;

    /* Put the most significant integerPartWidth bits in "part".  */
    if (--count == partsCount)
      part = 0;  /* An imaginary higher zero part.  */
    else
      part = significand[count] << shift;

    if (count && shift)
      part |= significand[count - 1] >> (integerPartWidth - shift);

    /* Convert as much of "part" to hexdigits as we can.  */
    unsigned int curDigits = integerPartWidth / 4;

    if (curDigits > outputDigits)
      curDigits = outputDigits;
    dst += partAsHex (dst, part, curDigits, hexDigitChars);
    outputDigits -= curDigits;
  }

  if (roundUp) {
    char *q = dst;

    /* Note that hexDigitChars has a trailing '0'.  */
    do {
      q--;
      *q = hexDigitChars[hexDigitValue (*q) + 1];
    } while (*q == '0');
    assert(q >= p);
  } else {
    /* Add trailing zeroes.  */
    memset (dst, '0', outputDigits);
    dst += outputDigits;
  }

  /* Move the most significant digit to before the point, and if there
     is something after the decimal point add it.  This must come
     after rounding above.  */
  p[-1] = p[0];
  if (dst -1 == p)
    dst--;
  else
    p[0] = '.';

  /* Finally output the exponent.  */
  *dst++ = upperCase ? 'P': 'p';

  return writeSignedDecimal (dst, exponent);
}

hash_code hash_value(const IEEEFloat &Arg) {
  if (!Arg.isFiniteNonZero())
    return hash_combine((uint8_t)Arg.category,
                        // NaN has no sign, fix it at zero.
                        Arg.isNaN() ? (uint8_t)0 : (uint8_t)Arg.sign,
                        Arg.semantics->precision);

  // Normal floats need their exponent and significand hashed.
  return hash_combine((uint8_t)Arg.category, (uint8_t)Arg.sign,
                      Arg.semantics->precision, Arg.exponent,
                      hash_combine_range(
                        Arg.significandParts(),
                        Arg.significandParts() + Arg.partCount()));
}

// Conversion from APFloat to/from host float/double.  It may eventually be
// possible to eliminate these and have everybody deal with APFloats, but that
// will take a while.  This approach will not easily extend to long double.
// Current implementation requires integerPartWidth==64, which is correct at
// the moment but could be made more general.

// Denormals have exponent minExponent in APFloat, but minExponent-1 in
// the actual IEEE respresentations.  We compensate for that here.

APInt IEEEFloat::convertF80LongDoubleAPFloatToAPInt() const {
  assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended);
  assert(partCount()==2);

  uint64_t myexponent, mysignificand;

  if (isFiniteNonZero()) {
    myexponent = exponent+16383; //bias
    mysignificand = significandParts()[0];
    if (myexponent==1 && !(mysignificand & 0x8000000000000000ULL))
      myexponent = 0;   // denormal
  } else if (category==fcZero) {
    myexponent = 0;
    mysignificand = 0;
  } else if (category==fcInfinity) {
    myexponent = 0x7fff;
    mysignificand = 0x8000000000000000ULL;
  } else {
    assert(category == fcNaN && "Unknown category");
    myexponent = 0x7fff;
    mysignificand = significandParts()[0];
  }

  uint64_t words[2];
  words[0] = mysignificand;
  words[1] =  ((uint64_t)(sign & 1) << 15) |
              (myexponent & 0x7fffLL);
  return APInt(80, words);
}

APInt IEEEFloat::convertPPCDoubleDoubleAPFloatToAPInt() const {
  assert(semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy);
  assert(partCount()==2);

  uint64_t words[2];
  opStatus fs;
  bool losesInfo;

  // Convert number to double.  To avoid spurious underflows, we re-
  // normalize against the "double" minExponent first, and only *then*
  // truncate the mantissa.  The result of that second conversion
  // may be inexact, but should never underflow.
  // Declare fltSemantics before APFloat that uses it (and
  // saves pointer to it) to ensure correct destruction order.
  fltSemantics extendedSemantics = *semantics;
  extendedSemantics.minExponent = semIEEEdouble.minExponent;
  IEEEFloat extended(*this);
  fs = extended.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
  assert(fs == opOK && !losesInfo);
  (void)fs;

  IEEEFloat u(extended);
  fs = u.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
  assert(fs == opOK || fs == opInexact);
  (void)fs;
  words[0] = *u.convertDoubleAPFloatToAPInt().getRawData();

  // If conversion was exact or resulted in a special case, we're done;
  // just set the second double to zero.  Otherwise, re-convert back to
  // the extended format and compute the difference.  This now should
  // convert exactly to double.
  if (u.isFiniteNonZero() && losesInfo) {
    fs = u.convert(extendedSemantics, rmNearestTiesToEven, &losesInfo);
    assert(fs == opOK && !losesInfo);
    (void)fs;

    IEEEFloat v(extended);
    v.subtract(u, rmNearestTiesToEven);
    fs = v.convert(semIEEEdouble, rmNearestTiesToEven, &losesInfo);
    assert(fs == opOK && !losesInfo);
    (void)fs;
    words[1] = *v.convertDoubleAPFloatToAPInt().getRawData();
  } else {
    words[1] = 0;
  }

  return APInt(128, words);
}

APInt IEEEFloat::convertQuadrupleAPFloatToAPInt() const {
  assert(semantics == (const llvm::fltSemantics*)&semIEEEquad);
  assert(partCount()==2);

  uint64_t myexponent, mysignificand, mysignificand2;

  if (isFiniteNonZero()) {
    myexponent = exponent+16383; //bias
    mysignificand = significandParts()[0];
    mysignificand2 = significandParts()[1];
    if (myexponent==1 && !(mysignificand2 & 0x1000000000000LL))
      myexponent = 0;   // denormal
  } else if (category==fcZero) {
    myexponent = 0;
    mysignificand = mysignificand2 = 0;
  } else if (category==fcInfinity) {
    myexponent = 0x7fff;
    mysignificand = mysignificand2 = 0;
  } else {
    assert(category == fcNaN && "Unknown category!");
    myexponent = 0x7fff;
    mysignificand = significandParts()[0];
    mysignificand2 = significandParts()[1];
  }

  uint64_t words[2];
  words[0] = mysignificand;
  words[1] = ((uint64_t)(sign & 1) << 63) |
             ((myexponent & 0x7fff) << 48) |
             (mysignificand2 & 0xffffffffffffLL);

  return APInt(128, words);
}

APInt IEEEFloat::convertDoubleAPFloatToAPInt() const {
  assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble);
  assert(partCount()==1);

  uint64_t myexponent, mysignificand;

  if (isFiniteNonZero()) {
    myexponent = exponent+1023; //bias
    mysignificand = *significandParts();
    if (myexponent==1 && !(mysignificand & 0x10000000000000LL))
      myexponent = 0;   // denormal
  } else if (category==fcZero) {
    myexponent = 0;
    mysignificand = 0;
  } else if (category==fcInfinity) {
    myexponent = 0x7ff;
    mysignificand = 0;
  } else {
    assert(category == fcNaN && "Unknown category!");
    myexponent = 0x7ff;
    mysignificand = *significandParts();
  }

  return APInt(64, ((((uint64_t)(sign & 1) << 63) |
                     ((myexponent & 0x7ff) <<  52) |
                     (mysignificand & 0xfffffffffffffLL))));
}

APInt IEEEFloat::convertFloatAPFloatToAPInt() const {
  assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle);
  assert(partCount()==1);

  uint32_t myexponent, mysignificand;

  if (isFiniteNonZero()) {
    myexponent = exponent+127; //bias
    mysignificand = (uint32_t)*significandParts();
    if (myexponent == 1 && !(mysignificand & 0x800000))
      myexponent = 0;   // denormal
  } else if (category==fcZero) {
    myexponent = 0;
    mysignificand = 0;
  } else if (category==fcInfinity) {
    myexponent = 0xff;
    mysignificand = 0;
  } else {
    assert(category == fcNaN && "Unknown category!");
    myexponent = 0xff;
    mysignificand = (uint32_t)*significandParts();
  }

  return APInt(32, (((sign&1) << 31) | ((myexponent&0xff) << 23) |
                    (mysignificand & 0x7fffff)));
}

APInt IEEEFloat::convertBFloatAPFloatToAPInt() const {
  assert(semantics == (const llvm::fltSemantics *)&semBFloat);
  assert(partCount() == 1);

  uint32_t myexponent, mysignificand;

  if (isFiniteNonZero()) {
    myexponent = exponent + 127; // bias
    mysignificand = (uint32_t)*significandParts();
    if (myexponent == 1 && !(mysignificand & 0x80))
      myexponent = 0; // denormal
  } else if (category == fcZero) {
    myexponent = 0;
    mysignificand = 0;
  } else if (category == fcInfinity) {
    myexponent = 0xff;
    mysignificand = 0;
  } else {
    assert(category == fcNaN && "Unknown category!");
    myexponent = 0xff;
    mysignificand = (uint32_t)*significandParts();
  }

  return APInt(16, (((sign & 1) << 15) | ((myexponent & 0xff) << 7) |
                    (mysignificand & 0x7f)));
}

APInt IEEEFloat::convertHalfAPFloatToAPInt() const {
  assert(semantics == (const llvm::fltSemantics*)&semIEEEhalf);
  assert(partCount()==1);

  uint32_t myexponent, mysignificand;

  if (isFiniteNonZero()) {
    myexponent = exponent+15; //bias
    mysignificand = (uint32_t)*significandParts();
    if (myexponent == 1 && !(mysignificand & 0x400))
      myexponent = 0;   // denormal
  } else if (category==fcZero) {
    myexponent = 0;
    mysignificand = 0;
  } else if (category==fcInfinity) {
    myexponent = 0x1f;
    mysignificand = 0;
  } else {
    assert(category == fcNaN && "Unknown category!");
    myexponent = 0x1f;
    mysignificand = (uint32_t)*significandParts();
  }

  return APInt(16, (((sign&1) << 15) | ((myexponent&0x1f) << 10) |
                    (mysignificand & 0x3ff)));
}

// This function creates an APInt that is just a bit map of the floating
// point constant as it would appear in memory.  It is not a conversion,
// and treating the result as a normal integer is unlikely to be useful.

APInt IEEEFloat::bitcastToAPInt() const {
  if (semantics == (const llvm::fltSemantics*)&semIEEEhalf)
    return convertHalfAPFloatToAPInt();

  if (semantics == (const llvm::fltSemantics *)&semBFloat)
    return convertBFloatAPFloatToAPInt();

  if (semantics == (const llvm::fltSemantics*)&semIEEEsingle)
    return convertFloatAPFloatToAPInt();

  if (semantics == (const llvm::fltSemantics*)&semIEEEdouble)
    return convertDoubleAPFloatToAPInt();

  if (semantics == (const llvm::fltSemantics*)&semIEEEquad)
    return convertQuadrupleAPFloatToAPInt();

  if (semantics == (const llvm::fltSemantics *)&semPPCDoubleDoubleLegacy)
    return convertPPCDoubleDoubleAPFloatToAPInt();

  assert(semantics == (const llvm::fltSemantics*)&semX87DoubleExtended &&
         "unknown format!");
  return convertF80LongDoubleAPFloatToAPInt();
}

float IEEEFloat::convertToFloat() const {
  assert(semantics == (const llvm::fltSemantics*)&semIEEEsingle &&
         "Float semantics are not IEEEsingle");
  APInt api = bitcastToAPInt();
  return api.bitsToFloat();
}

double IEEEFloat::convertToDouble() const {
  assert(semantics == (const llvm::fltSemantics*)&semIEEEdouble &&
         "Float semantics are not IEEEdouble");
  APInt api = bitcastToAPInt();
  return api.bitsToDouble();
}

/// Integer bit is explicit in this format.  Intel hardware (387 and later)
/// does not support these bit patterns:
///  exponent = all 1's, integer bit 0, significand 0 ("pseudoinfinity")
///  exponent = all 1's, integer bit 0, significand nonzero ("pseudoNaN")
///  exponent!=0 nor all 1's, integer bit 0 ("unnormal")
///  exponent = 0, integer bit 1 ("pseudodenormal")
/// At the moment, the first three are treated as NaNs, the last one as Normal.
void IEEEFloat::initFromF80LongDoubleAPInt(const APInt &api) {
  assert(api.getBitWidth()==80);
  uint64_t i1 = api.getRawData()[0];
  uint64_t i2 = api.getRawData()[1];
  uint64_t myexponent = (i2 & 0x7fff);
  uint64_t mysignificand = i1;
  uint8_t myintegerbit = mysignificand >> 63;

  initialize(&semX87DoubleExtended);
  assert(partCount()==2);

  sign = static_cast<unsigned int>(i2>>15);
  if (myexponent == 0 && mysignificand == 0) {
    // exponent, significand meaningless
    category = fcZero;
  } else if (myexponent==0x7fff && mysignificand==0x8000000000000000ULL) {
    // exponent, significand meaningless
    category = fcInfinity;
  } else if ((myexponent == 0x7fff && mysignificand != 0x8000000000000000ULL) ||
             (myexponent != 0x7fff && myexponent != 0 && myintegerbit == 0)) {
    // exponent meaningless
    category = fcNaN;
    significandParts()[0] = mysignificand;
    significandParts()[1] = 0;
  } else {
    category = fcNormal;
    exponent = myexponent - 16383;
    significandParts()[0] = mysignificand;
    significandParts()[1] = 0;
    if (myexponent==0)          // denormal
      exponent = -16382;
  }
}

void IEEEFloat::initFromPPCDoubleDoubleAPInt(const APInt &api) {
  assert(api.getBitWidth()==128);
  uint64_t i1 = api.getRawData()[0];
  uint64_t i2 = api.getRawData()[1];
  opStatus fs;
  bool losesInfo;

  // Get the first double and convert to our format.
  initFromDoubleAPInt(APInt(64, i1));
  fs = convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
  assert(fs == opOK && !losesInfo);
  (void)fs;

  // Unless we have a special case, add in second double.
  if (isFiniteNonZero()) {
    IEEEFloat v(semIEEEdouble, APInt(64, i2));
    fs = v.convert(semPPCDoubleDoubleLegacy, rmNearestTiesToEven, &losesInfo);
    assert(fs == opOK && !losesInfo);
    (void)fs;

    add(v, rmNearestTiesToEven);
  }
}

void IEEEFloat::initFromQuadrupleAPInt(const APInt &api) {
  assert(api.getBitWidth()==128);
  uint64_t i1 = api.getRawData()[0];
  uint64_t i2 = api.getRawData()[1];
  uint64_t myexponent = (i2 >> 48) & 0x7fff;
  uint64_t mysignificand  = i1;
  uint64_t mysignificand2 = i2 & 0xffffffffffffLL;

  initialize(&semIEEEquad);
  assert(partCount()==2);

  sign = static_cast<unsigned int>(i2>>63);
  if (myexponent==0 &&
      (mysignificand==0 && mysignificand2==0)) {
    // exponent, significand meaningless
    category = fcZero;
  } else if (myexponent==0x7fff &&
             (mysignificand==0 && mysignificand2==0)) {
    // exponent, significand meaningless
    category = fcInfinity;
  } else if (myexponent==0x7fff &&
             (mysignificand!=0 || mysignificand2 !=0)) {
    // exponent meaningless
    category = fcNaN;
    significandParts()[0] = mysignificand;
    significandParts()[1] = mysignificand2;
  } else {
    category = fcNormal;
    exponent = myexponent - 16383;
    significandParts()[0] = mysignificand;
    significandParts()[1] = mysignificand2;
    if (myexponent==0)          // denormal
      exponent = -16382;
    else
      significandParts()[1] |= 0x1000000000000LL;  // integer bit
  }
}

void IEEEFloat::initFromDoubleAPInt(const APInt &api) {
  assert(api.getBitWidth()==64);
  uint64_t i = *api.getRawData();
  uint64_t myexponent = (i >> 52) & 0x7ff;
  uint64_t mysignificand = i & 0xfffffffffffffLL;

  initialize(&semIEEEdouble);
  assert(partCount()==1);

  sign = static_cast<unsigned int>(i>>63);
  if (myexponent==0 && mysignificand==0) {
    // exponent, significand meaningless
    category = fcZero;
  } else if (myexponent==0x7ff && mysignificand==0) {
    // exponent, significand meaningless
    category = fcInfinity;
  } else if (myexponent==0x7ff && mysignificand!=0) {
    // exponent meaningless
    category = fcNaN;
    *significandParts() = mysignificand;
  } else {
    category = fcNormal;
    exponent = myexponent - 1023;
    *significandParts() = mysignificand;
    if (myexponent==0)          // denormal
      exponent = -1022;
    else
      *significandParts() |= 0x10000000000000LL;  // integer bit
  }
}

void IEEEFloat::initFromFloatAPInt(const APInt &api) {
  assert(api.getBitWidth()==32);
  uint32_t i = (uint32_t)*api.getRawData();
  uint32_t myexponent = (i >> 23) & 0xff;
  uint32_t mysignificand = i & 0x7fffff;

  initialize(&semIEEEsingle);
  assert(partCount()==1);

  sign = i >> 31;
  if (myexponent==0 && mysignificand==0) {
    // exponent, significand meaningless
    category = fcZero;
  } else if (myexponent==0xff && mysignificand==0) {
    // exponent, significand meaningless
    category = fcInfinity;
  } else if (myexponent==0xff && mysignificand!=0) {
    // sign, exponent, significand meaningless
    category = fcNaN;
    *significandParts() = mysignificand;
  } else {
    category = fcNormal;
    exponent = myexponent - 127;  //bias
    *significandParts() = mysignificand;
    if (myexponent==0)    // denormal
      exponent = -126;
    else
      *significandParts() |= 0x800000; // integer bit
  }
}

void IEEEFloat::initFromBFloatAPInt(const APInt &api) {
  assert(api.getBitWidth() == 16);
  uint32_t i = (uint32_t)*api.getRawData();
  uint32_t myexponent = (i >> 7) & 0xff;
  uint32_t mysignificand = i & 0x7f;

  initialize(&semBFloat);
  assert(partCount() == 1);

  sign = i >> 15;
  if (myexponent == 0 && mysignificand == 0) {
    // exponent, significand meaningless
    category = fcZero;
  } else if (myexponent == 0xff && mysignificand == 0) {
    // exponent, significand meaningless
    category = fcInfinity;
  } else if (myexponent == 0xff && mysignificand != 0) {
    // sign, exponent, significand meaningless
    category = fcNaN;
    *significandParts() = mysignificand;
  } else {
    category = fcNormal;
    exponent = myexponent - 127; // bias
    *significandParts() = mysignificand;
    if (myexponent == 0) // denormal
      exponent = -126;
    else
      *significandParts() |= 0x80; // integer bit
  }
}

void IEEEFloat::initFromHalfAPInt(const APInt &api) {
  assert(api.getBitWidth()==16);
  uint32_t i = (uint32_t)*api.getRawData();
  uint32_t myexponent = (i >> 10) & 0x1f;
  uint32_t mysignificand = i & 0x3ff;

  initialize(&semIEEEhalf);
  assert(partCount()==1);

  sign = i >> 15;
  if (myexponent==0 && mysignificand==0) {
    // exponent, significand meaningless
    category = fcZero;
  } else if (myexponent==0x1f && mysignificand==0) {
    // exponent, significand meaningless
    category = fcInfinity;
  } else if (myexponent==0x1f && mysignificand!=0) {
    // sign, exponent, significand meaningless
    category = fcNaN;
    *significandParts() = mysignificand;
  } else {
    category = fcNormal;
    exponent = myexponent - 15;  //bias
    *significandParts() = mysignificand;
    if (myexponent==0)    // denormal
      exponent = -14;
    else
      *significandParts() |= 0x400; // integer bit
  }
}

/// Treat api as containing the bits of a floating point number.  Currently
/// we infer the floating point type from the size of the APInt.  The
/// isIEEE argument distinguishes between PPC128 and IEEE128 (not meaningful
/// when the size is anything else).
void IEEEFloat::initFromAPInt(const fltSemantics *Sem, const APInt &api) {
  if (Sem == &semIEEEhalf)
    return initFromHalfAPInt(api);
  if (Sem == &semBFloat)
    return initFromBFloatAPInt(api);
  if (Sem == &semIEEEsingle)
    return initFromFloatAPInt(api);
  if (Sem == &semIEEEdouble)
    return initFromDoubleAPInt(api);
  if (Sem == &semX87DoubleExtended)
    return initFromF80LongDoubleAPInt(api);
  if (Sem == &semIEEEquad)
    return initFromQuadrupleAPInt(api);
  if (Sem == &semPPCDoubleDoubleLegacy)
    return initFromPPCDoubleDoubleAPInt(api);

  llvm_unreachable(nullptr);
}

/// Make this number the largest magnitude normal number in the given
/// semantics.
void IEEEFloat::makeLargest(bool Negative) {
  // We want (in interchange format):
  //   sign = {Negative}
  //   exponent = 1..10
  //   significand = 1..1
  category = fcNormal;
  sign = Negative;
  exponent = semantics->maxExponent;

  // Use memset to set all but the highest integerPart to all ones.
  integerPart *significand = significandParts();
  unsigned PartCount = partCount();
  memset(significand, 0xFF, sizeof(integerPart)*(PartCount - 1));

  // Set the high integerPart especially setting all unused top bits for
  // internal consistency.
  const unsigned NumUnusedHighBits =
    PartCount*integerPartWidth - semantics->precision;
  significand[PartCount - 1] = (NumUnusedHighBits < integerPartWidth)
                                   ? (~integerPart(0) >> NumUnusedHighBits)
                                   : 0;
}

/// Make this number the smallest magnitude denormal number in the given
/// semantics.
void IEEEFloat::makeSmallest(bool Negative) {
  // We want (in interchange format):
  //   sign = {Negative}
  //   exponent = 0..0
  //   significand = 0..01
  category = fcNormal;
  sign = Negative;
  exponent = semantics->minExponent;
  APInt::tcSet(significandParts(), 1, partCount());
}

void IEEEFloat::makeSmallestNormalized(bool Negative) {
  // We want (in interchange format):
  //   sign = {Negative}
  //   exponent = 0..0
  //   significand = 10..0

  category = fcNormal;
  zeroSignificand();
  sign = Negative;
  exponent = semantics->minExponent;
  significandParts()[partCountForBits(semantics->precision) - 1] |=
      (((integerPart)1) << ((semantics->precision - 1) % integerPartWidth));
}

IEEEFloat::IEEEFloat(const fltSemantics &Sem, const APInt &API) {
  initFromAPInt(&Sem, API);
}

IEEEFloat::IEEEFloat(float f) {
  initFromAPInt(&semIEEEsingle, APInt::floatToBits(f));
}

IEEEFloat::IEEEFloat(double d) {
  initFromAPInt(&semIEEEdouble, APInt::doubleToBits(d));
}

namespace {
  void append(SmallVectorImpl<char> &Buffer, StringRef Str) {
    Buffer.append(Str.begin(), Str.end());
  }

  /// Removes data from the given significand until it is no more
  /// precise than is required for the desired precision.
  void AdjustToPrecision(APInt &significand,
                         int &exp, unsigned FormatPrecision) {
    unsigned bits = significand.getActiveBits();

    // 196/59 is a very slight overestimate of lg_2(10).
    unsigned bitsRequired = (FormatPrecision * 196 + 58) / 59;

    if (bits <= bitsRequired) return;

    unsigned tensRemovable = (bits - bitsRequired) * 59 / 196;
    if (!tensRemovable) return;

    exp += tensRemovable;

    APInt divisor(significand.getBitWidth(), 1);
    APInt powten(significand.getBitWidth(), 10);
    while (true) {
      if (tensRemovable & 1)
        divisor *= powten;
      tensRemovable >>= 1;
      if (!tensRemovable) break;
      powten *= powten;
    }

    significand = significand.udiv(divisor);

    // Truncate the significand down to its active bit count.
    significand = significand.trunc(significand.getActiveBits());
  }


  void AdjustToPrecision(SmallVectorImpl<char> &buffer,
                         int &exp, unsigned FormatPrecision) {
    unsigned N = buffer.size();
    if (N <= FormatPrecision) return;

    // The most significant figures are the last ones in the buffer.
    unsigned FirstSignificant = N - FormatPrecision;

    // Round.
    // FIXME: this probably shouldn't use 'round half up'.

    // Rounding down is just a truncation, except we also want to drop
    // trailing zeros from the new result.
    if (buffer[FirstSignificant - 1] < '5') {
      while (FirstSignificant < N && buffer[FirstSignificant] == '0')
        FirstSignificant++;

      exp += FirstSignificant;
      buffer.erase(&buffer[0], &buffer[FirstSignificant]);
      return;
    }

    // Rounding up requires a decimal add-with-carry.  If we continue
    // the carry, the newly-introduced zeros will just be truncated.
    for (unsigned I = FirstSignificant; I != N; ++I) {
      if (buffer[I] == '9') {
        FirstSignificant++;
      } else {
        buffer[I]++;
        break;
      }
    }

    // If we carried through, we have exactly one digit of precision.
    if (FirstSignificant == N) {
      exp += FirstSignificant;
      buffer.clear();
      buffer.push_back('1');
      return;
    }

    exp += FirstSignificant;
    buffer.erase(&buffer[0], &buffer[FirstSignificant]);
  }
}

void IEEEFloat::toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision,
                         unsigned FormatMaxPadding, bool TruncateZero) const {
  switch (category) {
  case fcInfinity:
    if (isNegative())
      return append(Str, "-Inf");
    else
      return append(Str, "+Inf");

  case fcNaN: return append(Str, "NaN");

  case fcZero:
    if (isNegative())
      Str.push_back('-');

    if (!FormatMaxPadding) {
      if (TruncateZero)
        append(Str, "0.0E+0");
      else {
        append(Str, "0.0");
        if (FormatPrecision > 1)
          Str.append(FormatPrecision - 1, '0');
        append(Str, "e+00");
      }
    } else
      Str.push_back('0');
    return;

  case fcNormal:
    break;
  }

  if (isNegative())
    Str.push_back('-');

  // Decompose the number into an APInt and an exponent.
  int exp = exponent - ((int) semantics->precision - 1);
  APInt significand(semantics->precision,
                    makeArrayRef(significandParts(),
                                 partCountForBits(semantics->precision)));

  // Set FormatPrecision if zero.  We want to do this before we
  // truncate trailing zeros, as those are part of the precision.
  if (!FormatPrecision) {
    // We use enough digits so the number can be round-tripped back to an
    // APFloat. The formula comes from "How to Print Floating-Point Numbers
    // Accurately" by Steele and White.
    // FIXME: Using a formula based purely on the precision is conservative;
    // we can print fewer digits depending on the actual value being printed.

    // FormatPrecision = 2 + floor(significandBits / lg_2(10))
    FormatPrecision = 2 + semantics->precision * 59 / 196;
  }

  // Ignore trailing binary zeros.
  int trailingZeros = significand.countTrailingZeros();
  exp += trailingZeros;
  significand.lshrInPlace(trailingZeros);

  // Change the exponent from 2^e to 10^e.
  if (exp == 0) {
    // Nothing to do.
  } else if (exp > 0) {
    // Just shift left.
    significand = significand.zext(semantics->precision + exp);
    significand <<= exp;
    exp = 0;
  } else { /* exp < 0 */
    int texp = -exp;

    // We transform this using the identity:
    //   (N)(2^-e) == (N)(5^e)(10^-e)
    // This means we have to multiply N (the significand) by 5^e.
    // To avoid overflow, we have to operate on numbers large
    // enough to store N * 5^e:
    //   log2(N * 5^e) == log2(N) + e * log2(5)
    //                 <= semantics->precision + e * 137 / 59
    //   (log_2(5) ~ 2.321928 < 2.322034 ~ 137/59)

    unsigned precision = semantics->precision + (137 * texp + 136) / 59;

    // Multiply significand by 5^e.
    //   N * 5^0101 == N * 5^(1*1) * 5^(0*2) * 5^(1*4) * 5^(0*8)
    significand = significand.zext(precision);
    APInt five_to_the_i(precision, 5);
    while (true) {
      if (texp & 1) significand *= five_to_the_i;

      texp >>= 1;
      if (!texp) break;
      five_to_the_i *= five_to_the_i;
    }
  }

  AdjustToPrecision(significand, exp, FormatPrecision);

  SmallVector<char, 256> buffer;

  // Fill the buffer.
  unsigned precision = significand.getBitWidth();
  APInt ten(precision, 10);
  APInt digit(precision, 0);

  bool inTrail = true;
  while (significand != 0) {
    // digit <- significand % 10
    // significand <- significand / 10
    APInt::udivrem(significand, ten, significand, digit);

    unsigned d = digit.getZExtValue();

    // Drop trailing zeros.
    if (inTrail && !d) exp++;
    else {
      buffer.push_back((char) ('0' + d));
      inTrail = false;
    }
  }

  assert(!buffer.empty() && "no characters in buffer!");

  // Drop down to FormatPrecision.
  // TODO: don't do more precise calculations above than are required.
  AdjustToPrecision(buffer, exp, FormatPrecision);

  unsigned NDigits = buffer.size();

  // Check whether we should use scientific notation.
  bool FormatScientific;
  if (!FormatMaxPadding)
    FormatScientific = true;
  else {
    if (exp >= 0) {
      // 765e3 --> 765000
      //              ^^^
      // But we shouldn't make the number look more precise than it is.
      FormatScientific = ((unsigned) exp > FormatMaxPadding ||
                          NDigits + (unsigned) exp > FormatPrecision);
    } else {
      // Power of the most significant digit.
      int MSD = exp + (int) (NDigits - 1);
      if (MSD >= 0) {
        // 765e-2 == 7.65
        FormatScientific = false;
      } else {
        // 765e-5 == 0.00765
        //           ^ ^^
        FormatScientific = ((unsigned) -MSD) > FormatMaxPadding;
      }
    }
  }

  // Scientific formatting is pretty straightforward.
  if (FormatScientific) {
    exp += (NDigits - 1);

    Str.push_back(buffer[NDigits-1]);
    Str.push_back('.');
    if (NDigits == 1 && TruncateZero)
      Str.push_back('0');
    else
      for (unsigned I = 1; I != NDigits; ++I)
        Str.push_back(buffer[NDigits-1-I]);
    // Fill with zeros up to FormatPrecision.
    if (!TruncateZero && FormatPrecision > NDigits - 1)
      Str.append(FormatPrecision - NDigits + 1, '0');
    // For !TruncateZero we use lower 'e'.
    Str.push_back(TruncateZero ? 'E' : 'e');

    Str.push_back(exp >= 0 ? '+' : '-');
    if (exp < 0) exp = -exp;
    SmallVector<char, 6> expbuf;
    do {
      expbuf.push_back((char) ('0' + (exp % 10)));
      exp /= 10;
    } while (exp);
    // Exponent always at least two digits if we do not truncate zeros.
    if (!TruncateZero && expbuf.size() < 2)
      expbuf.push_back('0');
    for (unsigned I = 0, E = expbuf.size(); I != E; ++I)
      Str.push_back(expbuf[E-1-I]);
    return;
  }

  // Non-scientific, positive exponents.
  if (exp >= 0) {
    for (unsigned I = 0; I != NDigits; ++I)
      Str.push_back(buffer[NDigits-1-I]);
    for (unsigned I = 0; I != (unsigned) exp; ++I)
      Str.push_back('0');
    return;
  }

  // Non-scientific, negative exponents.

  // The number of digits to the left of the decimal point.
  int NWholeDigits = exp + (int) NDigits;

  unsigned I = 0;
  if (NWholeDigits > 0) {
    for (; I != (unsigned) NWholeDigits; ++I)
      Str.push_back(buffer[NDigits-I-1]);
    Str.push_back('.');
  } else {
    unsigned NZeros = 1 + (unsigned) -NWholeDigits;

    Str.push_back('0');
    Str.push_back('.');
    for (unsigned Z = 1; Z != NZeros; ++Z)
      Str.push_back('0');
  }

  for (; I != NDigits; ++I)
    Str.push_back(buffer[NDigits-I-1]);
}

bool IEEEFloat::getExactInverse(APFloat *inv) const {
  // Special floats and denormals have no exact inverse.
  if (!isFiniteNonZero())
    return false;

  // Check that the number is a power of two by making sure that only the
  // integer bit is set in the significand.
  if (significandLSB() != semantics->precision - 1)
    return false;

  // Get the inverse.
  IEEEFloat reciprocal(*semantics, 1ULL);
  if (reciprocal.divide(*this, rmNearestTiesToEven) != opOK)
    return false;

  // Avoid multiplication with a denormal, it is not safe on all platforms and
  // may be slower than a normal division.
  if (reciprocal.isDenormal())
    return false;

  assert(reciprocal.isFiniteNonZero() &&
         reciprocal.significandLSB() == reciprocal.semantics->precision - 1);

  if (inv)
    *inv = APFloat(reciprocal, *semantics);

  return true;
}

bool IEEEFloat::isSignaling() const {
  if (!isNaN())
    return false;

  // IEEE-754R 2008 6.2.1: A signaling NaN bit string should be encoded with the
  // first bit of the trailing significand being 0.
  return !APInt::tcExtractBit(significandParts(), semantics->precision - 2);
}

/// IEEE-754R 2008 5.3.1: nextUp/nextDown.
///
/// *NOTE* since nextDown(x) = -nextUp(-x), we only implement nextUp with
/// appropriate sign switching before/after the computation.
IEEEFloat::opStatus IEEEFloat::next(bool nextDown) {
  // If we are performing nextDown, swap sign so we have -x.
  if (nextDown)
    changeSign();

  // Compute nextUp(x)
  opStatus result = opOK;

  // Handle each float category separately.
  switch (category) {
  case fcInfinity:
    // nextUp(+inf) = +inf
    if (!isNegative())
      break;
    // nextUp(-inf) = -getLargest()
    makeLargest(true);
    break;
  case fcNaN:
    // IEEE-754R 2008 6.2 Par 2: nextUp(sNaN) = qNaN. Set Invalid flag.
    // IEEE-754R 2008 6.2: nextUp(qNaN) = qNaN. Must be identity so we do not
    //                     change the payload.
    if (isSignaling()) {
      result = opInvalidOp;
      // For consistency, propagate the sign of the sNaN to the qNaN.
      makeNaN(false, isNegative(), nullptr);
    }
    break;
  case fcZero:
    // nextUp(pm 0) = +getSmallest()
    makeSmallest(false);
    break;
  case fcNormal:
    // nextUp(-getSmallest()) = -0
    if (isSmallest() && isNegative()) {
      APInt::tcSet(significandParts(), 0, partCount());
      category = fcZero;
      exponent = 0;
      break;
    }

    // nextUp(getLargest()) == INFINITY
    if (isLargest() && !isNegative()) {
      APInt::tcSet(significandParts(), 0, partCount());
      category = fcInfinity;
      exponent = semantics->maxExponent + 1;
      break;
    }

    // nextUp(normal) == normal + inc.
    if (isNegative()) {
      // If we are negative, we need to decrement the significand.

      // We only cross a binade boundary that requires adjusting the exponent
      // if:
      //   1. exponent != semantics->minExponent. This implies we are not in the
      //   smallest binade or are dealing with denormals.
      //   2. Our significand excluding the integral bit is all zeros.
      bool WillCrossBinadeBoundary =
        exponent != semantics->minExponent && isSignificandAllZeros();

      // Decrement the significand.
      //
      // We always do this since:
      //   1. If we are dealing with a non-binade decrement, by definition we
      //   just decrement the significand.
      //   2. If we are dealing with a normal -> normal binade decrement, since
      //   we have an explicit integral bit the fact that all bits but the
      //   integral bit are zero implies that subtracting one will yield a
      //   significand with 0 integral bit and 1 in all other spots. Thus we
      //   must just adjust the exponent and set the integral bit to 1.
      //   3. If we are dealing with a normal -> denormal binade decrement,
      //   since we set the integral bit to 0 when we represent denormals, we
      //   just decrement the significand.
      integerPart *Parts = significandParts();
      APInt::tcDecrement(Parts, partCount());

      if (WillCrossBinadeBoundary) {
        // Our result is a normal number. Do the following:
        // 1. Set the integral bit to 1.
        // 2. Decrement the exponent.
        APInt::tcSetBit(Parts, semantics->precision - 1);
        exponent--;
      }
    } else {
      // If we are positive, we need to increment the significand.

      // We only cross a binade boundary that requires adjusting the exponent if
      // the input is not a denormal and all of said input's significand bits
      // are set. If all of said conditions are true: clear the significand, set
      // the integral bit to 1, and increment the exponent. If we have a
      // denormal always increment since moving denormals and the numbers in the
      // smallest normal binade have the same exponent in our representation.
      bool WillCrossBinadeBoundary = !isDenormal() && isSignificandAllOnes();

      if (WillCrossBinadeBoundary) {
        integerPart *Parts = significandParts();
        APInt::tcSet(Parts, 0, partCount());
        APInt::tcSetBit(Parts, semantics->precision - 1);
        assert(exponent != semantics->maxExponent &&
               "We can not increment an exponent beyond the maxExponent allowed"
               " by the given floating point semantics.");
        exponent++;
      } else {
        incrementSignificand();
      }
    }
    break;
  }

  // If we are performing nextDown, swap sign so we have -nextUp(-x)
  if (nextDown)
    changeSign();

  return result;
}

void IEEEFloat::makeInf(bool Negative) {
  category = fcInfinity;
  sign = Negative;
  exponent = semantics->maxExponent + 1;
  APInt::tcSet(significandParts(), 0, partCount());
}

void IEEEFloat::makeZero(bool Negative) {
  category = fcZero;
  sign = Negative;
  exponent = semantics->minExponent-1;
  APInt::tcSet(significandParts(), 0, partCount());
}

void IEEEFloat::makeQuiet() {
  assert(isNaN());
  APInt::tcSetBit(significandParts(), semantics->precision - 2);
}

int ilogb(const IEEEFloat &Arg) {
  if (Arg.isNaN())
    return IEEEFloat::IEK_NaN;
  if (Arg.isZero())
    return IEEEFloat::IEK_Zero;
  if (Arg.isInfinity())
    return IEEEFloat::IEK_Inf;
  if (!Arg.isDenormal())
    return Arg.exponent;

  IEEEFloat Normalized(Arg);
  int SignificandBits = Arg.getSemantics().precision - 1;

  Normalized.exponent += SignificandBits;
  Normalized.normalize(IEEEFloat::rmNearestTiesToEven, lfExactlyZero);
  return Normalized.exponent - SignificandBits;
}

IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode RoundingMode) {
  auto MaxExp = X.getSemantics().maxExponent;
  auto MinExp = X.getSemantics().minExponent;

  // If Exp is wildly out-of-scale, simply adding it to X.exponent will
  // overflow; clamp it to a safe range before adding, but ensure that the range
  // is large enough that the clamp does not change the result. The range we
  // need to support is the difference between the largest possible exponent and
  // the normalized exponent of half the smallest denormal.

  int SignificandBits = X.getSemantics().precision - 1;
  int MaxIncrement = MaxExp - (MinExp - SignificandBits) + 1;

  // Clamp to one past the range ends to let normalize handle overlflow.
  X.exponent += std::min(std::max(Exp, -MaxIncrement - 1), MaxIncrement);
  X.normalize(RoundingMode, lfExactlyZero);
  if (X.isNaN())
    X.makeQuiet();
  return X;
}

IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM) {
  Exp = ilogb(Val);

  // Quiet signalling nans.
  if (Exp == IEEEFloat::IEK_NaN) {
    IEEEFloat Quiet(Val);
    Quiet.makeQuiet();
    return Quiet;
  }

  if (Exp == IEEEFloat::IEK_Inf)
    return Val;

  // 1 is added because frexp is defined to return a normalized fraction in
  // +/-[0.5, 1.0), rather than the usual +/-[1.0, 2.0).
  Exp = Exp == IEEEFloat::IEK_Zero ? 0 : Exp + 1;
  return scalbn(Val, -Exp, RM);
}

DoubleAPFloat::DoubleAPFloat(const fltSemantics &S)
    : Semantics(&S),
      Floats(new APFloat[2]{APFloat(semIEEEdouble), APFloat(semIEEEdouble)}) {
  assert(Semantics == &semPPCDoubleDouble);
}

DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, uninitializedTag)
    : Semantics(&S),
      Floats(new APFloat[2]{APFloat(semIEEEdouble, uninitialized),
                            APFloat(semIEEEdouble, uninitialized)}) {
  assert(Semantics == &semPPCDoubleDouble);
}

DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, integerPart I)
    : Semantics(&S), Floats(new APFloat[2]{APFloat(semIEEEdouble, I),
                                           APFloat(semIEEEdouble)}) {
  assert(Semantics == &semPPCDoubleDouble);
}

DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, const APInt &I)
    : Semantics(&S),
      Floats(new APFloat[2]{
          APFloat(semIEEEdouble, APInt(64, I.getRawData()[0])),
          APFloat(semIEEEdouble, APInt(64, I.getRawData()[1]))}) {
  assert(Semantics == &semPPCDoubleDouble);
}

DoubleAPFloat::DoubleAPFloat(const fltSemantics &S, APFloat &&First,
                             APFloat &&Second)
    : Semantics(&S),
      Floats(new APFloat[2]{std::move(First), std::move(Second)}) {
  assert(Semantics == &semPPCDoubleDouble);
  assert(&Floats[0].getSemantics() == &semIEEEdouble);
  assert(&Floats[1].getSemantics() == &semIEEEdouble);
}

DoubleAPFloat::DoubleAPFloat(const DoubleAPFloat &RHS)
    : Semantics(RHS.Semantics),
      Floats(RHS.Floats ? new APFloat[2]{APFloat(RHS.Floats[0]),
                                         APFloat(RHS.Floats[1])}
                        : nullptr) {
  assert(Semantics == &semPPCDoubleDouble);
}

DoubleAPFloat::DoubleAPFloat(DoubleAPFloat &&RHS)
    : Semantics(RHS.Semantics), Floats(std::move(RHS.Floats)) {
  RHS.Semantics = &semBogus;
  assert(Semantics == &semPPCDoubleDouble);
}

DoubleAPFloat &DoubleAPFloat::operator=(const DoubleAPFloat &RHS) {
  if (Semantics == RHS.Semantics && RHS.Floats) {
    Floats[0] = RHS.Floats[0];
    Floats[1] = RHS.Floats[1];
  } else if (this != &RHS) {
    this->~DoubleAPFloat();
    new (this) DoubleAPFloat(RHS);
  }
  return *this;
}

// Implement addition, subtraction, multiplication and division based on:
// "Software for Doubled-Precision Floating-Point Computations",
// by Seppo Linnainmaa, ACM TOMS vol 7 no 3, September 1981, pages 272-283.
APFloat::opStatus DoubleAPFloat::addImpl(const APFloat &a, const APFloat &aa,
                                         const APFloat &c, const APFloat &cc,
                                         roundingMode RM) {
  int Status = opOK;
  APFloat z = a;
  Status |= z.add(c, RM);
  if (!z.isFinite()) {
    if (!z.isInfinity()) {
      Floats[0] = std::move(z);
      Floats[1].makeZero(/* Neg = */ false);
      return (opStatus)Status;
    }
    Status = opOK;
    auto AComparedToC = a.compareAbsoluteValue(c);
    z = cc;
    Status |= z.add(aa, RM);
    if (AComparedToC == APFloat::cmpGreaterThan) {
      // z = cc + aa + c + a;
      Status |= z.add(c, RM);
      Status |= z.add(a, RM);
    } else {
      // z = cc + aa + a + c;
      Status |= z.add(a, RM);
      Status |= z.add(c, RM);
    }
    if (!z.isFinite()) {
      Floats[0] = std::move(z);
      Floats[1].makeZero(/* Neg = */ false);
      return (opStatus)Status;
    }
    Floats[0] = z;
    APFloat zz = aa;
    Status |= zz.add(cc, RM);
    if (AComparedToC == APFloat::cmpGreaterThan) {
      // Floats[1] = a - z + c + zz;
      Floats[1] = a;
      Status |= Floats[1].subtract(z, RM);
      Status |= Floats[1].add(c, RM);
      Status |= Floats[1].add(zz, RM);
    } else {
      // Floats[1] = c - z + a + zz;
      Floats[1] = c;
      Status |= Floats[1].subtract(z, RM);
      Status |= Floats[1].add(a, RM);
      Status |= Floats[1].add(zz, RM);
    }
  } else {
    // q = a - z;
    APFloat q = a;
    Status |= q.subtract(z, RM);

    // zz = q + c + (a - (q + z)) + aa + cc;
    // Compute a - (q + z) as -((q + z) - a) to avoid temporary copies.
    auto zz = q;
    Status |= zz.add(c, RM);
    Status |= q.add(z, RM);
    Status |= q.subtract(a, RM);
    q.changeSign();
    Status |= zz.add(q, RM);
    Status |= zz.add(aa, RM);
    Status |= zz.add(cc, RM);
    if (zz.isZero() && !zz.isNegative()) {
      Floats[0] = std::move(z);
      Floats[1].makeZero(/* Neg = */ false);
      return opOK;
    }
    Floats[0] = z;
    Status |= Floats[0].add(zz, RM);
    if (!Floats[0].isFinite()) {
      Floats[1].makeZero(/* Neg = */ false);
      return (opStatus)Status;
    }
    Floats[1] = std::move(z);
    Status |= Floats[1].subtract(Floats[0], RM);
    Status |= Floats[1].add(zz, RM);
  }
  return (opStatus)Status;
}

APFloat::opStatus DoubleAPFloat::addWithSpecial(const DoubleAPFloat &LHS,
                                                const DoubleAPFloat &RHS,
                                                DoubleAPFloat &Out,
                                                roundingMode RM) {
  if (LHS.getCategory() == fcNaN) {
    Out = LHS;
    return opOK;
  }
  if (RHS.getCategory() == fcNaN) {
    Out = RHS;
    return opOK;
  }
  if (LHS.getCategory() == fcZero) {
    Out = RHS;
    return opOK;
  }
  if (RHS.getCategory() == fcZero) {
    Out = LHS;
    return opOK;
  }
  if (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcInfinity &&
      LHS.isNegative() != RHS.isNegative()) {
    Out.makeNaN(false, Out.isNegative(), nullptr);
    return opInvalidOp;
  }
  if (LHS.getCategory() == fcInfinity) {
    Out = LHS;
    return opOK;
  }
  if (RHS.getCategory() == fcInfinity) {
    Out = RHS;
    return opOK;
  }
  assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal);

  APFloat A(LHS.Floats[0]), AA(LHS.Floats[1]), C(RHS.Floats[0]),
      CC(RHS.Floats[1]);
  assert(&A.getSemantics() == &semIEEEdouble);
  assert(&AA.getSemantics() == &semIEEEdouble);
  assert(&C.getSemantics() == &semIEEEdouble);
  assert(&CC.getSemantics() == &semIEEEdouble);
  assert(&Out.Floats[0].getSemantics() == &semIEEEdouble);
  assert(&Out.Floats[1].getSemantics() == &semIEEEdouble);
  return Out.addImpl(A, AA, C, CC, RM);
}

APFloat::opStatus DoubleAPFloat::add(const DoubleAPFloat &RHS,
                                     roundingMode RM) {
  return addWithSpecial(*this, RHS, *this, RM);
}

APFloat::opStatus DoubleAPFloat::subtract(const DoubleAPFloat &RHS,
                                          roundingMode RM) {
  changeSign();
  auto Ret = add(RHS, RM);
  changeSign();
  return Ret;
}

APFloat::opStatus DoubleAPFloat::multiply(const DoubleAPFloat &RHS,
                                          APFloat::roundingMode RM) {
  const auto &LHS = *this;
  auto &Out = *this;
  /* Interesting observation: For special categories, finding the lowest
     common ancestor of the following layered graph gives the correct
     return category:

        NaN
       /   \
     Zero  Inf
       \   /
       Normal

     e.g. NaN * NaN = NaN
          Zero * Inf = NaN
          Normal * Zero = Zero
          Normal * Inf = Inf
  */
  if (LHS.getCategory() == fcNaN) {
    Out = LHS;
    return opOK;
  }
  if (RHS.getCategory() == fcNaN) {
    Out = RHS;
    return opOK;
  }
  if ((LHS.getCategory() == fcZero && RHS.getCategory() == fcInfinity) ||
      (LHS.getCategory() == fcInfinity && RHS.getCategory() == fcZero)) {
    Out.makeNaN(false, false, nullptr);
    return opOK;
  }
  if (LHS.getCategory() == fcZero || LHS.getCategory() == fcInfinity) {
    Out = LHS;
    return opOK;
  }
  if (RHS.getCategory() == fcZero || RHS.getCategory() == fcInfinity) {
    Out = RHS;
    return opOK;
  }
  assert(LHS.getCategory() == fcNormal && RHS.getCategory() == fcNormal &&
         "Special cases not handled exhaustively");

  int Status = opOK;
  APFloat A = Floats[0], B = Floats[1], C = RHS.Floats[0], D = RHS.Floats[1];
  // t = a * c
  APFloat T = A;
  Status |= T.multiply(C, RM);
  if (!T.isFiniteNonZero()) {
    Floats[0] = T;
    Floats[1].makeZero(/* Neg = */ false);
    return (opStatus)Status;
  }

  // tau = fmsub(a, c, t), that is -fmadd(-a, c, t).
  APFloat Tau = A;
  T.changeSign();
  Status |= Tau.fusedMultiplyAdd(C, T, RM);
  T.changeSign();
  {
    // v = a * d
    APFloat V = A;
    Status |= V.multiply(D, RM);
    // w = b * c
    APFloat W = B;
    Status |= W.multiply(C, RM);
    Status |= V.add(W, RM);
    // tau += v + w
    Status |= Tau.add(V, RM);
  }
  // u = t + tau
  APFloat U = T;
  Status |= U.add(Tau, RM);

  Floats[0] = U;
  if (!U.isFinite()) {
    Floats[1].makeZero(/* Neg = */ false);
  } else {
    // Floats[1] = (t - u) + tau
    Status |= T.subtract(U, RM);
    Status |= T.add(Tau, RM);
    Floats[1] = T;
  }
  return (opStatus)Status;
}

APFloat::opStatus DoubleAPFloat::divide(const DoubleAPFloat &RHS,
                                        APFloat::roundingMode RM) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
  auto Ret =
      Tmp.divide(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()), RM);
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

APFloat::opStatus DoubleAPFloat::remainder(const DoubleAPFloat &RHS) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
  auto Ret =
      Tmp.remainder(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

APFloat::opStatus DoubleAPFloat::mod(const DoubleAPFloat &RHS) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
  auto Ret = Tmp.mod(APFloat(semPPCDoubleDoubleLegacy, RHS.bitcastToAPInt()));
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

APFloat::opStatus
DoubleAPFloat::fusedMultiplyAdd(const DoubleAPFloat &Multiplicand,
                                const DoubleAPFloat &Addend,
                                APFloat::roundingMode RM) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
  auto Ret = Tmp.fusedMultiplyAdd(
      APFloat(semPPCDoubleDoubleLegacy, Multiplicand.bitcastToAPInt()),
      APFloat(semPPCDoubleDoubleLegacy, Addend.bitcastToAPInt()), RM);
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

APFloat::opStatus DoubleAPFloat::roundToIntegral(APFloat::roundingMode RM) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
  auto Ret = Tmp.roundToIntegral(RM);
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

void DoubleAPFloat::changeSign() {
  Floats[0].changeSign();
  Floats[1].changeSign();
}

APFloat::cmpResult
DoubleAPFloat::compareAbsoluteValue(const DoubleAPFloat &RHS) const {
  auto Result = Floats[0].compareAbsoluteValue(RHS.Floats[0]);
  if (Result != cmpEqual)
    return Result;
  Result = Floats[1].compareAbsoluteValue(RHS.Floats[1]);
  if (Result == cmpLessThan || Result == cmpGreaterThan) {
    auto Against = Floats[0].isNegative() ^ Floats[1].isNegative();
    auto RHSAgainst = RHS.Floats[0].isNegative() ^ RHS.Floats[1].isNegative();
    if (Against && !RHSAgainst)
      return cmpLessThan;
    if (!Against && RHSAgainst)
      return cmpGreaterThan;
    if (!Against && !RHSAgainst)
      return Result;
    if (Against && RHSAgainst)
      return (cmpResult)(cmpLessThan + cmpGreaterThan - Result);
  }
  return Result;
}

APFloat::fltCategory DoubleAPFloat::getCategory() const {
  return Floats[0].getCategory();
}

bool DoubleAPFloat::isNegative() const { return Floats[0].isNegative(); }

void DoubleAPFloat::makeInf(bool Neg) {
  Floats[0].makeInf(Neg);
  Floats[1].makeZero(/* Neg = */ false);
}

void DoubleAPFloat::makeZero(bool Neg) {
  Floats[0].makeZero(Neg);
  Floats[1].makeZero(/* Neg = */ false);
}

void DoubleAPFloat::makeLargest(bool Neg) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x7fefffffffffffffull));
  Floats[1] = APFloat(semIEEEdouble, APInt(64, 0x7c8ffffffffffffeull));
  if (Neg)
    changeSign();
}

void DoubleAPFloat::makeSmallest(bool Neg) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  Floats[0].makeSmallest(Neg);
  Floats[1].makeZero(/* Neg = */ false);
}

void DoubleAPFloat::makeSmallestNormalized(bool Neg) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  Floats[0] = APFloat(semIEEEdouble, APInt(64, 0x0360000000000000ull));
  if (Neg)
    Floats[0].changeSign();
  Floats[1].makeZero(/* Neg = */ false);
}

void DoubleAPFloat::makeNaN(bool SNaN, bool Neg, const APInt *fill) {
  Floats[0].makeNaN(SNaN, Neg, fill);
  Floats[1].makeZero(/* Neg = */ false);
}

APFloat::cmpResult DoubleAPFloat::compare(const DoubleAPFloat &RHS) const {
  auto Result = Floats[0].compare(RHS.Floats[0]);
  // |Float[0]| > |Float[1]|
  if (Result == APFloat::cmpEqual)
    return Floats[1].compare(RHS.Floats[1]);
  return Result;
}

bool DoubleAPFloat::bitwiseIsEqual(const DoubleAPFloat &RHS) const {
  return Floats[0].bitwiseIsEqual(RHS.Floats[0]) &&
         Floats[1].bitwiseIsEqual(RHS.Floats[1]);
}

hash_code hash_value(const DoubleAPFloat &Arg) {
  if (Arg.Floats)
    return hash_combine(hash_value(Arg.Floats[0]), hash_value(Arg.Floats[1]));
  return hash_combine(Arg.Semantics);
}

APInt DoubleAPFloat::bitcastToAPInt() const {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  uint64_t Data[] = {
      Floats[0].bitcastToAPInt().getRawData()[0],
      Floats[1].bitcastToAPInt().getRawData()[0],
  };
  return APInt(128, 2, Data);
}

Expected<APFloat::opStatus> DoubleAPFloat::convertFromString(StringRef S,
                                                             roundingMode RM) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy);
  auto Ret = Tmp.convertFromString(S, RM);
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

APFloat::opStatus DoubleAPFloat::next(bool nextDown) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
  auto Ret = Tmp.next(nextDown);
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

APFloat::opStatus
DoubleAPFloat::convertToInteger(MutableArrayRef<integerPart> Input,
                                unsigned int Width, bool IsSigned,
                                roundingMode RM, bool *IsExact) const {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
      .convertToInteger(Input, Width, IsSigned, RM, IsExact);
}

APFloat::opStatus DoubleAPFloat::convertFromAPInt(const APInt &Input,
                                                  bool IsSigned,
                                                  roundingMode RM) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy);
  auto Ret = Tmp.convertFromAPInt(Input, IsSigned, RM);
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

APFloat::opStatus
DoubleAPFloat::convertFromSignExtendedInteger(const integerPart *Input,
                                              unsigned int InputSize,
                                              bool IsSigned, roundingMode RM) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy);
  auto Ret = Tmp.convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM);
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

APFloat::opStatus
DoubleAPFloat::convertFromZeroExtendedInteger(const integerPart *Input,
                                              unsigned int InputSize,
                                              bool IsSigned, roundingMode RM) {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy);
  auto Ret = Tmp.convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM);
  *this = DoubleAPFloat(semPPCDoubleDouble, Tmp.bitcastToAPInt());
  return Ret;
}

unsigned int DoubleAPFloat::convertToHexString(char *DST,
                                               unsigned int HexDigits,
                                               bool UpperCase,
                                               roundingMode RM) const {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  return APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
      .convertToHexString(DST, HexDigits, UpperCase, RM);
}

bool DoubleAPFloat::isDenormal() const {
  return getCategory() == fcNormal &&
         (Floats[0].isDenormal() || Floats[1].isDenormal() ||
          // (double)(Hi + Lo) == Hi defines a normal number.
          Floats[0] != Floats[0] + Floats[1]);
}

bool DoubleAPFloat::isSmallest() const {
  if (getCategory() != fcNormal)
    return false;
  DoubleAPFloat Tmp(*this);
  Tmp.makeSmallest(this->isNegative());
  return Tmp.compare(*this) == cmpEqual;
}

bool DoubleAPFloat::isLargest() const {
  if (getCategory() != fcNormal)
    return false;
  DoubleAPFloat Tmp(*this);
  Tmp.makeLargest(this->isNegative());
  return Tmp.compare(*this) == cmpEqual;
}

bool DoubleAPFloat::isInteger() const {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  return Floats[0].isInteger() && Floats[1].isInteger();
}

void DoubleAPFloat::toString(SmallVectorImpl<char> &Str,
                             unsigned FormatPrecision,
                             unsigned FormatMaxPadding,
                             bool TruncateZero) const {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat(semPPCDoubleDoubleLegacy, bitcastToAPInt())
      .toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero);
}

bool DoubleAPFloat::getExactInverse(APFloat *inv) const {
  assert(Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat Tmp(semPPCDoubleDoubleLegacy, bitcastToAPInt());
  if (!inv)
    return Tmp.getExactInverse(nullptr);
  APFloat Inv(semPPCDoubleDoubleLegacy);
  auto Ret = Tmp.getExactInverse(&Inv);
  *inv = APFloat(semPPCDoubleDouble, Inv.bitcastToAPInt());
  return Ret;
}

DoubleAPFloat scalbn(DoubleAPFloat Arg, int Exp, APFloat::roundingMode RM) {
  assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  return DoubleAPFloat(semPPCDoubleDouble, scalbn(Arg.Floats[0], Exp, RM),
                       scalbn(Arg.Floats[1], Exp, RM));
}

DoubleAPFloat frexp(const DoubleAPFloat &Arg, int &Exp,
                    APFloat::roundingMode RM) {
  assert(Arg.Semantics == &semPPCDoubleDouble && "Unexpected Semantics");
  APFloat First = frexp(Arg.Floats[0], Exp, RM);
  APFloat Second = Arg.Floats[1];
  if (Arg.getCategory() == APFloat::fcNormal)
    Second = scalbn(Second, -Exp, RM);
  return DoubleAPFloat(semPPCDoubleDouble, std::move(First), std::move(Second));
}

} // End detail namespace

APFloat::Storage::Storage(IEEEFloat F, const fltSemantics &Semantics) {
  if (usesLayout<IEEEFloat>(Semantics)) {
    new (&IEEE) IEEEFloat(std::move(F));
    return;
  }
  if (usesLayout<DoubleAPFloat>(Semantics)) {
    const fltSemantics& S = F.getSemantics();
    new (&Double)
        DoubleAPFloat(Semantics, APFloat(std::move(F), S),
                      APFloat(semIEEEdouble));
    return;
  }
  llvm_unreachable("Unexpected semantics");
}

Expected<APFloat::opStatus> APFloat::convertFromString(StringRef Str,
                                                       roundingMode RM) {
  APFLOAT_DISPATCH_ON_SEMANTICS(convertFromString(Str, RM));
}

hash_code hash_value(const APFloat &Arg) {
  if (APFloat::usesLayout<detail::IEEEFloat>(Arg.getSemantics()))
    return hash_value(Arg.U.IEEE);
  if (APFloat::usesLayout<detail::DoubleAPFloat>(Arg.getSemantics()))
    return hash_value(Arg.U.Double);
  llvm_unreachable("Unexpected semantics");
}

APFloat::APFloat(const fltSemantics &Semantics, StringRef S)
    : APFloat(Semantics) {
  auto StatusOrErr = convertFromString(S, rmNearestTiesToEven);
  assert(StatusOrErr && "Invalid floating point representation");
  consumeError(StatusOrErr.takeError());
}

APFloat::opStatus APFloat::convert(const fltSemantics &ToSemantics,
                                   roundingMode RM, bool *losesInfo) {
  if (&getSemantics() == &ToSemantics) {
    *losesInfo = false;
    return opOK;
  }
  if (usesLayout<IEEEFloat>(getSemantics()) &&
      usesLayout<IEEEFloat>(ToSemantics))
    return U.IEEE.convert(ToSemantics, RM, losesInfo);
  if (usesLayout<IEEEFloat>(getSemantics()) &&
      usesLayout<DoubleAPFloat>(ToSemantics)) {
    assert(&ToSemantics == &semPPCDoubleDouble);
    auto Ret = U.IEEE.convert(semPPCDoubleDoubleLegacy, RM, losesInfo);
    *this = APFloat(ToSemantics, U.IEEE.bitcastToAPInt());
    return Ret;
  }
  if (usesLayout<DoubleAPFloat>(getSemantics()) &&
      usesLayout<IEEEFloat>(ToSemantics)) {
    auto Ret = getIEEE().convert(ToSemantics, RM, losesInfo);
    *this = APFloat(std::move(getIEEE()), ToSemantics);
    return Ret;
  }
  llvm_unreachable("Unexpected semantics");
}

APFloat APFloat::getAllOnesValue(const fltSemantics &Semantics,
                                 unsigned BitWidth) {
  return APFloat(Semantics, APInt::getAllOnesValue(BitWidth));
}

void APFloat::print(raw_ostream &OS) const {
  SmallVector<char, 16> Buffer;
  toString(Buffer);
  OS << Buffer << "\n";
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void APFloat::dump() const { print(dbgs()); }
#endif

void APFloat::Profile(FoldingSetNodeID &NID) const {
  NID.Add(bitcastToAPInt());
}

/* Same as convertToInteger(integerPart*, ...), except the result is returned in
   an APSInt, whose initial bit-width and signed-ness are used to determine the
   precision of the conversion.
 */
APFloat::opStatus APFloat::convertToInteger(APSInt &result,
                                            roundingMode rounding_mode,
                                            bool *isExact) const {
  unsigned bitWidth = result.getBitWidth();
  SmallVector<uint64_t, 4> parts(result.getNumWords());
  opStatus status = convertToInteger(parts, bitWidth, result.isSigned(),
                                     rounding_mode, isExact);
  // Keeps the original signed-ness.
  result = APInt(bitWidth, parts);
  return status;
}

} // End llvm namespace

#undef APFLOAT_DISPATCH_ON_SEMANTICS