InstrProfWriter.cpp 15.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
//===- InstrProfWriter.cpp - Instrumented profiling writer ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing profiling data for clang's
// instrumentation based PGO and coverage.
//
//===----------------------------------------------------------------------===//

#include "llvm/ProfileData/InstrProfWriter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/InstrProf.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/OnDiskHashTable.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace llvm;

// A struct to define how the data stream should be patched. For Indexed
// profiling, only uint64_t data type is needed.
struct PatchItem {
  uint64_t Pos; // Where to patch.
  uint64_t *D;  // Pointer to an array of source data.
  int N;        // Number of elements in \c D array.
};

namespace llvm {

// A wrapper class to abstract writer stream with support of bytes
// back patching.
class ProfOStream {
public:
  ProfOStream(raw_fd_ostream &FD)
      : IsFDOStream(true), OS(FD), LE(FD, support::little) {}
  ProfOStream(raw_string_ostream &STR)
      : IsFDOStream(false), OS(STR), LE(STR, support::little) {}

  uint64_t tell() { return OS.tell(); }
  void write(uint64_t V) { LE.write<uint64_t>(V); }

  // \c patch can only be called when all data is written and flushed.
  // For raw_string_ostream, the patch is done on the target string
  // directly and it won't be reflected in the stream's internal buffer.
  void patch(PatchItem *P, int NItems) {
    using namespace support;

    if (IsFDOStream) {
      raw_fd_ostream &FDOStream = static_cast<raw_fd_ostream &>(OS);
      for (int K = 0; K < NItems; K++) {
        FDOStream.seek(P[K].Pos);
        for (int I = 0; I < P[K].N; I++)
          write(P[K].D[I]);
      }
    } else {
      raw_string_ostream &SOStream = static_cast<raw_string_ostream &>(OS);
      std::string &Data = SOStream.str(); // with flush
      for (int K = 0; K < NItems; K++) {
        for (int I = 0; I < P[K].N; I++) {
          uint64_t Bytes = endian::byte_swap<uint64_t, little>(P[K].D[I]);
          Data.replace(P[K].Pos + I * sizeof(uint64_t), sizeof(uint64_t),
                       (const char *)&Bytes, sizeof(uint64_t));
        }
      }
    }
  }

  // If \c OS is an instance of \c raw_fd_ostream, this field will be
  // true. Otherwise, \c OS will be an raw_string_ostream.
  bool IsFDOStream;
  raw_ostream &OS;
  support::endian::Writer LE;
};

class InstrProfRecordWriterTrait {
public:
  using key_type = StringRef;
  using key_type_ref = StringRef;

  using data_type = const InstrProfWriter::ProfilingData *const;
  using data_type_ref = const InstrProfWriter::ProfilingData *const;

  using hash_value_type = uint64_t;
  using offset_type = uint64_t;

  support::endianness ValueProfDataEndianness = support::little;
  InstrProfSummaryBuilder *SummaryBuilder;
  InstrProfSummaryBuilder *CSSummaryBuilder;

  InstrProfRecordWriterTrait() = default;

  static hash_value_type ComputeHash(key_type_ref K) {
    return IndexedInstrProf::ComputeHash(K);
  }

  static std::pair<offset_type, offset_type>
  EmitKeyDataLength(raw_ostream &Out, key_type_ref K, data_type_ref V) {
    using namespace support;

    endian::Writer LE(Out, little);

    offset_type N = K.size();
    LE.write<offset_type>(N);

    offset_type M = 0;
    for (const auto &ProfileData : *V) {
      const InstrProfRecord &ProfRecord = ProfileData.second;
      M += sizeof(uint64_t); // The function hash
      M += sizeof(uint64_t); // The size of the Counts vector
      M += ProfRecord.Counts.size() * sizeof(uint64_t);

      // Value data
      M += ValueProfData::getSize(ProfileData.second);
    }
    LE.write<offset_type>(M);

    return std::make_pair(N, M);
  }

  void EmitKey(raw_ostream &Out, key_type_ref K, offset_type N) {
    Out.write(K.data(), N);
  }

  void EmitData(raw_ostream &Out, key_type_ref, data_type_ref V, offset_type) {
    using namespace support;

    endian::Writer LE(Out, little);
    for (const auto &ProfileData : *V) {
      const InstrProfRecord &ProfRecord = ProfileData.second;
      if (NamedInstrProfRecord::hasCSFlagInHash(ProfileData.first))
        CSSummaryBuilder->addRecord(ProfRecord);
      else
        SummaryBuilder->addRecord(ProfRecord);

      LE.write<uint64_t>(ProfileData.first); // Function hash
      LE.write<uint64_t>(ProfRecord.Counts.size());
      for (uint64_t I : ProfRecord.Counts)
        LE.write<uint64_t>(I);

      // Write value data
      std::unique_ptr<ValueProfData> VDataPtr =
          ValueProfData::serializeFrom(ProfileData.second);
      uint32_t S = VDataPtr->getSize();
      VDataPtr->swapBytesFromHost(ValueProfDataEndianness);
      Out.write((const char *)VDataPtr.get(), S);
    }
  }
};

} // end namespace llvm

InstrProfWriter::InstrProfWriter(bool Sparse)
    : Sparse(Sparse), InfoObj(new InstrProfRecordWriterTrait()) {}

InstrProfWriter::~InstrProfWriter() { delete InfoObj; }

// Internal interface for testing purpose only.
void InstrProfWriter::setValueProfDataEndianness(
    support::endianness Endianness) {
  InfoObj->ValueProfDataEndianness = Endianness;
}

void InstrProfWriter::setOutputSparse(bool Sparse) {
  this->Sparse = Sparse;
}

void InstrProfWriter::addRecord(NamedInstrProfRecord &&I, uint64_t Weight,
                                function_ref<void(Error)> Warn) {
  auto Name = I.Name;
  auto Hash = I.Hash;
  addRecord(Name, Hash, std::move(I), Weight, Warn);
}

void InstrProfWriter::overlapRecord(NamedInstrProfRecord &&Other,
                                    OverlapStats &Overlap,
                                    OverlapStats &FuncLevelOverlap,
                                    const OverlapFuncFilters &FuncFilter) {
  auto Name = Other.Name;
  auto Hash = Other.Hash;
  Other.accumulateCounts(FuncLevelOverlap.Test);
  if (FunctionData.find(Name) == FunctionData.end()) {
    Overlap.addOneUnique(FuncLevelOverlap.Test);
    return;
  }
  if (FuncLevelOverlap.Test.CountSum < 1.0f) {
    Overlap.Overlap.NumEntries += 1;
    return;
  }
  auto &ProfileDataMap = FunctionData[Name];
  bool NewFunc;
  ProfilingData::iterator Where;
  std::tie(Where, NewFunc) =
      ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
  if (NewFunc) {
    Overlap.addOneMismatch(FuncLevelOverlap.Test);
    return;
  }
  InstrProfRecord &Dest = Where->second;

  uint64_t ValueCutoff = FuncFilter.ValueCutoff;
  if (!FuncFilter.NameFilter.empty() &&
      Name.find(FuncFilter.NameFilter) != Name.npos)
    ValueCutoff = 0;

  Dest.overlap(Other, Overlap, FuncLevelOverlap, ValueCutoff);
}

void InstrProfWriter::addRecord(StringRef Name, uint64_t Hash,
                                InstrProfRecord &&I, uint64_t Weight,
                                function_ref<void(Error)> Warn) {
  auto &ProfileDataMap = FunctionData[Name];

  bool NewFunc;
  ProfilingData::iterator Where;
  std::tie(Where, NewFunc) =
      ProfileDataMap.insert(std::make_pair(Hash, InstrProfRecord()));
  InstrProfRecord &Dest = Where->second;

  auto MapWarn = [&](instrprof_error E) {
    Warn(make_error<InstrProfError>(E));
  };

  if (NewFunc) {
    // We've never seen a function with this name and hash, add it.
    Dest = std::move(I);
    if (Weight > 1)
      Dest.scale(Weight, MapWarn);
  } else {
    // We're updating a function we've seen before.
    Dest.merge(I, Weight, MapWarn);
  }

  Dest.sortValueData();
}

void InstrProfWriter::mergeRecordsFromWriter(InstrProfWriter &&IPW,
                                             function_ref<void(Error)> Warn) {
  for (auto &I : IPW.FunctionData)
    for (auto &Func : I.getValue())
      addRecord(I.getKey(), Func.first, std::move(Func.second), 1, Warn);
}

bool InstrProfWriter::shouldEncodeData(const ProfilingData &PD) {
  if (!Sparse)
    return true;
  for (const auto &Func : PD) {
    const InstrProfRecord &IPR = Func.second;
    if (llvm::any_of(IPR.Counts, [](uint64_t Count) { return Count > 0; }))
      return true;
  }
  return false;
}

static void setSummary(IndexedInstrProf::Summary *TheSummary,
                       ProfileSummary &PS) {
  using namespace IndexedInstrProf;

  std::vector<ProfileSummaryEntry> &Res = PS.getDetailedSummary();
  TheSummary->NumSummaryFields = Summary::NumKinds;
  TheSummary->NumCutoffEntries = Res.size();
  TheSummary->set(Summary::MaxFunctionCount, PS.getMaxFunctionCount());
  TheSummary->set(Summary::MaxBlockCount, PS.getMaxCount());
  TheSummary->set(Summary::MaxInternalBlockCount, PS.getMaxInternalCount());
  TheSummary->set(Summary::TotalBlockCount, PS.getTotalCount());
  TheSummary->set(Summary::TotalNumBlocks, PS.getNumCounts());
  TheSummary->set(Summary::TotalNumFunctions, PS.getNumFunctions());
  for (unsigned I = 0; I < Res.size(); I++)
    TheSummary->setEntry(I, Res[I]);
}

void InstrProfWriter::writeImpl(ProfOStream &OS) {
  using namespace IndexedInstrProf;

  OnDiskChainedHashTableGenerator<InstrProfRecordWriterTrait> Generator;

  InstrProfSummaryBuilder ISB(ProfileSummaryBuilder::DefaultCutoffs);
  InfoObj->SummaryBuilder = &ISB;
  InstrProfSummaryBuilder CSISB(ProfileSummaryBuilder::DefaultCutoffs);
  InfoObj->CSSummaryBuilder = &CSISB;

  // Populate the hash table generator.
  for (const auto &I : FunctionData)
    if (shouldEncodeData(I.getValue()))
      Generator.insert(I.getKey(), &I.getValue());
  // Write the header.
  IndexedInstrProf::Header Header;
  Header.Magic = IndexedInstrProf::Magic;
  Header.Version = IndexedInstrProf::ProfVersion::CurrentVersion;
  if (ProfileKind == PF_IRLevel)
    Header.Version |= VARIANT_MASK_IR_PROF;
  if (ProfileKind == PF_IRLevelWithCS) {
    Header.Version |= VARIANT_MASK_IR_PROF;
    Header.Version |= VARIANT_MASK_CSIR_PROF;
  }
  Header.Unused = 0;
  Header.HashType = static_cast<uint64_t>(IndexedInstrProf::HashType);
  Header.HashOffset = 0;
  int N = sizeof(IndexedInstrProf::Header) / sizeof(uint64_t);

  // Only write out all the fields except 'HashOffset'. We need
  // to remember the offset of that field to allow back patching
  // later.
  for (int I = 0; I < N - 1; I++)
    OS.write(reinterpret_cast<uint64_t *>(&Header)[I]);

  // Save the location of Header.HashOffset field in \c OS.
  uint64_t HashTableStartFieldOffset = OS.tell();
  // Reserve the space for HashOffset field.
  OS.write(0);

  // Reserve space to write profile summary data.
  uint32_t NumEntries = ProfileSummaryBuilder::DefaultCutoffs.size();
  uint32_t SummarySize = Summary::getSize(Summary::NumKinds, NumEntries);
  // Remember the summary offset.
  uint64_t SummaryOffset = OS.tell();
  for (unsigned I = 0; I < SummarySize / sizeof(uint64_t); I++)
    OS.write(0);
  uint64_t CSSummaryOffset = 0;
  uint64_t CSSummarySize = 0;
  if (ProfileKind == PF_IRLevelWithCS) {
    CSSummaryOffset = OS.tell();
    CSSummarySize = SummarySize / sizeof(uint64_t);
    for (unsigned I = 0; I < CSSummarySize; I++)
      OS.write(0);
  }

  // Write the hash table.
  uint64_t HashTableStart = Generator.Emit(OS.OS, *InfoObj);

  // Allocate space for data to be serialized out.
  std::unique_ptr<IndexedInstrProf::Summary> TheSummary =
      IndexedInstrProf::allocSummary(SummarySize);
  // Compute the Summary and copy the data to the data
  // structure to be serialized out (to disk or buffer).
  std::unique_ptr<ProfileSummary> PS = ISB.getSummary();
  setSummary(TheSummary.get(), *PS);
  InfoObj->SummaryBuilder = nullptr;

  // For Context Sensitive summary.
  std::unique_ptr<IndexedInstrProf::Summary> TheCSSummary = nullptr;
  if (ProfileKind == PF_IRLevelWithCS) {
    TheCSSummary = IndexedInstrProf::allocSummary(SummarySize);
    std::unique_ptr<ProfileSummary> CSPS = CSISB.getSummary();
    setSummary(TheCSSummary.get(), *CSPS);
  }
  InfoObj->CSSummaryBuilder = nullptr;

  // Now do the final patch:
  PatchItem PatchItems[] = {
      // Patch the Header.HashOffset field.
      {HashTableStartFieldOffset, &HashTableStart, 1},
      // Patch the summary data.
      {SummaryOffset, reinterpret_cast<uint64_t *>(TheSummary.get()),
       (int)(SummarySize / sizeof(uint64_t))},
      {CSSummaryOffset, reinterpret_cast<uint64_t *>(TheCSSummary.get()),
       (int)CSSummarySize}};

  OS.patch(PatchItems, sizeof(PatchItems) / sizeof(*PatchItems));
}

void InstrProfWriter::write(raw_fd_ostream &OS) {
  // Write the hash table.
  ProfOStream POS(OS);
  writeImpl(POS);
}

std::unique_ptr<MemoryBuffer> InstrProfWriter::writeBuffer() {
  std::string Data;
  raw_string_ostream OS(Data);
  ProfOStream POS(OS);
  // Write the hash table.
  writeImpl(POS);
  // Return this in an aligned memory buffer.
  return MemoryBuffer::getMemBufferCopy(Data);
}

static const char *ValueProfKindStr[] = {
#define VALUE_PROF_KIND(Enumerator, Value, Descr) #Enumerator,
#include "llvm/ProfileData/InstrProfData.inc"
};

void InstrProfWriter::writeRecordInText(StringRef Name, uint64_t Hash,
                                        const InstrProfRecord &Func,
                                        InstrProfSymtab &Symtab,
                                        raw_fd_ostream &OS) {
  OS << Name << "\n";
  OS << "# Func Hash:\n" << Hash << "\n";
  OS << "# Num Counters:\n" << Func.Counts.size() << "\n";
  OS << "# Counter Values:\n";
  for (uint64_t Count : Func.Counts)
    OS << Count << "\n";

  uint32_t NumValueKinds = Func.getNumValueKinds();
  if (!NumValueKinds) {
    OS << "\n";
    return;
  }

  OS << "# Num Value Kinds:\n" << Func.getNumValueKinds() << "\n";
  for (uint32_t VK = 0; VK < IPVK_Last + 1; VK++) {
    uint32_t NS = Func.getNumValueSites(VK);
    if (!NS)
      continue;
    OS << "# ValueKind = " << ValueProfKindStr[VK] << ":\n" << VK << "\n";
    OS << "# NumValueSites:\n" << NS << "\n";
    for (uint32_t S = 0; S < NS; S++) {
      uint32_t ND = Func.getNumValueDataForSite(VK, S);
      OS << ND << "\n";
      std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, S);
      for (uint32_t I = 0; I < ND; I++) {
        if (VK == IPVK_IndirectCallTarget)
          OS << Symtab.getFuncNameOrExternalSymbol(VD[I].Value) << ":"
             << VD[I].Count << "\n";
        else
          OS << VD[I].Value << ":" << VD[I].Count << "\n";
      }
    }
  }

  OS << "\n";
}

Error InstrProfWriter::writeText(raw_fd_ostream &OS) {
  if (ProfileKind == PF_IRLevel)
    OS << "# IR level Instrumentation Flag\n:ir\n";
  else if (ProfileKind == PF_IRLevelWithCS)
    OS << "# CSIR level Instrumentation Flag\n:csir\n";
  InstrProfSymtab Symtab;

  using FuncPair = detail::DenseMapPair<uint64_t, InstrProfRecord>;
  using RecordType = std::pair<StringRef, FuncPair>;
  SmallVector<RecordType, 4> OrderedFuncData;

  for (const auto &I : FunctionData) {
    if (shouldEncodeData(I.getValue())) {
      if (Error E = Symtab.addFuncName(I.getKey()))
        return E;
      for (const auto &Func : I.getValue())
        OrderedFuncData.push_back(std::make_pair(I.getKey(), Func));
    }
  }

  llvm::sort(OrderedFuncData, [](const RecordType &A, const RecordType &B) {
    return std::tie(A.first, A.second.first) <
           std::tie(B.first, B.second.first);
  });

  for (const auto &record : OrderedFuncData) {
    const StringRef &Name = record.first;
    const FuncPair &Func = record.second;
    writeRecordInText(Name, Func.first, Func.second, Symtab, OS);
  }

  return Error::success();
}